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1. Introduction
Global climate change is primarily caused by human-induced increases in atmospheric greenhouse gases, 
modulated by terrestrial ecosystems through a multitude of climate-ecosystem feedbacks (Gruber & Gallo-
way, 2008; Keohane, 2015; Peters et al., 2012; Zaehle et al., 2010). Heterotrophic respiration, the second larg-
est carbon (C) flux in terrestrial ecosystems, is primarily driven by soil microbes (Gougoulias et al., 2014; 
Sulman et al.,  2014; Van Der Heijden et al.,  2018). Although progress has been made in understanding 
how microbes affect C cycling, more research is needed on accurately projecting microbial feedbacks to the 
climate change. Large uncertainties in global C projections challenge the current model framework (Luo 
et al., 2015; Taylor et al., 2011), and the implicit representation of soil microbes may partially reduce those 
uncertainties (Fang et al., 2005; Wieder et al., 2013, 2015; Xu et al., 2014).

The importance of soil microbes in governing the terrestrial C cycle has received growing attention, and 
soil microbial processes have been implicitly represented in ecosystem models (Schimel & Weintraub, 2003; 
Treseder et  al.,  2012). The development of soil microbial models, such as the SCAMPS model (Sistla 
et  al.,  2014), DAMM model (Davidson et  al.,  2012), microbial-enzyme model (Allison et  al.,  2010), and 
MEND model (G. Wang et  al.,  2013), proved to be valuable in simulating microbial feedbacks to soil C 
processes. Soil microbial traits such as enzyme production, temperature sensitivity, carbon use efficiency 
(CUE), microbial and abiotic interaction, and priming effects were incorporated into soil microbial models 
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(Allison, 2012; Allison et al., 2010; Tang & Riley, 2015). Recently, soil microbes and microbial traits have 
increasingly been incorporated into Earth system models (ESMs) (Sulman et  al.,  2014). However, these 
models assumed that biological responses of soil microbial community are functionally equivalent and 
exert invariant effects on soil processes (Bradford & Fierer, 2012). Given the large temporal variations in 
soil microbial community (Cleveland et al., 2007; Díaz-Raviña et al., 1995; Lipson et al., 2002; Lipson & 
Schmidt, 2004), the assumption of a static soil microbial community is increasingly questioned (G. Wang 
et al., 2015; Wieder et al., 2014, 2015).

Developing models that explicitly represent soil microbial processes poses an important challenge for ESMs. 
Recently, the classification of soil microbes in the TRIPLEX-Microbe model (active and dormant compo-
nents) and the MIMICS model (K- and r-strategists) advanced the representation of the soil microbial com-
munity and its functions in ESMs (K. Wang et al., 2017; Wieder et al., 2014). However, the distinct roles of 
broad soil microbial groups (e.g., fungi and bacteria) have not yet been considered in models. Bacteria and 
fungi have different physiological traits, for example, bacteria prefer to decompose litter low in carbon-to-ni-
trogen (C:N) ratio, while fungi tend to decompose litter with higher C:N ratio (Paul, 2016). These differences 
may cause considerable distinct trajectories of C responses to changing environments such as atmospheric 
nitrogen (N) deposition, elevated carbon dioxide (CO2), and precipitation change (Bell et al., 2014; Hopkins 
et al., 2006; Rousk & Bååth, 2011; Strickland & Rousk, 2010). The classification of the soil microbial com-
munity into K- and r-strategists based on functional traits improves the representation of distinct roles of 
soil microbial groups in biogeochemical processes; however, this characterization is largely theoretical and 
may therefore limit the effort of directly applying observational data to constrain the microbial parameters.

Fungi and bacteria, two major measurable soil microbial groups playing distinct roles on soil processes, 
comprise over 90% of the total soil microbial biomass and are the major agents responsible for soil organic 
matter mineralization (Beare, 1997). Although fungi are widely believed to decompose low quality com-
pounds such as lignin, bacterial ligninases are also commonly found, both fungi and bacteria decompose 
plant residues and soil organic matter (Burns et al., 2013). For example, as litter quality decreases, fungi are 
expected to play more important roles (Van Der Heijden et al., 2018). Soil fungal and bacterial biomass are 
important components of soil microbial community (L. He et al., 2020), representing the microbial ability 
to conduct biochemical transformation of C and nutrients (Xu et al., 2013). Therefore, variations in fun-
gal:bacterial (F:B) biomass ratio can imply changes in the population of decomposers as well as changes in 
soil microbial community composition and function (Six et al., 2006).

To fill the research gap of explicitly representing soil microbial community functions in ESMs, we devel-
oped the CLM-Microbe model based on the framework in Xu et al. (2014). Fungi- and bacteria-regulated 
processes such as the decomposition of plant and microbial residues were added into the CLM4.5 to mecha-
nistically represent major soil microbial processes (Figure 1). To distinguish the physiological traits of fungi 
and bacteria in soil processes, different parameters for fungal- and bacterial-regulated processes were devel-
oped and tested. In this study, we reported the model parameterization, sensitivity analysis, and uncertainty 
analysis at the site level for nine different biomes, and further analyzed the simulated dynamics of microbial 
biomass carbon and their controls. The key objectives were to: (1) parameterize the CLM-Microbe model us-
ing observed time-series data of fungal (FBC) and bacterial (BBC) biomass C in diverse biomes, (2) evaluate 
the performance of the CLM-Microbe model in simulating FBC and BBC dynamics, and (3) identify the key 
parameters and processes controlling variations in FBC and BBC.

2. Methodology
2.1. Data Sources

Due to the large variation in soil microbial community among biomes, we parameterized the model by biome 
(Xu et al., 2014). We selected time-series observed data of FBC and BBC from nine natural biomes (i.e., tropi-
cal/subtropical forest, temperate coniferous forest, temperate broadleaf forest, boreal forest, shrub, grassland, 
desert, tundra, and wetland), with at least two sites in each biome. Then, we randomly selected one site for 
model calibration and the others for model validation. Finally, nine sites were used for model calibration and 
12 sites for model validation for nine natural biomes. Site information, including geographic location, biome 
type, site name, site ID, sampling years, and the measurement methods, was presented in Table 1.
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The FBC and BBC were derived from multiple approaches, such as direct microscopy using optical mi-
croscope (DMO) or fluorescence microscope (DMF), plate count (PC), chloroform fumigation (CF), fatty 
acid methyl ester (FAME), and phospholipid fatty acid (PLFA). Based on our previous study, large varia-
tions exist in measured fungal and bacterial biomass among different approaches (L. He et al., 2020). The 
PLFA was the most widely used in field observed data (Table 2), and likely the most appropriate approach 
for estimating FBC and BBC simultaneously (L. He et al., 2020; Waring et al., 2013). To reduce the biases 
introduced by various approaches, we converted the reported FBC and BBC measured using DMO (Balser 
et al., 2005; Olsson & Wallander, 1998), DMF (Frostegård & Bååth, 1996; Stahl & Parkin, 1996), PC (Bai 
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Figure 1. Conceptual diagram showing the key processes and the roles of fungi and bacteria in the CLM-Microbe model. CWD, coarse woody debris; SOM, 
soil organic matter; B, bacteria; F, fungi; DOM, dissolved organic matter. In the CLM-Microbe model, number in the box means turnover time of each pool. 
Black solid lines indicate transitions in the CLM-Microbe model, which generally represents processes such as: (1) decomposition of coarse woody debris, (2) 
litter 1 decomposition, (3) litter 2 decomposition, (4) litter 3 decomposition, (5) soil organic matter 1 decomposition, (6) soil organic matter 2 decomposition, (7) 
soil organic matter 3 decomposition, (8) soil organic matter 4 decomposition, (9) fungal and bacterial lysis, (10) dissolved organic matter decomposition, (11) 
dissolved organic matter uptake by fungal and bacterial, and (12) fungal and bacterial respiration. Red dash lines represent regulatory role of fungi and bacteria 
on the process, including fungi and bacteria regulation on (13) litter 1, (14) litter 2, (15) litter 3, (16) soil organic matter 1, (17) soil organic matter 2, (18) soil 
organic matter 3, and (19) soil organic matter 4 decomposition.
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et  al.,  2013; Priha et  al.,  1999), CF (Bailey et  al.,  2002), and FAME (Miura et  al.,  2017) to PLFA meas-
ured values using the conversion factors reported by previous studies (Frostegård & Bååth, 1996; Klamer & 
Bååth, 2004).

2.2. Model Improvements

The CLM-Microbe model was developed based on the default CLM4.5 with vertical profiles of biogeochem-
istry, and we specifically incorporated soil microbial processes into the decomposition subroutines (Koven 
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Phase Biome Site ID Location Country Measurement
Depth 
(cm)

Sampling 
year Reference

Calibration Tropical/subtropical 
forest

TSF-HS 22.57°N, 
112.83°E

China PLFA 0–10 2012–2014 Zhao et al. (2017)

Temperate coniferous 
forest

TCF-NJ 39.92°N, 74.6°W US PLFA 0–2.3 2006–2008 Landesman and Dighton (2010)

Temperate broadleaf 
forest

TBF-VA 48.21°N, 16.36°E Austria PLFA 0–5 2006–2008 Kaiser et al. (2010)

Boreal forest BRF-WC 65.32°N, 
142.31°W

US DMO 5–20 1973 Flanagan and Van Cleve (1977)

Shrub SHB-OB 40.18°N, 
112.46°W

US PLFA & FAME 0–10 2009–2010 Docherty et al. (2015)

Grassland GRS-IA 42.18°N, 93.5°W US DMO 0–10 2001–2002 Dornbush et al. (2008)

Desert DST-CH 29.08°N, 
103.17°W

US CF & FAME 0–15 2004–2006 Bell et al. (2014)

Tundra TUN-MH 68.36°N, 18.50°E Sweden PLFA 0–10 2006 Björk et al. (2008)

Wetland WET-EM 51.91°N, 11.98°E Germany PLFA 0–20 1999–2000 Moche et al. (2015)

Validation Tundra TUN-ES 64.83°N, 
111.63°W

Canada DMF 0–5 2007 Buckeridge et al. (2013)

Temperate coniferous 
forest

TCF-NT 47.58°N, 11.64°E Australia PLFA 0–5 2008–2009 Schindlbacher et al. (2011)

Desert DST-GB 44.28°N, 87.93°E China PLFA 0–5 2011–2013 Huang et al. (2015)

Desert DST-JN 32.59°N, 
106.84°W

US PLFA 0–30 2017 National Ecological 
Observatory Network (2020)

Boreal forest BRF-AL 65.15°N, 
147.5°W

US PLFA & FAME 0–10 2009 Docherty et al. (2015)

Tropical/subtropical 
forest

TSF-OS 29.69°N, 
81.99°W

US PLFA & FAME 0–10 2009–2010 Docherty et al. (2015)

Grassland GRS-BC 49.23°N, 
121.77°W

Canada DMO 0–10 1997–1999 Bittman et al. (2005)

Temperate broadleaf 
forest

TBF-SH 36.02°N, 
106.47°E

China PLFA 0–11 2012–2013 Liu et al. (2018)

Temperate broadleaf 
forest

TBF-MS 37.38°N, 
80.52°W

US PLFA 0–30 2018 National Ecological 
Observatory Network (2020)

Temperate broadleaf 
forest

TBF-TL 32.95°N, 
87.39°W

US PLFA 0–30 2017 National Ecological 
Observatory Network (2020)

Shrub SHB-AC 30.63°S, 
71.67°W

Chile CFU 0–20 1997–2006 Aguilera et al. (2016)

Wetland WET-EF 51.87°N, 12.39°E Germany PLFA 0–20 1998–2000 Moche et al. (2015)

Abbreviations: CF, chloroform fumigation; DMF, direct count using fluorescence microscope; DMO, direct microscopy using optical microscope; FAME, fatty 
acid methyl ester; PC, plate count; PLFA, phospholipid fatty acid.

