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ABSTRACT OF THE DISSERTATION 

 

pH-weighted Molecular 

Magnetic Resonance Imaging in Gliomas 

 

by 

Robert John Harris 

Doctor of Philosophy in Biomedical Physics 

University of California, Los Angeles, 2016 

Professor Benjamin M. Ellingson, Chair 

 

Magnetic resonance imaging is an integral part of medical diagnoses, treatment, and 

evaluation of patients with brain tumors.  While standard anatomical imaging is useful, it 

does not provide information about molecular-level tumor characteristics that may 

spatially and temporally vary throughout the tumor.  As such, there remains a need for 

the development of novel MRI techniques that can be used for evaluation of tumor 

growth and treatment response in patients with glioma undergoing radiochemotherapy.  

Extracellular acidosis is a hallmark of cancer and is intertwined with other common 

characteristics of the tumor microenvironment including hypoxia and angiogenesis.  

Therefore, the central objective of this dissertation was to develop a non-invasive 

imaging technique for identifying regions of acidosis within glioma and surrounding 

tissues using MRI.  The most common types of glioma are highly aggressive and often 

require radiochemotherapy, which can result in variable responses across the patient 
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population.  Information about the acidity characteristics of these gliomas and the 

surrounding tissue may allow us to more accurately select targets for biopsy and radiation 

therapy, identify which patients are responding well to treatment, and predict prognosis. 

 

Chemical exchange saturation transfer (CEST) MRI is a molecular imaging technique 

that generates contrast indirectly from protons on labile functional groups such as amines, 

amides, and hydroxyls.  CEST image contrast is dependent on the exchange rate between 

bulk water protons and these functional groups, which is in turn dependent upon local 

pH.  Because of this, we hypothesized that we could utilize CEST MRI for pH-weighted 

imaging in human tissues.  By developing simulations of the Bloch-McConnell equations 

governing chemical exchange, we have shown that the CEST contrast generated by fast-

exchanging amino acid amine protons increases with decreasing pH within a 

physiologically relevant range (6.0-7.4).  We have also incorporated experimental scan 

parameters into these simulations to more accurately simulate the CEST contrast obtained 

during clinical data acquisition.  Data were acquired in amino acid phantoms at varying 

pH and concentration, verifying our image contrast was dependent on pH.  Our pH-

weighted MRI sequence was also applied in animal models of glioma, providing 

evidence it can be used to generate unique contrast within tumors and can serve as a 

potential biomarker for response to treatment. 

 

Our CEST MRI method was then applied serially in a cohort of glioblastoma patients 

undergoing treatment with standard radiochemotherapy, along with select cases of 

patients undergoing targeted biopsy.  Results showed that tumor acidity characteristics 
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were predictive of progression-free survival in the glioblastoma patient cohort.  Acidity 

of targets selected for biopsy on pH-weighted images was indicative of tumor within 

those biopsy samples.  To improve the imaging time of our sequence, we then upgraded 

the readout to utilize echo-planar imaging (EPI) rather than the standard gradient echo 

method.  This allowed for whole brain coverage and multiple averages within a reduced 

scan time.  The pH-weighted CEST-EPI sequence was applied in healthy volunteers and 

in a cohort of glioma patients prior to biopsy, in order to select targets for biopsy in 

regions of acidic and non-acidic tumor tissue.  A subset of these patients also underwent 

PET imaging using 18F-FDOPA, an amino acid analog, near the time of their their pH-

weighted scan.  18F-FDOPA uptake was shown to correlate quantitatively and 

qualitatively with regions of acidity, although pH-weighted imaging provided unique 

contrast in some cases.  pH-weighted MRI was also acquired in recurrent glioblastoma 

patients before and after the start of treatment with bevacizumab.  Acidity was shown to 

decrease after bevacizumab treatment, and in some cases acidic regions with no apparent 

contrast enhancement were shown to develop contrast enhancement on follow-up images, 

indicating that acidic lesions on pH-weighted MRI may be predictive of further tumor 

growth.  Two additional advanced pH-weighted CEST MRI techniques were also 

implemented.  CEST-EPI with a multi-echo readout was developed and acquired in a 

small cohort of glioma patients.  The short and long echoes can provide sensitivity to 

more and less restricted water molecules, respectively.  Separately, our CEST simulation 

incorporating T1 and T2 maps was used to quantitatively calculate estimates of pH in each 

image voxel for a subset of patients and animal models.  This allows us to correct for T1 

and T2 effects and generate numerical estimates of pH rather than pH-weighted images. 
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Together, these experiments and results present a comprehensive description of pH-

weighted molecular MRI in gliomas.  This technique has the potential to be implemented 

clinically for detection of acidosis in gliomas and other brain pathologies. 
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CHAPTER I 

Background 

 

i. Gliomas 

There are approximately 78,000 new primary brain tumors diagnosed in the United States 

each year, of which 35% are malignant [1].  Brain tumors are typically gliomas, which are 

graded through conventions described by the World Health Organization (WHO).  Grade II 

gliomas are benign, low-grade tumors that typically grow slowly [2].  Grade III gliomas are 

anaplastic and are classified as high-grade, malignant tumors [3].  Grade IV gliomas are the most 

malignant and aggressive type of brain tumor, termed glioblastoma multiforme (GBM) [3].  

GBM is also the most common type of primary brain tumor and carries the worst prognosis 

among brain tumors.  Despite decades of research, the median survival rate of 14 months for 

patients diagnosed with GBM has not changed significantly [4]. 

The standard of care for GBM treatment is surgical resection in conjunction with 

radiotherapy and concurrent temozolomide followed by adjuvant temozolomide [5].  Some 

patients respond to treatment with a reduction in tumor size followed by stability for a year or 

more; some patients will recur quickly following treatment.  This response may depend on 

factors such as the genetic profile or location of the tumor [6].  Often, a patient’s reaction to 

treatment as assessed by imaging will determine whether to continue with therapy or employ 

different therapeutic drugs as a second- or third-line treatment.  Therefore, imaging techniques 

for characterizing tumor aggressiveness and an individual patient’s response to treatment are 

critical for managing patient care. 
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 Extracellular acidosis is a hallmark of cancer.  A number of studies performed on 

different cancer subtypes have provided generally consistent evidence of extracellular acidity 

compared with normal tissues.  As described by Gerweck et al., Pampus et al. measured 

extracellular pH in four human cancer subtypes and found that mean pH was consistently lower 

in tumor compared to matching healthy tissue measurements (6.87 vs. 7.14, glioblastoma; 6.75 

vs 7.10, astrocytoma; 6.92 vs 7.64, uterine cancer; 6.75 vs 7.42, melanoma) [7].  A review by 

Griffiths et al. compiled a number of studies that found an extracellular pH range of 5.6 to 7.5 in 

various human cancers compared to 6.9 to 7.6 in healthy tissues [8].  Measures of extracellular 

pH in pre-clinical models have been consistent with this hypothesis as well.   Helmlinger et al. 

found pH values of 7.03 in a human adenocarcinoma xenograft mouse model compared with 

7.30 in healthy tissue [9], while Gallagher et al. found average pH values of 6.71 in a 

subcutaneous lymphoma mouse model compared with 7.09 in healthy tissue [10].  Cell culture 

experiments have also provided evidence that low pH is strongly correlated with tumor cell 

growth, as seen in Figure 1.  [11] 

 

Figure 1.  The radial growth outwards of in vitro tumor cells compared with the 

extracellular pH (pHe) measured along a particular radial direction from the cell 

culture centroid. Results show that radial tumor growth rate is highest in areas of pHe 

< 7.0.  Adapted from [11]. 
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Although the measured pH values for healthy or tumor tissue can vary depending on cancer 

subtype and experimental method, because of the concordance between results obtained from 

human, pre-clinical, and in vitro studies, the general consensus of a decreased extracellular pH in 

cancerous tissues is relatively uncontroversial.      

Decreased extracellular pH is thought to arise from the downstream effects of local 

hypoxia due to abnormal blood flow and vasculature in the tumor region [12].  This hypoxia 

leads to an increase in glycolysis that in turn upregulates production of lactic acid.  This lack of 

oxygen increases glycolysis and results in accumulation of carboxylic acid and lactic acid in the 

extracellular space [13, 14].  In these acidic conditions, Na+/H+ transport between the 

intracellular and extracellular space is upregulated to maintain a high intracellular pH, resulting 

in a further decrease in extracellular pH.  This acidic environment then essentially creates a 

positive feedback loop leading to further tumor aggressiveness (Figure 2). [15] 

 

Figure 2.  The downstream effects of hypoxia and acidosis create a positive 

feedback loop leading to further acidosis in proliferative tumor regions [15]. 
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This increase in extracellular acidity can be directly linked to the degree of tumor 

aggressiveness.  A decrease in extracellular pH results in decreased immune function [16], 

increased chromosomal rearrangements [17], increased tumor invasion [18], and increased 

angiogenesis through elevated vascular endothelial growth factor (VEGF) [19] and platelet-

derived endothelial growth factor receptor (EGFR) [20].  The decrease in extracellular pH also 

results in resistance to various forms of therapy, including resistance to radiation therapy [21] 

and specific chemotherapies [22].  All of these characteristics account for a complicated and 

abnormal microenvironment in regions of tumor growth, one that is in general characterized by 

acidosis and hypoxia. 

 

ii. Current pH-weighted Imaging Techniques 

Currently, there are no well-established methods for non-invasively obtaining fast pH-

weighted images with high spatial resolution, although several techniques have been developed, 

each with various pitfalls. 

Phosphorus (31P) spectroscopy provides information about energy metabolism in tissue 

and can also be used to measure tissue pH [23].  However, this technique has low sensitivity due 

to the relatively small number of 31P nuclei.  Because of this, most 31P data is acquired using 

large voxels approximately 3x3x3 cm in size for human imaging with long scan times of 

approximately 17 minutes per voxel [24], making it not suited for clinical evaluation of spatially 

heterogeneous or small tumors.  Additionally, 31P spectroscopy is thought to be sensitive to 

intracellular pH rather than extracellular tissue [25], so it may not be sensitive to the extracellular 

acidosis that occurs in regions of tumor. 
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In buffered solutions, bicarbonate dissociates into carbon dioxide to a degree that is 

dependent upon pH.  Therefore, some studies have used the ratio between 13C-labeled 

bicarbonate and carbon dioxide as a marker of pH in tissue [26].  However, due to the low 

natural abundance of 13C, the bicarbonate sample must first undergo hyperpolarization.  

Therefore this requires both expensive external hyperpolarizing equipment and exogenous 

contrast and is also typically a low-resolution technique, allowing for matrix sizes of only 16x16 

in animal models [10].   

Some paramagnetic gadolinium contrast agents have been shown to be sensitive to pH as 

well [27-29].  However, this again requires an exogenous contrast agent that may not be 

commonly clinically available.  As such, development of endogenous imaging techniques 

sensitive to pH with high spatial resolution and clinically feasible scan times fulfills a critical 

need in cancer imaging. 

 

iii. Principles of Magnetic Resonance Imaging 

Magnetic resonance imaging (MRI) is a versatile medical imaging technique that can 

provide qualitative and quantitative information about tissues in the human body.  MRI 

sequences can be tuned to provide information on a variety of tissue properties, including 

anatomical information, diffusion and perfusion characteristics, magnetization transfer effects, 

and many others.  This section will provide an introduction on the principles of MRI and a 

foundation for understanding the physics behind chemical exchange saturation transfer (CEST) 

techniques. 
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The Larmor Frequency 

Protons possess an intrinsic property called spin (S), or quantum angular momentum, that 

has magnitude and direction.  A proton’s spin results in it possessing a small magnetic moment 

(µ), given by the relationship: 

𝝁 = 𝛾𝑺                            (1) 

where γ is the gyromagnetic ratio, a constant with a value of γ/2π = 42.576 MHz/T for hydrogen.   

In the absence of an external magnetic field, hydrogen spins in biological samples are randomly 

oriented and their magnetic moments cancel, resulting in a lack of net magnetization.  However, 

when a strong magnetic field (B0) is applied to a sample of hydrogen protons, the proton spins 

align themselves either parallel or anti-parallel to the direction of the magnetic field.  The 

parallel state has a slightly lower energy state than the anti-parallel state, with the energy 

difference given by: 

∆𝐸 = 𝛾ℏ𝐵)             (2) 

where ℏ is the Planck constant divided by 2π, which has a value of 1.054x10-34 J•s.  Because of 

this, a slightly higher population (~10-4 % for B0 = 3 tesla) of the magnetic moments will align 

themselves in the parallel direction. Due to quantization properties, the individual spins retain a 

longitudinal and transverse component in a frame where the magnetic field is defined as being in 

the z-direction.  However, in a large spin ensemble, the transverse components are randomly 

distributed and cancel, leaving only the longitudinal component.  The net sum of these magnetic 

moment vectors then results in a nonzero net magnetization (M) aligned with the direction of the 

main magnetic field (B0).  On an individual scale, the external magnetic field produces a torque 

on the magnetic moments, causing them to precess around the z-axis with an angular frequency 

known as the Larmor frequency ω, which is given by: 
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𝝎 = −𝛾𝑩                               (3) 

The MRI signal is obtained by measuring the magnetization of these protons after application of 

a series of radiofrequency (RF) pulses and magnetic gradients. 

 

RF Excitation, Magnetic Gradients, and Relaxation 

The signal in MRI is generated as a result of Faraday’s law of induction, which states that 

a changing magnetic field will induce a voltage change in nearby conducting coils.  However, by 

design, the MRI receiver coils detect only transverse signal rather than longitudinal.  Because of 

this, the longitudinal magnetization must first be tipped into the transverse plane before signal 

acquisition (i.e. readout) can occur.  This is accomplished through the use of RF pulses applied 

to the imaging sample, which tip the magnetization away from its equilibrium orientation along 

the z-direction and towards the XY-plane.  After the RF pulse is no longer applied, the 

magnetization will begin to return to its equilibrium state along the z-axis.  The behavior of a 

magnetization vector in these conditions is described by the Bloch equations: 

-./ 0
-0

= 𝛾 𝑀2 𝑡 𝐵4 𝑡 − 𝑀4 𝑡 𝐵2 𝑡 − ./ 0
56

                 (4) 

-.7 0
-0

= 𝛾 𝑀4 𝑡 𝐵8 𝑡 − 𝑀8 𝑡 𝐵4 𝑡 − .7 0
56

                (5) 

-.9 0
-0

= 𝛾 𝑀8 𝑡 𝐵2 𝑡 − 𝑀2 𝑡 𝐵8 𝑡 − (.9 0 ;.<)
5>

                  (6) 

where M(t) is the magnetization at time t, M0 is the equilibrium magnetization in the z-direction, 

and T1 and T2 are time constants describing the rate of recovery to the equilibrium state for the 

longitudinal and transverse magnetization components, respectively.  The T1 time constant is 

dependent upon the rate at which spins leave the higher-energy anti-parallel state and return to 

equilibrium, and the T2 constant is dependent upon the phase coherence of the spins in the XY-
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plane, which are in phase following the RF pulse but immediately begin to dephase afterwards 

[30].  Different tissues possess different T1 and T2 relaxation properties, and the MRI contrast in 

many anatomical imaging applications is based on these properties.  In all cases, T1 > T2.   

In order for MRI to produce an image rather than just a single magnetization 

measurement, spatial encoding is required.  This is accomplished through the use of magnetic 

field gradients, which are applied in addition to the B0 field.  These gradients are much weaker 

than the overall the B0 field.  Clinical scanners typically use B0 fields of 1.5 or 3.0 tesla, while a 

spatial encoding gradient is typically on the order of 10-3 tesla across an imaging volume for 

clinical scanners.  Gradient strengths are typically expressed in terms of millitesla per meter 

(mT/m).  When a gradient (G) is applied along the z-direction of an imaging sample, the strength 

of the total magnetic field at a particular location is then given by 

𝑩(𝒛) = 𝑩𝟎 + 𝑮 ⋅ 𝒛           (7) 

Because the Larmor frequency is dependent upon the strength of the applied magnetic 

field, protons in the imaging sample will have a range of Larmor frequencies corresponding to 

their spatial position within the gradient.  It is this principle that allows for spatial encoding of 

information with MRI.  In addition to gradients along the z-direction, MRI sequences use 

additional gradients along the x- or y-direction for spatial encoding in three dimensions.   

 After an RF pulse, the magnetization vectors within an imaging sample precess at 

different rates depending on their location in the sample, as well as undergoing T1 and T2 decay.  

This changing magnetic field due to the precessing bulk magnetization induces a current in the 

receiver coils of the MRI scanner [31], producing a composite signal from all frequencies 

encoded within the sample.  A Fourier transform of this composite signal produces image data, 

with the time domain being converted to a frequency domain:  
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𝑆 𝜔 = 𝑠 𝑡 𝑒;HI0𝑑𝑡K
;K                    (8) 

where s(t) is the measured signal at time t and S(ω) is the signal in the frequency domain, which 

will correspond with the magnitude of the magnetization precessing at frequency ω.  This 

magnetization will in turn be dependent on the T1 and T2 relaxation times, such that maps of 

image contrast can be produced in which T1 and T2 information is spatially recorded and 

displayed.  Although Eqn. 6 describes a 1-dimensional Fourier transform, typically 2- or 3-

dimensional Fourier transforms are used to produce image data. 

 

K-Space 

Prior to the Fourier transform, the raw MRI data is collected in a spatial frequency 

domain referred to as k-space, which has units of inverse meters [32].  In 2-dimensional MRI, 

each image plane corresponds to one plane of k-space.  K-space is traversed by the application of 

gradients in the x- or y-directions, with the total distance traversed given by 

𝑘8,2 = 𝛾 𝐺8,2(𝑡)
0
) 𝑑𝑡       (9) 

where γ is the gyromagnetic ratio divided by 2π, Gx,y is the magnitude of the gradient applied in 

either the x- or y-direction, and t is the duration of the gradient.  Regions of k-space near the 

center are low frequency components and are representative of the broader structure of the 

imaging target, while regions of k-space far from the center are high frequency components that 

provide the finer spatial resolution in an image.  During MRI acquisition, the RF excitation pulse 

is followed by a series of readout gradients used to traverse k-space while recording complex 

data at a series of specified points within k-space, referred to as the acquisition matrix.  The 

shape of these readout gradients and the number of data points acquired per excitation pulse are 
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dependent on the type of readout, which can vary between MRI sequences depending on the 

application.   

 

iv. Chemical Exchange Saturation Transfer 

The versatility of MRI arises from its ability to generate different forms of image contrast 

by using almost limitless combinations of applied RF pulses and magnetic gradients to read out 

information stored in the spin system as it interacts with its environment.  One such application 

is chemical exchange saturation transfer (CEST).  CEST imaging exploits the chemical exchange 

between bulk water protons within biological tissue and exchangeable protons on other 

molecules such as proteins, chelates, or smaller metabolites.  The CEST effect can be described 

by a two-pool model of a single solute in water (Figure 3).   

 

Although the resonance frequencies of free protons in a particular magnetic field are 

constant (Eqn. 3), when attached to molecules including water or other metabolites, electron 

shielding and quantum interactions from other nuclei can cause alterations in the observed local 

Figure 3.  Two-pool model of chemical exchange of hydrogen protons between bulk 

water (Pool A) and a metabolite (Pool B).  Each pool has properties of equilibrium net 

magnetization (M0), T1 and T2, and a proton resonance frequency (ω). 
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magnetic field near a particular proton and therefore induce slight variations in its resonance 

frequency ω.  Protons on functional groups such as amines (-NH2), amides (-NH), and hydroxyls 

(-OH) possess resonance frequencies which are slightly different from the bulk water resonance 

frequency, which for these purposes is set to 0 Hz in the so-called rotating coordinate frame.  

