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Holistic Reinforcement Learning: The Role of Structure and 
Attention

Angela Radulescu1,2, Yael Niv1,2, and Ian Ballard3,*

1Psychology Department, Princeton University

2Princeton Neuroscience Institute, Princeton University

3Helen Wills Neuroscience Institute, University of California, Berkeley

Abstract

Compact representations of the environment allow humans to behave efficiently in a complex 

world. Reinforcement learning models capture many behavioral and neural effects, but do not 

explain recent findings showing that structure in the environment influences learning. In parallel, 

Bayesian cognitive models predict how humans learn structured knowledge, but do not have a 

clear neurobiological implementation. We propose an integration of these two model classes in 

which structured knowledge learned via approximate Bayesian inference acts as a source of 

selective attention. In turn, selective attention biases reinforcement learning towards relevant 

dimensions of the environment. An understanding of structure learning will help resolve the 

fundamental challenge in decision science: explaining why people make the decisions they do.
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How do We Learn what to Learn About?

The complex, multidimensional nature of the external world presents humans with a basic 

challenge: learning to represent the environment in a way that is useful for making decisions. 

For example, a wine neophyte on her first trip to Napa could learn that white wines are more 

refreshing in hot weather. This experience would give rise to a useful distinction between 

white wines and all other wines, regardless of other dimensions such as the grape varietal or 

winery. Such representation learning (see Glossary) often involves dimensionality 

reduction — the pruning out of distinctions that are unlikely to be important [1]. For 

example, after multiple wine tastings, our wine enthusiast might start paying attention to the 

type of grape, but still ignore the color of the label on the bottle. For any given task, a learner 
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should ideally form a compact representation of the environment that includes all relevant 

input from either the immediate sensory snapshot or memory. Making too few distinctions 

may lead to ignoring differences between situations that require different behavior. Making 

too many distinctions may lead to poor generalization to new, related situations. 

Understanding how learners arrive at a representation of their environment is a fundamental 

challenge in cognitive science.

Reinforcement learning algorithms are powerful descriptors of how humans learn from 

trial and error and substantial progress has been made in mapping these algorithms onto 

neural circuits [2–4]. Yet reinforcement learning approaches still lack an account of how 

humans learn task representations in multidimensional environments. In particular, recent 

work has highlighted two phenomena that current models do not fully capture: selective 

attention to a subset of features in the environment and the use of structured knowledge. 

These findings come from two literatures that have seen relatively little crosstalk, 

reinforcement learning models of decision-making and Bayesian models of category 

learning. We summarize recent advances at the intersection of the two literatures, with the 

goal of emphasizing parallels between them and motivating new research directions that can 

establish how neural circuits give rise to useful structured representations of the external 

world. We propose that representations of task structure learned through approximate 

Bayesian inference are the source of selective attention during learning. At the neural level, 

such structured representations in prefrontal cortex determine which aspects of the 

environment are learned about via dopaminergic modulation of corticostriatal synapses.

Probing How Humans Learn Task Representations

A burgeoning literature has begun to address the question of how humans learn task 

representations in two different, but related domains: reinforcement learning and category 

learning. In a typical multidimensional reinforcement learning task, participants are given a 

choice between stimuli that vary along several dimensions, and observe a reward outcome 

after every choice (Table 1, yellow). For example, the participant might be presented with a 

red square and a blue triangle, choose the red square, and receive a binary reward [5]. Often, 

reward probability does not uniformly depend on all features. For instance, one feature may 

be more predictive of reward than others [6,7]. Given only partial information about which 

features matter, participants are instructed to maximize reward in a series of sequential 

decisions. By contrast, in category learning tasks participants are required to sort 

multidimensional stimuli one at a time into one of several categories (Table 1, green). 

Category membership usually depends on the presence or absence of one or more features, 

as well as on the relationship between features. For example a red square would be classified 

as a “dax” if “all red objects are daxes” or as a “bim” if “all red circles are daxes” [8]. 

Finally, a related class of “weather prediction” tasks (Table 1, blue) ask participants to 

predict one of two outcomes (e.g. rain or shine) given multiple cues and a non-uniform 

mapping between cues and outcome probabilities [9,10].

Such tasks differ in framing (e.g. decision-making vs. categorization), the size of the 

observation space (i.e. how many dimensions stimuli can vary on), the nature of the 

feedback (scalar reward vs. a category label; stochastic vs. deterministic) and the 
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instructions the participant receives about the structure (Table 1). But they also are alike in 

that each trial consists of a perceptual observation, an action and a reward outcome. And 

they share the key property that the participant needs to disambiguate observations by 

learning and representing an appropriate mapping between perceptual observations and 

environmental states [4,11–13]. In other words, performance depends on learning to carve 

the perceptual observation space into a compact state representation appropriate for the 

task. In this review, we refer to the process of learning a mapping from observations to states 

as representation learning (note that there also exist other kinds of representation learning 

problems, such as that of learning the transition structure between states (i.e. model-based 

learning) [14]).