Table 1 
Site Information of the Observational Data
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et al., 2013; Thornton et al., 2007; Thornton & Rosenbloom, 2005). The key algorithm for simulating mi-
crobial controls on C processes is based on the model framework in Xu et al. (2014). The CLM4.5 classified 
litter into three pools, that is, litter 1 (labile), litter 2 (cellulose), and litter 3 (lignin), and soil organic matter 
(SOM) into four pools, that is, SOM 1, SOM 2, SOM 3, and SOM 4. The three litter and four SOM pools differ 
in base decomposition rate (τ), with turnover time of litter pools ranging from 20 h to 71 days and SOM 
pools ranging from 14 days to 27 years (Figure 1). Coarse woody debris is fragmented, decomposed, and 
gradually transferred into litter pools, and further from litter to SOM pools (Koven et al., 2013).

One critical improvement in the CLM-Microbe model is the representation of the pools of dissolved organic 
matter (DOM), fungal and bacterial biomass into the biogeochemistry cascade in the default CLM4.5 (Fig-
ure 1). The DOM pool is further linked with a microbial functional group-based methane module (Y. Wang 
et al., 2019; Xu et al., 2015). In the decomposition subroutine, we changed the original transfers from litter 
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Symbol Rangea Unit Description Reference

k_dom 0.0025–0.5 d−1 Decomposition rate constant of DOM Cherrier et al. (1996), Kirchman et al. (1991), 
Wheeler et al. (1996)

k_bacteria 0.00143–2 d−1 Lysis rate constant of bacteria Moore et al. (2005), Rousk and 
Bååth (2007, 2011), Schippers et al. (2005)

k_fungi 0.00027–0.05 d−1 Lysis rate constant of fungi Moore et al. (2005), Rousk and Bååth (2011), 
Thornton and Rosenbloom (2005), 
Wallander et al. (2004)

m_rf_s1m 0–1 Fraction factor quantifying carbon from SOM1 to microbes Calibrated

m_rf_s2m 0–1 Fraction factor quantifying carbon from SOM2 to microbes Calibrated

m_rf_s3m 0–1 Fraction factor quantifying carbon from SOM3 to microbes Calibrated

m_rf_s4m 0–1 Fraction factor quantifying carbon from SOM4 to microbes Calibrated

m_batm_f 0–1 Fraction factor quantifying carbon respired by bacteria Calibrated

m_bdom_f 0–1 Fraction factor quantifying carbon from DOM to bacteria Calibrated

m_bs1_f 0–1 Fraction factor quantifying carbon from bacteria to SOM1 Calibrated

m_bs2_f 0–1 Fraction factor quantifying carbon from bacteria to SOM2 Calibrated

m_bs3_f 0–1 Fraction factor quantifying carbon from bacteria to SOM3 Calibrated

m_fatm_f 0–1 Fraction factor quantifying carbon respired by fungi Calibrated

m_fdom_f 0–1 Fraction factor quantifying carbon from DOM to fungi Calibrated

m_fs1_f 0–1 Fraction factor quantifying carbon from fungi to SOM1 Calibrated

m_fs2_f 0–1 Fraction factor quantifying carbon from fungi to SOM2 Calibrated

m_fs3_f 0–1 Fraction factor quantifying carbon from fungi to SOM3 Calibrated

m_domb_f 0–1 Fraction factor quantifying carbon from DOM to bacteria Calibrated

m_domf_f 0–1 Fraction factor quantifying carbon from DOM to fungi Calibrated

m_doms1_f 0–1 Fraction factor quantifying carbon from DOM to SOM1 Calibrated

m_doms2_f 0–1 Fraction factor quantifying carbon from DOM to SOM2 Calibrated

m_doms3_f 0–1 Fraction factor quantifying carbon from DOM to SOM3 Calibrated

cn_bacteria 3–12 C:N ratio of bacteria Strickland and Rousk, (2010)

cn_fungi 3–60 C:N ratio of fungi Strickland and Rousk (2010)

cn_dom 4.2–185 C:N ratio of DOM Sinsabaugh et al. (2016)

CUEmax 0.46–0.9 Maximum carbon use efficiency of microbes Gommers et al. (1988), Sinsabaugh 
et al. (2013, 2016)

Abbreviation: CUE, carbon use efficiency.
aThe values may not be the same as those from literature sources due to unit conversion.

Table 2 
Key Model Parameters in Processes Involving Fungal and Bacterial Biomass
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to SOM to mechanisms that were mediated by soil fungi and bacteria. Specifically, we added the C transfer 
from litter and SOM pools to fungal and bacterial biomass pools and DOM, from DOM pool to fungal and 
bacterial biomass and SOM pools, and from fungal and bacterial biomass pools to DOM and SOM pools. A 
certain proportion of C, defined by fraction factors in fungal and bacterial biomass pools, will be respired 
as CO2 into the atmosphere. In total, the CLM-Microbe model included 41 transitions mediated by fungi 
and bacteria, which largely increased the accuracy of simulating the complex soil processes relative to nine 
transitions in the default CLM4.5. In each soil layer, these transitions are regulated by environmental fac-
tors (e.g., temperature, moisture, and oxygen) in the soil. We defined 26 parameters related to fungi and 
bacteria related processes in the CLM-Microbe model, with the range and description of each parameter to 
be found in Table 2. The code for the CLM-Microbe model has been archived at https://github.com/email-
clm/clm-microbe, since 2015. The model version used in this study was checked out from GitHub on June 
18, 2018.

2.2.1. Vegetation Effects on Soil Microbial Community

Vegetation also has a significant influence on soil microbial growth through litter input and root exudation 
(Blagodatskaya & Kuzyakov, 2008). Labile C from litter and root exudates, in the form of DOM, can be 
readily used to enhance fungal and bacterial growth (Göttlicher et al., 2006). Therefore, in addition to the 
slow breakdown of SOM and litter, the DOM pool is refreshed by a rapid release from living roots and fresh 
litter, playing an important role in soil microbial activity (Sulman et al., 2014). In the CLM-Microbe model, 
we incorporated the DOM input from fine roots and litter, and the quantity of DOM input from these pools 
are determined by a parameter quantifying the labile C release from pools of fine roots and litter and their 
pool size. The incorporation of DOM input from litter and fine roots represents the vegetation effects on soil 
microbial community.

2.2.2. Decomposition

The decomposition of SOM, DOM, and litter was controlled by both their potential decomposition rates and 
environmental conditions. The decomposition processes in the CLM-Microbe model were defined follow-
ing the equations as below,

    oxygen depth tsoil waterCD k r r r r 
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where DC is the rate of substrate (e.g., SOM, DOM, and litter) breakdown; k is the potential decomposition 
rate; roxygen represents environmental modifier determined by soil oxygen concentration, which is set as 1 
for the single layer model; rdepth is environmental modifier determined by soil depth, which is set as 1 for the 
single layer model; rwater is environmental modifier determined by soil moisture; rtsoil means environmental 
modifier determined by soil temperature; z means soil depth; z  is the e-folding depth for decomposition; 
Tsoil, j is soil temperature at layer j; Tref is the reference temperature for decomposition, which is set as 25°C; 
Q10 indicates the temperature dependence of decomposition, it is the ratio of the rate at a specific tempera-
ture to that at 10°C lower; Ψj is the soil water potential in layer j; Ψmin is a lower limit for soil water potential 
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control on decomposition rate (set to −10 MPa), rwater will be set as 0 if Ψj is lower than Ψmin; Ψmax is the 
upper limit for soil water potential control on decomposition, which equals to the saturated soil matric po-
tential, rwater will be set as 1 if Ψj is higher than Ψmax; wsoil, j means soil water content in layer j.

Although there are variations in Q10 of substrate mineralization under various land use types, nutrient con-
centrations, moisture contents, property of substrates, and temperature gradients for measurement (Fierer 
et al., 2003; Hopkins et al., 2006; Larionova et al., 2007), the Q10 value is confined close to 1.5 at ecosystem-lev-
el, which is set as default Q10 value in CLM4.5. There is no difference in decomposition between aboveground 
and belowground substrate, Q10 values of the decomposition of three litter pools (Litter 1, Litter 2, and Litter 
3) and two less stable SOM pools (SOM 1 and SOM 2) were set as 1.5 in the CLM-Microbe model, which is 
consistent with the default CLM4.5. Stable SOM in deep soils is believed to have higher Q10 value than that 
in surface soils (Fierer et al., 2003; von Lützow & Kögel-Knabner, 2009), indicating that the decomposition of 
stable SOM in subsurface soil is more sensitive to temperature change than that in surface soil. Therefore, to 
differentiate the Q10 of SOM decomposition in different soil depths, Q10 values of third SOM pool and fourth 
SOM pool are set as 2 and 2.5, respectively, in the CLM-Microbe model. Due to the simple chemical structure 
and low activation energy of DOM, Q10 value of DOM is expected to be lower than SOM and litter (Davidson & 
Janssens, 2006). Consequently, we set the Q10 value of DOM as 1.25 in the CLM-Microbe model.
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Parameters

Biomes

BRF DST GRS SHB TBF TCF TSF TUN WET

m_bdom_f 0.15 0.1 0.15 0.1 0.15 0.15 0.1 0.1 0.08

m_bs1_f 0.1 0.03 0.05 0.05 0.05 0.05 0.03 0.03 0.02

m_bs2_f 0.12 0.06 0.1 0.1 0.1 0.1 0.06 0.06 0.04

m_bs3_f 0.18 0.12 0.15 0.15 0.15 0.15 0.12 0.12 0.08

m_fdom_f 0.15 0.1 0.15 0.1 0.15 0.15 0.1 0.1 0.08

m_fs1_f 0.1 0.03 0.05 0.05 0.05 0.05 0.03 0.03 0.02

m_fs2_f 0.12 0.06 0.1 0.1 0.1 0.1 0.06 0.06 0.04

m_fs3_f 0.18 0.12 0.15 0.15 0.15 0.15 0.12 0.12 0.08

k_dom 0.007 0.007 0.007 0.007 0.008 0.007 0.0005 0.007 0.007

k_bacteria 0.008 0.0178 0.005 0.0036 0.008 0.004 0.0085 0.0032 0.072

k_fungi 0.004 0.009 0.0045 0.002 0.0018 0.002 0.01 0.0012 0.032

m_rf_s1m 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

m_rf_s2m 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

m_rf_s3m 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

m_rf_s4m 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

m_batm_f 0.2 0.08 0.12 0.08 0.12 0.12 0.12 0.12 0.1

m_fatm_f 0.1 0.04 0.08 0.04 0.08 0.08 0.08 0.08 0.06

m_domb_f 0.008 0.12 0.04 0.16 0.86 0.045 0.05 0.24 0.27

m_domf_f 0.001 0.18 0.9 0.64 0.04 0.005 0.89 0.56 0.45

m_doms1_f 0.32 0.24 0.03 0.1 0.06 0.32 0.03 0.1 0.14

m_doms2_f 0.27 0.2 0.02 0.06 0.03 0.28 0.02 0.06 0.08

m_doms3_f 0.22 0.15 0.01 0.03 0.01 0.2 0.01 0.03 0.04

cn_bacteria 5 4 5 5 6 5 5 4 6

cn_fungi 15 15 15 15 12 15 15 16 12

CUEmax 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

Abbreviations: BRF, boreal forest; CUE, carbon use efficiency; DST, desert; GRS, grassland; SHB, shrub; TBF, temperate 
broadleaf forest; TCF, temperate coniferous forest; TSF, tropical/subtropical forest; TUN, tundra; WET, wetland.