During CEST, a preparatory RF pulse is applied at a resonance frequency specific to protons on 

a functional group undergoing chemical exchange to saturate its longitudinal magnetization and 

reduce the resulting contribution to the MR signal in the bulk water pool.  The magnetization for 

the bulk water and solute pools can be described by the Bloch equations modified to incorporate 

chemical exchange, also called the Bloch-McConnell equations [33]: 

-𝑴(0)
-0

= 𝑿 ∗ 𝑴(𝑡) − 𝒄                                                (10) 

in which 

𝑴 =

𝑀S8

𝑀T8

𝑀S2

𝑀T2

𝑀S4

𝑀T4

,			𝑿 =

𝐶WS 𝑘T −𝛿𝑎 0 0 0

𝑘S 𝐶WT 0 −𝛿𝑏 0 0

𝛿𝑎 0 𝐶WS 𝑘T −𝜔\ 0

0 𝛿𝑏 𝑘S 𝐶WT 0 −𝜔\
0 0 𝜔\ 0 𝐶\S 𝑘T
0 0 0 𝜔\ 𝑘S 𝐶\T

,			𝒄 =

0

0

0

0

𝑀S4)/𝑇\S
𝑀T4)/𝑇\T

              (11) 

where pool A and pool B are the bulk water protons and solute protons, respectively; Ma0 and 

Mb0 are the equilibrium magnetizations of pool A and B, respectively; kb is the exchange rate of 

protons from pool B to pool A; ka is the exchange rate of protons from pool A to pool B as given 

by (Mb0/Ma0)*kb; ω1 is the RF pulse amplitude as given by ω1 = γB1, where γ is the gyromagnetic 

ratio and B1 is given in µT; δa = (ω-ωa) and δb = (ω-ωb), where ω is the applied RF saturation 

frequency, ωa is the bulk water resonance frequency (0 Hz), and ωb is the labile proton resonance 
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frequency; T1a and T1b are the longitudinal relaxation times of pool A and B, respectively; and 

C1a = (1/T1a)+ka, C2a = (1/T2a)+ka, C1b = (1/T1b)+kb, C2b = (1/T2b)+kb.  

As the longitudinal magnetization of the solute pool is reduced during preparatory RF 

saturation, the saturated solute protons cause a net reduction in the initial magnetization of bulk 

water when these protons undergo chemical exchange.  The bulk water signal is then acquired, 

which is the traditional MR contrast for traditional MR techniques.  The degree of reduction in 

the bulk water signal will be dependent upon the RF amplitude ω1, the time of saturation, the 

equilibrium magnetizations M0a and M0b, and the chemical exchange rate between the two pools.  

This chemical exchange rate is in turn dependent upon the chemical properties of the molecules, 

temperature, and pH [34]. 

 

CEST Data Acquisition 

When acquiring CEST data, a series of images is typically acquired using a set of serial 

off-resonance saturation frequencies swept throughout a range of interest.  These frequencies are 

usually expressed in terms of parts per million (ppm) relative to the Larmor frequency, where the 

bulk water resonance is 0 ppm.  Most endogenous metabolites have protons that resonate within 

a range of approximately -5 to +5 ppm.  The series of images at different saturation frequencies 

is referred to as the “z-spectrum”.  When chemical exchange occurs between bulk water and a 

metabolite, attenuation will appear at the resonance frequency of the metabolite protons as the 

irradiation frequency is swept across the z-spectrum, as shown in Figure 4. 



 13 

 

Thus, CEST imaging produces negative contrast in the presence of chemical exchange.  A large 

attenuation peak around 0 ppm arises because at this frequency the bulk water itself is saturated 

before readout, so the available signal will be very small. 

 

 

 

 

Figure 4.  A CEST z-spectrum for a metabolite undergoing chemical exchange with 

bulk water.  Each data point in the z-spectrum represents the image intensity in an 

image acquired using one off-resonance saturation frequency.  A peak appears at the 

resonance frequency of the labile metabolite protons. 
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Calculation of Image Contrast 

To normalize the z-spectrum, a CEST scan called the S0 image is often also acquired 

without the application of an RF saturation pulse.  The magnetization transfer ratio (MTR) at a 

particular frequency in the z-spectrum can be defined as  

𝑀𝑇𝑅(𝜔) = `(I)
`<

          (12) 

where S(ω) is the signal intensity at frequency ω and S0 is the signal intensity of the S0 image.  

The MTR will range between 0 and 1 depending on the degree of bulk water saturation.  Because 

positive image contrast is typically easier to visualize than negative image contrast, and also to 

remove the influence of T1 and T2 characteristics from the image readout and leave only the 

effects of chemical exchange, CEST data are typically examined in terms of the asymmetry 

around the water peak, given by MTRasym: 

𝑀𝑇𝑅Sa2b = 𝑀𝑇𝑅 −𝜔 −𝑀𝑇𝑅 𝜔 = ` ;I ;`(I)
`<

             (13) 

where -ω is the frequency on the opposite side of the bulk water frequency from ω.  This allows 

us to calculate positive image contrast in the presence of CEST effects, as shown in Figure 5. 

 

Figure 5.  A) Z-spectra of glutamine in water, with attenuation at 3.0 ppm produced 

by the CEST effect.  B) Asymmetry of the data in (A) as calculated by Eqn. 13. 
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v. Hypothesis 

As previously described, the CEST effect is dependent upon the exchange rate between 

labile protons and bulk water protons, which is in turn dependent upon pH.  Previous studies 

have shown that for most labile groups, the CEST effect decreases with decreasing pH.  

However, for amine protons that exchange rapidly (~5000 Hz) and have a resonance frequency 

of 3.0 ppm, the CEST effect increases with decreasing pH (Figure 6). [35] 

 

 This property arises due to the fact that in order for a CEST peak to be resolved, the 

chemical exchange rate between the bulk water and labile protons must be either slower than or 

approximately equal to the difference in resonance frequencies between those protons [36].  If 

Figure 6.  A comparison of the slope between CEST asymmetry and pH as a 

function of saturation frequency, as measured in a sample of bovine serum albumin 

(BSA) [35]. An inverse relationship between pH and CEST contrast is seen only for 

amine protons that resonate at a frequency of approximately 3.0 ppm; the slope is 

positive for all other offset frequencies.   
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the exchange rate becomes greater than this difference in resonance frequencies, blurring occurs 

between the two peaks and the CEST signal will decrease.  An increase in pH causes this 

increase in the exchange rate.  For the majority of endogenous labile protons, their exchange rate 

is low enough that they will remain within the slow to intermediate domain at physiological pH 

(6.0-7.4), meaning that increases in pH will result in an increase in CEST contrast.  Fast-

exchanging amine protons such as those found on the backbones of all amino acids, however, 

move into the fast domain within this physiologically relevant pH range, leading to a reduction in 

CEST contrast with increasing pH.  We therefore hypothesized that CEST targeted to the amino 

acid backbone amine protons can serve as a biomarker for pH, making this imaging technique 

sensitive to acidic tissue and proliferating tumor. 

 

vi. Overview of Current CEST Applications 

CEST imaging has been applied to target a number of molecules in various settings.  

Hydroxyl groups have protons with resonance frequencies of approximately 1.0 ppm; although 

its proximity to the bulk water peak leads to spillover saturation and difficulty obtaining accurate 

quantitative measurements, many studies have reported promising results targeting hydroxyl 

groups.  Haris et. al. used hydroxyl CEST to measure changes in myo-inositol concentration in a 

mouse model of Alzheimer’s disease [37].  Some studies have targeted the hydroxyl groups on 

glucose to measure metabolism in tumors, a technique termed glucoCEST [38, 39].  The 

hydroxyl groups of glycoaminoglycans in cartilage and breast tissue have also been imaged 

using a technique terms gagCEST [40, 41].  A number of studies have also explored CEST 

imaging of creatine amine protons, primarily to measure concentration.  These protons resonate 

around 2.0 ppm and exchange more slowly than the fast-exchanging amino acid amine protons at 
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3.0 ppm, and have been targeted in phantoms, gliomas, and muscle tissue [42-45].  The creatine 

CEST signal has shown a dependence on pH, but due to the slower exchange regime, the CEST 

signal increases rather than decreases with increasing pH [46].  This may lead to competing 

effects of decreased creatine CEST signal from lower pH and increased CEST signal from 

protein side chains and metabolites that may have elevated concentrations in tumor. 

Some recent studies have implemented a pH-sensitive CEST technique using iopromide 

or iopamidol, two exogenous contrast agents typically used in computed tomography (CT) 

imaging.  Both contrast agents possess two amide proton groups with resonance frequencies at 

4.2 and 5.6 ppm, which result in corresponding peaks in the CEST spectra that are modulated 

with changing pH.  Chen et al. showed that the ratio between these two peaks in the presence of 

iopromide can be used as a measure of pH in phantoms and an animal tumor model [47], and 

other groups have shown that iopamidol can provide similar contrast in phantoms and an animal 

tumor model as well [48, 49].  Iobitridol, an x-ray contrast agent, possesses a single amide group 

at 5.6 ppm and has been used as a pH-sensitive CEST contrast agent by Longo et al. [50].  

However, all of these techniques require injection of an exogenous contrast agent, which is not 

preferable if endogenous pH-sensitive imaging can be achieved.  These contrast agents also do 

not cross the blood brain barrier, and thus would be unable to provide information about local 

tissue characteristics except in areas of blood brain barrier breakdown. 

Paramagnetic compounds have been explored that can be used to enhance imaging of 

gliomas using CEST, a technique called paraCEST [51, 52].  The majority of these paraCEST 

contrast agents are compounds bound to lanthanide ions such as Yb3+, Dy3+, Tb3+, or Tm3+ [53].  

Although gadolinium (Gd3+) is also a lanthanide ion, it causes significant alterations in the 

relaxation properties of nearby protons; although this can be beneficial for traditional anatomical 
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imaging, it is not desired in the context of paraCEST imaging and is not typically used.  The 

primary advantage of paraCEST techniques is that the contrast agent causes a shift in nearby 

proton resonance frequencies to spectral regions far away (~kHz) from the water peak, therefore 

offering advantages in contrast-to-noise ratio and RF labeling efficiency.  In principle, this can 

remove the need for asymmetry analysis of the z-spectrum as well [54].  ParaCEST contrast 

agents sensitive to pH have been applied in animal tumor models [55, 56].  However, these 

techniques once again require use of an exogenous contrast agent.  Additionally, unlike the off-

label use of CT contrast agents, these paramagnetic contrast agents have typically not been 

approved for safety in human subjects, limiting research to phantom and animal models. 

 In addition to the techniques described above, the majority of CEST studies performed to 

date have focused on a specific application of CEST called amide proton transfer (APT) imaging.  

First described in 2003 [57], APT targets the protons on the backbones of proteins, which 

resonate at a frequency of 3.5 ppm away from bulk water.  These protons have a slow exchange 

rate (~30 Hz) compared to their chemical shift and will therefore be in the slow regime at all 

physiological pH values.  APT has been applied in glioma [58-60], acute stroke [61, 62], breast 

tissue [63, 64], Alzheimer’s disease [65], neck tissues [66], and other settings.  Some previous 

studies have suggested the use of APT for pH-weighted imaging [67], measuring the decrease in 

APT signal with decreasing pH seen at these slow exchange rates.  However, other studies have 

suggested that elevated protein content in regions of tumor causes an increase in APT signal in 

those regions [68].  In tumor regions likely to be both acidic and with elevated protein 

concentration, these APT effects would act to counteract each other.  Conversely, using a 

biomarker such as amino acid amine CEST in which the signal increases with decreasing pH, the 

effects would be additive in regions of tumor. 
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When performing CEST experiments, Nuclear Overhauser enhancement (NOE) effects 

can result from magnetization transfer between labile and bulk water protons.  This effect does 

not arise due to physical exchange of protons, but rather from cross-relaxation of the proton 

dipoles [69].  NOE effects have been shown to cause attenuation in the z-spectra downfield from 

the bulk water frequency, opposite from the region of typical amine and amide effects.  When 

calculating the asymmetry around the bulk water frequency, this can have the effect of reducing 

the asymmetry caused by traditional CEST effects from endogenous molecules.  Fortunately, 

NOE effects are mainly prevalent at higher field strengths (≥7T), and we do not expect them to 

become a significant confounding factor at our clinical field strength of 3T.  However, in some 

cases, NOE effects may be targeted as a source of image contrast.  At high field strength (≥7T) 

and low saturation power (<1.0 µT), studies have shown saturation transfer is predominantly 

mediated by NOE effects [35].  These effects are attributed to aliphatic and olefinic protons in 

mobile proteins and peptides in tissue [70], and have been shown to decrease in tumor [71].  This 

effect is thought to be due to abnormal properties of protein folding and water content [72, 73], 

although it is not yet fully understood.  Because the majority of clinical MRI scanners have field 

strengths of 3T or below, it currently remains difficult to widely implement NOE-based imaging, 

although NOE contrast may serve as an important molecular biomarker in gliomas imaged at 7T 

or above. 

A few previous studies have explored the targeting of fast-exchanging amine protons 

during CEST experiments.  Jin et al. demonstrated that amine protons at 3.0 ppm are optimally 

saturated using high-power, short-duration saturation in phantoms, and saw that CEST targeted 

to this group could identify regions of ischemia in a rat model [74].  Kogan et al. have performed 

CEST imaging targeted to glutamate protons at 3.0 ppm, using this as a measure of glutamate 
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concentration in the human spinal cord [75].  Scheidegger et al. also measured amine CEST 

contrast in eight glioma patients using high-power, short-duration saturation and found 

heterogeneous hyperintensity in tumor regions, although they used an amine resonance 

frequency of 2.5 rather than 3.0 ppm for simulations and a targeted frequency of 2.0 ppm rather 

than 3.0 ppm during imaging [76].  Although these studies demonstrate that amine CEST is 

feasible, a more thorough investigation of its utility in gliomas is needed. 
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CHAPTER II 

Simulation of Amine CEST Contrast for pH-weighted Imaging 

 

It is often instructive to simulate expected results when possible prior to obtaining data 

experimentally to validate the experimental concept and to estimate the optimal values of 

experimental parameters.  In the case of MR experiments, the dynamic values of magnetization 

vectors can be simulated as they are perturbed by RF pulses, magnetic gradients, and relaxation 

to estimate the resulting image contrast [77-79].  In this chapter, we implement a simulation of 

magnetization vector evolution during a CEST experiment as described by the Bloch-McConnell 

equations, specifically in the context of pH-weighted imaging.   

 

i. Simulation Background 

In a CEST experiment, the contrast measured will depend on the characteristics of the 

off-resonance RF irradiation pulse, with fast-exchanging amine protons typically requiring 

pulses of high amplitude to effectively saturate their magnetization [74, 80].  In addition to the 

amplitude and length of the irradiation pulse, the CEST contrast will also be dependent upon the 

shape or envelope of the pulse. Although some studies have effectively modeled CEST contrast 

under RF irradiation [33, 81, 82], these models typically assume a hard RF pulse with a fixed 

pulse length and amplitude, which may not be the most effective method of saturation and may 

provide quite different contrast compared with more commonly used RF pulse shapes including 

Gaussian or Sinc pulses. Additionally, these simulations often do not address factors specific to 

clinical implementation such as differences in repetition time (TR) that may result in incomplete 



 22 

longitudinal magnetization recovery between image acquisitions.  As such, development of a 

more complete model of experimental CEST contrast is warranted.   

In the current study we implement an analytical solution for CEST contrast using a two-

pool model of bulk water and fast-exchanging amine protons, with modifications to this 

simulation to account for various RF irradiation pulse characteristics and clinical imaging factors 

specific to a recently developed CEST echo planar imaging (EPI) sequence for fast clinical pH-

weighted imaging. We then modulate properties of the RF irradiation pulse including pulse 

shape, amplitude, and pulse train length, as well as clinical acquisition parameters and verify our 

simulations using CEST-EPI applied to physical phantoms containing amino acids at known pH. 

 

ii. Magnetization Evolution Theory 

The magnetization of bulk water protons undergoing two-pool chemical exchange with 

labile proton groups is described previously by Equations 10 and 11.  Eqn. 10 can be solved 

analytically to yield  

𝑴(𝑡) = 𝑒𝑿0 ⋅ 𝑴𝟎 𝑿/𝒄 − 𝑿/𝒄                                      (14) 

where 𝑀S4 𝑡\  represents the longitudinal magnetization of bulk water available for subsequent 

readout after CEST effects (Figure 7A). Assuming the spoiler duration (t2 – t1) and water 

excitation pulse duration (t3 – t2) are negligible, then 𝑀S4 𝑡\ = 𝑀S4 𝑡c 	reflects the available 

longitudinal magnetization for subsequent readout. 

Equations 10-14 have previously been used to model CEST effects under various RF 

pulse parameters [83, 84]; however, these models often use a single value of ω1, which describes 

a hard RF pulse and does not represent more commonly used RF pulses including Gaussian or 

Sinc pulses. To overcome these challenges we first digitized the pulse shape used in our imaging 
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experiments, then modeled these complex RF pulses as the sum of multiple short rectangular 

pulses. 

Additionally, implementation of CEST imaging in a clinical environment often requires 

acquisition of multiple slices and offset frequencies combined with a short TR for reduced scan 

time, which can reduce the available longitudinal magnetization within the water pool. Also, the 

use of non-selective saturation of the metabolite pool combined with a short TR may result in 

steady-state saturation after several pulses, which can change the amount of available CEST 

contrast. Therefore, we simulated the relaxation that occurs in both pools during image 

acquisition, prior to the next off-resonance saturation pulse train, in order to accurately estimate 

the longitudinal magnetization available for subsequent image acquisition.  This relaxation will 

be described by the Bloch-McConnell equations under the condition B1 = 0 µT, which for the 

longitudinal magnetization simplifies to: 

𝑀S4 𝑡d = 𝑀S4) − [𝑀S4) − 𝑀S4 𝑡\ ] ∗ 𝑒
;ghig>j>k                                (15) 

𝑀T4 𝑡d = 𝑀T4) − [𝑀T4) − 𝑀T4 𝑡\ ] ∗ 𝑒
;ghig>j>l                                (16) 

where Maz(t3) is the longitudinal magnetization of water protons and Mbz(t3) is the longitudinal 

magnetization of metabolite protons following completion of the current saturation pulse 

(assuming spoiling and excitation duration are negligible, or t3 = t1); Maz(t5) and  Mbz(t5) are the 

longitudinal magnetization for the water and metabolite protons available just prior to the next 

off-resonance RF saturation pulse train; t5 – t1 is the time between the end of water excitation and 

subsequent off-resonance RF saturation; and T1a and T1b are the longitudinal relaxation times for 

the water and metabolite protons, respectively.  CEST sequences often utilize spoiling gradients 

to destroy remaining transverse magnetization between off-resonance RF saturation and 

acquisition of the bulk water signal (i.e. from t1 to t2). Therefore, to account for the effects of 
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spoiling gradients, transverse magnetization components were set to zero following each 

saturation pulse. 