Several studies have tackled the question of what kinds of state representations humans use. 

These studies built reinforcement learning agents (“models”) that simulated actions trial-by-

trial, and compared these predictions to human data [5,7–10,15–17]. Importantly, models 

that have been proposed vary in the state representation they learn over (Fig. I, Box 1). For 

example, in object-based reinforcement learning [5,18], the agent maintains a value for each 

combination of features (Fig. I left). In other words, there is a one-to-one correspondence 

between unique percepts and states. In feature-based reinforcement learning (a form of 

function approximation [19]), the agent maintains values for all possible features in the 

environment and generalizes across observations by combining the predictions of constituent 

features (e.g., by summing them; Fig. I right). Recent work on multidimensional 

reinforcement learning has suggested that humans do not use one strategy exclusively. 

Instead, participants tended to adopt feature-based learning when information about features 

is predictive and object-based learning when it is not [5,10], and did not rely on object-based 

representations in a task in which a single feature is more predictive of reward [7] (cf. [20]). 

These findings suggest that state representations can flexibly adapt to task structure.

Attention Shapes State Representations

How can it be that people use different representations in different learning tasks? One 

possible explanation is that selective attention dynamically shapes state representations. 

Selective attention is defined as the preferential processing of a subset of environmental 

features at any stage between perception and action. Several recent studies have reported that 

attended features influence actions more strongly than unattended features, and are learned 

about more readily [7,17,21,22]. Moreover, this interaction between attention and learning is 

bidirectional: attentional biases are dynamically adjusted as a function of reward history 

[22].

Selective attention could sculpt state representations for reinforcement learning via known 

neurobiological mechanisms. Reinforcement learning is thought to occur via dopamine-

dependent plasticity of synapses from cortical neurons onto striatal neurons [23]. In response 

to an unexpected reward, dopamine neurons fire in proportion to the reward prediction error 

[2] and release dopamine onto their striatal targets [24], facilitating long-term potentiation of 

corticostriatal synapses [25]. If cortical neurons are firing in response to a sensory cue, such 

as a tone, at the same time as a surprising reward, then their synapses onto striatal neurons 

will strengthen (and vice versa for a negative prediction error, which causes long-term 
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depression of synapses). If attention is directed to a subset of sensory features, then the 

cortical response to those features will be stronger and more precise [26]. Because these 

neurons are firing more, their synapses onto striatal neurons will be strengthened more in 

response to unexpected reward than those of unattended features. Attention could therefore 

bias reward-driven value learning towards a subset of features in the sensory environment.

If selective attention shapes the representations used for learning, then an important 

empirical question is, which aspects of the observation space are subject to attentional 

selection? Two prominent theories suggest different targets for attention in reinforcement 

learning. The Mackintosh model proposes that attention tracks stimulus features that are 

most predictive of reward [27]. The Pearce and Hall model suggests instead that attention is 

directed to features that learners are most uncertain about [28]. Hybrid approaches suggest 

that both processes occur independently [29,30], while integration models posit that a 

stimulus’ learned attentional salience is directed by both predictiveness and uncertainty 

[31,32], with the balance of the two possibly different at the choice versus learning stage of 

a decision [33,34]. Additionally, features of the stimulus, such as its visual salience, can 

capture attention in a bottom-up manner [35] and such features ought to be learned about 

more readily. While a topic of active debate, how the brain dynamically directs attention 

during either choice or learning remains an open question [36].

Insights from Structure Learning

Humans use knowledge about the world to scaffold learning. This knowledge can take the 

form of abstract concepts [37], domain knowledge [38], relational maps of the environment 

[39,40], or hierarchically structured knowledge of task rules [41]. Knowledge about 

structure endows humans with a remarkable ability to generalize behavior to new 

environments. It also enables rapid “one-shot” learning of new concepts and “learning to 

learn” [42,43], the ability to learn more quickly after experience with a class of learning 

problems. Cognitive psychology research has successfully modeled such structure learning 

phenomena using Bayesian cognitive models.

Probabilistic programming models (Fig. 1, top row) construct rules (or concepts) from 

compositions of features with simple primitives (e.g., “for all”, “if”, “and”, “or”) [37,42,44]. 