Table 3 
Key Parameters for the Different Biomes
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2.2.3. Microbial Lysis

The microbial biomass turnover is closely associated with the SOM 
formation, while the contribution of microbial biomass residues to the 
formation of SOM has been largely underestimated (Liang et al., 2019). 
However, growing evidence showed that the soil microbial community 
made a relatively high contribution to soil organic carbon (SOC) due to its 
large pool size (Xu et al., 2013) and fast turnover rate (Glaser et al., 2004). 
Sinsabaugh et al. (2016) estimated a global mean biomass turnover time 
of 67 ± 22 days based on a negative linear relationship between CUE and 
microbial biomass turnover time, with the mean microbial CUE estimat-
ed as 0.25–0.30. Xu et  al.  (2017) also quantified the microbial biomass 
turnover time as 23 and 28 days based on the area-weighted global average 
of the metabolic quotient in soils (1.8 μmol C·mmol microbial biomass 
C−1·h−1) and reference metabolic quotient (1.5 μmol C·mmol microbial 
biomass C−1·h−1), respectively, from a global microbial metabolic quo-
tient data set. These estimates in soil microbial biomass turnover are gen-
erally in the same order and vary slightly; however, the turnover rates of 
different soil microbial groups (e.g., fungi and bacteria) were distinct and 
in a wide range of variation, with fungal and bacterial biomass turnover 
rate reported as 0.00143 to 2 d−1 (Moore et al., 2005; Rousk & Bååth, 2007, 
2011) and 0.00027 to 0.05 d−1 (Moore et al., 2005; Rousk & Bååth, 2011; 
Strickland & Rousk, 2010; Wallander et al., 2004), respectively.

In addition, bacterial and fungal growth are highly sensitive to environmen-
tal conditions, such as soil moisture and temperature. As a result, in the 
CLM-Microbe model, fungal and bacterial biomass lysis process is mech-
anistically represented as the interactive effects of lysis rate constant and 
environmental factors, that is, roxygen, rwater, rtsoil, and rdepth, described above.

2.2.4. Soil Microbial Respiration

Bacteria and fungi assimilate DOM, SOM, and litter to form their bio-
mass, and a proportion of the assimilated C is respired (Figure 1). The 
proportion of C used for fungal and bacterial respiration is determined by 
the factors indicated in Tables 2 and 3. In addition, heterotrophic respi-
ration (HR) is widely affected by multiple abiotic and biotic factors, such 
as substrate concentration and availability, soil moisture, and soil tem-
perature (Gomez-Casanovas et al., 2012; Zhang et al., 2013). Therefore, 
fungal and bacterial respirations in the CLM-Microbe model are defined 
as the interactive effects of substrate (i.e., DOM, SOM, and litter), fraction 
factors quantifying C being respired by fungi and bacteria, and environ-
mental factors (i.e., roxygen, rwater, rtsoil, and rdepth) regulating the respiration 
process.

2.2.5. Carbon Use Efficiency

The CUE of soil microbes for three litter pools in the CLM-Microbe mod-
el are determined following the equation in Sinsabaugh et al. (2013). In addition, CUE is reported to vary 
with temperature, showing a coefficient of −0.012 with increasing temperature (Devêvre & Horwáth, 2000; 
Xu et al., 2014). Therefore, we assumed that CUE decreased compared with the ambient thermal regime of 
microbes’ habitats following the equation as below,

CUE CUE C:N
C:N

� � � �� �� � � �
�
�

�
�
�max

.

CUE CUErefT T T M
S

0 6
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Phase Site

Fungi Bacteria

MAE RMSE R2 MAE RMSE R2

Calibration DST-CH 0.45 0.60 0.473 0.56 0.76 0.374

GRS-IA 0.29 0.34 0.042 0.18 0.21 0.381

SHB-OB 0.06 0.07 0.005 0.06 0.07 0.299

TUN-MH 1.16 1.43 0.251 1.04 1.11 0.398

BRF-WC 0.28 0.37 0.384 0.63 0.69 0.830

TBF-VA 0.28 0.31 0.157 0.26 0.30 0.217

TCF-NJ 0.23 0.24 0.066 0.37 0.38 0.067

TSF-HS 0.19 0.24 0.156 0.14 0.17 0.002

WET-EM 0.41 0.73 0.59 0.42 0.72 0.63

Validation DST-GB 0.54 0.65 0.513 0.32 0.33 0.269

DST-JN 0.14 0.14 -- 0.15 0.16 --

GRS-BC 0.30 0.37 0.010 0.20 0.27 0.046

SHB-AC 0.73 0.79 0.004 1.18 2.02 0.111

TUN-ES 0.27 0.33 0.411 0.17 0.19 0.014

BRF-AL 0.41 0.41 -- 0.04 0.04 --

TBF-TL 0.49 0.52 0.064 0.13 0.16 0.625

TBF-SH 0.17 0.19 0.092 0.24 0.33 0.183

TBF-MS 0.29 0.35 0.935 0.36 0.39 0.945

TCF-NT 0.45 0.56 0.014 0.19 0.20 0.450

TSF-OS 0.01 0.02 0.980 0.19 0.22 0.520

WET-EF 0.25 0.31 0.071 0.30 0.37 0.052

Abbreviations: MAE, mean absolute error; RMSE, root mean square 
error; R2, R square.
Notes. -- indicates not applicable. MAE and RMSE values indicate 
the mean error of the model, smaller values represent higher model 
performance. R2 values mean the proportion of variation being explained 
by the mode, higher R2 values indicate better model performance. Due 
to the difference in variations of simulated and observed fungal and 
bacterial biomass and our focus of estimating fungal and bacterial 
biomass dynamics, we did the evaluation using relative change in fungal 
and bacterial biomass instead, that is, the difference between simulated/
observed fungal/bacterial biomass and the average of simulated/observed 
fungal/bacterial biomass over the average of simulated/observed fungal/
bacterial biomass; R2 is not suitable for assessing the goodness-of-fit for a 
small amount of data due to the large bias in small samples.

Table 4 
Site-Level Evaluation of the Goodness-of-Fit Criteria Computed for the 
Simulated Fungal and Bacterial Biomass Dynamics in the Calibration 
and Validation Phases



Journal of Advances in Modeling Earth Systems

where CUE is C use efficiency, which is defined as the growth-to-assimilation ratio for soil microbes; CUE-
max is the maximum value of C use efficiency; CUET is the coefficient indicating the dependence of C use 
efficiency on temperature; TCUEref is the reference temperature of C use efficiency, which is defined as 15°C 
in the CLM-Microbe model; MC:N means the C:N ratio of soil microbial biomass, which is defined as 8 in the 
CLM-Microbe model; SC:N represents C:N ratio of substrate (e.g., litter).

The C flow from litter and SOM pools to soil microbes will be partitioned by fungal and bacterial biomass 
pools based on the C:N ratio of fungal and bacterial biomass. The fraction factor quantifying bacteria C gain 
from litter and SOM is calculated based on the weighted average of assimilation efficiency of fungi and 
bacteria following the equation as below,
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Figure 2. Model calibration of fungal biomass for (a) desert, (b) grassland, (c) shrub, (d) tundra, (e) boreal forest, (f) temperate broadleaf forest, (g) temperate 
coniferous forest, (h) tropical/subtropical forest, and (i) wetland. The blue star indicates the observed fungal biomass, and the black filled circle represents 
simulated fungal biomass.
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Figure 3. Model calibration of bacterial biomass for (a) desert, (b) grassland, (c) shrub, (d) tundra, (e) boreal forest, (f) temperate broadleaf forest, (g) 
temperate coniferous forest, (h) tropical/subtropical forest, and (i) wetland. The blue star indicates the observed bacterial biomass, and the black filled circle 
represents simulated bacterial biomass.
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where fb is the fraction of C flowing into bacteria; ff is the fraction of C flowing into fungi; BC:N means the 
C:N ratio of BBC; FC:N means the C:N ratio of FBC; SC:N represents C:N ratio of substrates (e.g., litter and 
SOM).

2.3. Model Forcing Data

The forcing data for this model include meteorological data such as air temperature, relative humidity, 
incoming solar radiation, longwave radiation, precipitation rate, surface pressure, and surface winds. Since 
the sampling year of the sites spans from 1973 to 2018, which was not fully covered by any commonly used 
forcing datasets of CLM. After examining the data distribution, we found that sites sampling later than 
2014 are in North America (Table 1). Therefore, for sites sampled before 2014, we extracted the forcing data 
during January 1, 1971 through December 31, 2014 from CRUNCEP Version 4 provided by Climate Data 
Gateway at the National Center for Atmospheric Research (https://www.earthsystemgrid.org). The forcing 
data for sites sampled later than 2014 were extracted from the Global Land Data Assimilation System Ver-
sion 2 (https://ldas.gsfc.nasa.gov). Using the latitude and longitude information of study sites in each biome 
(Table 2), we extracted the meteorological variables for all sites. Since the standardized input forcing data 
are in half-hourly time steps, the extracted 6-hourly data for each study site was interpolated to half-hourly 
step using linear interpolation via na.approx function in R (R for Mac OS X version 3.5.3).
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Parameters Ecological meanings

k_dom Decomposition rate constant of dissolved organic matter

k_bacteria Lysis rate constant of bacteria

k_fungi Lysis rate constant of fungi

m_rf_s1m Fraction factor quantifying carbon from soil organic matter1 to microbes

m_rf_s2m Fraction factor quantifying carbon from soil organic matter2 to microbes

m_rf_s3m Fraction factor quantifying carbon from soil organic matter3 to microbes

m_rf_s4m Fraction factor quantifying carbon from soil organic matter4 to microbes

m_batm_f Fraction factor quantifying carbon respired by bacteria

m_bdom_f Fraction factor quantifying carbon from dissolved organic matter to bacteria

m_bs1_f Fraction factor quantifying carbon from bacteria to soil organic matter1

m_bs2_f Fraction factor quantifying carbon from bacteria to soil organic matter2

m_bs3_f Fraction factor quantifying carbon from bacteria to soil organic matter3

m_fatm_f Fraction factor quantifying carbon respired by fungi

m_fdom_f Fraction factor quantifying carbon from dissolved organic matter to fungi

m_fs1_f Fraction factor quantifying carbon from fungi to soil organic matter1

m_fs2_f Fraction factor quantifying carbon from fungi to soil organic matter2

m_fs3_f Fraction factor quantifying carbon from fungi to soil organic matter3

m_domb_f Fraction factor quantifying carbon from dissolved organic matter to bacteria

m_domf_f Fraction factor quantifying carbon from dissolved organic matter to fungi

m_doms1_f Fraction factor quantifying carbon from dissolved organic matter to soil organic matter1

m_doms2_f Fraction factor quantifying carbon from dissolved organic matter to soil organic matter2

m_doms3_f Fraction factor quantifying carbon from dissolved organic matter to soil organic matter3

cn_bacteria C:N ratio of bacteria

cn_fungi C:N ratio of fungi

CUEmax Maximum carbon use efficiency of microbes

Abbreviation: CUE, carbon use efficiency.