Lastly, in order to model the effects of pH on the CEST signal, the chemical exchange 

rate between protons on bulk water and metabolites must be accounted for. The chemical 

exchange between amino acid amine protons and protons in water can be characterized as a base-

catalyzed process, governed by the equation: 

𝑘T = 𝑘) + 𝑘TSam ∗ 10;(\o;pq)                                      (17) 

where k0 is the default exchange rate, kbase is the base-catalyzed rate constant, and kb is the 

exchange rate of protons from the metabolite proton pool to the water pool [85].  Although 

CEST contrast can be simulated as a function of exchange rate, we do not know a priori the 

relationship between pH and the exchange rate for amino acid amines in particular; knowledge of 

this relationship is necessary to perform simulations of CEST contrast as a function of pH and 

will be addressed using physical phantoms as described below. 
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Figure 7. A) Pulse sequence diagram of a CEST-EPI sequence through one repetition. 

t0 represents the start of the saturation pulse train, which ends at t1.  Spoiling gradients 

are played between t1 and t2.  The spectral-spatial water-only excitation RF pulse is 

applied between t2 and t3.  Between t3 and t4, EPI readout takes place.  The time 

between t4 and t5 represents the time between the completion of readout and the start 

of the next repetition, which increases with TR.  t5 is equivalent to t0 for the next 

repetition.  B) Simulated longitudinal bulk water magnetization (Maz) at 3.0 ppm 

during CEST-EPI acquisition in a sample of glutamine in water at pH=6.0.  Scan 

parameters are TR = 380 ms, slices = 25, pulse length = 100 ms, pulse train length = 3 

pulses, deadtime = 10 ms.  Maz is set to zero by the excitation pulse, and competing 

effects of RF saturation, chemical exchange, and relaxation influence its return to 

equilibrium.  When saturation is applied, attenuation caused by the off-resonance RF 

saturation pulse train can be seen during recovery (B1=6 µT).  The magnetization time 

xxu 
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ii. Variation of Model Parameters 

Modeling RF Saturation 

Gaussian RF pulses were implemented in the Bloch-McConnell equations by dividing a 

truncated Gaussian waveform of a given duration (standard deviation approximately 20% of total 

duration, truncated at approximately 2.5 standard deviations) into a series of 101 short block 

pulses and applying these piecewise block pulses consecutively into the simulation.  A Sinc3 

pulse (truncated 3-lobed Sinc pulse) and rectangular (hard) RF pulse of constant amplitude were 

implemented using the same approach.  RF saturation pulse trains consisted of a number of these 

pulses applied consecutively, with a “deadtime” of 10 ms between pulses that is often necessary 

due to hardware limitations of the RF power amplifier. 

 

Modeling Longitudinal Relaxation After Water Excitation to Estimate Available Longitudinal 

Magnetization for Subsequent Acquisitions 

For the CEST-EPI sequence (Figure 7), one repetition consists of a non-selective RF off-

resonance saturation pulse train followed by readout of a single image slice.  Because the RF 

pulse train is non-selective, this saturation was applied during each repetition in our simulation.  

To simulate the relaxation that occurs in the water pool during image acquisition (free-

precession) and prior to the next off-resonance saturation pulse train, Eqns. 15 and 16 were 

course is dependent on the applied saturation pulse shape (Gaussian, Sinc3, Rect).  

The measurement of S0 is given by the recovery of longitudinal magnetization in the 

absence of saturation (B1=0 µT).  The influence of discrete Gaussian and Sinc3 pulses 

can be seen reflected in a corresponding attenuation of Maz, while the rectangular 

pulses result in a more complicated perturbation of Maz (red box).   
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applied between saturation pulse trains with t5 – t1 = 60 ms (using an echo time (TE) = 27 ms).  

Eqns. 15 and 16 were also applied during the short deadtime periods (10 ms) between saturation 

pulses in the pulse train. 

 

Complete Simulation 

Because the bulk water longitudinal magnetization in a particular slice is set 

approximately equal to zero during readout by the 90° spectral-spatial water only excitation 

pulse (Figure 7A), Maz0 was set equal to zero at the start of each simulation.  The amount of 

longitudinal magnetization then available in that slice at the next readout is dependent upon the 

properties of saturation and recovery that occur during the intervening period.  Unless stated 

otherwise, we simulated 25 slices (i.e. 25 repetitions between subsequent 90° excitation pulses) 

acquired using the minimum TR.  This number of slices is appropriate for achieving full brain 

coverage (~100 mm) with a reasonable slice thickness (4 mm).  Although clinical sequences can 

acquire slices either sequentially or interleaved, the slice order does not affect simulated results.  

The minimum TR is used by default to minimize the total scan time, which is often desired 

clinically.  An example of the longitudinal bulk water magnetization evolution between one 

excitation pulse and the next using a 25 slice acquisition is shown in Fig. 1B, with a saturation 

pulse train consisting of three pulses of amplitude B1 = 6 µT implemented using either a 

Gaussian, Sinc3, or rectangular waveform.  This saturation pulse amplitude was chosen for 

reasons discussed below.  The longitudinal bulk water magnetization evolution using a saturation 

pulse amplitude of B1 = 0 µT (S0 scan) is also shown in Fig. 1B. 

To correct for S0 as described in Eqns. 4 and 5, each simulation was followed by 

application of an identical simulation with B1 = 0 µT.  The longitudinal magnetization at readout 
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was taken as the value of S0, and MTR or MTRasym were calculated accordingly.  Although 

longitudinal magnetization decay occurs during readout, this decay affects both the z-spectra and 

S0 and therefore cancels out during calculation of MTR or MTRasym. 

 

Calculation of Exchange Rate Constants 

To determine the constants k0 and kbase for amino acid amines, a phantom of twelve 

solutions of 50 mM glutamine dissolved in water at varying pH (5.4 to 7.6 in units of 0.2) was 

created.  Previous studies have shown that amine CEST contrast can be generated using RF 

pulses of short duration and high amplitude [74, 83, 84].  The maximum Gaussian RF amplitude 

that can be repeatedly achieved on clinical scanners within hardware limitations was empirically 

determined to be approximately 6 µT, with Gaussian pulses being the default saturation pulse 

shape for magnetization transfer applications.  This saturation pulse amplitude was calculated via 

the relationship between the integral of the pulse waveform and the total saturation pulse flip 

angle, which is the input used by the scanner software.  CEST-EPI data were acquired for this 

phantom on a Siemens 3T Prisma system using a saturation pulse train consisting of 3x100 ms 

Gaussian pulses of amplitude B1 = 6 µT (TR=380 ms), with 51 spectral points acquired between 

-5.0 and 5.0 ppm.  Glutamine samples were split into two groups of six, as our phantom held a 

maximum of six samples (Figure 8A).  MTRasym at 3.0 ppm was calculated for the solutions of 

different pH. 

A nonlinear least-squares model (lsqnonlin, Matlab) was used to estimate k0 and kbase as 

variables using the simulation equations applied to phantom measurements.  For the simulation, 

T1 and T2 of bulk water (T1a and T2a) were estimated as 3.375 s [86] and 2.500 s [87], 

respectively.  The T1 and T2 of the amine pool (T1b and T2b) were estimated as 0.2 s and 0.1 s, 
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respectively, based on estimates from the literature [33, 88-90].  After fitting, the resulting values 

of k0 and kbase were then used to calculate the amine exchange rate kb from pH for a specific pH.  

To verify the repeatability of k0 and kbase measurements and the accuracy of resulting 

simulations, the same pH phantom was scanned using a similar CEST-EPI sequence, but 

replacing the Gaussian saturation pulses with Sinc3 pulses.  The previously measured values of 

k0 and kbase were used to generate the expected z-spectrum during application of Sinc3 pulses and 

the respective acquisition parameters. Pearson’s correlation coefficient was used to assess the 

association between the simulated and measured values of MTRasym. 

 

Comparison of Simulated and Experimental Z-Spectra 

The fidelity of the simulations was tested against phantom data for Gaussian, Sinc3 and 

rectangular pulses. Both simulations and experimental acquisitions used a saturation pulse train 

of 3x100 ms pulses with amplitude B1 = 4 µT for Gaussian, Sinc3 and rectangular pulse shapes 

and a TR=380 ms applied to a phantom containing 50 mM glutamine at a pH of 6.0. This lower 

saturation pulse amplitude was used to compare pulse shapes because rectangular saturation 

pulses with amplitude B1 = 6 µT could not be repeatedly applied within the limits of the RF 

power amplifier. The simulated and experimental z-spectra were directly compared for each 

pulse type to verify the correlation had an approximate slope of unity.   

 

Effects of Saturation Pulse Shape on Z-spectra in Tissues 

Biopsies of human cortex have found the concentration of amino acids in brain tissue to 

be approximately 20-25 mM [91].  In addition to the standard proteinogenic amino acids, many 

amino acid derivative metabolites including norepinephrine, 5-hydroxytryptophan, levodopa, and 
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other neurotransmitters possess an amine group that will contribute to the signal at 3.0 ppm as 

well.  Proteins such as bovine serum albumin (BSA) have also shown characteristics of a fast-

exchanging amine component at 3.0 ppm [35], likely from common amine groups on exposed 

protein side chains.  Thus, a total amine concentration of 50 mM was assumed in neural tissues 

and used for simulation purposes in normal-appearing white matter (NAWM) (T1a = 1.22 s, T2a = 

0.107 s) [92, 93], tumor tissue (T1a = 1.37 s, T2a = 0.170 s) [93, 94] and cerebrospinal fluid (CSF) 

(T1a = 3.375 s, T2a = 2.500 s, similar to fluid phantoms).  A T1b of 0.2 s and T2b of 0.1 s were 

again used for the amine pool. To demonstrate the effects of saturation pulse shape on the CEST 

effect in tissue, we first simulated application of a Gaussian, Sinc3, and rectangular pulse train all 

consisting of 3x100 ms pulses of amplitude 6 µT (TR=380 ms) at pH=6.0.  MTR at spectral 

points between -5.0 and +5.0 ppm were calculated to obtain simulated z-spectra in these tissues. 

 

Effects of Saturation Pulse Discretization on Z-spectra 

A sufficient number of discretized data points describing the Gaussian or Sinc3 pulses 

must be used to accurately simulate the pulse shape.  To test the effect of changing the pulse bin 

size, we simulated application of our clinical scan parameters on a sample of 50 mM glutamine 

in water at pH=6.0 using a saturation pulse train of 3x100 ms Gaussian pulses at amplitude 6 µT 

(TR=380 ms) and a bin size of 25, 50, 75, 101, 151, or 301.  MTR at spectral points between -5.0 

and +5.0 ppm were calculated. 

 

Comparison of Saturation Pulse Lengths  

Clinical scanners often have limitations on the length of the RF pulse that can be 

delivered.  The maximum pulse length empirically achievable on our scanners is approximately 
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100 ms, in line with other studies [95].  However, it remains unclear whether pulse trains 

consisting of higher numbers of short pulses, such as those suggested in some studies [63], is 

preferable to a lower number of pulses with longer saturation duration.  To determine the 

dependence of MTRasym at 3.0 ppm on pH for different saturation pulse durations for NAWM, 

glioma and CSF, RF saturation pulses with a total saturation of approximately 300 ms per 

repetition were examined under four scenarios: A) 12x25 ms pulses; B) 6x50 ms pulses; C) 

3x100 ms pulses; and D) 1x300 ms pulse. A deadtime of 10 ms was used between all pulses. 

Because the additional deadtimes between shorter saturation pulses will lengthen the total pulse 

train time, t5-t1 was adjusted to keep an identical TR=470 ms and equivalent saturation time 

integral between simulations (t5-t1 = 60, 120, 150, and 170 ms, respectively).  

 

Effects of Repetition Time and Pulse Train Length 

Next, the dependence of MTRasym at 3.0ppm on pH was evaluated for different TR using 

a constant saturation pulse train length to understand the effects of increasing longitudinal 

relaxation time between saturation pulse trains for NAWM, glioma and CSF. The minimum TR 

achievable on a 3T Siemens Prisma for a pulse train of 3x100 ms Gaussian pulses is 380 ms (t1-t0 

= 320 ms, t5-t1 = 60 ms).  The TR was varied between 380, 500, 1000, and 2000 ms while 

holding the pulse train length and all other parameters constant.  The effect of the specific 

number of 100 ms pulses used in the pulse train was also examined for the minimum TR 

available. Pulse train lengths of 1, 2, 3, 5, and 25 pulses were used with minimum TRs of 160, 

270, 380, 600, and 2580 ms, respectively.  
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Effects of Saturation Pulse Amplitude and Scanner Field Strength 

The dependence of MTRasym at 3.0ppm on pH was then tested for various B1 pulse 

amplitudes. A saturation pulse train consisting of 3x100 ms Gaussian pulses of amplitudes B1 = 

2, 4, 6, and 8 µT were used with TR=380 ms. Additionally, the dependence of MTRasym at 

3.0ppm on pH was also explored for various B0 field strengths including 1.5, 3.0, 7.0, 9.4, and 

11.0 T, again using a saturation pulse train of 3x100 ms Gaussian pulses of B1 = 6 µT and 

TR=380 ms.  

 

Effects of Proton Relaxation Times 

The influence of relaxation rates for both bulk water and the labile proton pool on 

MTRasym at 3.0 ppm for various pH were then examined.  NAWM relaxation rates were used as 

reference values.  T1a was varied between 0.5 and 3.0 s, T2a was varied between 0.05 and 0.3 s, 

T1b was varied between 0.001 and 1.0 s, and T2b was varied between 0.0001 and 0.1 s.  A 

saturation pulse train of 3x100 ms Gaussian pulses of amplitude B1 = 6 µT and TR=380 ms were 

used for simulation purposes. 

 

Effects of Amine Concentration 

 Lastly, the dependence of MTRasym at 3.0ppm on pH was then tested for varying amine 

concentrations.  The amine concentration was varied between 5, 25, 50, 100, and 200 mM, using 

a saturation pulse train of 3x100 ms Gaussian pulses of amplitude B1 = 6 µT and TR=380 ms. 
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iv. Simulation and Phantom Results 

Calculation of Exchange Rate Constants 

We obtained k0 = 75.9 Hz, kbase = 5.64 Hz as the optimal solution to Eq. 8 by fitting 

phantom data acquired using Gaussian saturation pulses (Figures 8A&B, R2 = 0.985).  These 

values were then used to calculate the amine exchange rate kb from pH for the remainder of these 

simulations.  After using those parameters to implement a simulation using Sinc3 pulses, the 

resulting simulated data matched well to experimental Sinc3 pulse data (Figures 8C&D; R2 = 

0.976).   

 

Figure 8: A) Simulation fit to experimental phantom (50 mM glutamine at varying pH) data 

using a Gaussian saturation pulse and CEST-EPI. B) Correlation between simulation fit to 

experimental phantom data using a Gaussian saturation pulse. C) Simulation using a Sinc3 
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Comparison of Simulated and Experimental Z-Spectra 

The simulated estimates of the z-spectrum matched well with experimental data for 

Gaussian, Sinc3 and rectangular pulses at pH = 6.0 (Figures 9A-C).  Interestingly, rectangular 

saturation pulses showed oscillations in the z-spectra for both simulations and experimental data, 

along with increased overall attenuation over all frequencies compared with Gaussian and Sinc3 

pulses (Figure 9C).  Experimental values of MTRasym closely resembled the simulated data as 

well (Figures 9D-F), with Gaussian pulses providing slightly higher MTRasym at 3.0 ppm than 

Sinc3 pulses in both simulated and experimental data.  Direct comparisons between simulated 

and experimental spectral points are shown in Figures 9G-I.  Linear fitting of these data points 

indicated that the slopes were only 1%, 1%, and 6% away from unity for the Gaussian, Sinc3, 

and rectangular pulse trains, respectively. 

saturation pulse and k-values estimated from the Gaussian pulse compared with 

experimental phantom data using Sinc3 saturation and CEST-EPI. D) Correlation between 

simulation fit to experimental phantom data using a Sinc3 saturation pulse. 
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Effects of Saturation Pulse Shape on Z-spectra in Tissues 

In NAWM and tumor tissue, Gaussian and Sinc3 pulses again produced less overall 

attenuation across all frequencies than rectangular pulses (Figures 10A&B).  Z-spectra in 

NAWM and tumor were overall more attenuated than in CSF z-spectra (Figure 10C).  Gaussian 

Figure 9:  Simulated and experimental z-spectra for a water phantom of 50 mM 

glutamine at pH=6.0 using a CEST-EPI sequence with (A) Gaussian, (B) Sinc3, and 

(C) rectangular RF pulses. (D), (E) and (F) show MTRasym for the data shown in (A), 

(B) and (C), respectively.  (G), (H), and (I) show a comparison of the simulated and 

experimental spectral points shown in (A), (B), and (C), respectively. 
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and Sinc3 pulses also had peaks more specific to the amine frequency of 3.0 ppm than the 

rectangular pulse in NAWM and tumor (Figures 10D&E). 

 

 

Effects of Saturation Pulse Discretization on Z-spectra 

We aimed to determine the number of bins required to accurately simulate an arbitrary 

pulse shape such as a Gaussian pulse.  Results showed artifacts that appeared in the z-spectra 

without a sufficiently high number of bins, as seen in Figure 11.   

Figure 10:  Z-spectra for a two-pool amine model in (A) NAWM, (B) tumor and (C) CSF 

for different saturation pulse shapes.  (D), (E) and (F) show MTRasym for the data shown in 

(A), (B) and (C), respectively.  Gaussian and Sinc3 pulses appear to produce more contrast 

specific to 3.0 ppm than rectangular pulses. 

 



 37 

 

Empirically, approximately 75 bins of width 1.35 ms were required to obtain spectra 

without periodic artifacts.  After reaching this bin number, the spectra did not significantly 

change with increasing bin number.  Because of this, the value of 101 bins used during our 

simulations appears to be a sufficient tradeoff between computation time and simulation 

accuracy. 

 

Comparison of Saturation Pulse Lengths 

 Our next aim was to determine the optimal saturation pulse length given a set total pulse 

train length.  Changes in saturation pulse length did not result in consequential differences in 

Figure 11. Z-spectra of two-pool amine model in water at pH=6.0.  The discretization of 

the simulated Gaussian pulses is varied from 25 to 301 bins.  Spectra are almost 

identical after reaching sufficient bin size, but artifacts occur below this limit.   
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MTRasym at 3.0 ppm in any of the three tissue types (Figures 12A-C).  In NAWM and glioma, 

MTRasym at 3.0 ppm was slightly higher for pulses of 100 ms (Figures 12A&B). In CSF, 

MTRasym at 3.0 ppm was slightly higher when using one 300 ms pulse (Figure 12C).  These 

results suggest saturation pulse trains using 100 ms pulses may be preferred for characterization 

of glioma tissues. 

Figure 12: (A-C) Comparison of Gaussian pulse length in the saturation pulse train 

and the effect on pH sensitivity in (A) NAWM, (B) tumor, and (C) CSF.  (D-F) 

MTRasym as a function of pH for varying TR and constant pulse train length in (D) 

NAWM, (E) tumor, and (F) CSF.  (G-I) MTRasym as a function of pH for saturation 

pulse trains consisting of either one, two, three, five, or twenty-five 100 ms 

Gaussian pulses at minimum TR for (G) NAWM, (H) tumor, and (I) CSF.   
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Effects of Repetition Time and Pulse Train Length 

Both glioma tissue and CSF showed decreased MTRasym at 3.0 ppm with increasing TR 

(Figures 12E&F).  This is likely due to increased longitudinal relaxation taking place between 

saturation pulse trains.  In NAWM, MTRasym at 3.0 ppm increased slightly with increasing TR 

before decreasing with further increases in TR (Figure 12D), although the effects of TR on the 

contrast were not as pronounced as in tumor tissue.  These results suggest the minimum 

allowable TR is preferred for for pH-weighted contrast. 

The difference in MTRasym at 3.0 ppm for NAWM and glioma was small when changing 

the saturation pulse train length and selecting the minimum allowable TR (Figures 12G&H).  

However, in CSF, a longer pulse train resulted in higher MTRasym at 3.0 ppm (Figure 12I).  For 

pH between 6.0 and 7.0 in CSF, MTRasym at 3.0 ppm reached approximately 90% of the 

maximum contrast available when using a pulse train length of 3 (Figure 12I).  This suggests 

three pulses may be preferred for obtaining at least 90% of allowable pH-weighted contrast for 

all tissues of interest within the brain. 