In category learning tasks, rules are constructed from the stimulus features and simple 

logical operations (e.g. “(blue and square) or red”) [8,37,45]. Given a hypothesis space of all 

possible rules, the posterior probability is calculated via Bayesian inference, considering 

both a rule’s complexity and the proportion of examples it correctly categorizes. Rules are, a 

priori, exponentially less likely as the expressive length of the rule increases. Probabilistic 

programming models are an instance of a class of models that describe concept-learning data 

by assuming a compositional rule-based structure (e.g., RULEX [46]). The unique 

contribution of probabilistic programming models is that they use statistical inference to 

build concepts that are appropriate for the learning problem. This flexibility allows them to 

explain phenomena outside of categorization, such as how people infer causal relationships 

between events [47,48] or how people infer others’ intentions from their actions [49] or 

choice of words [50].
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Yet category learning tasks only subtly differ from decision-making experiments that are 

modeled with reinforcement learning (Table 1). A recent study of human category learning 

highlighted this relationship by directly comparing a Bayesian probabilistic programming 

model with several reinforcement learning models that learn over different state 

representations [8,37]. While reinforcement learning models can learn categorization rules if 

given the correct state representation, the Bayesian model better predicted human choices. In 

contrast to reinforcement learning, which learns over a predefined state representation and 

updates uninformative states indefinitely, probabilistic programming models settle on the 

rules that parsimoniously describe observations.

Bayesian non-parametric models (Fig. 1, middle row) also highlight how Bayesian 

inference can explain learning phenomena that have eluded reinforcement learning (cf. [51]). 

Bayesian non-parametric models group perceptual observations into unobserved “latent 

causes” (or clusters) [52–55]. For example, consider a serial reversal learning task in which 

the identity of the high-reward option sporadically alternates. In such tasks, animals initially 

learn slowly and but eventually learn to rapidly respond to contingency changes [56]. 

Bayesian non-parametric models learn this task by grouping reward outcomes into two latent 

causes: one in which the first option is better, and one in which the second option is better. 

Once this structure is learned, the model displays one-shot reversals after contingency 

changes because it infers that the latent cause has changed. This inference about latent 

causes in the environment has also shed light on several puzzling conditioning effects. When 

presented with a neutral stimulus such as a tone followed by a shock, animals eventually 

display a fear response to the tone. The learned fear response gradually diminishes when the 

tone is later presented by itself (i.e. in extinction), but often returns after some time has 

passed. This phenomenon is known as spontaneous recovery. Bayesian non-parametric 

models attribute spontaneous recovery to the inference that extinction signals a new 

environmental state. This prevents old associations from being updated [57]. Bayesian 

nonparametric models also predict that gradual extinction will prevent spontaneous recovery, 

a finding borne out by empirical data [57]. In gradual extinction, the model infers a single 

latent state and gradually weakens the association between that state and aversive outcome, 

thereby abolishing the fear memory.

In both probabilistic programming and Bayesian nonparametric models, learning is biased 

by a prior that favors simpler representations over complex ones. For example, a 

probabilistic programming model is biased towards rules in which a single feature is relevant 

for classification. This simplicity prior is appropriate across tasks and domains. This stands 

in contrast to reinforcement learning models that require definition of an appropriate state 

space for each task. A simplicity bias is also consistent with findings that suggest that trial-

and-error learning follows a pattern whereby simpler feature-based state spaces precede 

more complex object-based spaces [5,58], and explains why classification becomes harder as 

the number of relevant dimensions grows [59]. The findings outlined in this section illustrate 

both the importance of structured knowledge in learning and the utility of Bayesian 

cognitive models for explaining how this knowledge is acquired. However, they raise an 

important question: how does this knowledge about task structure interface with the neural 

systems that support reinforcement learning?
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Bridging Structure Representations and Neural Models of Reinforcement 

Learning

We propose a conceptual model that links reinforcement learning with a structure learning 

system in a neurobiologically plausible architecture (Fig. 2). We base our framework on 

connectionist models of the basal ganglia-prefrontal cortex circuit [41,60,61]. These models 

describe how rules [41,62,63] or working memory content [61,64] are selected via known 

corticostriatal circuitry (see [61] for neuroanatomical detail). Antero-lateral prefrontal 

cortical pools can represent different rules, working memory content, or hypotheses about 

task structure. These different pools compete via mutual lateral inhibition. The outcome of 

this competition is biased by the relative strength of each pools’ connectivity with the 

striatum. Pools with stronger cortical-striatal connectivity will generate a stronger striatal 

response, which in turn increases the strength of thalamic feedback onto these pools. This 

recurrent circuit allows a pool representing a task rule to inhibit competing pools and control 

behavior [65]. If an unexpected reward occurs, dopamine release in the striatum strengthens 

the synapses from the most active cortical pool. In this way, rule representations that lead to 

reward are more likely to win over alternative representations in the future [41,66]. This 

model describes how a reinforcement learning system could gate the representation of a 

hypothesis about task structure into cortex. Our central proposal is that this hypothesis is the 

source of top-down selective attention during learning (Box 2).