Table 5 
Key Parameters Used in Model Sensitivity Analysis and Uncertainty Analysis

https://www.earthsystemgrid.org/
https://ldas.gsfc.nasa.gov/
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Source
Site/

Biome
Fungal biomass (g 

C m−2)
Bacterial biomass (g 

C m−2) F:B ratio SOC (g C m−2) HR (g C m-2 yr−1)

CLM-Microbe 
simulateda

DST-CH 38.65 (21.69∼62.97) 8.90 (5.21∼15.17) 4.54 (2.15∼7.94) 2567.62 (2011.82∼3148.15) 277.41 
(269.87∼282.88)

GRS-IA 110.25 
(66.94∼182.63)

33.57 (21.20∼53.26) 3.44 (1.68∼5.94) 2677.50 (2225.43∼3104.13) 312.85 
(307.67∼325.92)

SHB-OB 148.74 
(86.44∼253.85)

37.33 (22.44∼61.57) 4.16 (2.07∼7.47) 3363.62 (2908.50∼3829.85) 120.69 
(117.80∼123.25)

TUN-MH 180.25 
(111.67∼283.71)

29.89 (19.44∼46.77) 6.30 (3.23∼10.70) 3603.51 (3460.15∼3741.94) 92.75 (90.15∼95.48)

BRF-WC 204.76 
(124.98∼328.30)

40.10 (27.41∼63.30) 5.39 (2.61∼9.45) 8685.33 (8133.04∼9341.41) 420.07 
(367.18∼452.30)

TBF-VA 258.79 
(161.16∼429.01)

70.47 (45.63∼114.71) 3.83 (1.89∼6.49) 5872.70 (5221.21∼6540.73) 560.48 
(538.93∼574.73)

TCF-NJ 379.71 
(213.91∼683.37)

100.15 
(59.46∼166.58)

3.96 (1.86∼6.95) 7989.60 (6411.33∼9961.35) 811.32 
(800.71∼818.67)

TSF-HS 37.02 (19.70∼62.50) 16.66 (9.11∼29.09) 2.31 (1.14∼4.19) 2509.49 (1694.83∼3422.36) 400.69 
(393.76∼404.51)

WET-EM 23.62 (13.52∼39.54) 6.63 (4.13∼11.03) 3.75 (1.85∼6.67) 13203.92 
(11732.67∼14385.34)

540.32 
(524.52∼556.59)

CLM4.5 simulateda DST-CH NA NA NA 0.00 0.00

GRS-IA NA NA NA 11990.54 756.86

SHB-OB NA NA NA 1598.15 63.07

TUN-MH NA NA NA 2085.97 94.61

BRF-WC NA NA NA 3465.00 157.68

TBF-VA NA NA NA 11238.67 599.18

TCF-NJ NA NA NA 4920.45 315.36

TSF-HS NA NA NA 6627.84 536.11

WET-EM NA NA NA 9950.83 567.65

Observedb DST-CHd 24.79 (13.78∼60.04) 1.76 (0.89∼4.95) 14.05 (12.12∼21.13) NA NA

GRS-IAe 18.55 (9.32–28.53) 16.17 (12.07–22.99) 1.15 (0.57–2.22) NA NA

SHB-OBe 156.65 
(143.46–171.62)

17.13 (16.09–18.61) 9.14 (8.60–9.62) 3559.97e NA

TUN-MHe 105.89 (1.10–439.88) 29.63 (0.38–84.42) 3.57 (1.38–5.21) 1945.00e k NA

BRF-WCf 51.71 (27.07–100.96) 9.70 (1.29–20.55) 5.33 (2.92–36.93) NA NA

TBF-VAg 122.78 
(60.12–171.88)

31.01 (18.30–43.39) 3.96 (2.88–5.15) NA NA

TCF-NJh 27.09 (18.05–35.35) 7.41 (3.82–10.77) 3.65 (3.04–5.08) NA NA

TSF-HSe 22.33 (13.81–29.74) 2.65 (1.85–3.14) 8.43 (6.38–9.63) 4238.08e NA

WET-EMi 1.05 (0.25–3.74) 0.26 (0.08–0.97) 4.01 (3.02–6.33) 10819j NA

Biome averagec DST 59.04 (14.05–74.00) 15.28 (0.32–60.21) 3.14 (2.20–4.49) 2728.00 (2651.58–2804.42) NA

GRS 88.69 (20.55–132.48) 46.14 (2.34–114.23) 4.03 (3.52–4.62) 6225.00 (5796.59–6653.41) NA

SHB 48.06 (11.40–64.78) 17.31 (0.59–53.85) 4.82 (3.72–6.25) 4450.00 (4207.30–4692.70) NA

TUN 226.96 
(150.89–256.46)

32.65 (3.13–108.08) 8.60 (6.71–11.01) 7739.00 (6589.57–8888.43) NA

Table 6 
Annual Estimates of Fungal and Bacterial Biomass Carbon, Fungal: Bacterial (F:B) Ratio, Soil Organic Carbon (SOC), and Heterotrophic Respiration (HR) With 
the Uncertainties of Parameters During the Sampling Years for all Sites
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2.4. Model Implementation

We used default parameters for the subroutine of soil hydrological properties and methane module (Koven 
et al., 2013; Xu et al., 2015), and we focused on the parameterization for soil microbial mechanisms related 
to FBC and BBC dynamics (Table 2). To parameterize the model, we set up model simulations separately for 
nine sites (TSF-HS, TCF-NJ, TBF-VA, BRF-WC, SHB-OB, GRS-IA, DST-CH, TUN-MH, and WET-EM) in the 
phase of calibration and 12 sites (TUN-ES, TCF-NT, DST-GB, DST-JN, BRF-AL, TSF-OS, GRS-BC, TBF-SH, 
TBF-MS, TBF-TL, SHB-AC, and WET-EF) in the phase of validation (Table 1).

The model implementation for all sites was carried out in three stages. First, we ran the accelerated de-
composition spin-up to make the system reach steady state (Thornton & Rosenbloom, 2005). Due to the 
differences in the length of time to reach steady state among biomes, we set the model run as 1,500 years 
for tropical and temperate biomes (i.e., tropical/subtropical forest, temperate coniferous forest, temperate 
broadleaf forest, shrub, grassland, and desert), 2,000 years for boreal and arctic biomes (i.e., boreal forest 
and tundra), and 3,000 years for wetlands. Then, we ran a final spin-up of 100 years to make the system 
ready for transient simulations during 1850–2018. Since observational FBC and BBC are reported at daily 
scale, we set the output resolution of transient simulations as a daily time step.

To guarantee the reasonable soil and vegetation conditions in each site at the same standard, we extract-
ed the SOC of the top 1 m soil profile from the Harmonized World Soil Database (HWSD, https://daac.
ornl.gov/cgi-bin/dsviewer.pl?ds_id=1247) and net primary productivity (NPP) from MODIS gridded data 
set with a spatial resolution of 30 s during 2000–2015 (http://files.ntsg.umt.edu/data/NTSG_Products/) for 
each site using their latitude and longitude information. Before parameterizing the CLM-Microbe model, 
we adjusted the parameters related to plant photosynthesis (e.g., flnr), C allocation (e.g., froot_leaf), and 
e-folding depth for decomposition (e.g., decomp_depth_efolding) to make all the sites have soil and vegeta-
tion conditions reported by global datasets. Since soil and vegetation are in high spatial heterogeneity, the 
global datasets may not be able to capture the variation at fine scale. If the SOC and NPP extracted from 
global datasets were extremely high or low for the biome, we used the values reported in the literature. If 
the SOC and NPP were not available from literature, we used the biome-level averages instead (Chapin 
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Table 6 
Continued

Source
Site/

Biome
Fungal biomass (g 

C m−2)
Bacterial biomass (g 

C m−2) F:B ratio SOC (g C m−2) HR (g C m-2 yr−1)

BRF 304.44 
(191.19–356.01)

58.66 (7.02–171.86) 5.03 (4.23–5.98) 5812.50 (5601.96–6023.04) NA

TBF 88.89 (40.25–115.74) 29.88 (3.01–78.5) 4.92 (4.39–5.51) 10875.00 
(9807.51–11942.49)

NA

TCF 88.89 (40.25–115.74) 29.88 (3.01–78.5) 4.92 (4.39–5.51) 8482.50 (7974.46–8990.54) NA

TSF 64.42 (2.09–115.49) 51.58 (0.51–113.82) 2.22 (1.87–2.63) 8514.00 (7686.89–9341.11) NA

WET 70.44 (30.9–99.91) 32.96 (3.47–72.44) 4.13 (3.50–4.86) NA NA
aSimulated fungal and bacterial biomass, fungal:bacterial (F:B) ratio, soil organic carbon, and heterotrophic respiration of top 30 cm soil profile using either 
CLM-Microbe model or CLM4.5, values in the parentheses were 95% confidence interval. bObserved fungal and bacterial biomass, F:B ratio, soil organic carbon, 
and heterotrophic respiration from literature, values were expressed as average (range), and the values showed may not be the same as those from literature 
sources due to unit conversion. cBiome average of fungal and bacterial biomass and F:B ratio from L. L. He et al. (2020) of top 30 cm soil profile, and soil 
organic carbon of top 30 cm were from Jobbágy and Jackson (2000), assuming that 20–30 cm and 30–40 cm contribute equally to the soil organic carbon in 
20–40 cm layer; BRF, boreal forest; DST, desert; GRS, grassland; SHB, shrub; TBF, temperate broadleaf forest; TCF, temperate coniferous forest; TSF, tropical/
subtropical forest; TUN, tundra; WET, wetland. dRepresent observed fungal and bacterial biomass, F:B ratio, soil organic carbon, and heterotrophic respiration 
of 0–15 cm, 0–10 cm, 5–20 cm, 0–5 cm, 0–2.3 cm and, 0–20 cm, respectively. eRepresent observed fungal and bacterial biomass, F:B ratio, soil organic carbon, 
and heterotrophic respiration of 0–15 cm, 0–10 cm, 5–20 cm, 0–5 cm, 0–2.3 cm and, 0–20 cm, respectively. fRepresent observed fungal and bacterial biomass, F:B 
ratio, soil organic carbon, and heterotrophic respiration of 0–15 cm, 0–10 cm, 5–20 cm, 0–5 cm, 0–2.3 cm and, 0–20 cm, respectively. gRepresent observed fungal 
and bacterial biomass, F:B ratio, soil organic carbon, and heterotrophic respiration of 0–15 cm, 0–10 cm, 5–20 cm, 0–5 cm, 0–2.3 cm and, 0–20 cm, respectively. 
hRepresent observed fungal and bacterial biomass, F:B ratio, soil organic carbon, and heterotrophic respiration of 0–15 cm, 0–10 cm, 5–20 cm, 0–5 cm, 0–2.3 cm 
and, 0–20 cm, respectively. iRepresent observed fungal and bacterial biomass, F:B ratio, soil organic carbon, and heterotrophic respiration of 0–15 cm, 0–10 cm, 
5–20 cm, 0–5 cm, 0–2.3 cm and, 0–20 cm, respectively. jObserved soil organic carbon of 18–60 cm. kRecalculated SOC from Björk et al. (2007); NA means no 
data available.

https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1247
https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1247
http://files.ntsg.umt.edu/data/NTSG_Products/
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et al., 2011; Jobbágy & Jackson, 2000). For tropical/subtropical forest, we had a site specified as needleleaf 
trees, whereas tropical needleleaf tree is not available in default plant function types. Therefore, we mod-
ified the parameters for needleleaf_evergreen_temperate_tree following the parameters featuring tropical 
trees such as minimum and upper limit of temperature for growth and monthly temperature. Also, we 
altered the longevity for needleleaf_evergreen_temperate_tree following the trend of needle tree leaf lon-
gevity reported by Xiao (2003).

Based on the current knowledge of mechanisms for FBC and BBC dynamics, we primarily focused on 
parameters related to microbial lysis (m_bdom_f, m_bs1_f, m_bs2_f, m_bs3_f, m_fdom_f, m_fs1_f, m_fs2_f, 
m_fs3_f, k_bacteria, and k_fungi), microbial respiration (m_batm_f and m_fatm_f), decomposition of litter, 
DOM and SOM (k_dom, m_domb_f, m_domf_f, m_doms1_f, m_doms2_f, and m_doms3_f), and stoichio-
metric traits of fungal and bacterial biomass (cn_bacteria and cn_fungi). We first ran the model for each 
biome using the average values reported by previous studies, then we empirically calibrated the parameters 
based on the observed FBC and BBC of sites selected in calibration phase (Table 3). The calibration was 
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Figure 4. Model validation of fungal biomass for (a) and (b) desert, (c) grassland, (d) shrub, (e) tundra, (f) boreal forest, (g, h, and i) temperate broadleaf forest, 
(j) temperate coniferous forest, (k) tropical/subtropical forest, and l) wetland. The blue star indicates the observed fungal biomass, and the black filled circle 
represents simulated fungal biomass.
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based on the model behavior in capturing the seasonal variations in FBC and BBC. Next, we validated the 
model using the parameters in Table 3 to test the model simulation performance by plotting simulated FBC 
and BBC against the observed data.