 

Effects of Saturation Pulse Amplitude and Scanner Field Strength 

When varying the RF pulse amplitude B1, results showed that the pH range with CEST 

sensitivity shifts towards higher pH values with higher B1 (Figures 13A-C).  In tumor tissue, 

maximum MTRasym at pH values below 6.5 appeared to be maximized at 4 µT, although the 

resulting curves for 4 and 6 µT were approximately equal down to a pH of 6.5 (Figure 13B).  In 

CSF, MTRasym was maximized at high B1 values of 6 and 8 µT (Figure 13C).  When varying the 

scanner field strength B0, results showed that MTRasym generally increased at higher field 

strength, although the dependence of MTRasym on field strength was not linear and approached a 
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maximum at high field strength (Figures 13D-F).  The pH range with CEST sensitivity also shifts 

to higher pH with increased B0.  This data indicates that pH-weighted amine CEST will not be as 

effective using a field strength of 1.5T compared with field strengths of 3.0T or higher. 

 

Effects of Proton Relaxation Times 

Increases in T1a first increased and then decreased MTRasym at 3.0 ppm within the tested 

range (Figure 14A).  Increases in T2a resulted in increased MTRasym at low pH (Figure 14B).  

Varying the amine pool relaxation parameters T1b and T2b had a negligible effect on the 

asymmetry at values above 0.1 and 0.01 s, respectively (Figures 14C&D).  However, as T1b 

decreased to 0.01 ms and below, MTRasym increased at pH values below approximately 6.5 

(Figure 14C).  Conversely, as T2b decreased to 0.001 s and below, MTRasym decreased and 

Figure 13: (A-C) MTRasym as a function of pH for varying saturation pulse amplitude 

B1 in (A) NAWM, (B) tumor, and (C) CSF.  (D-F) MTRasym as a function of pH for 

varying B0 field strength in (D) NAWM, (E) tumor, and (F) CSF. 
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eventually no longer increased with decreasing pH within a physiologically relevant pH range 

(Figure 14D).    

 

 

Effects of Amine Concentration 

When varying the amine concentration, MTRasym increased with increasing concentration 

(Figures 15A-C).  The slope between MTRasym and concentration decreased with increasing 

concentration, particularly for tissues with longer relaxation times (Figures 15D-F). 

 

 

Figure 14: MTRasym as a function of pH for (A) varying T1a, (B) varying T2a, (C) 

varying T1b, and (D) varying T2b with NAWM relaxation times used as the baseline. 
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v. Discussion 

Results from this study provide a theoretical basis for using CEST MRI targeted to the 

amino acid amine group for pH-weighted imaging in tissues, and show the effects of clinical 

scan parameters on the resulting contrast.  A significant finding of this study is that inputting a 

single value of B1 into the Bloch-McConnell equations does not optimize the CEST contrast that 

can be achieved in terms of MTRasym, and that unless the clinical sequence is utilizing a 

rectangular pulse rather than the more common Gaussian or Sinc3 pulses for saturation, 

simulations that do not incorporate the true pulse waveform will produce erroneous results.  To 

Figure 15: (A-C) MTRasym at 3.0 ppm as a function of pH for varying amine 

concentration in (A) NAWM, (B) tumor, and (C) CSF.  (D-F) MTRasym at 3.0 ppm as 

a function of amine concentration at three pH values, as calculated from the data in 

(A-C). 

 



 43 

our knowledge, this study is the first to simulate CEST z-spectra with a non-rectangular 

saturation pulse for pH-weighted imaging. 

Previous studies have implemented simulations of CEST spectra to test the effect of pulse 

parameters on the resulting measurements.  Woessner et al. were among the first to describe the 

Bloch-McConnell equations under off-resonance irradiation in the context of CEST imaging 

[33].  However, this method uses a constant value of ω1, which is likely not the pulse shape 

applied by the scanner.  Zaiss et al. used an eigenvector solution of the Bloch-McConnell 

equations to simulate CEST and chemical exchange spin-lock (CESL) experiments [83, 84].  

While an eigenvector solution is useful for obtaining equations in which the irradiation 

parameters can be seen in an intuitive form, the assumptions required for these solutions may 

break down at short irradiation times.  Jin et al. also used an eigenvector solution of the Bloch-

McConnell equations to describe CEST and CESL in a similar fashion [74, 96].  Sun et al. 

described an expansion of the two-pool CEST model to an arbitrary number of pools, but uses a 

constant value of ω1 [81].  Our simulation has the potential to be scaled in a similar way as 

described by Sun.  Sun et al. have also described the dependence of CEST-EPI on repetition 

time, duty cycle, and flip angle [82].  However, this study was performed for creatine imaging 

rather than amino acid amine imaging, which has a different relationship between pH and CEST 

contrast; a constant value of ω1 was used in this study as well. Xiao et al. were one of the few 

groups to implement a shaped Gaussian pulse in the context of creatine imaging [97]; however, 

this study did not compare the effects of accurate modeling of the RF saturation pulses among 

different pulse shapes.   

 This study demonstrated that a saturation pulse train utilizing 100 ms pulses is ideal for 

saturation of fast-exchanging amines in tumor, and that a pulse train length of 3x100 ms pulses 



 44 

should be used to obtain 90% of the available pH-weighted contrast in all brain tissues.  Our 

results further showed that TR should be minimized for CEST-EPI sequences to obtain 

maximum pH-weighted contrast.  Using these parameters allows for collection of 29 z-spectral 

images and one S0 image with full brain coverage in under 5 minutes of scan time, which is 

reasonable for clinical implementation. 

We also demonstrated that the RF saturation pulse amplitude must be at 4 µT or above to 

obtain optimal pH sensitivity within a physiologically relevant range (6.0-7.4).  Although the 

maximum MTRasym at low pH (<6.5) was greater for 4 µT than 6 µT in tissues, the pH sensitivity 

is approximately equal down to pH values of 6.5.  Because the optimal saturation pulse 

amplitude appears to increase with increasing relaxation times, an amplitude of 6 µT may still be 

ideal for ensuring that acidic regions of edematous tissue with long relaxation times can still be 

optimally identified. 

Our results suggested that scanner B0 field strengths should be 3.0T or above for effective 

pH-weighted imaging.  These findings are in line with previously acquired phantom data [15].  

Changes in relaxation properties of the bulk water influenced the resulting MTRasym, with an 

increase in T1a first resulting in increased and then decreased MTRasym.  This is likely due to 

competing effects of saturation at both the target frequency (+3.0 ppm) and control frequency (-

3.0 ppm) used to calculate MTRasym.  This suggests that doing CEST imaging after injection of 

gadolinium contrast agent should be avoided, as the contrast agent will alter the T1a 

characteristics of the tissue, possibly in a time-dependent manner as the contrast agent bolus 

passes through the tissue.  An increase in T2a resulted in increased MTRasym, likely due to a 

narrowing of the bulk water peak and therefore less indirect saturation at the target and control 

frequencies.  These results indicate that a correction for T1a and T2a relaxation times may be 
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warranted to move towards quantitative pH imaging, although this pH-weighted technique 

appears useful at all T1a and T2a values for differentiating acidic (6.2-6.9) from non-acidic (7.3-

7.4) tissue pH.  Changes in the relaxation times of the labile proton pool had minimal effect on 

MTRasym at typical values of metabolite T1b and T2b (≥0.1 and ≥0.01 s, respectively).  This 

indicates that so long as the metabolite proton relaxation times fall within this typical range, even 

if we do not know the exact relaxation rates and must rely on estimation, it will not have a 

significant effect on simulation results.  However, as T1b decreased to very low values (≤0.01 s), 

MTRasym increased at low pH.  Again, this is likely caused by reduced attenuation of the control 

frequency (-3.0 ppm) compared with the target frequency (+3.0 ppm) at low T1b.  At very low 

values of T2b (≤0.001 s), MTRasym decreased and eventually no longer increased with decreasing 

pH within a physiologically relevant range.  This indicates that bound metabolites with very 

short T2 relaxation times may not contribute to the CEST signal during pH-weighted imaging 

and only the signal from free metabolites will be measured. 

Changes in the amine concentration did have an effect on the resulting pH-weighted 

contrast, with higher amine concentration resulting in higher values of MTRasym.  This indicates 

that a correction for amine concentration also may be warranted, although this remains difficult 

to measure on a voxel-wise basis.  One approach may be magnetic resonance spectroscopy 

(MRS); several studies have implemented MRS to measure glutamate and glutamine 

concentrations in brain tissue [98-100].  Chemical shift imaging (CSI) can be used to obtain 

multi-voxel spectroscopic data throughout the brain, but even this technique often requires large 

voxel sizes (10x10x10 mm3) compared to traditional MRI techniques [101].  Still, CSI targeted 

to glutamine and glutamate could be used to approximate amine concentration spatially 



 46 

throughout the region of interest, allowing us to correct for amine concentration and move 

towards a more quantitative measure of pH. 

There were a number of limitations in this study.  Our model incorporated only fast-

exchanging amine protons at 3.0 ppm, while the CEST signal in biological tissues will have 

many contributing exchangeable protons, including the more commonly measured protein amide 

protons targeted with proton transfer (APT) imaging at 3.5 ppm [57].  However, it is difficult to 

estimate the exchange rates and concentrations of exchangeable protons on proteins or other 

large molecules, as many protons may be rendered unexchangeable by protein folding.  This 

study has not incorporated other experimental factors such as varying signal-to-noise ratio (SNR) 

in the resulting images, which will decrease with decreasing S0 signal intensity.  This S0 signal 

intensity will in turn decrease with TR and pulse train length as the longitudinal bulk water 

magnetization does not have time to fully recover between excitation pulses.  Therefore, the 

desired amount of pH-weighting must be balanced with these factors to obtain clinical images of 

sufficient quality.  Rather than being perfectly uniform, the true B1 amplitude and flip angle may 

vary spatially throughout the imaging target due to imperfect RF power deposition.  However, 

this technique will still provide pH-weighted contrast provided the B1 amplitude is sufficiently 

high at all locations.  Finally, we have simulated a non-selective saturation pulse train that 

saturated all slices during each repetition; sequences that implement a slice-selective saturation 

pulse train can be described using this model and setting B1 = 0 µT for all repetitions except the 

one preceding readout, which will provide less available pH-weighted contrast. 

In conclusion, a two-pool simulation of pH-weighted amine CEST contrast was 

implemented in healthy tissue, tumor, and CSF using the Bloch-McConnell equations.  Results 
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suggested optimal scan parameters for clinical pH-weighted imaging and showed that pulse 

shape must be input correctly into the model to obtain accurate results. 
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CHAPTER III 

Pre-Clinical Imaging 

 

Before novel therapies or techniques are applied in human patients, they are often 

implemented in animals to gather preliminary information about whether the technique will work.  

In the case of brain tumor imaging, a common pre-clinical technique is to implant tumor cells 

into mouse brain tissue and allow the mouse to grow an intracranial tumor.  We can then apply 

chemotherapeutic agents and acquire imaging data on these mice, as well as obtain histology 

from the brain tissue.  In this chapter, we describe some pre-clinical pH-weighted MRI data that 

were acquired in mouse glioma models.   

 

Gradient Echo Imaging 

A CEST sequence consists of a RF saturation pulse train followed by an excitation pulse 

and readout.  However, several different types of readout can be used.  For animal studies, we 

utilized a gradient echo (GRE) readout [102], a common and simple form of readout that 

employs a 90° excitation pulse followed by a reversal of the gradient polarity to generate an echo.  

With this design, one line of k-space is acquired per excitation pulse.  Spoiler gradients are also 

applied just prior to the excitation pulse to destroy unwanted transverse magnetization.  This 

readout scheme is preceded by the saturation pulse, which can vary depending upon the CEST 

application.  A GRE readout is preferable to EPI for these purposes in the pre-clinical setting 

because small magnetic field inhomogeneities lead to significant distortion of an EPI image at 

the small measurement scales inherent to a pre-clinical MR system. 
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i.  pH-weighted MRI in a Mouse Model  

To test the efficacy of amine CEST as a pH-weighted biomarker using a preclinical 7T 

small animal MR scanner, female C57BL/6 mice (6–8 weeks of age) were evaluated. One 

C57BL/6 mouse was injected with phosphate buffered saline (PBS; control) while 9 C57GL/6 

mice were injected with 2×106 GL261 glioma cells and allowed to grow for 14 days. All 

procedures and protocols used in the current study were approved by the UCLA Institutional 

Animal Care and Use Committee to ensure proper animal care.  Mice were sedated with 1%–3% 

isoflurane under O2/N2 flow, and respiration was monitored. Mice were kept warm with water 

heated to 37° C circulated using a TP500 water pump (Gaymar Solid State).  All images were 

acquired on a 7T Bruker Biospec system with a custom-built 2.2-cm RF birdcage coil. Each 

mouse was scanned for less than one hour.  We collected a series of anatomical images as well as 

pH-weighted MR images in these mice.  Pre- and post-contrast 3D T1-weighted anatomical 

images were collected using a 3D fast low flip angle acquisition technique.  A 100 µL bolus of 

0.1 mM Gd-DTPA (Magnevist) was injected intravenously via tail vein prior to post-contrast 

imaging.  Prior to contrast administration, pH-weighted CEST data were collected using a 2D 

GRE acquisition technique.  Two spectral points were acquired, one at -3.0 ppm and one at +3.0 

ppm.  An S0 image with no saturation pulse was also acquired for normalization.  No additional 

spectral points could be acquired during this imaging session due to high throughput.  Other 

CEST scan parameters were TE/TR = 6.9/2098 ms, FOV = 2x2 cm, matrix size = 128x128, 

bandwidth = 25 kHz, number of slices = 4, slice thickness = 1 mm, saturation pulse amplitude = 

6 µT, saturation pulse length = 500 ms.  The total CEST scan time was 10.5 min.  Maps of 

MTRasym were calculated using Eqn. 13. 
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As expected, T1-weighted post-contrast and T2-weighted images showed a large tumor 

burden in the tumor hemisphere.  pH-weighted images showed avid contrast enhancement in the 

tumor hemisphere, although they did not coincide fully with tumor boundaries on T1- and T2-

weighted images, indicating supplemental information.  ROIs were manually drawn in the tumor 

regions as defined by enhancement on post-contrast T1-weighted images for nine GL261-

tumored mice, with matching control regions drawn in the contralateral hemisphere.  MTRasym in 

the tumor region was significantly greater than that in the contralateral hemisphere as measured 

by a paired t-test (Figure 16E; P=0.0002).  The mean tumor MTRasym was 6.3% compared with 

3.6% for contralateral tissue evaluated at a saturation frequency of 3.0 ppm in tumor, which was 

not observed in the control animal (Figures 16A&B).  H&E histology confirmed that the areas 

showing an acidic signature were composed of relatively hypercellular, highly necrotic tumor 

tissue (Figures 16C&D).  
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ii. Dendritic Cell Immunotherapy 

We then implemented pH-weighted MRI in a cohort of mice undergoing treatment with 

dendritic cell therapy and a programmed cell death protein (PD-1) inhibitor.  Dendritic cell 

vaccination has been shown to initiate an immune response that activates T-cells, causing them 

Figure 16. A) MRI data for a control mouse with no implanted tumor.  B) MRI data 

for a mouse implanted with GL261 tumor cells, fourteen days post-implant.  C) 

Matching H&E histology for the mouse shown in (A).  D) Matching H&E histology 

for the mouse shown in (B).  E) Tumor regions show significantly elevated pH-

weighted contrast compared to contralateral tissue in mice.  Adapted from [15]. 
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to attack tumor cells [103].  However, this immune response is typically inhibited by PD-1 [104].  

By also introducing a PD-1 inhibitor along with the dendritic cell vaccination, the immune 

response can proceed uninhibited.  Previous data acquired by Antonios et al. [105] has suggested 

that dendritic cell vaccination in combination with a PD-1 inhibitor can extend survival in a 

GL261 mouse model (Figure 17).  Therefore, we hypothesized that the activation of this immune 

response and subsequent improvement in tumor prognosis may happen alongside a reduction in 

acidity in the tumor microenvironment.  

 

 

To test this hypothesis, we implemented pH-weighted MRI in a cohort of mice divided 

into the same four treatment groups seen in Figure 17.  Two mice from each group underwent 

imaging.  The group receiving a combination of dendritic cell vaccination and PD-1 inhibitor 

showed reduced acidity compared to the other three groups (Figure 18).    

Figure 17.  Overall survival data for mice with intracranial glioma treated with either 

saline, a PD-1 inhibitor, dendritic cell vaccination, or a combination of PD-1 inhibitor 

and dendritic cell vaccination.  Mice in the combination group showed extended 

survival compared to the other groups [105]. 
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As the groups that received combination treatment showed both increased survival and a 

decrease in acidity on pH-weighted images, these results provide evidence that pH-weighted 

MRI can be used as a biomarker for survival and treatment response. 

 

iii. pH-weighted MRI and PET 

Positron Emission Tomography (PET) is a molecular imaging technique in which a 

radiotracer fused to a metabolically active molecule is introduced into the imaging target.  The 

molecule is then metabolized, trapping the radiotracer in the local tissue [106].  Tumor regions 

have been shown to have elevated PET tracer uptake using a number of different radiotracers.  

The most common radiotracer used in PET is fluorodeoxyglucose (18F-FDG), a glucose analog 

[107].  Glucose is used as fuel for cells, and its uptake is elevated in highly metabolic tumors.  

Figure 18.  Post-contrast T1-weighted images and pH-weighted images for mice 

treated with either saline, a PD-1 inhibitor, dendritic cell vaccination, or combination 

therapy.  Mice treated with the combination therapy show decreased pH-weighted 

image contrast within the tumor region. 
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Therefore, it is of interest to see whether pH-weighted images and FDG uptake show similar 

regions of contrast. 

A cohort of C57BL/6 mice with intracranial tumors grown from GL-261 glioma cells 

received PET imaging with 18F-FDG, a subset (n=3) of which we were able to acquire our pH-

weighted CEST sequence on in addition to standard anatomical MRI.  Results showed an 

extremely large tumor burden with significant mass effect on anatomical T2-weighted MRI 

(Figure 19).  18F-FDG PET shows areas of increased metabolism around the periphery of the 

tumor.  pH-weighted MRI appeared to show regions of elevated acidity corresponding to areas of 

increased FDG uptake.  This may indicate elevated acidification in regions of high tumor 

metabolism.  Although these results are interesting, a larger cohort of mice is needed for 

quantitative analysis of the relationship between pH-weighted imaging and PET in animal 

models.   

 

Figure 19.  Imaging data for two mice (A&B) who received anatomical T2-weighted 

MRI, pH-weighted MRI, and 18F-FDG PET.  Units of 18F-FDG uptake are arbitrary 

and start at zero. 
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iv. In Vivo Measurement of pH in Glioma 

One goal of our pH-weighted imaging development was to directly validate that image 

contrast is correlated with physical measurements of pH.  However, direct measurement of pH in 

vivo is logistically difficult.  Experimental measures of pH within human brain tissue cannot be 

taken for research purposes due to the invasive nature of the measurement.  Some studies have 

proposed removal and homogenization of tissue in solution followed by measurement of solution 

pH [108, 109], though this likely results in destruction of the cellular membranes and a mixing of 

intracellular and extracellular protons, altering measured pH.  Furthermore, as tissue is removed 

from the in vivo setting, its homeostatic properties quickly begin to change.  Therefore, if 

possible, direct physical measurement of pH within the intact tissue is preferable for validation.  

To achieve this, we proposed pH-weighted imaging followed by in vivo measurement of pH in a 

mouse tumor model. 

 

Imaging 

Ten BL6 immunocompromised mice were implanted with 2.5x106 U87 glioblastoma 

cells at a depth of 2.0 mm.  Tumors were allowed to grow until they appeared reasonably large 

on T2-weighted images (approximately ¼ of total brain area at coronal slice of injection), which 

was approximately four weeks post-implant.  Three mice died during this time and were 

removed from the study.  Mice then underwent imaging on a 7T Bruker Biospin MRI system.  