Hypotheses about task structure can constrain feature-based reinforcement learning by 

directing attention to specific component features and not others. For example, a hypothesis 

that “red stimuli are daxes” would increase the strength and fidelity of the representation of 

color in sensory cortex. If an unexpected outcome follows a red square, the heightened 

representation of “red” will cause a larger update to the corticostriatal projections from “red” 

neurons than from “square” neurons. As a result, reinforcement learning will operate over a 

feature-based representation with biased attention to the color “red”. If later in the task the 

hypothesis is updated to “red squares are daxes”, then both red and square features will be 

attended to more strongly than other features. In this way, rules can sculpt the state 

representation underlying reinforcement learning.

Reinforcement learning could, in turn, contribute to the selection of hypotheses via two 

mechanisms. First, learning can adjust the corticostriatal weights of projections from cortical 

pools representing alternative rules, as has been proposed by a recent neural network model 

[41]. Second, reinforcement learning over features represented in sensory cortex can 

contribute to rule selection. For instance, the rule “red squares are bims” will be influenced 

by simple reinforcement learning linking “red” with “bim” and “square” with “bim”. Even if 

the learner is using the rule “red objects are bims”, the incidental reinforcement of “square” 

every time a red square is correctly classified as “bim” will cause higher activation of “red 

squares” relative to “red circles” neural pools in the cortex. This differential activation will 

increase the likelihood that the subject switches to the correct rule. This mechanism is 

consistent with the finding that even when subjects are given the correct categorization rule, 

features of the stimulus that are not part of the rule exert an influence on decisions [20]. 

When a rule is discarded, reinforcement learning would also support the selection of an 

Radulescu et al. Page 6

Trends Cogn Sci. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



alternative rule that has explained past observations. This mechanism eliminates the need to 

remember all previous trials and evaluate alternative rules against these memories, thereby 

endowing the hypothesis testing system with implicit memory.

By designating hypotheses as the source of top-down attention, this model provides a 

mechanistic account of how reinforcement learning is influenced by both structured 

knowledge and attention. This idea is closely related to recent work suggesting that working 

memory contents in lateral prefrontal circuits act as the source of top-down attention to the 

constituent sensory circuits [67]. Indeed, working memory plays an important role in 

constraining reinforcement learning [68], and our model predicts that learning is influenced 

by the number of hypotheses that can be simultaneously considered [69].

Computational Feasibility of Bayesian Inference

Our model claims that hypotheses about task structure are considered in a manner consistent 

with Bayesian rational models. However, the computations underlying these models are 

generally intractable [70]. For instance, in probabilistic programming models, the agent 

must repeatedly compute the likelihood of all previous observations over all possible rules. 

Recent work has attempted to address this problem using sampling algorithms that 

approximate solutions to Bayesian inference [71,72]. One such algorithm is the particle 
filter.

A particle filter can approximate any given Bayesian model by using a finite number of 

particles, each of which expresses a particular hypothesis about the state of the world 

[73,74]. For example, in a category learning task, each particle represents a single 

categorization rule. After an observation, the particle either samples a new hypothesis or 

stays with the current one. This decision depends on how likely the observation is under the 

current hypothesis. A particle encoding the belief that “red stimuli are daxes” would be more 

likely to stay with its current hypothesis after observing a red square that is a “dax”, and 

more likely to switch to a new hypothesis after observing a red square that is a “bim”. This 

update algorithm is computationally simple because it only incorporates each particle’s 

belief about the world (e.g., one classification rule).

In addition to their computational simplicity, particle filters are an appealing model for 

representation learning because they can preferentially sample simpler rules. Moreover, they 

capture the phenomenological report that people consider alternative hypotheses [75]. 

Particle filters also closely resemble a serial hypothesis testing model that has previously 

been shown to describe human behavior in a multidimensional decision-making task [76]. In 

addition, they provide a single framework for implementing representation learning over 

different types of models, including both probabilistic programming models and Bayesian 

nonparametric models [69,71].

Given an infinite number of particles, particle filters converge to the true posterior 

probability. Remarkably, recent work has demonstrated that the use of a single or very few 

particles can describe human behavior well. This is because humans face a practical 

problem: rather than learning the true probability distribution over all possible rules, people 
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need only find a rule that explains enough observations to make good decisions [77]. This 

could explain why behavior across an entire group may be Bayes-optimal, but individual 

choices are often not [78]. If each individual tracks just one or a few hypotheses, only the 

group behavior will aggregate over enough “particles” to appear Bayes-optimal [78].

Our neural model proposes that hypotheses are gated by corticostriatal circuitry that is, in 

turn, influenced by reinforcement learning. This architecture could form the basis of a 

particle filter algorithm. Specifically, particle filters sample hypotheses based on how well 

each hypothesis accounts for previous observations. Feature weights learned via 

reinforcement learning could enable the sampling of hypotheses that have already explained 

some observations. Unlike particle filter accounts of sensory integration, which propose that 

individual spikes of feature-selective neurons represent particles [79–82], in our model 

particles correspond to distributed prefrontal representations of rules. The particle filter 

algorithm is a flexible mechanism for inference that could apply to different timescales 

(from milliseconds to trials) and different types of problems (e.g., perception and 

categorization).