2.5. Model Evaluation

We used three metrics to evaluate model performance, including:

1.  Mean absolute error (MAE), a measure of model error, was computed as
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where yi is the simulated value; ŷ means the observed value; N is the number of data points. The MAE indi-
cates the mean error of the model simulation, and thus lower MAE values are preferred.

 2.  Root mean square error (RMSE), indicating the model accuracy, was calculated as:
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where yi is the simulated value; ŷ means the observed value; N is the number of data points. Similar with 
MAE, RMSE also indicates the mean error of the model simulation, and the lower values indicate the higher 
model accuracy. The RMSE estimation is equal or larger than MAE estimation in most cases, and the degree 
to which RMSE estimation exceeds MAE estimation depend on the outliers in the simulated and observed 
data.

3.  The coefficient of determination (R2), representing the variation in the observations explained by the 
model, was calculated following the equation as below,
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where yi is the ith simulated value; yi  means the ith observed value; y  is the mean of the observed values. 
Higher R2 values indicate better performance of the model, while lower R2 values mean the worse model per-
formance and smaller proportion of variation being explained by the model. It is noteworthy that R2 is not suit-
able for assessing the goodness-of-fit for a small number of data points due to the large bias in small samples.

2.6. Sensitivity Analysis and Uncertainty Analysis

To identify the key processes and parameters for FBC and BBC dynamics across biomes, we conducted sensi-
tivity analysis using one site in each biome. We selected 25 parameters related to the decomposition of SOM, 
litter and DOM, fungal and bacterial respiration, CUE, and microbial lysis for identifying key processes and 
parameters in regulating FBC and BBC dynamics, which were also used for uncertainty analysis (Table 4). 
Eventually, nine sites, that is, DST-CH, GRS-IA, SHB-OB, TUN-MH, BRF-WC, TBF-VA, TCF-NJ, TSF-HS, 
WET-EM, were used for sensitivity analysis, and these sites were also used for subsequent uncertainty analysis 
(Figure 7, Table 5). For each parameter, we set up model simulations with +20% or −20% change in the param-
eter, and thus we set up 50 model simulations in total for sensitivity analysis in each site. Next, we investigated 
the responses of the simulated FBC, BBC, F:B ratio, SOC, and HR in surface soil (0–30 cm) during sampling 
period of each site. The index S, comparing the change in the model output relative to the model response for 
a nominal set of parameters, was calculated based on the equation following Xu et al. (2015).
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where S is the ratio of the standardized change in model response to the standardized change in parameter 
values; Ra and Rn are model responses for altered and nominal parameters, respectively; Pa and Pn are the 
altered and nominal parameters, respectively. Negative S values indicate the opposite direction of model 
response with the regards of the direction of parameter change, and vice versa. We visualized the sensitivity 
analysis results using the “ComplexHeatmap” package developed by Gu et al. (2016) in R 3.5.3 for Mac OS 
X (R Development Core Team, 2018).

The uncertainties in FBC, BBC, F:B ratio, SOC, and HR in surface soil (0–30 cm) during the sampling period 
of each site were quantified using improved Latin Hypercube Sampling (LHS) approach. The LHS approach 
can randomly produce an ensemble of parameter combinations with high efficiency. This approach has 
been widely used in the modeling community to estimate uncertainties in model output (Haefner, 2005; 
Xu, 2010; Xu et al., 2014). First, we assumed that all parameters follow normal distribution, then we used 
LHS to randomly select an ensemble of 300 parameter sets using the function of “improvedLHS” in the R 
package “lhs” (Carnell & Carnell, 2019). Second, we computed the inverse of the standard normal cumula-
tive distribution of 300 parameter sets using “norminv” function in MATLAB, 2018b (The MathWorks Inc., 
Natick, Massachusetts, USA), with the standard deviation of each parameter set as 20% of its optimal value. 
Third, we added the filter of setting parameters featuring fraction factors (m_rf_s1m, m_rf_s2m, m_rf_s3m, 
m_rf_s4m, m_batm_f, m_bdom_f, m_bs1_f, m_bs2_f, m_bs3_f, m_fatm_f, m_fdom_f, m_fs1_f, m_fs2_f, m_
fs3_f, m_domb_f, m_domf_f, m_doms1_f, m_doms2_f, m_doms3_f) larger than 1 or smaller than 0 or the 
sum of an array of parameters (m_batm_f, m_bdom_f, m_bs1_f, m_bs2_f, and m_bs3_f, or m_fatm_f, m_
fdom_f, m_fs1_f, m_fs2_f, and m_fs3_f, or m_domb_f, m_domf_f, m_doms1_f, m_doms2_f, and m_doms3_f) 
larger than 1 as their optimal values. Finally, we implemented the 300 model runs for each biome, and we 
then calculated the 95% confidence interval of FBC, BBC, F:B ratio, SOC, and SR in surface soil (0–30 cm) 
during experimental period of each site for reporting (Table 5).

3. Results
3.1. Model Parameterization and Validation Against Observational Data

The comparison between modeled and observed data showed that the CLM-Microbe model can capture 
the average and seasonal variation of FBC and BBC across biomes (Figures 2–6, Table 6). On average, 
the simulated FBC and BBC were consistent with the observed values, with FBC and BBC showing R2 
values of 0.70 (P  <  0.001) and 0.26 (P  <  0.05), respectively (Figure  6). However, FBC and BBC were 
underestimated by the CLM-Microbe model. For example, the simulated FBC was approximately 50% 
lower than the observed FBC in BRF-AL (boreal forest, BRF-) and SHB-OB (shrub, SHB-), and 40% lower 
than the observed FBC in DST-GB (desert, DST-) and TBF-VA and TBF-MS (temperate broadleaf forest, 
TBF-). Simulated BBC was 55% lower than the observed BBC in TUN-ES and TUN-MH (tundra, TUN-) 
and GRS-BC (grassland, GRS-), and 45% lower than the observed BBC in BRF-AL and TCF-NT (tem-
perate coniferous forest, TCF-). The CLM-Microbe model overestimated FBC compared to the observed 
values in some sites; specifically, the simulated FBC was higher than the observed FBC in WET-EF and 
WET-EM (wetland, WET-), DST-JN, and GRS-IA. The simulated BBC was higher than the observed BBC 
in WET-EF, WET-EM, DST-CH, BRF-WC, SHB-AC, and TSF-HS and TSF-OS (tropical/subtropical forest, 
TSF-) (Figures 2–6). To compare the seasonal dynamics between observed and simulated FBC and BBC, 
y axes in Figures 2–5 were adjusted to facilitate the visualization of modeling results due to the systematic 
underestimation of FBC and BBC.

Additionally, we found relatively smaller variation (indicated as standard error, SE) in simulated FBC (SE 
ranging from 0.04 to 0.90 g C m−2) and BBC (SE ranging from 0.02 to 0.91 g C m−2) compared with the ob-
served FBC (SE ranging from 0.26 to 99.11 g C m−2) and BBC (SE ranging from 0.07 to 12.48 g C m−2) (Fig-
ure 6). On average, the SE of simulated FBC and BBC was approximately 160 and 40 times smaller than the 
SE of observed FBC and BBC, respectively. The difference of SE in observed FBC and BBC among biomes 
was largely dependent on the magnitude of observed FBC and BBC (Figure 6). The highest SE of observed 
FBC was observed in TBF-MS (99 g C m−2), BRF-AL (55 g C m−2), and TUN-MH (57 g C m−2). The lowest SE 
of observed FBC were observed in WET-EF (0.93 g C m−2), WET-EM (0.26 g C m−2), and DST-JN (0.26 g C 
m−2). Compared with SE of observed FBC, SE of observed BBC was much smaller. However, SE of observed 
BBC were distinct among sites. We observed the highest SE of observed BBC in TUN-MH (12 g C m−2), and 
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TBF-MS (12 g C m−2). The SE of observed BBC was lowest in TBF-SH (0.40 g C m−2), WET-EF (0.24 g C m−2), 
TSF-HS (0.18 g C m−2), and WET-EM (0.07 g C m−2).

Due to the large difference in variations of simulated and observed FBC and BBC, we estimated the sim-
ulated FBC and BBC dynamics using relative change in FBC and BBC, that is, the difference between in-
dividual and the average of biomass over the average of biomass during the study period (Table 4). In the 
calibration phase, MAE ranged from 0.06 to 1.16 for FBC and from 0.06 to 1.04 for BBC, while RMSE ranged 
from 0.07 to 1.43 for FBC and from 0.07 to 1.11 for BBC. In the validation phase, MAE ranged from 0.01 to 
0.73 for FBC and from 0.04 to 1.18 for BBC, while RMSE ranged from 0.02 to 0.79 for FBC and from 0.04 
to 2.02 for BBC. Although the model explained the FBC and BBC dynamics well in most sites, particularly 
TBF-MS (R2 = 0.94 for FBC and R2 = 0.95 for BBC) and TSF-OS (R2 = 0.98 for FBC and R2 = 0.52 for BBC), 
the simulation in some sites for FBC (GRS-IA, SHB-OB, GRS-BC, SHB-AC, TBF-TL, TBF-SH, TCF-NT, and 
WET-EF) and BBC (TSF-HS, GRS-BC, TUN-ES, and WET-EF) was relatively poor, with R2 smaller than 
0.1. It is noteworthy that the number of data points ranges from 2 to 13 for FBC and BBC data across sites, 
which is much smaller than 30, the threshold for a large sample. The R2 may not be suitable for assessing the 
goodness-of-fit for a small number of data points due to the large bias in small samples, although it is widely 
used in model performance estimation. For example, R2 was 0.005 for FBC and 0.299 for BBC in SHB-OB, 
while MAE (0.06 for FBC and BBC) and RMSE (0.07 for FBC and BBC) were small, indicating small biases 
in the simulated FBC and BBC.

3.2. Sensitivity Analysis

We found high sensitivity of FBC and BBC dynamics to parameters that related to microbial turnover and 
C:N ratio of fungal and bacterial biomass across biomes (Figure 7). Fungal biomass turnover rate (k_fungi) 
had negative effects on FBC and F:B ratio across biomes, while bacterial biomass turnover rate (k_bacteria) 
had negative and positive effects on BBC and F:B ratio, respectively. The C:N ratio of bacterial biomass (cn_
bacteria) had negative, positive, and negative effects on FBC, BBC, and F:B ratio, respectively. In contrast, 
C:N ratio of fungal biomass (cn_fungi) had positive, negative, and positive effects on FBC, BBC, and F:B 
ratio, respectively. A 20% increase or decrease in k_fungi and k_bacteria led to different magnitudes of nega-
tive effects on FBC and BBC, respectively, across biomes. While a 20% decrease in k_fungi and k_bacteria led 
to the S values around -1.25 and -1.30 for FBC and BBC, a 20% increase in k_fungi and k_bacteria resulted 
in S values around -0.85 and -0.84 for FBC and BBC, respectively. Changes in k_bacteria had similar magni-
tudes of positive effects on F:B ratio, with S values around 1.00 for both 20% increase and decrease in k_bac-
teria. While a 20% increase or decrease in k_fungi had different magnitudes of negative effects on F:B ratio, 
with a 20% decrease or increase in k_fungi leading to S values around −1.27 and −0.85, respectively, across 
biomes. The higher S values suggested that FBC and BBC were more sensitive to decreases in k_fungi and 
k_bacteria, which would induce larger increases in FBC and BBC; in particular, a 20% decrease in k_fungi 
led to higher sensitivity of F:B ratio.