Mice were sedated with 1%–3% isoflurane under O2/N2 flow; respiration and temperature was 

monitored. Mice were kept warm with water heated to 37° C circulated using a TP500 water 

pump (Gaymar Solid State).  Each mouse underwent anatomical imaging consisting of a multi-

echo spin echo (MESE) sequence for acquiring a series of T2-weighted images.  Parameters were 
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TR=2000 ms, TE=7.2 ms * echo number, 12 echoes, FOV = 2x2 cm, matrix size = 256x256, 

slice thickness 1 mm, slices = 11, bandwidth = 75757 Hz, total acquisition time = 6:32.  pH-

weighted imaging consisted of a series of CEST-GRE acquisitions with varying offset saturation 

frequencies.  Scan parameters were TE/TR = 5.1/4084 ms, FOV = 1.5x1.5 cm, matrix size = 

96x96, slice thickness = 1 mm, slices = 5, bandwidth = 37878 Hz, saturation pulse length 800 

ms, saturation pulse amplitude 6 µT.  Saturation offset frequencies of ±2.8, ±2.9, ±3.0, ±3.1, and 

±3.2 ppm were acquired and an integral of the data points surrounding -3.0 and +3.0 ppm was 

calculated.  An S0 image was also acquired by setting B1 = 0 µT and leaving all other parameters 

constant.  MTRasym was calculated as given by Eqn. 13.  On the MTRasym images, two targets 

were identified within the tumor hemisphere of each mouse: one target on the periphery of the 

tumor with moderately elevated MTRasym, and one target within the core of the tumor in a region 

of more highly elevated MTRasym.  These targets were typically at depths of approximately 2.0 

and 3.5 mm from the surface of the brain, although they varied in depth by approximately ±0.3 

mm between mice.  A circular ROI of 1.4 mm diameter was centered on each target on the slice 

containing the site of tumor implantation.  The mean and standard deviation of MTRasym within 

this ROI were calculated, with standard deviation used as the error in MTRasym.    

 

In Vivo pH Measurements 

pH measurements were made using a needle-type optical pH microsensor probe (Presens 

Precision Sensing, Regensburg, Germany).  This system utilizes a pH meter (Figure 20B) with 

detachable pH probes that house a fiber optic sensor within a needle sheath (Figure 20D).  The 

pH probes can be mounted to a stereotactic micromanipulator for precision measurements in 

tissue (Figure 20A).  Within two days prior to pH measurement in mice, each pH microsensor 
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was calibrated using a series of phosphoric buffer solutions at pH values ranging from 4.0 to 9.0 

to ensure accuracy. 

 

 

Within 12 hours after imaging, mice underwent physical measurement of pH within the 

brain tissue.  Mice were anesthetized with an intraperitoneal injection of ketamine (90 mg/kg) 

and xylazine (10 mg/kg) for non-survival surgery.  After sedation, mice were placed on a 

stereotactic frame to minimize head motion.  Bone wax at the site of the tumor implantation burr 

Figure 20.  A) Anesthetized mice are held in place by a stereotaxic frame.  B) Data is 

acquired by a pH meter in conjunction with C) software on a PC.  D) A fiber optic 

needle-type pH microsensor for use with the pH meter.  E) pH measurements are 

performed using locations identified on MRI, including the tumor periphery, tumor 

core, and normal tissue contralateral to both tumor hemisphere measurements.  
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hole was removed, and the burr hole was re-drilled if necessary.  A second burr hole was drilled 

contralateral to the tumor implantation burr hole to obtain contralateral measurements in normal 

brain tissue.  The pH microsensor needle was positioned vertically above the mouse brain, 

perpendicular to the table surface.  The needle was inserted into the brain tissue using the 

micromanipulator to the depth required by the selected targets (~2.0 mm, ~3.5 mm; Figure 20E).  

During measurement, the needle was retracted by the micromanipulator while the pH sensor 

remained in place to obtain readings.  For each hemisphere, a measurement was first taken at the 

~2.0 mm site and then secondly at the ~3.5 mm site without removing the needle from the brain 

tissue.  Between hemisphere measurements and between mice, the needle sheath was retracted 

outside of any tissue and the microsensor tip was cleaned with distilled water.  During 

measurement, readings were acquired every three seconds for a period of three minutes to allow 

the sensor readings time to equilibrate.  For each measurement site, the final twenty readings (60 

seconds) were used to calculate an average pH value for that location.  The standard deviation of 

pH readings within these 60 seconds was taken as the error in pH.  Two mice were excluded 

from analysis due to large bleeds that occurred prior to and during pH measurement.   

 

Analysis 

To determine the expected relationship between MTRasym and pH for our pre-clinical pH-

weighted sequence, the scan parameters used for this sequence (saturation pulse length = 800 ms, 

saturation pulse amplitude = 6 µT, pulse train length = 1, number of slices = 5, readout length = 

17 ms, field strength = 7T) were implemented in our CEST simulation.  Because our pre-clinical 

scanner utilizes a slice-selective rather than a non-selective preparatory saturation pulse, B1 was 

set to zero during the first four repetitions.  The simulated estimation of MTRasym was plotted for 
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pH values of 6.0 to 7.5.  Experimentally measured values of MTRasym were then compared to pH 

for both tumor periphery and tumor core measurements as well as their matching contralateral 

measurement in each mouse. 

To determine whether pH was significantly decreased within the tumor compared with 

control tissue, a paired t-test was performed between the mean pH measurement in the tumor 

core and the matching contralateral target.  A paired t-test was also performed between mean 

MTRasym in the tumor core and the matching contralateral target. 

 

Results 

Comparisons of MTRasym and measured pH are shown in Figure 21.  Data appeared to be 

clustered either above or below the simulated curve.  However, the measured data points in 

Figure 21 did not converge using a fit to our previously described simulation model, indicating a 

poor fit to the data.   
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Results showed that pH was significantly lower within the tumor core than in matching 

contralateral tissue (Figure 22A, P=0.035), with a mean pH of 6.73±0.17 in the tumor core and 

6.87±0.13 in the contralateral tissue.  MTRasym was significantly higher within the tumor core 

than in matching contralateral tissue (Figure 22B, P=0.0085), with a mean MTRasym of 

5.83±3.86% in the tumor core and 2.75±1.93% in the contralateral tissue.   

Figure 21.  Experimentally measured values of pH within mouse brain as a function of 

pH-weighted image contrast (MTRasym).  Error bars are given by the standard 

deviation of the measurements of pH and MTRasym.  The simulated relationship 

between MTRasym and pH is shown by the solid line.   
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Discussion 

 This study demonstrated the feasibility of measuring pH in vivo in an animal model.  A 

handful of previous studies have attempted to measure the pH of brain tissue and glioma tissue in 

vivo.  As described by Gerweck et al., Pampus et al. obtained electrode measurements of pH in 

glioblastoma and normal brain tissue in twenty human patients and found that pH was 

significantly lower in regions of glioblastoma [7].  That study found an average pH of 6.87±0.23 

in glioblastoma and 7.14±0.26 in healthy tissue.  Griffiths et al. compiled a number of studies 

that also used electrode measurements to obtain a pH range of 6.4 to 7.3 in human glioblastomas 

compared to 6.9 to 7.2 in healthy tissue [8].  Grant et al. constructed a fiber optic pH sensor and 

detected pH changes within rat brain during injection of sodium bicarbonate and during stroke 

[110].  However, to our knowledge, our study is the first to compare direct measurements of pH 

in vivo to pH-weighted image contrast on MRI. 

Figure 22.  A) In vivo pH measured using a needle-type pH microsensor is lower 

within the tumor core than in matching contralateral tissue.  B) pH-weighted image 

contrast is higher within the tumor core than in matching contralateral tissue.    
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As expected, a decrease in pH within the tumor core compared to contralateral tissue was 

observed, as well as increased pH-weighted contrast in the tumor core compared to contralateral 

tissue.  However, the relationship between MTRasym and pH did not yet yield a satisfactory 

concurrence with simulated results.  There are a number of possible reasons for this outcome. 

Anesthetic injection of ketamine and xylazine is often used for performing a nonsurvival 

surgery such as in vivo pH measurement.  Previous studies have suggested a drop in brain tissue 

pH of approximately 0.10-0.16 pH units during ketamine/xylazine-induced anesthesia in mice 

[111, 112].  Conversely, administration of isoflurane such as that used during pH-weighted 

imaging has not appeared to cause a significant drop in brain tissue pH in mice [113, 114].  This 

indicates that differing anesthesia techniques may cause pH characteristics to be altered between 

imaging and physical pH measurement, leading to errors in our correlations.  As such, 

reconciliation of anesthesia methods may be necessary in future studies.  As the MRI protocol 

typically takes approximately one hour, repeated injection of ketamine/xylazine to maintain 

stable anesthesia would be difficult; the use of isoflurane during physical pH measurement 

would be preferred for consistency, as well as maintaining homeostatic pH. 

 Heterogeneous amine concentration through the normal tissue and tumor regions may 

also lead to variability in the measured pH-weighted CEST signal.  As discussed in Chapter II, it 

may be possible to perform a correction for amine concentration by performing multi-voxel MR 

spectroscopy targeted to the glutamine/glutamate peak, although this technique suffers from poor 

spatial resolution and adds increased scan time. 

During our measurements, the pH probe was carefully washed with distilled water 

between measurements of each hemisphere to remove any tissues from the sensor tip, while 

keeping it within the tissue for both the peripheral and core measurements of each hemisphere.  
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Since tissues were clearly seen on the probe tip before washing each time, it may be necessary to 

remove the probe after each measurement, rather than each hemisphere, to ensure that readings 

are not affected by tissues from another location. 

In vivo pH measurements of brain tissue also have the potential to be affected by 

respiratory motion, ventricular pulsatile motion, blood flow, and high tissue heterogeneity, 

among other factors.  Respiratory motion can be difficult to keep constant over the course of a 

twenty-minute experiment when using ketamine/xylazine anesthesia; using isoflurane instead 

during the physical pH measurement may aid in respiratory consistency in addition to the 

previously described benefits.  Pulsatile motion and blood flow may lead to errors in pH readings 

that are unavoidable during in vivo experiments.  Puncturing and damage to the tissue may lead 

to changes in pH at the site of measurement as well, although this effect is minimized by use of 

the thin needle-type probe. 

For these reasons, intrinsic error in pH measurements is expected and therefore large 

sample sizes must be used to obtain sufficient statistical power for detecting correlations between 

image contrast and physically measured pH.  Only half (5/10) of the mice included in this 

experiment could be used to obtain pH measurements due to either death from tumor burden or 

large bleeds during attempted measurement of pH.  As such, the inclusion of a larger sample size 

is warranted during a repeat of this study.  Additionally, error in this experiment can be reduced 

by using isoflurane anesthesia during physical pH measurement, by cleaning the probe tip 

following each measurement, and by acquiring spectroscopic data to correct for amine 

concentration. 
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CHAPTER IV 

Human Studies 

 

The end goal of developing new glioma imaging techniques is to obtain information that 

can serve as a biomarker for survival, treatment efficacy, or tumor characteristics in human 

patients.  In this chapter, we first validate pH-weighted imaging on clinical scanners using amino 

acid phantoms and then describe the application of pH-weighted CEST MRI in human glioma 

patients and explore its capability to serve as such a biomarker. 

 

i. GRE Pulse Sequence Development 

As described previously, a GRE readout is a common method for acquiring MRI data.  

The first pH-weighted CEST sequence we implemented clinically utilized a GRE readout, 

similar to that used for pre-clinical imaging.  A standard GRE sequence was modified using the 

VB-17, VD-13D, and VD-13A IDEAS platforms provided by Siemens (Siemens AG, Munich, 

Germany), which allowed us to implement this sequence on Siemens Trio, Prisma, and Skyra 

MR systems, respectively.  Specifically, a CEST saturation pulse was added prior to GRE 

readout.  Parameters such as the number of applied saturation pulses, saturation pulse length, 

saturation pulse amplitude, the deadtime between saturation pulses, the length of the post-

saturation spoiling gradients, and the saturation offset frequencies applied were all made 

adjustable on the sequence interface for optimal user flexibility.  The interface allowing this 

modification of the saturation pulse train parameters is shown in Figure 23. 
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For the CEST-GRE sequence, we used a RF saturation pulse train consisting of 3x100 ms 

pulses and a deadtime of 10 ms for a total length of approximately 320 ms per pulse train. Since 

the readout portion of the GRE sequence is only ~15 ms, the majority of the total image 

acquisition time is a result of the saturation pulses.  Because of clinical scan time limitations, 

tradeoffs are required to be made between the number of acquired spectral points and the number 

of image slices.  Our choice of scan parameters within these limitations is described in further 

sections.  A diagram of the CEST-GRE sequence is shown in Figure 24. 

 

Figure 23.  An interface for customization of the CEST saturation pulse on clinical 

scanners (Siemens AG, Munich, Germany).    
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ii. B0 Inhomogeneity 

In a real imaging experiment, the B0 field will not be perfectly constant throughout the 

imaging sample.  This causes issues when collecting CEST data as we are often measuring small 

signals at small spectral distances from the bulk water frequency.  If the bulk water frequency in 

a particular voxel is shifted from 0 ppm, then we will not be measuring the spectral points we 

believe we are during a CEST acquisition.  This problem can be amplified when taking 

Figure 24.  The CEST-GRE pulse sequence diagram, as simulated in POET on the 

VD-13D IDEAS platform (Siemens AG, Munich, Germany).  The five rows shown in 

the pulse diagram represent the analog-to-digital converter (ADC), the RF amplitude 

(RF), and the gradient magnitude in the x-, y-, and z-directions (Gx, Gy, Gz).  A) A 

single repetition of the saturation pulse and readout.  B) A magnification of the 

readout portion, which is enclosed by the gray box in (A).  C) The off-resonance RF 

saturation pulse train.  D) Spoiling gradients to remove residual transverse 

magnetization before readout.  E) A 90° excitation pulse.  F) Readout of a single line 

of k-space. 
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asymmetry measurements around the bulk water peak, as both measurements will be inaccurate 

(Figure 25). 

 

Fortunately, B0 inhomogeneity only induces a linear shift in the z-spectrum.  Because of 

this, if the inhomogeneity shift of each image voxel can be determined, the z-spectra can be 

corrected on a voxel-wise basis.  This is typically done by collecting a number of spectral points 

in either direction around 0 ppm and determining the frequency of minimum signal intensity, 

which represents the true bulk water peak for that voxel [115].  The entire z-spectrum for a voxel 

can then be shifted so that this minimum is set to 0 ppm before asymmetry analysis is performed, 

as shown in Figure 26. 

Figure 25.  Z-spectra of glutamine dissolved in water for an image voxel with B0 

inhomogeneity.  Inhomogeneity in an imaging sample at particular locations causes a 

proportional linear shift in the z-spectrum at those locations. 
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In phantom samples with no time limitations, we can easily collect as many images as 

necessary to create a full z-spectrum with high spectral resolution.  However, in clinical 

applications, there is a limit to the number of spectral points that can be acquired within a 

reasonable scan time.  Because of this, data can sometimes only be collected at and around the 

frequencies of interest (ω, -ω), in addition to around the bulk water peak.  In these cases, 

interpolation must be performed between the acquired data points to correct for the B0 

inhomogeneity shift.  Many studies have reduced the number of spectral points collected around 

ω and -ω to three, a technique called the three-point method [68]; however, better spectral 

resolution is preferred.  As is the case with all MRI sequences, the number of spectral points 

acquired must be balanced with image resolution, number of slices, number of averages, and 

other imaging parameters to fit within a clinically feasible scan time. 

Figure 26.  A voxel’s z-spectrum is linearly shifted to set the bulk water peak at 0 

ppm.  Prior to correction, the measured spectral points of ±3.0 ppm would not have 

accurately measured the asymmetry.  After correction, the proper measurement can be 

obtained. 
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iii. Phantom Preparation and Imaging 

In order to determine the dependence of glutamine CEST on pH and concentration, we 

prepared 50 mL samples of 25 mM, 50 mM, and 100 mM glutamine in distilled water. For each 

concentration, 24 samples at different pH varying from 4.0 to 8.6 in intervals of 0.2 were created 

by titrating 0.1 M HCl or NaOH and using a pH meter accurate to 0.1 pH units. In order to 

demonstrate that this effect is similar for other neutral amino acids, we prepared a similar set of 

samples using 100 mM glycine dissolved in distilled water at pH values 4.0–8.6 in units of 0.2, 

and a set of samples with 100 mM phenylalanine dissolved in distilled water at pH values 4.0–

8.6 in units of 0.2. 

 Due to the large number of samples evaluated, each set of 24 vials with various pH 

values was split into 3 scans of 8 samples each. The samples were held stationary in a bath of 

room-temperature water (21°C). For each set of samples, 51 z-spectral points were acquired from 

−5.0 ppm to +5.0 ppm in units of 0.2 ppm.  A saturation pulse train consisting of fifteen 100-ms 

pulses at an amplitude of B1 = 2.0 µT was applied, followed by a 90-degree excitation pulse and 

GRE readout. Additionally, we explored the CEST effects for various field strengths using a 

1.5T Siemens Avanto human MR scanner, a 3T Siemens Trio human MR scanner, and a 7T 

Bruker Biospec pre-clinical MR scanner. 

 

iv. CEST Post-Processing and Analysis 

All CEST data were motion corrected and inhomogeneity corrected prior to analysis. 

Motion correction was performed using the mcflirt function in FMRIB Software Library 

(Functional Magnetic Resonance Imaging of the Brain; http://www.fmrip.ox.ac.uk/fsl/).  

Inhomogeneity correction was performed as described previously.  For the phantom experiments, 
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a circular region of interest was drawn on each sample and the mean value for each spectral point 

was calculated to obtain the average z-spectra for a sample.  MTRasym at 3.0 ppm was calculated 

from these z-spectra for each sample. 

Although the relationship between pH and the resulting CEST signal as described by the 

Bloch-McConnell equations is quite complicated, the values of MTRasym at 3.0 ppm within a 

physiologically relevant pH range (6.0-7.4) resemble a sigmoidal curve with high signal at low 

pH values and low signal at high pH values, as seen in Chapter II.  This type of curve can be 

described by a simple competitive inhibitor equation: 

𝑀𝑇𝑅Sa2b@3𝑝𝑝𝑚 𝑝𝐻 = 𝛼 + x;y
\z\){(|i}~)

       (18) 

where α is the MTRasym at 3.0 ppm for high pH environments, β is the MTRasym at 3.0 ppm for 

low pH environments, δ is the sensitivity of MTRasym at 3.0 ppm to changes in pH, and κ is the 

pH required for 50% of the maximum span in MTRasym measurements at 3.0 ppm between high 

and low pH limits.  In this description, the “inhibition” is caused by a lack of CEST peak 

resolution at higher pH values.  In order to test whether there was a difference in MTRasym at 3.0 

ppm as a function of pH between three different amino acids (glycine, glutamine, and 

phenylalanine), we applied Eqn. 18 to the pH-weighted data from the amino acids separately and 

tested whether the model parameters (α, β, δ, κ) varied significantly between amino acids. 

The CEST z-spectrum in pH-varying samples containing glutamine illustrated reduced 

MTR during off-resonance irradiation around 3.0 ppm and asymmetry of the z-spectrum 

(MTRasym) increased with decreasing pH of glutamine solution (Figure 27), which is consistent 

with the expected CEST contrast of amine protons on the glutamine molecule undergoing 

chemical exchange with bulk water. 
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 This CEST effect and pH-dependency around amine proton resonance also increased 

with increasing glutamine concentration (Figure 28).  As the expected amino acid concentration 

in normal brain is ∼20–25 mM [91], and other similar fast-exchanging amine groups will give 

rise to additional signal at 3.0 ppm, CEST signal due to these amine protons should be detectable 

in vivo.  