Although corticostriatal connectionist models can exhibit properties similar to a Bayesian 

structure-learning model [41], the corticostriatal gating mechanism need not perfectly 

implement a particle filter, and the differences may be informative [77]. For example, in a 

task where the motor response mapping varies (e.g., “bim” is sometimes the left-hand and 

sometimes the right-hand response), a corticostriatal gating model would correctly predict 

that if recent right-hand selections were rewarded, the subject is more likely to respond 

“right” regardless of category of the current stimulus [83]. A particle filter implementing a 

probabilistic programming model of representation learning would not predict this effect. A 

fruitful area for future research will be to examine other ways in which constraints imposed 

by the corticostriatal architecture can predict deviations from Bayesian inference.

Related Models

Our proposal that prefrontal cortex and striatum interact to support structure learning is 

related to the longstanding idea that the brain contains multiple, competing learning systems 

[84,85] (see COVIS for computational implementation [86]). Previous work has shown that 

in tasks where categorization rules are difficult to verbalize, (e.g., respond left to squares that 

are more red than they are circular), performance is supported by incremental learning in 

corticostriatal circuits [87,88]. In contrast, performance of explicit rule-learning tasks 

depends on prefrontal cortex [89]. Our proposal also relies on the distinction between the 

kinds of representations and learning supported by the prefrontal cortex and striatum. 

However, we propose that prefrontal rule representations act as a source of top-down 

attention that sculpts the state representation over which reinforcement learning operates.

Rule-based categorization models stand in contrast to clustering approaches to learning. In 

clustering models, stimuli are clustered according to the similarity of their features. This 

clustering can be biased by attention, such that stimuli that differ in unattended features 

nonetheless cluster together (e.g., in the attention-learning covering map model; “ALCOVE” 

[90]). An association between a cluster (e.g., all previous red stimuli) and a category label 
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(e.g., “dax”) implicitly encodes a categorization rule (“red stimuli are daxes”). This 

mechanism for building representations has been proposed as a solution to the representation 

learning problem in reinforcement learning [91]. A related model, the supervised and 

unsupervised stratified adaptive incremental network (“SUSTAIN”), suggests that a single 

cluster is activated by each stimulus (akin to a single rule representation in our model) [92]. 

SUSTAIN shares many similarities to the Bayesian nonparametric models described above 

and more empirical work is necessary to adjudicate between their mechanisms for forming 

clustered representations. Importantly, both SUSTAIN and ALCOVE describe a 

bidirectional relationship between attention and representation learning that is influenced by 

prediction errors, in line with the framework we suggest here.

The critical difference between clustering models and the model that we describe is the 

nature of the representation (clusters versus concepts). Because probabilistic programming 

models perform inference over compositions of concepts, they can handle a broader range of 

tasks. Consider the task of learning to tie one’s shoelaces. Probabilistic programming 

models would treat each of the operations that can be applied to a shoelace as a concept, and 

could learn how to tie knots from compositions of these concepts. These compositions can 

be rapidly applied to solve new problems, such as tying a bow on a gift or triple-knotting 

one’s shoelaces before a hike. Categorization tasks may be a special case in which the 

predictions of cluster-based and rule-based models converge. Moreover, these models may 

map onto partially distinct neural systems, with the hippocampus and medial temporal lobe 

cortex supporting learning based on similarity to past exemplars [92,93], and the prefrontal 

cortex supporting learning based on concepts. Recent work showed that multivariate 

hippocampal representations of stimuli are similar to predictions of the SUSTAIN model 

[21]. In category learning, the top-down attention mechanism we propose may also 

influences hippocampal clustering. Indeed, there is elevated prefrontal-hippocampal 

functional connectivity during category learning [21].

The role of the hippocampus and surrounding cortex in representation learning is likely to 

extend beyond the clustering of past experiences. Conjunctive representations of multiple 

features in the hippocampus can support reinforcement learning over configurations of 

features [10,94] and the selection of hypotheses relating to conjunctions of features. Further, 

episodic retrieval of individual past choices and outcomes, as well as previous task rules, has 

a strong influence on decisions [95,96]. Retrieval is both influenced by and influences top-

down attention. As a result, retrieval is likely to interact with the model we propose. For 

example, retrieval drives reinstatement of cortical representations of features [97], which 

could lead to reinforcement learning over features that are not present in the environment. 