In addition, FBC and BBC were closely correlated with the decomposition of SOM and DOM and microbial 
respiration (Figure 7). Fraction factors quantifying C flow from SOM to soil microbes (m_rf_s1m, m_rf_s2m, 
m_rf_s3m, and m_rf_s4m) were positively correlated with FBC and BBC. However, the magnitude of the 
m_rf_s4m on FBC and BBC were different among biomes. The highest response was in TSF-HS (S = 1.03 
for FBC and S = 1.08 for BBC with -20% change vs. S = 1.42 for FBC and S = 1.49 for BBC with +20% 
change), while the lowest response was in BRF-WC (S = 0.28 for FBC and S = 0.26 for BBC with −20% 
change vs. S = 0.28 for FBC and S = 0.24 for BBC with +20% change). In addition, we found a positive cor-
relation between the fraction factor quantifying C flow from DOM to fungal biomass (m_domf_f) and FBC 
and F:B ratio and a positive correlation between fraction factor quantifying C flow from DOM to bacterial 
biomass (m_domb_f) and BBC, and a negative correlation between m_domb_f and F:B ratio. However, the 
magnitudes varied among biomes, with FBC being most sensitive to m_domf_f in GRS-IA (S = 0.432), BBC 
being most sensitive to m_domb_f in TBF-VA (S = 0.593), and F:B ratio being most sensitive to m_domf_f 
in GRS-IA (S = 0.415) and m_domb_f in TBF-VA (S = −0.630) with -20% change. In contrast, FBC, BBC, 
and F:B ratio were insensitive to m_domb_f and m_domf_f in BRF-WC, with the absolute S values close to 
0.001. Moreover, we found weak positive effects of fraction factors quantifying C flow from DOM to SOM 
(m_doms1_f, m_doms2_f, and m_doms3_f) on FBC and BBC across biomes. Across biomes, FBC, BBC, 

HE ET AL.

10.1029/2020MS002283

17 of 31



Journal of Advances in Modeling Earth Systems

F:B ratio, SOC, and HR in surface soil (0–30 cm) were insensitive to maximum microbial CUE (CUEmax). 
We observed a higher negative correlation between fraction factor quantifying C being respired by fungi 
(m_fatm_f) and FBC and between the fraction factor quantifying C being respired by bacteria (m_batm_f) 
and BBC in GRS-IA, TSF-SH, and TCF-NJ, with S values ranging from −0.104 to −0.044 of m_fatm_f for 
FBC and from −0.615 to −0.023 of m_batm_f for BBC, while FBC and BBC in other biomes were insensitive 
to m_batm_f and m_fatm_f change.

The SOC was positively correlated with fraction factors quantifying C flow from SOM to soil microbes 
(m_rf_s1m, m_rf_s2m, m_rf_s3m, or m_rf_s4m), while SOC was negatively correlated with fraction fac-
tor quantifying C being respired by bacteria (m_batm_f) and fungi (m_fatm_f), but the magnitudes varied 
among biomes (Figure 7). We found highly positive correlations between m_rf_s1m, m_rf_s2m, m_rf_s3m, 
or m_rf_s4m and SOC across biomes except for tundra and boreal forest. The parameters of m_batm_f 
and m_fatm_f were negatively correlated with SOC, but the magnitudes varied among biomes. Specifically, 
we found higher negative correlation between m_batm_f and SOC in TBF-VA (S = −0.10 with −20% and 
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Figure 5. Model alidation of bacterial biomass for (a) and (b) desert, (c) grassland, (d) shrub, (e) tundra, (f) boreal forest, (g, h, and i) temperate broadleaf 
forest, (j) temperate coniferous forest, (k) tropical/subtropical forest, and l) wetland. The blue star indicates the observed bacterial biomass, and the black filled 
circle represents simulated bacterial biomass.
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+20% change), TCF-NJ (S = −0.08 with -20% and +20% change), and TSF-HS (S = −0.10 with −20% and 
+20% change). While m_fatm_f was more negatively correlated with SOC in GRS-IA (S = −0.12 with −20% 
and +20% change), TCF-NJ (S = −0.10 with −20% and +20% change), and TSF-HS (S = −0.17 with −20% 
and +20% change). The SOC in other biomes were relatively insensitive to changes in m_batm_f (S values 
ranging from −0.06 to −0.02) and m_fatm_f (S values ranging from −0.05 to −0.03). Across biomes, we only 
found strong negative correlations between m_doms1_f, m_doms2_f, and m_doms3_f and SOC in TCF-NJ 
(S = −0.08 for m_doms1, S = −0.12 for m_doms2, and S = −0.18 for m_doms3).

HR widely responded of to all parameters listed for soil microbial mechanisms, but in low sensitivity (Fig-
ure 7). Specifically, the HR in sites such as DST-CH, GRS-IA, TBF-VA, TCF-NJ, and TSF-HS showed a weak 
response to changes in all parameters. However, we also found relatively stronger negative correlations 
between m_batm_f and HR in BRF-WC (S = −0.09 with −20% change and S = −0.12 with +20% change) 
and WET-EM (S = −0.08 with −20% change and S = −0.11 with +20% change).

3.3. Simulated FBC, BBC, F:B Ratio, SOC, and HR at Annual Scale

Annual estimation of FBC, BBC, F:B ratio, SOC, and HR in the top 30 cm soils derived from the CLM-Mi-
crobe model showed large variations among biomes (Table 5). The simulated FBC was the highest in TCF-
NJ (380 g C m−2), followed by TBF-VA (259 g C m−2), BRF-WC (205 g C m−2), and TUN-MH (180 g C m−2), 
while it was lowest in WET-EM (24 g C m−2) with a range of 14–40 g C m−2. The simulated FBC in the top 
30 cm of soils in DST-CH, GRS-IA, SHB-OB, TUN-MH, BRF-WC, TBF-VA, TCF-NJ, TSF-HS, and WET-EM 
was 1.6 (0–15 cm), 5.9 (0–10 cm), 0.9 (0–10 cm), 1.7 (0–10 cm), 4.0 (5–20 cm), 2.1 (0–5 cm), 14.0 (0–2.3 cm), 
1.7 (0–10 cm), and 22.6 (0–20 cm) times of the observed FBC (at varying soil depths), respectively. Compared 
with the global data set of FBC and BBC (L. He et al., 2020), the simulated FBC in the top 30 cm of soils was 
generally consistent with the biome-averaged FBC in the top 30 cm of the soils. The model simulated FBC 
in DST-CH, GRS-IA, TUN-MH, BRF-WC, and TSF-HS was similar with the biome-averaged FBC in the top 
30 cm of soils. However, we detected extreme FBC simulated by the model in some sites compared with 
the biome-averaged FBC. The CLM-Microbe model simulated higher FBC in SHB-OB, TBF-VA and TCF-NJ 
and lower FBC in WET-EM relative to their corresponding the biome-averaged FBC in the top 30 cm soils.

The simulated BBC was the highest in TCF-NJ (100 g C m−2), followed by TBF-VA (70 g C m−2), BRF-WC 
(40 g C m−2), and TUN-MH (30 g C m−2), while the simulated BBC was the lowest in WET-EM (7 g C m−2) 
and DST-CH (9 g C m−2). The simulated BBC in the top 30 cm of soils in DST-CH, GRS-IA, SHB-OB, TUN-
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Figure 6. Comparison of the averaged observed and simulated (a) fungal and (b) bacterial biomass. The blue star 
indicates the (a) fungal or (b) bacterial biomass in calibration phase, and the black filled circle represents (a) fungal or 
(b) bacterial biomass in validation phase; vertical and horizontal error bars indicate standard error of simulated and 
observed values, respectively, for both (a) fungal and (b) bacterial biomass.
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MH, BRF-WC, TBF-VA, TCF-NJ, TSF-HS, and WET-EM was 5.0 (0–15 cm), 2.1 (0–10 cm), 2.2 (0–10 cm), 
1.0 (0–10 cm), 4.1 (5–20 cm), 2.3 (0–5 cm), 13.5 (0–2.3 cm), 6.3 (0–10 cm), and 25.4 (0–20 cm) times of the 
observed BBC (at varying soil depths), respectively. Compared with the global data set of FBC and BBC (L. 
He et al., 2020), the simulated BBC in DST-CH, GRS-IA, TUN-MH, and BRF-WC was similar with their 
corresponding biome-averaged BBC in the top 30 cm soils. However, the simulated BBC was higher in SHB-
OB, TBF-VA, and TCF-NJ and lower in TSF-HS and WET-relative to their corresponding biome-averaged 
BBC in the top 30 cm soils.

The simulated F:B ratio was the highest in TUN-MH (6.30), followed by BRF-WC (5.39), DST-CT (4.54), 
SHB-OB (4.16), and TCF-NJ (3.96), the F:B ratio was the lowest in TSF-HS (2.31). The observed F:B ratio was 
highly variable, with the highest F:B ratio in DST-CH (14.1, 0–15 cm), followed by SHB-OB (9.1, 0–10 cm) 
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Figure 7. Sensitivity analysis for model response of fungal biomass, bacterial biomass, F:B ratio, soil organic carbon, and soil microbial respiration in the top 
30 cm to 25 parameters (m_bdom_f, m_bs1_f, m_bs2_f, m_bs3_f, m_fdom_f, m_fs1_f, m_fs2_f, m_fs3_f, k_dom, k_bacteria, k_fungi, m_rf_s1m, m_rf_s2m, m_
rf_s3m, m_rf_s4m, m_batm_f, m_fatm_f, m_domb_f, m_domf_f, m_doms1_f, m_doms2_f, m_doms3_f, cn_bacteria, cn_fungi, and CUEmax) in (a) desert, (b) 
grassland, (c) shrub, (d) tundra, (e) boreal forest, (f) temperate broadleaf forest, (g) temperate coniferous forest, (h) tropical/subtropical forest, and (i) wetland. 
“+” and “-” indicate 20% increase or 20% decrease of parameter values. CUE, carbon use efficiency; FBC, fungal biomass carbon; BBC, bacterial biomass carbon; 
F:B ratio, fungal:bacterial biomass carbon ratio; SOC, soil organic carbon; HR, heterotrophic respiration; Dark red and darker blue indicate a stronger positive or 
negative model response of the variable to parameter change. S is negative if the direction of model response opposes the direction of parameter change during 
the sampling years for all sites.
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and BRF-WC (5.3, 5–20 cm), while GRS-IA (1.1, 0–10 cm) featured the lowest F:B ratio among biomes. 
Compared with our recently compiled global data set of FBC and BBC (L. He et al., 2020), the CLM-Microbe 
model simulated F:B ratio was generally consistent with the biome-averaged F:B ratio in the top 30 cm soils. 
Similar as the CLM-Microbe model simulated F:B ratio, the highest biome-averaged F:B ratio was found 
in tundra (8.6), followed by boreal forests (5.0), temperate forests (4.9), and shrub (4.8), while the lowest 
biome-averaged F:B ratio was found in tropical/subtropical forests (2.2).

Large variations were found in the simulated SOC of top 30 cm among biomes, with SOC highest in WET-
EM (13,204 g C m−2), which was 5.3 times of that in the site with the lowest values, that is, TSF-HS (2,509 g 
C m−2). BRF-WC (8,685 g C m−2) has the second largest SOC, followed by TCF-NJ (7,990 g C m−2), TBF-
VA (5,873 g C m−2), and TUN-MH (3,604 g C m−2) (Table 5). Similar as the CLM-Microbe model, CLM4.5 
simulated-SOC in top 30 cm was high in WET-EM (9,951 g C m−2) and low in SHB-OB (1,598 g C m−2) and 
TUN-MH (2086 g C m−2). In contrast, CLM4.5 simulated-SOC in top 30 cm was much higher in GRS-IA 
(11,991 g C m−2), TBF-VA (11,239 g C m−2), and TSF-HS (6,628 g C m−2) compared with that simulated 
by the CLM-Microbe model. It is worthwhile to note that DST-CH (0 g C m−2) featured the lowest SOC in 
the top 30 cm simulated by CLM4.5 among sites owing to the vegetation mortality. The simulated SOC in 
the top 30 cm was slightly lower than the average derived from a global data set of SOC (Jobbágy & Jack-
son, 2000). However, the simulated SOC in BRF-WC was slightly higher than that of biome-averaged SOC 
in the top 30 cm. Excluding wetlands due to lack of available data, the biome-averaged SOC is consistent 
with the simulated SOC in the top 30 cm. The SOC is higher in temperate broadleaf forest (10,875 g C m−2), 
temperate coniferous forest (8,483 g C m−2), and tundra (7,739 g C m−2). In contrast to the lowest simulated 
SOC in the top 30 cm in TSF-HS (2,509 g C m−2), the biome-averaged SOC in the top 30 cm was lowest in 
the desert (2,728 g C m−2).