Figure 27.  A) A CEST peak at 3.0 ppm increases in size with decreasing pH for 100 

mM glutamine in a water solution.  B) MTRasym calculated from the data in (A). [15]  
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The sigmoidal relationship between MTRasym and pH is similar to a cooperative (or 

inhibitory) exchange process and is consistent with the Bloch–McConnell equations, as shown 

by our simulations.  Interestingly, we observed an apparent contradictory increase in MTRasym at 

3.0 ppm with increasing temperature (Figure 28B); this may be explained by the competing 

effects from spin-spin relaxation (i.e. T2 relaxation rate), which increases with increasing 

temperature, reducing the line width and increasing the available NMR signal at a given 

resonance frequency. 

Results of the simple competitive inhibitor equation fit suggest no significant difference 

in the MTRasym at 3.0 ppm for high pH values between the neutral amino acids (Figure 29; 

P>0.05 for all model parameters), supporting the hypothesis that pH dependence on the amine 

proton CEST signal is similar between amino acids due to the common backbone amine group 

they share. 

Figure 28.  A) The CEST signal increases with decreasing pH and with increasing 

concentration of glutamine in water solution.  B) The dependence of the CEST signal 

on pH, concentration, and temperature. [15] 
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Next, we explored the dependence of MTRasym and pH on the MR scanner field strength. 

Using Equation 18 to describe the relationship between MTRasym at 3.0 ppm and pH, results 

suggested that the pH required for 50% of the maximum span in MTRasym at 3.0 ppm between 

high and low pH limits, or κ, was significantly lower on 1.5T scanners compared with both 3T 

and 7T, suggesting that 1.5T MR scanners may not provide adequate CEST signal for the range 

of pH values typically observed in tumors (Figure 30; nonlinear regression; κ for 1.5T vs 

3T, P=0.0012 and κ for 1.5T vs 7T, P=0.044).  

Figure 29.  The relationship between MTRasym and pH resembles a sigmoidal curve 

within a physiologically relevant range for three different amino acids [15]. 
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Results also suggested that the relationship between MTRasym and pH was similar 

between 3T and 7T scanners for all parameters besides the CEST asymmetry at high pH, which 

was slightly lower at 7T (Figure 30; Nonlinear regression; α, P=0.7885; δ, P=0.1166; 

κ, P=0.1933; and β, P=0.0129). Additionally, results suggested no difference in the actual 

sensitivity of MTRasym at 3.0 ppm to changes in pH between the 3 field strengths (δ for 1.5T vs 

3T, P=0.7924; δ for 1.5T vs 7T, P=0.1470, and δ for 3T vs 7T, P=0.1166) and no differences 

between the maximum MTRasym at very low pH (α for 1.5T vs 3T, P=0.2311; α for 3T vs 

7T, P=0.7885; and α for 1.5T vs 7T, P=0.3422). Together, these results suggest that pH-

weighted MRI using endogenous amino acid CEST should be performed at high field strengths 

in order to ensure adequate contrast for the range of pH values commonly observed in cancer 

tissues. 

 

Figure 30.  The effects of a scanner’s magnetic field strength on the relationship 

between MTRasym and pH [15]. 
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v. pH-weighted Imaging in Human Gliomas 

To test the hypothesis that an acidic microenvironment increases resistance to radiation 

and chemotherapies in human brain tumors, we acquired serial pH-weighted images in 20 

patients with newly diagnosed glioblastoma who were treated with concurrent radiotherapy and 

temozolomide and examined differences in progression-free survival (PFS).  All patients had 

histologically confirmed GBM (WHO grade IV), were compliant with the Health Insurance 

Portability and Accountability Act, and approved by the institutional review board at UCLA.  

Patients were evaluated at three time points: post-surgical and prior to radiochemotherapy 

(baseline); approximately 3 weeks after the start of radiochemotherapy (mid-treatment); and 

approximately 6–10 weeks after the start of radiochemotherapy or 0–4 weeks after completion of 

concurrent radiation and chemotherapy (post-treatment).  All glioblastoma patients evaluated 

underwent maximal surgical resection followed by standard treatment with radiotherapy and 

concurrent temozolomide. Follow-up scans were also obtained in these patients for comparison 

and radiographic response as determined by the RANO criteria [116]. 

 

Clinical Scan Parameters for CEST-GRE 

For the clinical CEST sequence used for serial glioblastoma imaging, we acquired 51 

spectral points from -5.0 ppm to +5.0 ppm in units of 0.2 ppm.  A saturation pulse train of three 

100 ms pulses of amplitude B1 = 2.0 µT was applied prior to GRE readout.  An S0 image was 

also acquired with B1 = 0 µT for normalization.  Because of clinical time constraints, only one 6 

mm slice of image data could be collected.  Other scan parameters for the CEST sequence were 

TE/TR = 2.7/3000 ms, FOV = 300x300 mm, matrix size = 128x128. 
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These patients also underwent standard clinical imaging consisting of pre- and post-

contrast T1-weighted images, T2-weighted fluid-attenuated inversion recovery (FLAIR) images, 

diffusion tensor imaging (DTI), and a dynamic susceptibility contrast (DSC) acquisition.  Scan 

parameters for the T1-weighted images were TE/TR = 3.6/2100 ms, slice thickness = 1 mm, 

matrix size = 256 x 200, and FOV = 256 x 200 mm.  Scan parameters for FLAIR images were 

inversion time (TI) = 2500 ms, TE/TR = 85/9000-10810 ms, slice thickness = 3 mm, FOV = 

240x240 mm, and matrix size = 320x224.  DSC scan parameters were TE/TR = 23/1250 ms, flip 

angle = 30°, slice thickness = 5 mm, number of slices = 20, matrix size = 128x128.  Prior to DSC 

acquisition, a 0.025 mmol/kg pre-load dose of Gd contrast agent was administered to diminish 

the T1 effects of contrast agent extravasation [117].  A 3- to 5-cc/s bolus of Gd-DTPA, 

administered at a dose of 10–20 cc (0.075 mmol/kg), was used in the acquisition of DSC as well 

as the subsequent post-contrast T1-weighted images (total of 0.1 mmol/kg). Parametric maps of 

cerebral blood volume (CBV) and cerebral blood flow (CBF) were calculated using 

commercially available post-processing software (IB Neuro v2.0, Imaging Biometrics) including 

contrast leakage correction [118].  DTI scan parameters were TE/TR = 90ms/7000ms, matrix 

size = 128x128, and b-value = 1000 s/mm2 collected in 64 non-collinear directions. Additionally, 

six b=0 s/mm2 reference images were acquired interleaved with the b=1000 s/mm2 images.  

Maps of apparent diffusion coefficient (ADC) [119] were calculated from the DTI data using a 

monoexponential decay fit. 

 

18F-FDOPA PET and MR Spectroscopy 

To demonstrate that CEST contrast at 3.0 ppm is elevated in human brain tumors under 

conditions where low pH is thought to occur, we assessed a subset of three high-grade gliomas 
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(WHO III–IV) using pH-weighted MRI, 18F-FDOPA PET, and single-voxel MR 

spectroscopy.  18F-FDOPA is an amino acid analog tracer that has shown sensitivity to regions of 

tumor and will be further described in Chapter V. 18F-FDOPA PET scans were acquired using a 

high-resolution full-ring PET scanner (ECAT-HR; CTI/Mimvista). Patients were instructed to 

fast for more than 4 h prior to PET acquisition. 18F-FDOPA was synthesized and injected 

intravenously, with injected doses averaging 125.4 ± 22.9 MBq, 1.54 ± 0.37 Bq/kg.  3D 18F-

FDOPA emission data were acquired 10 min after radiotracer injection for a total of 30 min. 

Data were integrated between 10 and 30 min from injection to obtain 20-min static 18F-FDOPA 

images following reconstruction. PET images were reconstructed using an ordered-subset 

expectation maximization iterative reconstruction algorithm consisting of 6 iterations with 8 

subsets [120, 121].  Lastly, a Gaussian filter with a full width at half maximum of 4 mm was 

applied. Uptake levels were normalized to the basal ganglia to highlight areas of abnormal 18F-

FDOPA uptake in the tumor.  Parameters of single voxel MRS using PRESS were TE/TR = 

30/1500ms, voxel size 3x3x3 cm. The presence of lactate was confirmed via inversion of the 

Lip/Lac peak in a 2nd echo by using an intermediate TE of 135 ms. 

 

Stereotactic Image-Guided Biopsies and Tissue Processing 

Stereotactic pH-image–guided biopsies were performed in two patients. Each patient's pH-

weighted image was overlaid on the post-contrast T1-weighted image for localizing of targets. 

When no contrast enhancing lesion was present, T2/FLAIR images were used for target 

localization. The first patient was a suspected low-grade glioma biopsy patient. One region of 

elevated CEST contrast consistent with low pH and one region of low CEST contrast consistent 

with normal pH were biopsied.  Standard hematoxylin and eosin (H&E) staining was performed 
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as well as immunohistochemistry staining for Ki-67 and HIF1α expression.  An H&E stain is the 

most commonly used stain in immunohistochemistry, causing the nuclei characteristics to appear 

different between healthy and tumor cells and allowing visualization of the presence of tumor 

within a tissue section [122].  Ki-67 is a protein that is present during all replicative phases of the 

cell cycle but is absent from resting cells, and is often used as a marker for tumor cell 

proliferation [123].  Hypoxia-inducible factor 1-alpha (HIF-1α) is a transcription factor that is 

upregulated in conditions of hypoxia.  As such, it is often used as a marker for hypoxia in tumor 

tissue [124].   

Sections of 5 microns were cut from formalin-fixed paraffin-embedded samples and 

processed for immunohistochemical detection of Ki-67 (Clone VP-RM04, rabbit monoclonal, 

1:100 dilution, Vector Laboratories). Appropriate positive and negative controls were used to 

ensure good immunohistochemical staining. The second patient was a glioblastoma patient with 

suspected recurrence. Two regions of elevated CEST contrast consistent with acidic tissue and 

one region with low CEST contrast were biopsied, then H&E staining was performed and 

reviewed by a board certified neuropathologist blinded to the specific targets. 

 

Comparison of Acidic Versus Non-Acidic Glioblastoma 

In order to assess whether tumors with low pH signatures on CEST at baseline were more 

likely to have a shorter PFS after treatment with radiochemotherapy, we scored each tumor based 

on the amount of elevated CEST signal at 3.0 ppm. In particular, we defined “acidic” lesions as 

containing a substantial proportion (>50%) of positive CEST asymmetry at 3.0 ppm within areas 

of contrast enhancement and/or T2 or FLAIR hyperintensity. Alternatively, patients were scored 

as having “non-acidic” lesions if a significant portion of the lesion did not show an elevated 
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CEST signal. Next, we subjectively scored each lesion as “increasing” or “stable/decreasing” on 

pH-weighted MR scans before, during, and after radiochemotherapy in order to determine 

whether changes in the acidic lesion size could be used as an early response metric. Log-rank 

tests on Kaplan–Meier data were used to describe differences in progression-free survival (PFS) 

between these patient groups. 

 

v. Patient Results 

 To test the hypothesis that an acidic microenvironment increases resistance to radiation 

and chemotherapies in human brain tumors, we performed pH-weighted imaging before, during, 

and after radiation therapy and temozolomide in 20 patients with newly diagnosed glioblastoma. 

 

Figure 31. A) MRI data for a GBM patient who showed acidic tumor at baseline and 

recurred two months following completion of radiochemotherapy.  B) MRI data for a 

GBM patient who did not show acidic tumor at baseline and remained stable 15 

months following completion of radiochemotherapy. [15] 
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Qualitatively, areas with low pH at baseline often forecasted regions of subsequent tumor 

growth on contrast-enhanced MRI (Figure 31A). Although not completely co-localized, 

examination of CBF maps in these patients confirmed that regions with acidic signatures often 

occurred in areas of low perfusion, consistent with a high level of hypoxia.  

 

Quantitatively, patients with tumors that were acidic at baseline following surgical 

resection but prior to radiation and temozolomide, as defined by a significant region (>50%) of 

positive CEST asymmetry at 3.0 ppm within areas of contrast enhancement and/or T2/FLAIR 

hyperintensity, demonstrated a significantly longer PFS compared with patients lacking 

significantly acidic tumors (Figure 32; log-rank, P < 0.0001; median PFS for acidic tumors vs 

non-acidic tumors = 125 days vs 450 days). 

Figure 32.  GBM patients with an acidic tumor at baseline (n=14) recur significantly 

faster than patients with a non-acidic tumor at baseline (n=6). [15] 
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Additionally, patients exhibiting an increase in the size of acidic lesions during 

concurrent radiation and temozolomide therapy (Figure 33) had a significantly shorter PFS from 

the end of radiation therapy compared with tumors exhibiting stable or decreasing acidic lesion 

size (Figure 34; log-rank, P = 0.0003; median PFS in acidic growing tumors = 68 days vs 339 

days), implying that acidic tumor size may be useful as an early response biomarker in patients 

with glioblastoma. 

 

Figure 33.  A GBM patient with increasing acidic lesion size, which appears to 

precede an increase in contrast-enhancing tumor burden in the same region. [15] 

 

Figure 34.  GBM patients with an acidic lesion that increases in size (n=11) recur 

significantly faster than patients with acidic lesions that remain stable or decrease in 

size (n=9). [15] 
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18F-FDOPA PET and MR Spectroscopy 

Results from high-grade glioma patients who also underwent 18F-FDOPA PET and MRS 

demonstrated high MTRasym in regions with elevated 18F-FDOPA PET uptake and elevated 

lactate concentration (Figure 35), implying that highly aggressive tumors with elevated amino 

acid uptake for fuel and increased lactic acid in solution from oncologic metabolism under 

hypoxic conditions will consistently generate an acidic tumor signature using CEST MRI at 3.0 

ppm.  
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Figure 35.  Spatial correspondence between pH-weighted molecular MRI, 18F-

FDOPA PET, and MR spectroscopy. (A and B) Two patients with anaplastic 

astrocytomas showing CEST asymmetry consistent with low pH in regions with 

confirmed elevated 18F-FDOPA uptake and lactate. From left to right: T2-weighted 

FLAIR, pH-weighted MRI using amine CEST, 18F-FDOPA PET, and NMR spectrum 

from the area shown in the red box in FLAIR images. Cho = choline; Cr = creatine; 

NAA = N-acetyl aspartate; Lip/Lac = mobile lipids and/or lactate. (Both cases were 

confirmed to contain lactate based on inversion of the Lip/Lac peak by using an 

intermediate echo time = 135 ms). BG, basal ganglia. [15] 
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Stereotactic Image-Guided Biopsy Results 

To confirm that regions suspected of containing acidic tissue on pH-weighted MRI 

contained viable tumor, we performed pH-weighted MR-guided biopsies in two patients. The 

first patient was a 26-year-old male with a large area of T2 hyperintensity, suggestive of tumor, 

but no contrast enhancement (Figures 36A&B). 

 

Figure 36.  A 26-year-old male patient with a suspected low-grade glioma (WHO 

grade II).  FLAIR images show T2 hyperintense regions in the left temporal lobe, but 

no contrast enhancement on post-contrast T1-weighted images (T1+C) or abnormal 
18F-FDOPA PET uptake was observed.  Diffusion and perfusion MRI showed 

restricted diffusion on apparent diffusion coefficient (ADC) maps and no elevated 

CBV, respectively.  pH-weighted MRI in inferior regions (A) showed elevated CEST 

asymmetry, consistent with regions of low pH.  Superior regions (B), however, did 

not show elevated CEST asymmetry. [15] 
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18F-FDOPA PET, perfusion MRI, and diffusion MRI were also negative. An acidic 

signature consistent with tumor on inferior aspects was shown on pH-weighted MRI 

(Figure 36A), whereas superior regions did not demonstrate this signature (Figure 36B). This 

suggested a unique contrast mechanism for pH-weighted images compared with anatomical 

contrast.  Biopsy results confirmed that inferior regions contained low-grade glioma tissue with 

low proliferation rate (Ki-67, ∼1%–2%) but high expression of hypoxia-inducible factor-1a, 

whereas superior regions did not show evidence of tumor (Figure 37). 

 

 

Figure 37.  Histology for biopsy samples taken from the regions in red (Figure 36A) 

were confirmed to contain diffuse astrocytoma cells with low cellularity, low (but 

present) mitotic figures, and regions of hypoxia.  Alternatively, samples obtained 

from the green region (Figure 36B) were consistent with hypoxic neurons likely 

hypertrophied from prolonger seizure activity and lacked mitotic figures or 

morphologic features of tumor. [15] 
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The second patient was a 47-year-old male with suspected recurrent glioblastoma.  Upon 

scanning this patient, pH-weighted MRI suggested extensive acidic tumor regions and 

elevated 18F-FDOPA uptake confined to areas of enhancement (Figure 38A). 

 

Figure 38.  A 47-year-old male patient with recurrent glioblastoma (WHO grade IV).  

Post-contrast T1+C demonstrated a large extent of contrast-enhancing tissue suspect 

of recurrent tumor, but pH-weighted MRI and 18F-FDOPA PET showed differing 

areas of abnormality.  Three biopsy locations were obtained: yellow = areas of 

contrast enhancement, avid 18F-FDOPA PET uptake, and low pH on CEST; blue = 

areas of contrast enhancement, moderate 18F-FDOPA uptake, and normal pH on 

CEST; red = contrast enhancement, low pH on CEST and no 18F-FDOPA uptake. [15] 
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Three biopsies were performed (Figure 38B), and areas that demonstrated acidic tumor 

signatures were histologically confirmed to contain recurrent tumor (yellow and red targets), 

whereas areas lacking CEST contrast at 3.0 ppm (blue target) were shown to contain extensive 

necrosis and macrophage infiltration consistent with treatment effects (Figure 39). Together, 

these results suggest pH-weighted MRI using amine CEST may provide high specificity for 

metabolically active tumor regions. 

 

 

 

Figure 39.  Histology from the biopsy targets shown in Figure 38 showed evidence of 

recurrent glioblastoma with moderate cellularity and focal necrosis in areas of yellow; 

evidence of treatment effects including macrophages and extensive necrosis in areas 

of blue; and high tumor cellularity with pseudopalisading necrosis consistent with 

recurrent glioblastoma in areas of red. [15] 
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vii. Discussion 

This data supports the hypothesis that CEST imaging of the amine protons in solution can 

be used as a noninvasive pH-weighted MRI technique for investigation of malignant gliomas in 

human patients. CEST MRI provides molecular information about imaging targets that cannot be 

obtained with standard anatomical imaging techniques. We have quantified the effects of pH and 

concentration on the CEST signal obtained from the amine functional group, whose protons 

exchange at a much faster rate (thousands of Hz) than amide protons in the more commonly used 

APT technique (∼30 Hz). CEST contrast as defined by MTRasym at 3.0 ppm was shown to 

increase with both an increase in amino acid concentration and a decrease in pH within a 

physiologically relevant pH range for cancer tissues (∼6.0 to 7.0 pH). 

Although the majority of CEST phantom studies in recent years have targeted proteins or 

creatine, a select few amino acids have also been characterized. Cai et al. [125] characterized the 

CEST signature of glutamate phantoms and a rat stroke model at 7T, demonstrating that the 

CEST signal at 3.0 ppm increases with decreasing pH and increasing concentration, consistent 

with our findings. In separate studies, Cai et al [126], Kogan et al [75], Jin et al [80], and Jones et 

al [35] all observed a similar relationship between increasing CEST asymmetry at 3.0 ppm and 

decreasing pH at 7T. However, to our knowledge, our study is the first to demonstrate that the 

CEST signature of amino acid amine protons can be used as pH-weighted contrast at the more 

common clinical scanner strength of 3T. Additionally, the current study further documents the 

CEST signatures for additional amino acids, including glycine and phenylalanine, which have 

not been previously reported. 