Finally, the hippocampus and entorhinal cortex form spatial maps of the environment in the 

service of spatial learning [98]. Recent modeling and empirical work has emphasized a role 

for the hippocampus and entorhinal cortex in forming cognitive maps of tasks and a specific 

function for the hippocampus in signaling that the environment has changed enough to 

necessitate forming a new state representation [39,93,99]. Thus, a pressing question for the 

field is what distinguishes the representations of task structure between the hippocampus and 

prefrontal cortex.
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Concluding Remarks

We have outlined recent findings showing the extent to which reinforcement learning is 

constrained by attention and by the underlying representation of the structure of the 

environment. We propose that attention is a key mechanism that sculpts the sensory 

representations supporting learning. Bayesian cognitive models explain unique aspects of 

behavior in categorization tasks that are very similar to the tasks used to study reinforcement 

learning. An exciting possible unification of these research threads is that abstract 

conceptual knowledge that forms the basis of these cognitive models drives top-down 

attention during learning. Our conceptual model makes several testable predictions. First, 

particle filter or related approximations to Bayesian cognitive models should describe the 

diversity of individual subject behaviors in representation learning tasks [69]. Second, 

application of a rule should be associated with increased sensory cortical responses to the 

constituent features of that rule, and increased reinforcement learning about them. Third, 

values learned via reinforcement learning should influence which rules are selected in rule 

learning tasks.

Manipulations that are known to influence attention and working memory should also 

influence representation learning. For example, interference from a dual task may reduce the 

number of hypotheses about task structure (e.g. rules in a categorization task) that can be 

considered simultaneously. A quantitative prediction of our model is that this would reduce 

the accuracy of rule learning. From a neuroscience perspective, dual tasks degrade the 

quality of representations held in working memory [100], which could cause learners to 

forget rules or implement them more noisily. Another possible consequence of a dual task is 

that attention is biased against complex rules. This could actually improve learning for tasks 

with a simple structure (e.g. tasks where a single feature is relevant for categorization or 

reward), because the dual task prevents the learner from considering complex hypotheses 

that may have otherwise interfered with learning. In addition, features that drive bottom-up 

attentional capture, such as exogenously salient or mnemonically important features, should 

be more likely be incorporated into hypotheses and, as a result, drive top-down attention. 

The impact of these features should depend on their rule-relevance: if salient features are 

relevant to the task rules, they should accelerate representation learning.

Answering these and related questions (see Outstanding Questions Box) will help to 

illuminate how rule representations in prefrontal cortex influence ongoing neural processing 

in the service of adaptive behavior. More broadly, it will help us to understand how humans 

build rich representations that are suited to both their environment and their goals, a question 

central to our understanding of cognition in both health and disease [101].
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Glossary

Action
A response the participant makes, e.g. choosing an option, labeling a stimulus or predicting 

an outcome.

Bayesian non-parametric models
A class of Bayesian cognitive models that group observations into sets of unobservable 

latent causes, or clusters.

Environmental state
A subset of environmental features relevant to the agent’s goal, e.g. the feature red being 

more predictive of reward.

Particle filters
A class of sampling methods for approximating arbitrary probability distributions in a 

sequential manner, by maintaining and updating a finite number of particles (hypotheses).

Perceptual observation
A stimulus, potentially with multiple features.

Probabilistic programming models
A class of Bayesian cognitive models that reason over structured concepts such as rules.

Reinforcement learning
A class of algorithms that learn an optimal behavioral policy, often through learning the 

values of different actions in different states.

Representation learning
The process by which learners arrive at a representation of environmental states.

Reward outcome
Consequence of an action, e.g. a reward or category label.

Reward prediction error
The difference between the reward outcome and what was expected, used as a learning 

signal for updating values of states and actions.

State representation
The agent’s internal representation of the environmental state.
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Highlights

• Recent advances have refined our understanding of reinforcement learning by 

emphasizing roles for attention and for structured knowledge in shaping 

ongoing learning.

• Bayesian cognitive models have made great strides towards describing how 

structured knowledge can be learned, but their computational complexity 

challenges neuroscientific implementation.

• Behavioral and neural evidence suggests that each class of algorithms 

describe unique aspects of human learning.

• We propose an integration of these computational approaches in which 

structured knowledge learned through approximate Bayesian inference acts as 

a source of top-down attention, which shapes the environmental 

representation over which reinforcement learning occurs.
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Outstanding Questions Box

• How do reinforcement learning and cortical representations of structure 

interact to control behavior? Can systematic deviations from Bayesian 

rationality be explained by reinforcement learning? Can we model why 

different tasks bias the arbitration between learning systems?

• Are the predictions of corticostriatal connectionist models of rule learning 

borne out by neural and neuroanatomical data? For example, do anterior 

cortical projections influence the stimulus-response coding profiles of striatal 

neurons targeted by motor cortex? Do thalamocortical projections mediate the 

activation of cortical neurons representing task rules?