The fraction of SOC in microbial biomass (FBC and BBC combined) showed a large variation among bi-
omes, with the proportion ranging from 0.2% to 6.0% (Table 5). The proportion was the highest in TCF-NJ 
(6.0%), followed by TUN-MH (5.80%), TBF-VA (5.60%), SHB-OB (5.50%), and GRS-IA (5.40%), WET-EM 
(0.23%) featured the lowest proportion between the sum of FBC and BBC and SOC among biomes. Simi-
larly, the biome-averaged proportion between the sum of FBC and BBC and SOC ranged from 1.1% to 6.2% 
among biomes. However, the rank of the biome-averaged proportion between the sum of FBC and BBC and 
SOC was different with that simulated by the CLM-Microbe model. The proportion between the sum of 
FBC and BBC and SOC was highest in boreal forests (6.2%) and lowest in temperate broadleaf forests (1.1%). 
Tundra had the second highest proportion between the sum of FBC and BBC and SOC (3.4%), followed by 
desert (2.7%), grassland (2.2%), shrub (1.5%), and then tropical/subtropical forest and temperate coniferous 
forest (1.4%).

The CLM-Microbe model simulated annual estimation of HR was the highest in TCF-NJ (811 g C m−2 yr−1), 
which was about nine times of that in the lowest site, that is, TUN-MH (93 g C m−2 yr−1) (Table 5). We found 
second highest HR in TBF-VA (560 g C m−2 yr−1), followed by WET-EM (540 g C m−2 yr−1), BRF-WC (420 g 
C m−2 yr−1), and TSF-HS (401 g C m−2 yr−1). Compared with the CLM-Microbe model, CLM4.5 simulated 
highly consistent HR in TBF-VA, WET-EM, TSF-HS, SHB-OB, and TUN-MH. However, we observed much 
higher HR in GRS-IA simulated by CLM4.5 (757 g C m−2 yr−1), which was 2.4 times of that simulated by the 
CLM-Microbe model (313 g C m−2 yr−1).

3.4. Simulated Time-Series C Flow into and out of FBC and BBC

The dynamics and magnitude of C flow related to the decomposition of litter, SOM, and DOM, HR, and 
microbial lysis for FBC and BBC differed among biomes, while the seasonal patterns of those C flows were 
similar for fungi and bacteria in each biome (Figures 8 and 9). In the CLM-Microbe model, FBC and BBC 
assimilate C from the decomposition of litter, SOM, and DOM, the dominance of these C flows varied tempo-
rally and among biomes. The C flow from litter decomposition predominated fungal and bacterial C assimila-
tion year-round at a few sites such as DST-CH (Figures 8a and 9a), TUN-MH (Figures 8i and 9i), and TSF-HS 
(Figures 8h and 9h). We also found the dominant role of litter decomposition on fungi and bacteria C assim-
ilation in GRS-IA (Figures 8b and 9b), TBF-VA (Figures 8f and 9f), and WET-EM during the nongrowing 
seasons (Figures 8i and 9i). The fungal and bacterial C assimilation at sites such as BRF-WC (Figures 8e and 
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9e), SHB-OB (Figures 8c and 9c), and TCF-NJ (Figures 8g and 9g) were co-dominated by the decomposition 
of litter and SOM. The decomposition of DOM is the least important pathway for fungal and bacterial C gain 
across biomes; however, we observed the predominant role of the DOM decomposition on fungal and bac-
terial C assimilation at TBF-VA (Figures 8f and 9f) and WET-EM (Figures 8i and 9i) during the whole year, 
and second largest C assimilation of DOM decomposition at TUN-MH (Figures 8d and 9d), and temporarily 
dominant role of DOM decomposition during winter and spring at SHB-OB (Figures 8c and 9c).

The C loss from fungal and bacterial biomass was primarily represented as microbial respiration and micro-
bial lysis in the CLM-Microbe model. The C flow from fungal and bacterial biomass to SOM during microbi-
al lysis was the predominant mechanism of C loss at DST-CH (Figures 8a and 9a), SHB-OB (Figures 8c and 
9c), BRF-WC (Figures 8e and 9e), TBF-VA (Figures 8f and 9f), and TCF-NJ (Figures 8g and 9g). However, 
we also observed the co-dominance of C flow from fungal and bacterial biomass to SOM and microbial res-
piration in controlling fungal and bacterial C loss at GRS-IA (Figures 8b and 9b), and TUN-MH (Figures 8d 
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and 9d). The fungal and bacterial C loss were co-determined by C flow from fungal and bacterial biomass to 
SOM and DOM and microbial respiration at WET-EM (Figures 8i and 9i). While we found the predominant 
role of microbial respiration in regulating fungal and bacterial C loss in TSF-HS, microbial lysis contributed 
less to fungal and bacterial C loss (Figures 8h and 9h).

4. Discussion
4.1. Model Performance and Comparison with Existing Models

The CLM-Microbe model simulated FBC and BBC are consistent with the observed FBC and BBC, with a 
slight underestimation (Figures 2–6; Table 6). Similar as our study, G. Wang et al. (2015) reported that the 
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MEND model can adequately capture the soil microbial biomass C dynamics with the representation of 
soil microbial processes such as microbial dormancy, microbial enzyme production, and enzyme catalyzing 
effects on decomposition. The TRIPLEX-MICROBE model can also estimate the global- and biome-level 
soil microbial biomass C with reasonable accuracy (K. Wang et al., 2017). Meanwhile, studies found that 
soil microbial traits play a key role in soil microbial biomass accumulation. G. Wang et al. (2015) compared 
the simulated soil microbial biomass C by MEND with and without dormancy, and they found that MEND 
model without dormancy largely underestimated the soil microbial biomass C. In the CLM-Microbe model, 
the soil microbial community, represented by active fungi and bacteria, is directly related to many biogeo-
chemical processes such as decompositions of litter, DOM, and SOM. The accumulations of FBC and BBC 
could largely affect soil respiration and soil C pools such as SOM. To ensure reasonable soil conditions, we 
finalized the parameters related to soil microbial processes by ensuring consistency between simulated 
SOC with the SOC reported in global datasets. Therefore, the missing representation of dormancy may be 
responsible for the slight underestimation of FBC and BBC in the CLM-Microbe model.

Additionally, the CLM-Microbe model simulated FBC and BBC showed smaller variation compared with 
the observed FBC and BBC, respectively (Figure 6). Soil microbial communities are not static, with microbi-
al biomass showing temporal dynamics (Björk et al., 2008; Lipson et al., 2002; Lipson & Schmidt, 2004). This 
variation is highly associated with environmental factors such as soil temperature and soil moisture (Devi 
& Yadava, 2006). Meanwhile, plant-produced C also control soil microbial growth, as confirmed by stud-
ies that reported positive correlation between soil microbial biomass and aboveground litter input (Feng 
et al., 2009) and root exudates (Göttlicher et al., 2006). Although we incorporated the vegetation effects in 
soil microbial biomass in the form of DOM released into soil, the decomposition of DOM will promote C 
availability for soil microbes, the stimulating effects of DOM on microbial activity was not included in the 
present CLM-Microbe model. In addition, soil food web was not explicitly incorporated into the CLM-Mi-
crobe model, even the turnover rate of soil microbial biomass was probably regulated by their predators 
such as nematodes, mites, and protozoa (CPD et al., 1995; Ingham et al., 1986). The predator activity can 
induce abrupt changes in soil microbial biomass; for example, Buckeridge et al. (2013) observed seasonal 
variation in soil microbial community structure, and the decline in FBC from winter to late winter, and then 
again in spring, was closely associated with the high abundance of protozoa. Furthermore, only a small pro-
portion of the soil microbial community is active, while the majority is dormant, that is, a reversible state of 
low to zero metabolic activity (Cole, 1999). Soil microbes can determine whether the environmental condi-
tions are suitable for microbes to remain viable within short time periods (Garcia-Pichel & Pringault, 2001). 
Therefore, the rapid change in soil microbial state can lead to abrupt changes in soil microbial biomass (Y. 
He et al., 2015). However, in the CLM-Microbe model, we assumed that the activity of fungi and bacteria 
are regulated by soil environmental conditions such as soil temperature, soil moisture, and soil oxygen 
concentration (Section 2.2).

4.2. Controls on Soil Microbial Community Composition

Turnover rates of FBC and BBC are the most important factors regulating FBC and BBC dynamics across 
biomes, respectively, with increasing turnover rate of fungi decreased FBC and F:B ratio, and increasing 
turnover rate of bacteria decreased BBC and increased F:B ratio (Figure 7). Turnover rate, the inverse of 
lifespan, can be mathematically calculated by dividing the production by the biomass pool size. In the 
microbial world, biomass turnover is much faster relative to that of plants and animals in natural environ-
ments, microbial related biogeochemical fluxes are closely linked to turnover and succession of microbial 
communities (Schmidt et al., 2007). Higher estimates for biomass production consequently correspond to 
lower turnover times, and vice versa (Pritchard et al., 2008; Rousk & Bååth, 2007). Therefore, the increase in 
turnover rate of fungi and bacteria is expected to induce declining FBC and BBC, respectively. The increas-
ing turnover rate of fungi will decrease the dominance of fungi, and thus narrowed F:B ratio. In contrast, 
the increasing bacterial turnover rate would suppress the bacterial dominance and thus a broadening F:B 
ratio.

In addition, we observed the important role of fungal and bacterial biomass C:N ratio in regulating FBC, 
BBC, and F:B ratio, with rising fungal biomass C:N ratio increased FBC and F:B ratio and rising bacterial 
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biomass C:N ratio increased BBC and decreased F:B ratio (Figure 7). The C cycle is closely coupled with 
that of other essential elements, and the proportion of substrate C being respired by soil microbes is close-
ly related to substrate C:N ratio, with more C being respired when substrate has high C:N ratio or low N 
concentration (Spohn, 2015). In addition, the ratio between the substrate and the microbial biomass C:N 
ratio determines the proportion of C being assimilated by soil microbes (Sinsabaugh et al., 2013), which 
was directly reflected as CUE and adopted into the CLM-Microbe model. Fungi and bacteria have distinct 
C and nutrient compositions, with C:N ratio averaged around 5 for bacteria and 12 for fungi (Strickland & 
Rousk, 2010), their C:N ratios specifically determine the partitioning coefficient of C between fungi and 
bacteria in the CLM-Microbe model. Increasing fungal biomass C:N ratio will thus increase the proportion 
of C assimilated by fungi and promote the dominance of fungi, while increasing bacterial biomass C:N ratio 
stimulates the C flow toward bacteria and suppresses the fungal C gain, and thereby decreasing F:B ratio.