Previous studies have explored CEST imaging in human GBM for contrast mechanisms 

such as APT and nuclear Overhauser enhancement (NOE). For example, Togao et al [58] and 
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Zhou et al [127] showed that APT can stratify patients by tumor grade and differentiate between 

radiation necrosis and active tumor, respectively. Additionally, Paech et al [71], Zaiss et al [128], 

and Xu et al [129] cleverly exploited the NOE effect at high magnetic fields to show novel 

contrast within active tumor tissues. These studies, however, were performed at high magnetic 

field strengths (>7T) where NOE and other contrast mechanisms can influence the underlying 

CEST signal. Thus, the current study, performed at 3T, appears to provide unique molecular 

information beyond that of APT or NOE. 

While APT imaging has become the most prevalent CEST technique implemented in the 

clinical setting, the slow exchange rate of the amide protons often necessitates a saturation pulse 

on the order of seconds to generate sufficient contrast [130].  Targeting the faster exchanging 

amine protons at 3.0 ppm allows for faster saturation of the target protons and shorter scan times 

per acquisition compared with APT. Further, APT has been shown to decrease with decreasing 

pH, making sensitivity to acidic tissue difficult to distinguish from other relaxation mechanisms 

[35, 131].  In comparison, amine CEST effects increase with increasing amino acid concentration 

and decreasing pH, both conditions that are found in active tumor tissue. However, it is 

important to note that the increasing effect of amine concentration on the CEST signal only 

occurs in the presence of a low pH, suggesting that amine CEST may act like a noninvasive 

“litmus test” for identifying acidic tissues. 

Some studies have proposed Lorentzian fitting of the z-spectra rather than asymmetry 

analysis, with Lorentzian peaks centered on target frequencies of interest (i.e. bulk water at 0.0 

ppm, amines at 3.0 ppm, amides at 3.5 ppm, NOE at -3.2 ppm, etc.) [44, 132, 133].  One 

advantage of this technique is that it does not require a control frequency to calculate the desired 

contrast.  However, this technique does require acquisition of a full z-spectrum throughout the 
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endogenous offset frequency range, rather than acquisition of a subset of data points around a 

particular target frequency.  This may result in fewer data points around the target frequencies, 

leading to inaccuracy in the measurements of interest.  Furthermore, unless every effect is 

accurately modeled, including pH effects that may change the properties of a peak through 

spectral blurring, unaccounted effects may lead to a poor fit to the data.  For these reasons, 

conventional asymmetry analysis was used to obtain CEST contrast during our experiments. 

There were a few limitations to these human studies that should be addressed. As the 

CEST acquisition contained between only 1-3 image slices, we were not able to collect pH-

weighted coverage of the full tumor.  Since the acquisition of this data, technical improvements 

to our sequence have allowed full brain coverage by leveraging new acceleration techniques. 

Additionally, the CEST data may be affected by the T2 properties of the tissue in addition to 

exchange properties, although our identification of hyperintense pH-weighted regions not 

corresponding to T1 or T2 lesions indicates that mechanisms besides relaxation rates are likely 

responsible for the observed contrast. Finally, although we had 20 patients with serial pH-

weighted imaging, we had only two patients in which biopsy data were available; a larger cohort 

of biopsy cases is needed to correlate histology with pH-weighted imaging. 
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Chapter V 

CEST-EPI in Human Subjects 

 

While the data collected using our CEST-GRE sequence provided evidence that pH-

weighted imaging can be used as a biomarker in human gliomas, it is limited by relatively slow 

acquisition times and limited coverage compared to other readout techniques.  In this chapter, we 

describe development of an improved pH-weighted MRI sequence and its further application in 

human gliomas. 

 

i. Echo-Planar Imaging 

Although the CEST-GRE sequence was useful for initial phantom experiments and 

collecting patient data, we are limited by long acquisition times and therefore limits on the brain 

coverage it can achieve within clinical scan times.  Because of this, we designed a CEST 

sequence that utilizes an echo-planar imaging (EPI) readout [134].  When using an EPI readout, 

a standard excitation pulse is applied, followed by a readout of the entirety of k-space before the 

next excitation by rapid switching of the gradients. This allows for a great acceleration in 

imaging time compared to a GRE sequence, where only one line of k-space is read out per 

excitation pulse. 

 Although the EPI sequence has distinct advantages in terms of imaging time, they come 

with tradeoffs as is typical in MR imaging.  EPI sequences are particularly susceptible to fat 

chemical shift artifacts [135].  These arise because protons on fat molecules have resonance 

frequencies shifted away from the bulk water resonance; because MRI uses frequency encoding 

for spatial mapping as described in Chapter I, these differences in frequency can result in a shift 
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in the position of the fat during image reconstruction.  Although chemical shift artifacts from fat 

are not often an issue within the brain tissue itself, fat tissue lining the skull of the brain can form 

a shifted oval artifact through the brain when using EPI, as seen in Figure 40A.  This problem 

can be mediated by using a direct water excitation pulse for fat suppression, which excites a 

narrower bandwidth of frequencies around water than a traditional excitation pulse and removes 

this artifact (Figure 40B). 

 

A direct water excitation pulse has been implemented in our CEST-EPI sequence, as shown in 

Figure 41.   

 

 

 

 

Figure 40.  A) EPI with a standard excitation pulse produces a fat chemical shift 

artifact through the brain (black arrow).  B) EPI with a direct water saturation 

excitation pulse produces an image without this chemical shift artifact.  
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EPI with gradient echo readout is typically also associated with signal loss in the frontal 

lobe of the brain, due to susceptibility differences between the brain tissue and the nasal cavity 

[136] (Figure 42).  

Figure 41.  The CEST-EPI pulse sequence diagram, as simulated in POET on the VD-

13D IDEAS platform (Siemens AG, Munich, Germany).  The five rows shown in the 

pulse diagram represent the analog-to-digital converter (ADC), the RF amplitude (RF), 

and the gradient magnitude in the x-, y-, and z-directions (Gx, Gy, Gz).  A) A single 

repetition of the saturation pulse and readout.  B) A magnification of the readout 

portion, which is enclosed by the gray box in (A).  C) The off-resonance RF saturation 

pulse train.  D) Spoiling gradients to remove residual transverse magnetization before 

readout.  E) A 1:2:1 spectral-spatial 90° water excitation pulse used to minimize 

artifacts from fat chemical shift.  F) Readout of every line of k-space in the imaging 

plane. 
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ii. Clinical CEST-EPI Sequence Optimization 

Effects of Advanced Shimming on Image Quality 

Although B0 inhomogeneity can be corrected for during post-processing of CEST data, it 

is desirable to reduce inhomogeneity in the acquired data as much as possible.  Our Siemens 3T 

MR systems are capable of performing an advanced B0 shim prior to data acquisition to improve 

fidelity to the bulk water resonance throughout the scan.  However, this comes at a cost of 

increased scan time, as this advanced shim takes approximately 90-120 seconds to complete.  To 

determine whether this advanced shimming had a significant effect on centering of the bulk 

water peak at 0 ppm, we acquired CEST z-spectra in a pure water phantom before and after the 

application of an advanced shim, with the standard shim used as a baseline.  Z-spectral points 

between -2.0 and 2.0 ppm in units of 0.1 ppm were acquired using a CEST-EPI acquisition with 

a saturation pulse train of 3x100 ms 6 µT Gaussian pulses.  An S0 scan was acquired with B1 = 0 

Figure 42.  High susceptibility in the inferior frontal region of the brain (yellow arrow) 

often causes signal loss when using EPI. 
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µT to normalize the z-spectra.  For each image voxel, the minimum value in the z-spectra was 

taken as the observed bulk water peak and the distance between this spectral point and 0 ppm 

was taken as the B0 inhomogeneity for that voxel.  Within an ROI covering five slices of the 

water phantom, the inhomogeneity at each voxel was extracted and plotted in a histogram for 

both the standard and advanced shim scans.  A smaller circular ROI was drawn in one corner of 

the center slice and the mean z-spectra within this circular ROI were extracted for both the 

standard and advanced shim scans.  Results are shown in Figure 43.   
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The advanced shim resulted in a qualitative decrease in inhomogeneity throughout the 

imaging target compared with the standard shim (Figures 43B&D).  The advanced shimming 

causes the measured center of the z-spectra to shift closer to the true bulk water frequency of 0 

ppm for many voxels, particularly on the periphery of the imaging target (Figures 43E).  

Histograms quantitatively showed that advanced shimming results in a larger number of voxels 

Figure 43.  Effects of advanced B0 shimming on a water phantom.  A) Phantom after 

standard shim.  B) Map of B0 inhomogeneity after standard shim as measured by 

acquisition of CEST z-spectra.  Voxels with no overlaid color have an inhomogeneity 

of 0 ppm.  C) Phantom after advanced shim.  D) Map of B0 inhomogeneity after 

advanced shim as measured by acquisition of CEST z-spectra.  Voxels with no 

overlaid color have an inhomogeneity of 0 ppm.  E) Mean z-spectra within a circular 

ROI on one slice for both standard and advanced shims.  F) Histogram of B0 

inhomogeneity values within a large multi-slice ROI for both standard and advanced 

shims.   
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having low inhomogeneity than a standard shim, with almost half of voxels having an 

inhomogeneity of ~0.0 ppm (Figure 43F).  Advanced shimming also resulted in a reduction in 

image distortion compared with the standard shim (Figures 43A&C).  This is likely due to the 

intrinsic sensitivity of the EPI k-space readout to small B0 inhomogeneities, which can cause 

distortion in the resulting image [137].  Because of the advantages in terms of z-spectral 

centering and distortion reduction conferred when using an advanced shim, we determined that 

the cost of additional scan time was justified and implemented this advanced shim for all clinical 

CEST-EPI acquisitions moving forward. 

 

B0 Inhomogeneity in Human Subjects 

Correction for B0 inhomogeneity requires acquisition of z-spectral points around the bulk 

water frequency of 0 ppm to determine which offset frequency provides minimum signal; the 

difference between that minimum frequency and 0 ppm is taken as the inhomogeneity in that 

voxel.  However, when acquiring a subset of spectral points rather than a full z-spectrum as is 

often necessary during clinical imaging, it is unclear how far away from the bulk water peak that 

spectral points must be acquired to ensure measurement of the minimum in each voxel for proper 

inhomogeneity correction.  To determine the number of spectral points around the bulk water 

peak that must be acquired in a human subject, we collected CEST data in a healthy human 

volunteer using a CEST-EPI acquisition with offset frequencies between -1.0 and 1.0 ppm in 

units of 0.1 ppm and a saturation pulse train of 3x100 ms 6 µT Gaussian pulses.  An S0 scan was 

acquired with B1 = 0 µT to normalize the z-spectra.  An advanced shim was applied prior to 

image acquisition to reduce B0 inhomogeneity throughout the brain.  For each image voxel, the 

minimum value in the z-spectra was taken as the observed bulk water peak and the distance 
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between this spectral point and 0 ppm was taken as the B0 inhomogeneity for that voxel.  Results 

are shown in Figure 44. 

 

 

Figure 44.  Measurement of B0 inhomogeneity in a healthy human volunteer.  Images 

A-D are thresholded to visualize the z-spectral distance from 0 ppm that must be 

acquired to measure the minimum in a particular voxel.  Voxels not remaining in the 

mask are within the stated inhomogeneity threshold; voxels present in the mask are 

outside of this threshold.  A) Voxels with inhomogeneity of >0.0 ppm are visualized.  

B) Voxels with inhomogeneity of >|0.1| ppm are visualized.  C) Voxels with 

inhomogeneity of >|0.2| ppm are visualized.  D) Voxels with inhomogeneity of >|0.3| 

ppm are visualized.   
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While the majority of brain voxels had B0 inhomogeneity of |0.1| ppm or greater (Figure 44A), 

almost all brain voxels fell within an inhomogeneity range of ±0.3 ppm (Figure 44D).  Because 

of this, we obtained ±0.3 ppm as an appropriate range to acquire data during clinical CEST-EPI 

acquisitions.  The exception to this window is a region of high inhomogeneity superior to the 

nasal cavity, a feature commonly seen in previous studies [138].  This region is additionally 

associated with signal dropout on EPI and acquiring further z-spectral points would likely not 

improve image quality in this region. 

 

Effects of Bandwidth on Image Quality 

Although EPI allows for accelerated imaging, it comes with a tradeoff of spatial 

distortion caused by imperfections in the rapid readout of k-space.  These distortions typically 

increase with increasing TE and decrease with increasing bandwidth [139].  Minimization of TE 

is also desired to minimize any effects of T2 weighting in the resulting images.  To determine an 

optimal TE and bandwidth for our EPI sequence, we applied this sequence to a water phantom 

using TR = 800 ms, matrix size = 128x128, FOV = 256x256 mm, slice thickness = 4 mm with no 

gap, number of slices = 25, phase encode direction = A>>P.   Samples of glutamine and water 

were placed within the water phantom to visualize the finer effects of spatial distortion.  

Bandwidth was varied between 798, 1184, and 1628 Hz/pixel and using the minimum TE at each 

bandwidth (92, 67, and 49 ms, respectively).  Bandwidth could not be raised above 1628 

Hz/pixel without the sequence failing to run on a clinical scanner.  A saturation pulse train (6 µT, 

+3.0 ppm) was applied prior to readout.  Results can be seen in Figure 45. 



 100 

 

As expected, an increase in bandwidth and subsequent decrease in minimum TE resulted in a 

decrease in distortion in the frequency encode direction (R>>L).  Therefore we used the 

maximum allowable bandwidth (1628 Hz/pixel) in all future EPI applications. 

We also tested the influence of a common acceleration technique termed generalized 

autocalibrating partially parallel acquisition (GRAPPA) on our EPI sequence [140].  GRAPPA 

allows for image acquisition using undersampled k-space, which allows for use of a shorter TE 

by reducing the length of the echo train, further reducing distortion artifacts as well.  However, 

high GRAPPA acceleration comes at a cost of a reduced signal to noise ratio (SNR).  A 

GRAPPA factor of 2 was chosen for our CEST-EPI sequence.  An example of the benefits of 

GRAPPA is shown in Figure 46. 

Figure 45.  Effects of increasing bandwidth and decreasing minimum TE on a 

phantom of water and glutamine.  A) 798 Hz/pixel, TE=92 ms; B) 1184 Hz/pixel, 

TE=67 ms; C) 1628 Hz/pixel, TE=49 ms.  A reduction in EPI distortion is seen at 

higher bandwidth and lower TE. 
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Effect of Saturation Pulse Amplitude on Traditional MT 

Previous studies have reported an increase in the CEST asymmetry in normal brain tissue 

with increasing saturation pulse amplitude B1 [141].  To test whether this trend was true for our 

clinical CEST-EPI sequence, a healthy volunteer underwent pH-weighted imaging while varying 

the saturation pulse amplitude between 1 and 6 µT.  A single S0 scan with B1 = 0 µT was used to 

normalize all data.  An ROI was drawn in a region of NAWM as defined on the S0 image and the 

mean and standard deviation of MTRasym within the NAWM region were calculated.  Results are 

shown in Figure 47.   

Figure 46.  A) A phantom of water and glutamine imaged with CEST-EPI with no 

GRAPPA acceleration (bandwidth = 1628 Hz/pixel, TE=49 ms.  B) The same phantom 

imaged with a GRAPPA factor of 2 and subsequent reduced TE (bandwidth = 1628 

Hz/pixel, TE=27 ms).  Activation of GRAPPA and subsequent reduction in TE further 

reduces image distortion. 
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As expected, results showed an increase in asymmetry within healthy tissue with increasing B1 

(Figure 47).  A small positive baseline asymmetry can therefore be expected from our clinical 

CEST-EPI sequence when using saturation pulse amplitudes of 6 µT.   

 

iii. Clinical CEST-EPI Sequence Parameters 

Parameters for the final CEST-EPI sequence used in patient data collection moving 

forward were as follows:  TE/TR = 27/375 ms, matrix size = 128x128, FOV = 256x256 mm, 

GRAPPA = 2, bandwidth = 1628 Hz/pixel, slice thickness = 4 mm with no gap, number of slices 

Figure 47.  MTRasym in NAWM of a healthy volunteer at varying saturation pulse 

amplitude.  MTRasym increases with increasing B1, likely due to traditional 

magnetization transfer effects.  Error bars denote standard deviation of MTRasym 

values with the ROI.   
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= 25, phase encode direction = A>>P.  A saturation pulse train of 3x100 ms 6 µT Gaussian 

pulses separated by a deadtime of 10 ms was applied prior to water-selective excitation and 

readout.  The total time for the readout per repetition for our CEST-EPI sequence was 

approximately 60 ms for a TE of 27 ms.  This sequence once again uses spoiler gradients prior to 

the excitation pulse to destroy any residual transverse magnetization.  The saturation offset 

frequencies were swept from -3.5 to -2.5 ppm, from -0.3 to 0.3 ppm, and from 2.5 to 3.5 ppm in 

units of 0.1 ppm for a total of 29 spectral measurements.  The acquisition time for this scan was 

5:00, and this scan was run twice on each patient.  An S0 image was also acquired by keeping all 

parameters the same and reducing the B1 amplitude to zero (number of averages = 4), with an 

acquisition time of 1:04.  Therefore, the total acquisition time for pH-weighted imaging was 

11:04.  The 100 mm of total slice coverage was enough for whole brain coverage in all glioma 

patients imaged thus far. 

Following data acquisition, all data was motion corrected using the mcflirt function in 

FMRIB Software Library (Functional Magnetic Resonance Imaging of the Brain; 

http://www.fmrip.ox.ac.uk/fsl/).  Voxel-wise inhomogeneity correction was performed by taking 

the point of lowest signal intensity between -0.3 and 0.3 ppm and setting to 0 ppm for each voxel, 

and shifting the z-spectrum accordingly.  The reference (-ω) frequency image was then obtained 

by taking the integral of the B0-corrected -3.2, -3.1, -3.0, -2.9, and -2.8 ppm images, and the 

target frequency image was obtained by taking the integral of the B0-corrected 2.8, 2.9, 3.0, 3.1, 

and 3.2 ppm images.  The difference between these images were then divided by the S0 image to 

obtain maps of MTRasym, as given by Eqn. 13. 
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iv. Healthy Subjects 

The clinical CEST-EPI sequence was first applied in healthy controls to determine 

feasibility.  Five healthy subjects received the clinical CEST-EPI protocol, which was applied 

twice.  Maps of MTRasym were calculated separately for each run of the sequence, and were then 

averaged together.  CEST data was registered to a 1.0 mm isotropic T1-weighted brain atlas 

(Montreal Neurological Institute 152).  An ROI was drawn within a region of NAWM for each 

patient and the mean MTRasym was extracted from this region.  Results are shown in Figure 48.   

 

The values of MTRasym within NAWM showed a small positive asymmetry, with a mean of 

0.82±0.05%.  This standard deviation is relatively small, and reflects the homogeneity seen 

throughout maps of MTRasym in healthy subjects.   

 

 

Figure 48.  pH-weighted data acquired in healthy human subjects using our clinical 

CEST-EPI sequence.  A) A T1-weighted healthy brain atlas.  B) Maps of MTRasym are 

fairly homogeneous throughout the brain tissue. 
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v. CEST-EPI for Biopsy Targeting 

 As described in Chapter IV, histology from biopsy samples targeted using our CEST-

GRE sequence showed that regions of high pH-weighted CEST contrast contained tumor and 

regions of low CEST contrast did not.  While these results were promising, biopsy samples were 

only obtained in two patients, and the CEST-GRE sequence was limited to only identifying 

biopsy targets within a narrow range of tumor coverage.  Because of this, histology from CEST-

targeted biopsies involving a larger patient cohort and a full-coverage scan was necessary to 

explore this technique further.  Therefore, we implemented pH-weighted CEST-EPI in the 

clinical scan protocol that patients receive for pre-operative planning prior to undergoing 

surgery. 