• What are the regional differences in task structure learning and representation 

across prefrontal cortex? In particular, what are the different roles for 

orbitofrontal cortex and lateral prefrontal cortex in representation learning?

• How does working memory affect representation learning? Specifically, does 

interference from working memory contents influence hypothesis selection 

and top-down attention? Do multiple hypotheses or rules interfere with one 

another due to working memory constraints? Do individual differences in 

working memory capacity relate to representation learning?

• How do relational, spatial, and episodic knowledge in the hippocampus 

support or compete with reinforcement learning? Under what conditions does 

retrieval interfere with or support representation learning?

• Can a union of Bayesian cognitive models with reinforcement learning 

provide new ideas about education and classroom learning? How can 

attention be directed to facilitate the discovery of a novel concept?

• Can structure learning account for maladaptive behaviors in psychiatric and 

substance abuse disorders?
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Box 1. State Representation Effects on Learning

In addition to learning how to select appropriate actions, humans and animals learn from 

trial and error which features of our environment are relevant for predicting reward. 

Formally, this converts the space of perceptual observations into a state representation 
suitable for the problem at hand.

Imagine for example that on the first trial of a categorization task, you correctly name a 

red square with a vertical stripe a “dax” (Fig. I, adapted from [8]). The expected value 

associated with the action “dax” for the current stimulus, V(“dax”|stimulus), can be 

updated based on the difference between the reward and the initial expected value of that 

action, i.e., the reward prediction error RPE = R − V0(“dax”|stimulus), scaled by a 

learning rate η.

But the update depends on the state representation. For instance, you could either update 

the entire object (Fig. I left)

Vnew(‘‘dax" ∣ red circle with vertical stripe) = Vold(‘‘dax" ∣ red circle with vertical stripe) + η ⋅ RPE

or update individual features (Fig. I right):

Vnew(‘‘dax" ∣ red) = Vold(‘‘dax" ∣ red) + η ⋅ RPE (and equivalently for ‘‘square" and ‘‘vertical")

These different assumptions about the state representation will lead to diverging reward 

expectations. If you next encounter a red circle with a horizontal stripe and you have an 

object-based state representation, you will not expect reward for saying “dax” because 

you have never encountered this stimulus before. If you have a feature-based 

representation, you will expect a reward for saying “dax”, because the same action in 

response to a different red stimulus previously led to reward.
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Box 2. How Selective Attention May Emerge from Structure Learning

When stimuli are multidimensional, the state representation underlying reinforcement 

learning is shaped by selective attention [22]. Total reward expectation can be computed 

as a weighted sum of expectations from each component feature:

V(‘‘dax" ∣ red circle) = ΦcolorV(‘‘dax" ∣ red) + ΦshapeV(‘‘dax" ∣ circle)

where V are reward expectations and Φ are attention weights. But how are the weights 

determined? These weights can be thought of as indexing the allocation of attention to 

each feature. We illustrate how these attention weights can emerge from inferring latent 

structure:

Probabilistic programming models (Fig. 1 top row) construct rules from compositions of 

perceptual features and logical primitives (e.g., “and”, “or”, “not”). Returning to the 

categorization problem from Fig. I reduced to 2 dimensions (color: red or blue, and 

shape: circle or square), say you observe evidence in favor of the rule that “red objects 

are daxes”. Given this rule, you can collapse across the shape dimension and only attend 

to the color of each object (Φcolor = 1, Φshape = 0, Fig. 1 left column, bottom panel). If on 

the other hand you believe that “squares are daxes”, you can ignore color and only attend 

to shape (Φcolor = 0, Φshape = 1, Fig. 1 middle column, bottom panel). Finally, if your rule 

is that “red squares are daxes”, you must be able to distinguish across both dimensions 

(Φcolor = 0.5, Φshape = 0.5, Fig. 1 right column, bottom panel).

Bayesian non-parametric models (Fig. 1 middle row) propose an alternative mechanism 

for structure learning, which is to group observations into clusters, or “latent causes” that 

generate linked observations. When a latent cause is “on”, it tends to emit linked 

observations. For example, if you infer that latent variable y causes both red and “dax”, 

you can ignore shape (Φcolor = 1, Φshape = 0, Fig. 1 left column, bottom panel), since 

only the presence of red is relevant for determining whether y is active and will also 

cause “dax”. If on the other hand you infer that latent variable y causes both square and 

“dax”, you can ignore color (Φcolor = 0, Φshape = 1, Fig. 1 middle column, bottom panel). 

Finally if both red and square are related to “dax” via y, attention should be allocated to 

both color and shape, as both dimensions provide information about the likelihood of y 
being active and also causing “dax” (Φcolor = 0.5, Φshape = 0.5, Fig. 1 right column, 

bottom panel).