The FBC, BBC, and F:B ratio were also positively affected by the C flow from SOM to soil microbes. We ob-
served higher sensitivity of FBC and BBC in desert and tropical/subtropical sites to changes in C flow from 
SOM to soil microbes (Figure 7). The increase in microbial C gain from SOM will enhance the C and energy 
availability for soil microbial growth, which is thus reflected as an increase in soil microbial biomass. In the 
model, fungal and bacterial C gain from SOM is first expressed as the C input from SOM to soil microbes as 
a whole, then the C was partitioned by FBC and BBC pools based on the C:N ratio of their biomass, the bi-
omass pool with higher C:N ratio is expected to gain higher proportion of C (Figure 1; Section 2.2). In other 
words, the C flow from SOM to soil microbes will determine the overall received C from SOM for both fungi 
and bacteria. Although there are large variations in fungal (3–60) and bacterial (3–12) biomass C:N ratio, 
indicating that a large proportion of fungi and bacteria overlap with regards to biomass C:N ratio, fungi tend 
to have higher mean C:N ratio (Strickland & Rousk, 2010). Accordingly, we assigned higher C:N ratio for 
fungal (cn_fungi) relative to bacterial (cn_bacteria) biomass, and the reasonability of these parameters were 
validated and tested by observed FBC and BBC dynamics (Table 3). As a result, the increase in microbial C 
gain from SOM will enhance FBC and BBC; however, FBC increase will be promoted more due to its higher 
C:N ratio, thereby exhibiting an increase in F:B ratio.

The FBC, BBC, and F:B ratio in DST-CH and TSF-SH showed relatively higher sensitivity to soil microbial 
C assimilation from SOM decomposition, which is likely result from the favorable soil moisture and tem-
perature for decomposition. Tropical and subtropical forests are known to have higher decomposition rate 
due to the high annual precipitation and temperature, while decomposition in deserts is widely reported 
to be limited by soil moisture (Chapin et al., 2011). Despite the general recognition of water limitation in 
deserts, the desert site (DST-CH) in this study has a mean annual precipitation of 380 mm, which is pretty 
high compared to “common” deserts (Bell et al., 2014). Given the high sensitivity of SOM decomposition 
to soil moisture condition, the higher water availability may enhance SOM decomposition in TSF-SH and 
DST-CH (Chapin et al., 2011). Furthermore, DST-CH is vegetated by herbaceous plant species, the higher 
proportion of nonwoody components will improve the decomposability of substrates (Koven et al., 2013). 
In addition, although water limitation decreases the activity of soil microbes, primarily bacteria, fungi are 
more tolerant to drought due to their hyphal water uptake capability and dominate SOM decomposition 
in dry environmental conditions such as deserts (Yuste et al., 2011). Therefore, the decomposition of SOM 
plays an important role for fungal and bacterial C turnover, and fungal growth tends to be promoted more 
due to higher biomass C:N ratio and tolerance to water stress, leading to an increase in F:B ratio.

4.3. Controls on Soil Organic C Density and HR

The C flow from SOM to soil microbes enhanced SOC, but this enhancement is weak in tundra and bo-
real forest; soil microbial respiration strongly decreased SOC in forests except for boreal forest (Figure 7). 
In addition to processing SOM from other organic C forms, soil microbes contribute to the formation of 
persistent SOM via necromass (Gougoulias et al., 2014). Soil microbial necromass is about three orders of 
magnitude higher than soil microbial biomass (Glaser et al., 2004), and can make up more than half of SOC 
(Liang et al., 2019). Soil microbial necromass is directly related to soil microbial biomass turnover rate, the 
slow biomass turnover rate in boreal forests and tundra might be one of the important reasons for low SOC 
sensitivity to soil microbial biomass C gain from SOM (Table 3). Moreover, boreal forests and tundra are 
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known to have low soil temperature, indicating smaller temperature effects on soil microbial community 
lysis. As a result, low biomass turnover rate of fungi and bacteria as well as low soil temperature may lead 
to the long persistence of organic C in soil microbial biomass, resulting in the lower contribution of soil mi-
crobial necromass to SOM. Compared with boreal forests, soil moisture and soil temperature in temperate 
and tropical forests are relatively desirable for soil microbial activity, and thus the decomposition process is 
more favorable in temperate and tropical forests. Higher decomposition in temperate and tropical forests is 
indicated by the C released as CO2 by fungi and bacteria in the CLM-Microbe model (Table 5). Therefore, in 
temperate and tropical forests, the higher proportion of C respired by fungi and bacteria will more promi-
nently decrease C remaining in the ecosystem, leading to a reduction in SOC content.

The HR was generally responsive to all the parameters related to soil microbial processes but in low sen-
sitivity (Figure 7). The HR is widely affected by multiple abiotic and biotic conditions, such as substrate 
concentration, soil moisture, and soil temperature (Gomez-Casanovas et al., 2012; Zhang et al., 2013). In 
the CLM-Microbe model, HR is explicitly represented as soil microbial respiration under the influences of 
environmental factors (i.e., soil moisture, soil temperature, and oxygen concentration). Meanwhile, fungal 
and bacterial respiration is not only related to C gain through the decomposition of DOM, SOM, and litter 
and microbial DOM uptake, but also to soil microbial lysis (Figure 1). Therefore, HR is directly determined 
by the microbial activities and substrate availability, and indirectly affected by a wide range of environmen-
tal factors and parameters. For example, parameters defining C transfer from litter and SOM pools to fungal 
and bacterial biomass pools and DOM, from DOM pool to fungal and bacterial biomass and SOM pools, 
and from fungal and bacterial biomass pools to DOM and SOM pools are closely related to soil microbial C 
gain and loss.

In general, the CLM-Microbe model simulated comparable SOC and HR in grasslands, tundra, temperate 
broadleaf forests, tropical/subtropical forests, and wetlands, but much higher SOC and HR in shrub, boreal 
forests, and temperate coniferous forests compared with CLM4.5 (Table 5). This may be due to two reasons. 
First, to produce reasonable vegetation status, we adjusted the parameters related to plant photosynthesis 
(e.g., flnr) and C allocation (e.g., froot_leaf) in the CLM-Microbe model to guarantee reasonable vegeta-
tion productivity indicated by MODIS data set. However, when running the CLM4.5, we used the default 
parameters for each plant functional type. Therefore, the difference in vegetation condition may induce 
the discrepancy in simulated SOC and HR. For example, we documented a SOC pool of 2,568 g C m−2 and 
HR flux of 277 g C m−2 yr−1, but both SOC and HR were zeros in desert site (DST-CH) because of vegeta-
tion mortality. Litterfall from vegetation serves as the C source for SOM formation (Thornton & Rosen-
bloom, 2005), the difference in vegetation condition may be one of the important reasons for the difference 
in simulated SOC and HR between CLM4.5 and the CLM-Microbe model. Second, to produce comparable 
SOC in the CLM-Microbe model with HSWD data set, we adjusted active soil depth for decomposition (de-
comp_depth_efolding) to reach the goal. While we used the default value of decomp_depth_efolding (0.5) for 
the CLM4.5 simulation in all sites. decomp_depth_efolding determines the vertical distribution of SOC in 
the soil profile, changes in decomp_depth_efolding may account for the differences in simulated SOC, and 
possibly HR, between CLM4.5 and the CLM-Microbe model (Bonan et al., 2013).

4.4. Limitations and Improvements

The CLM-Microbe model is capable of simulating FBC and BBC dynamics across biomes; a few improve-
ments are identified as our future research needs. First, the dormant portion of fungi and bacteria were 
not explicitly considered in the CLM-Microbe model. Dormant soil microbes can become viable in short 
time periods due to their capability of rapidly sensing limiting resources change (Garcia-Pichel & Prin-
gault, 2001). Therefore, dormant soil microbes are able to survive environmental stresses and serve as “seed 
banks” for the soil microbial community (Lennon & Jones, 2011). Representing the dormant portion of soil 
microbes would enhance the model capability in simulating microbial resilience to stressful conditions (G. 
Wang et al., 2015). Second, fresh C input-induced priming effects is an important pathway affecting micro-
bial activity, which needs to be considered in future studies. In addition to environmental factors such as 
temperature, soil moisture, and oxygen concentration, the addition of organic or mineral substances avail-
able for soil microorganisms may stimulate microbial activities, causing priming effects (Blagodatskaya & 
Kuzyakov, 2008). However, we did not test the model performance in simulating the priming impact within 
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current model structure. Given the different physiology of bacteria and fungi, it would be worthwhile to 
robustly test the model behavior in simulating the priming effect, and further improve the model as needed.

Third, the soil food web regulates fungal and bacterial biomass dynamics, thus the inclusion of soil trophic 
interactions would help better understand the effects of soil food web on soil microbial biomass dynamics. 
Soil microbial growth is strongly shaped by predation, Buckeridge et al. (2013), for example, observed the 
seasonal variation in soil microbial community structure, and the decline in FBC from winter to late winter, 
and then again in spring, which was closely associated with the abundance of protozoa. Therefore, FBC and 
BBC may not only be controlled by abiotic factors such as soil temperature, soil moisture, oxygen concen-
tration, and C availability, but the seasonal variation in their predator communities (Schadt et al., 2003). 
Fourth, the FBC and BBC data compiled were measured using a wide range of methods, while different 
methods may introduce a variety of biases (L. He et al., 2020). For example, direct microscopy was widely 
used in early stage of soil microbial studies, but the approach has inevitably included dead biomass of soil 
microbes, especially for fungi, into the estimated biomass (Buckeridge et  al.,  2013). Amino sugars such 
as glucosamine and muramic acid are used to estimate FBC and BBC, respectively; however, this method 
measures both living and dead microbial biomass due to the high stability of amino sugars in soil (Glaser 
et al., 2004). Therefore, comparing FBC and BBC data measured by multiple methods will suffer from un-
certainties in data quality due to various biases introduced by the different methods. Although data-model 
integration has been proposed for more than four decades, the intimate collaboration between experimen-
talists and modelers is still needed for model development. A standardized microbial data system that con-
tains primary microbial variables with consistent measurement approach or after conversion is critical to 
reduce the bias associated with distinct methods (Xu et al., 2020). Last but not least, the observed data for 
bacterial and fungal biomass C commonly vary by more than five orders of magnitude (Guo et al., 2020; L. 
He et al., 2020; Sinsabaugh et al., 2016; Xu et al., 2013, 2017), while ecosystem-level variables commonly 
vary by less than three orders of magnitude. This large discrepancy makes the validation approach applied 
to ecosystem-level C pools and fluxes less robust in microbial models, as shown in this study of model 
validation (Section 3.1). The CLM-Microbe is able to reasonably capture the seasonality of key microbial 
variables but less robust in simulating the magnitude of microbial variables. We call for community-level 
efforts to develop a new model validation approach that is more applicable to microbial models.

5. Conclusions
This study reported the model parameterization, validation, uncertainty analysis, and sensitivity analysis 
of the CLM-Microbe model in simulating fungal and bacterial biomass at the site level. The CLM-Microbe 
model could simulate the seasonal variation of FBC and BBC, but the model tended to underestimate the 
magnitude of the observed biomass for most biomes. Sensitivity analysis showed that the turnover rates of 
FBC and BBC are the most important parameters regulating FBC and BBC, respectively. Meanwhile, C flow 
from SOM to soil microbes during decomposition and the C:N ratio of fungal and bacterial biomass are also 
important for FBC and BBC dynamics. We observed an enhancement of soil microbial C gain from SOM 
on SOC, but the enhancement is weak in tundra and boreal forests. The simulated HR was responsive to all 
parameters related to soil microbial processes across biomes but exhibited low sensitivity.

The CLM-Microbe model represents the first attempt to simulate the soil microbial effects on C cycle by 
differentiating fungi and bacteria and their physiology in assimilating C in soils. Along with the emerg-
ing microbial macroecology (Xu et al., 2020), the improvements in modeling microbial mechanisms will 
likely bring more robust abilities to ESMs to better simulate and project the climate system. The explicit 
representation of soil microbial processes into the CLM-Microbe model will improve our mechanistic un-
derstanding of ecosystem-level C cycling and improve predictability of microbial community structure at 
regional to global scales, thereby reducing uncertainties in global C projection.

Data Availability Statement
The data used for model parameterization and validation are obtained in published literature that have been 
clearly cited in the Table 1 of the manuscript.
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