Both probabilistic programming models and Bayesian non-parametric models offer 

normative solutions to the problem of learning to represent structure in the environment. 

Understanding whether and how the different representations they require (rules vs. 

clusters) map onto neural circuits may help adjudicate between the two model classes.
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Figure 1: Structure learning guides selective attention.
Rules inferred by probabilistic programming models (top row) or clusters inferred by 

Bayesian non-parametric models (middle row) lead to different perceptual distinctions in 

observation space (bottom row). Left column: if the agent infers that red objects are 

“daxes”, or that red and “dax” cluster together, then she can ignore shape and only attend to 

color when categorizing a stimulus as a “dax” or a “bim”. Middle column: similarly if the 

agent infers that squares are “daxes” (middle left), or that square and “dax” cluster together, 

then she can ignore color and only attend to shape. Right column: finally if the agent infers 

that red squares are “daxes”, or that red, square and “dax” cluster together, then she should 

attend to both color and shape.
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Figure 2: Conceptual model of structure learning.
(a). We propose that 1) hypotheses about task structure are the source of top-down attention 

and 2) attention sculpts the state representation by prioritizing some features of the 

environment for reinforcement learning. Existing models suggest that state values (or 

(state,action) pair values) are learned via reinforcement learning. In turn, learned values 

about states participate in the gating of which hypotheses are considered. Specifically, 

hypotheses that are consistent with the high-value (state, action) pairings are more likely to 

be considered. Finally, prediction errors in response to violations of these hypotheses help to 

update state values. (b) A simple model showing how the interacting systems architecture in 

(a) could be realized in different neural circuits. Yellow area corresponds to the lateral 

prefrontal cortex, blue to the basal ganglia, green to sensory cortex, and red to the 

dopaminergic midbrain. A prefrontal hypothesis that “red and square” is the correct 

categorization rule biases top-down attention to the “red” and “square” features in sensory 

cortex, which in turn increases learning about these features in response to reward prediction 

errors (RPE). In turn, values stored in the striatum influence prefrontal rule selection.
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Figure I: Possible state representations for a prototypical representation learning task.
Perceptual observations varying along 3 dimensions (color: red or blue, shape: circle or 

square, and orientation: horizontal or vertical) can be categorized as “daxes” or “bims”. On 

trial 1, the participant learns from correctly categorizing the red square with a vertical stripe 

as a “dax”. She can represent the stimulus either as an object (left) or a composition of 

features (right). An object-based representation leads to strengthening the association 

between the object and “dax”, while a feature-based representation leads to strengthening 

the association between the component features and “dax”. On trial 2, the participant must 

categorize the red circle with a horizontal stripe. If she has an object-based representation, 

she is indifferent between “dax” and “bim” (and hence might randomly choose “bim”), 

while if she has a feature-based representation, she would be more likely to say “dax” due to 

the previously learned association between red and “dax”. Thicker lines show a stronger 

association between an input-level representation and the output label; active input units, and 

their connection to output units, are shown in teal.
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Table 1.
Studies addressing representation learning

A representative set of studies that have addressed how humans learn mappings from percepts to states from 

trial and error. Shown here are distinctions between studies in the size of the observation space, the number of 

actions available to the subject, and the relationship between stimuli and rewards.

Paper Observation space Action space Reward function

Akaishi et al. 2016 
[9] 4 cues 2-alternative weather prediction 

task

Probabilistic binary outcome contingent on 
different cue combinations; 2 cues more predictive 
than the others

Ballard et al. 2017 
[8] 3 dimensions × 2 features 2-alternative categorization task

Deterministic binary reward contingent on 
correctly categorizing stimulus based on 6 possible 
rules

Choung et al. 2017 
[58] 3 dimensions × 2 features 2-alternative go-nogo task

Different cue combinations lead to deterministic 
positive (+10) or negative (−10) rewards, or to 
probabilistic rewards (+10 or −10)

Duncan et al. 2018 
[10] 4 cues 2-alternative weather prediction 

task

Probabilistic binary outcome; 2 different 
environments: separable (both individual cues and 
combinations are predictive) vs. inseparable (only 
cue combinations are predictive)

Farashahi et al. 
2017 [5] 2 dimensions × 2 features 2-alternative forced-choice task

Probabilistic binary reward; 2 different 
environments: generalizable (one dimension is on 
average more predictive) vs. non-generalizable 
(both dimensions are equally predictive)

Mack et al. 2016 
[21] 3 dimensions × 2 features 2-alternative categorization task

Deterministic binary reward for correctly 
categorizing stimulus based on a diagnostic feature 
rule or a disjunctive rule

Niv et al. 2015 [7] 3 dimensions × 3 features 3-alternative forced-choice task
Probabilistic binary reward with high probability if 
subject selects “target feature”, and low probability 
otherwise
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