 Eighteen patients with suspected gliomas were enrolled in this study.  All patients gave 

informed consent and this trial was compliant with the Health Insurance Portability and 

Accountability Act and approved by the institutional review board at our institution. All patients 

received anatomical MRI on a 3T MR system (Siemens 3T Prisma) that included pre- and post-

contrast (Gd-DTPA at a dose of 0.1 mmol/kg body weight; Magnevist) axial T1-weighted 

“Magnetization-Prepared Rapid Gradient Echo” (MPRAGE), axial T2-weighted, axial FLAIR, 

and volumetric T2-weighted “Sampling Perfection with Application optimized Contrasts using 

different flip angle Evolution” (SPACE) sequences.  In addition to anatomical MRI, patients 

received 64-direction DTI and DSC-MRI as described in Chapter IV.  A subset of patients also 

received a dual-echo T2-weighted sequence that was used for quantitative T2 mapping (TE=9/108 

ms, TR=6000 ms).  Maps of CBV and CBF were calculated using established perfusion 

algorithms [142, 143].  ADC maps were calculated from DTI data as well. 
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 Patients also received the pH-weighted CEST-EPI scan as described previously.  Patients 

then underwent surgery or surgical biopsy as clinically indicated between 1 and 21 days after 

imaging (mean = 7.8±6.1 days).  Prior to surgery, CEST-EPI data was post-processed and 

registered to the post-contrast MPRAGE image.  All other anatomical scans were registered to 

the post-contrast MPRAGE image as well.  T1 subtraction maps were calculated from the pre- 

and post-contrast MPRAGE images to improve delineation of gadolinium enhancement [144].  

Within regions of FLAIR and gadolinium enhancement on the anatomical images, targets for 

biopsy were manually defined; one or two targets were typically chosen in regions of high 

MTRasym, and another one or two targets were chosen in regions of low MTRasym.  Regions of 

intermediate MTRasym were generally avoided to maximize the differences in tissue 

characteristics.  Targets consisted of a sphere 5 mm in diameter, and spheres were placed as to 

not have any overlap within the lesion.  We attempted to place a maximum of four ROIs for each 

patient; however, the size of the lesion often allowed for only two or three ROIs, and one low-

grade patient only had space for a single ROI.  During pre-operative planning, the neurosurgeon 

ensured that ROIs were not placed in any eloquent areas or within tissue that was not being 

resected.  Following placement of the ROIs, the target images were uploaded to the surgery suite 

and used intraoperatively to select tissue samples for biopsy. 

 

Histologic Markers 

 Standard H&E staining, KI-67 staining, and HIF-1α staining was performed as described 

previously on biopsy samples taken from the surgical patient cohort.  In addition, stains were 

performed to quantify the presence of VEGF, cluster of differentiation 31 (CD31), and cluster of 

differentiation 133 (CD133).  VEGF is often used as a marker of angiogenesis, which typically 
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accompanies high levels of hypoxia and acidosis [145].  CD31 is a protein that is expressed in 

certain tumors and is typically used to show the presence of endothelial cells, which can correlate 

to the degree of tumor angiogenesis [146].  CD133 is a protein that acts as a stem cell marker in 

tumor tissue [147].  All of these markers were able to provide qualitative information through 

visualization of the stain results, as well as quantitative information through the use of cell 

counting algorithms. 

 For each biopsy sample, the number of positive nuclei pixels within both the whole 

section area and tumor area was calculated.  The whole section area was determined by the 

amount of tissue on the slide, and the tumor area was the subset of this tissue determined to be 

tumor by a histopathologist (Figure 49).  The number of positive nuclei divided by both the 

whole section area and tumor area was also calculated for each sample. 

 

 

 

Figure 49.  A tissue slide from a glioma patient biopsy used for histochemical 

analysis.  A) The whole section area (WSA), delineated in green, consists of all tissue 

on the slide.  B) The tumor area (TA), delineated in red, is a subset of the WSA that is 

identified as tumor. 
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To test whether the histology data were normally distributed, we first applied a Shapiro-

Wilk normality test to all histologic marker measurements.  We found that none of the markers 

had a normal distribution of NSPP in either the whole section area or the tumor area (P<0.05 for 

all measurements).  We then paired low MTRasym and high MTRasym biopsy samples within the 

same patient and the same type of enhancing region (i.e. either FLAIR or T1+C); twelve of these 

pairs were available for comparison.  We applied a Wilcoxon matched-pairs signed rank test to 

determine whether the number of strong positive pixels (NSPP) was greater in areas of high 

MTRasym than in areas of low MTRasym for CD31, CD133, Ki67, HIF-1α, and VEGF stains.  We 

also tested whether the tumor area itself was larger in areas of high MTRasym. 
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Results from Ki67 staining showed a significantly higher number of proliferating nuclei 

in acidic regions compared with non-acidic regions for both the whole section area (Figure 50C, 

P=0.034) and the tumor area (Figure 50D, P=0.042).  This is an intuitive result as areas of 

higher tumor proliferation are expected to be more acidic.  Results from HIF-1α staining did not 

Figure 50.  A) Ki67 stain for a biopsy target within an acidic region of a GBM.  B) 

Ki67 for a biopsy target within a non-acidic region of the same GBM.  Across the 

patient cohort, acidic biopsy targets had a significantly greater number of positive 

Ki67 nuclei in acidic targets compared with non-acidic targets for both the C) whole 

section area (WSA) and D) tumor area (TA).  NSPP = number of strong positive 

pixels. 
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show a significant difference between the number of positive nuclei between acidic and non-

acidic targets, but interestingly did show that acidic biopsy targets had a significantly larger 

amount of tumor in the sample (Figure 51, P=0.0186).  Similarly, the difference between tumor 

area in acidic and non-acidic biopsy targets was trending towards significance for the Ki67 stains 

as well (P=0.0522).  While not a result of the markers themselves, these results may be due to 

the association between increased acidity and tumor growth at these biopsy sites.  Stains for 

CD31 and CD133 did not reveal any significant correlations, and VEGF staining did not reveal 

up-regulation in any of the biopsy samples measured.  

 

One limitation inherent to acquiring image-defined biopsy targets is displacement of the 

tissue during surgery.  When removing tissue, the biopsy target may shift significantly, resulting 

in uncertainty in the location of the measurement.  Despite this, we have shown that image-

Figure 51.  Comparison of the tumor area in acidic and non-acidic biopsy samples 

used for HIF-1α staining.  Acidic biopsy samples have a significantly higher tumor 

area than non-acidic biopsy samples.  This result remained significant (P<0.05) even 

when the acidic data point with the largest tumor area was removed. 
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guided biopsies can identify regions of increased Ki67 activity in a relatively small patient 

sample.  A larger cohort of patients is needed to determine whether other histologic markers are 

elevated in regions of acidity as well.   

 

vi. MTRasym Within Tumor Regions  

In addition to biopsy target selection, tumor lesions on T1+C and FLAIR images were 

contoured to measure acidity characteristics of these tumor regions prior to surgery.  Tumor 

contours were drawn using a semi-automated thresholding method.  Briefly, a large ROI was 

drawn fully covering the tumor region.  A thresholding step was then applied to retain voxels 

above a certain intensity, which varied for each image.  Manual editing was then performed to 

further refine the tumor contour. 

Because this patient cohort contained a mix of low- and high-grade tumors, T1+C 

enhancement was present on only eight out of eighteen biopsy patients.  For these eight patients, 

a paired t-test was applied to determine whether MTRasym in regions of T1+C enhancement 

differed from MTRasym within the FLAIR lesion.  Results are shown in Figure 52.   
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MTRasym was significantly greater in regions of T1+C enhancement than in FLAIR 

enhancement (P=0.0020).  This is likely due to the region of T1+C enhancement being more 

specific to aggressive, acidic high-grade tumor that has broken down the blood-brain barrier, 

while FLAIR enhancement can encompass both tumor and edematous tissue that may not be 

acidic. 

We next aimed to determine whether MTRasym differed between different tumor grades.  

Because grade II and III tumors often do not show T1+C enhancement, the tumor region was 

defined by FLAIR enhancement in all patients for consistency.  A one-way ANOVA test was 

performed to determine whether grade II, III, and IV tumors showed different tumor MTRasym.  

Results are shown in Figure 53.   

Figure 52.  MTRasym within the region of enhancement on either FLAIR or 

gadolinium-enhancing images, as measured using our pH-weighted clinical CEST-

EPI sequence (n=8).  Regions of gadolinium enhancement have significantly higher 

MTRasym. 
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One-way ANOVA showed the three groups did significantly differ (Figure 53, P=0.019), 

with Tukey’s multiple comparison tests showing that most of the variance appears to come from 

higher MTRasym in grade IV tumors compared with grades II and III (Grade II vs Grade III, 

P>0.05; Grade II vs Grade IV, P<0.05; Grade III vs Grade IV, P<0.05). 

Grade III and IV tumors were then combined so as to compare low- and high-grade 

tumors using an unpaired t-test, although the low-grade tumor group was underrepresented with 

only four tumors compared to fourteen high-grade tumors.  Grade II and III tumors were also 

combined to compare against grade IV tumors using an unpaired t-test.  Results are shown in 

Figure 54.   

Figure 53.  MTRasym within the region of FLAIR enhancement for grade II (n=4), 

grade III (n=7), and grade IV (n=7) tumors.  One-way ANOVA showed a significant 

difference between tumor grades, likely due to increased MTRasym in grade IV tumors. 
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We did not observe a significant difference between low- and high-grade tumors 

(P=0.138).  However, we did observe that grade IV tumors have significantly higher MTRasym 

within the FLAIR-enhancing region than grade II or III tumors (P=0.0049).  Grade IV tumors 

are characterized by higher levels of hypoxia, vascularization, and proliferation than grade II and 

III tumors, which are traits associated with acidity.  Therefore, it is intuitive that grade IV tumors 

display higher MTRasym on pH-weighted images.   

Survival data for these pre-surgical patients are incomplete, as this data was acquired 

within 9 months of this writing and only four out of eighteen patients had progressed.  However, 

when qualitatively looking at the data, we did not notice consistent trends between pre-surgical 

MTRasym within the T1+C or FLAIR enhancing regions and follow-up data.  This may be due to 

this data being acquired pre-surgically, rather than post-surgically as the previous glioblastoma 

data had been when using the CEST-GRE sequence.  This may indicate that even if a tumor is 

Figure 54.  A) MTRasym within the region of FLAIR enhancement for low-grade (n=4) 

and high-grade (n=14) tumors.  We did not observe a significant difference between 

the two groups.  B) MTRasym within the region of FLAIR enhancement for grades II 

and III (n=11) and grade IV (n=7) tumors.  MTRasym was significantly higher for 

grade IV tumors.  
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acidic, if that entire area is resected, it is the characteristics of the remaining tissue that indicate 

whether a patient will have short or long PFS.  This data was also only acquired at a single time 

point, rather than at follow-up time points like the previous glioblastoma study.  Because of this, 

a study using CEST-EPI at time points after surgical resection is warranted to determine whether 

the trends seen in our previous glioblastoma study are replicable.   

However, there were some interesting cases in which acidic regions on pH-weighted 

images appeared to preempt the appearance of contrast enhancement on T1+C images.  Figure 

55 shows one example of a glioblastoma patient that had high acidity within a contrast enhancing 

lesion, but also had a highly acidic lesion nearby in a region that did not have T1+C 

enhancement and had some FLAIR enhancement but did not appear overly aggressive.  This 

patient’s region of T1+C enhancement was resected during surgery.  Approximately 7 weeks 

after surgery, this patient had grown a large, necrotic enhancing lesion in the previous region of 

acidity. 

 

Figure 55.  A glioblastoma patient with a contrast-enhancing lesion (white arrow) on 

T1+C at baseline (Pre-Sx).  pH-weighed CEST-EPI showed elevated acidity within an 

adjacent region that did not appear contrast-enhancing on T1+C (gray arrow).  

Immediately after surgery, almost no T1+C enhancement remained (Post-Sx).  

However, several weeks after surgery, a contrast-enhancing lesion had developed in 

the adjacent region of acidity, which had not been resected. 
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Although not every patient who grew a new lesion of T1+C enhancement after surgery was 

predated by a strong acidic lesion at that location, our lack of serial or post-surgical data may 

have resulted in missing the appropriate time point for that information, again warranting further 

study with serial whole-brain data. 

 

vii. Repeatability 

 An important aspect of developing new imaging techniques is verifying the repeatability 

of the obtained image contrast.  Repeatability can describe the amount of intra-patient variability 

between data acquired either days apart or within the same day [148].  Within-day measurements 

may be taken back-to-back during the same scan session or after a short period of time in which 

the patient is removed from the scanner after the first measurement and repositioned before 

scanning again, a method referred to as the “coffee break” experiment [149].  Fortunately, the 

clinical CEST-EPI acquisition consists of two separate runs of the sequence, which are typically 

used for averaging and are separated by a one-minute S0 acquisition.  Comparison of the image 

contrast generated by the two runs of this sequence can provide a measure of the back-to-back 

repeatability of this technique. 

 To compare the signal intensity between two runs on a voxel-wise basis, the values of 

MTRasym from each run were extracted from the FLAIR-hyperintense region of each of the 18 

patients in the surgical biopsy study.  This data underwent linear regression using a total least-

squares (TLS) algorithm in Matlab.  Results are shown in Figure 56. 
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Figure 56.  (A-D) Four glioma patients who received pH-weighted imaging.  

Scatterplots show a voxel-wise comparison of MTRasym between runs, while the red 

line shows a linear fit to the data.  Patients A&B showed high fidelity to a slope of 

unity while patients C&D did not.  pH-weighted image contrast typically appeared 

similar between runs but appeared to vary between runs for some smaller, less acidic 

tumors.  E) The slopes between Run1 and Run2 for all 18 patients.  The mean slope 

across all patients was not significantly different from unity. 
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Across the patient cohort, slopes were not significantly different from unity (Figure 56E; 

mean slope = 1.05±0.29; P=0.50), suggesting there are not systematic differences between the 

runs.  However, the slope in some cases differed from expected (Figures 56C&D).  Qualitative 

inspection of these lesions suggested although they in some cases identified similar areas of 

elevated acidity, the magnitude of MTRasym in these regions could vary, leading to a deviation 

from unity of over 50% between the two.  This effect appeared more prevalent in smaller, less 

acidic tumors (Figures 56C&D) compared to larger, more acidic tumors.  In these larger tumors, 

acidic contrast typically appeared similar between the two runs (Figures 56A&B).   

 To quantitatively identify acidic voxels using maps of MTRasym, a region of contralateral 

NAWM was contoured on FLAIR images for each of the 18 patients used in the surgical biopsy 

study.  MTRasym was pulled from all voxels in this NAWM region from both runs for all 18 

patients.  These values were combined into a composite histogram to obtain the distribution of 

NAWM values across all patients.  A 95% confidence interval was calculated for this 

distribution [150], which had an upper MTRasym cutoff of 1.83%.  Any voxels above this value 

were characterized as “acidic”.  We then applied this threshold to the FLAIR-hyperintense region 

for all 18 patients, for both runs of the sequence.  By using the second run as a reference to the 

first, the number of true positive (TP), true negative (TN), false positive (FP), and false negative 

(FN) voxels within each FLAIR lesion were calculated.  From this, four common metrics of 

tumor contour similarity were calculated: the Dice coefficient (2*TP/[2*TP+FP+FN]), 

sensitivity (TP/[TP+FN]), specificity (TN/[TN+FP]), and accuracy 

([TN+TP]/[TN+TP+FP+FN]), for each patient [151].  Because neither run is inherently superior 

to the other, the first run was then used as a reference to the second and calculation of sensitivity 

and specificity was repeated, taking the mean sensitivity and specificity between the two runs as 
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the final value.  The Dice coefficient and accuracy remain the same regardless of which run is 

used as the reference.  The acidic fraction for each run was then obtained by dividing the acidic 

volume by the total volume of the FLAIR lesion and the intraclass correlation coefficient (ICC) 

of these acidic fractions was calculated [152].  Results for all patients are shown in Figure 57.   

 

 

This patient cohort had a mean Dice coefficient of 66±14%, a mean sensitivity of 67±14%, a 

mean specificity of 80±9%, and a mean accuracy of 77±7%.  The higher values of specificity and 

accuracy compared with the Dice coefficient and sensitivity suggest the acidic threshold is fairly 

selective and consistently classifies many voxels within the lesion as non-acidic, but may miss 

detection of some voxels which should be classified as acidic.  A comparison of the acidic 

Figure 57. A) Four measures of contour similarity (Dice coefficient, sensitivity, 

specificity, and accuracy) between acidic volume contours calculated from two runs 

of the clinical CEST-EPI sequence.  B) A comparison of the sensitivity and specificity 

of acidic or non-acidic voxels in one run being identified correctly when using the 

other run as a reference.  
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fractions between runs yielded an ICC of 0.87±0.09, which differed significantly from zero 

(P<0.0001) and is regarded as a high correlation [153-155].   

 There are a number of reasons pH-weighted contrast may change between runs.  Head 

motion during either of the runs may result in misalignment of the z-spectral volumes prior to 

asymmetry analysis.  Although these data are motion corrected prior to analysis, artifacts from 

misalignment may persist.  Even when z-spectral volumes within a run are aligned, head motion 

between the runs may result in a shift in the location of acidic lesions as well, as both runs are 

registered to anatomical images using the same transform.  Additionally, this analysis was 

performed only for a single run of the CEST-EPI sequence; for all other analyses, both runs are 

averaged after calculation of MTRasym.  A true analysis of the repeatability of our data would 

involve comparisons of these averaged scans.  For a more complete description of the 

repeatability of pH-weighted image contrast for this particular protocol, future collection of four 

repeated acquisitions in patients is necessary.  Removal and repositioning of the subject prior to 

the repeat scans (i.e. the coffee break experiment) may also allow for a more robust measure of 

repeatability compared to back-to-back scanning. 

 

viii. Comparison of Common Quantitative Imaging Contrasts 

A goal in the development of novel imaging techniques is to provide unique or 

supplemental contrast compared with currently available image contrasts.  Therefore, we 

compared this pH-weighted imaging technique against common imaging techniques including 

quantitative T2 mapping, diffusion imaging, and perfusion imaging.  Maps of ADC, T2, CBF, and 

CBV were registered to each patient’s FLAIR image.  Maps of CBF and CBV were normalized 

by drawing an ROI in a region of NAWM and dividing the values of each map by the mean 
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value within the NAWM region.  Values of ADC, T2, CBF, and CBV were then pulled from the 

FLAIR-enhancing region and plotted against MTRasym on a voxel-wise basis. 

 

Figure 58. Comparison of quantitative image contrasts in a patient with GBM.  

Anatomical images show a gadolinium-enhancing nodule along with a larger region 

of FLAIR enhancement.  The FLAIR-enhancing region shows elevated MTRasym, 

ADC, and T2, along with hypoperfusion on CBF and CBV maps (black arrow).  pH-

weighted imaging shows a highly acidic lesion in the gadolinium enhancing nodule 

that is not hyperintense on ADC or T2 maps (gray arrow).  Scatterplots show an 

apparent trend between MTRasym and ADC but not T2, CBF, or CBV.   
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 Results for a patient with GBM are shown in Figure 58.  pH-weighted MRI showed a 

highly acidic lesion in the area of T1+C enhancement and more diffuse acidity in the region of 

FLAIR enhancement.  ADC and T2 maps both showed elevated values within the FLAIR-

enhancing region, but did not show highly elevated values in the highly acidic nodule.  This 

suggests that pH-weighted imaging provides unique contrast compared to these two metrics.  

Despite this, scatterplots showed an apparent trend between increased ADC and increased 

MTRasym.  This trend was not visible on T2 scatterplots.  Perfusion imaging showed decreased 

CBF and CBV within the FLAIR-enhancing region.  This suggests hypoxia in this region, which 

may result in increased acidity as seen on pH-weighted images.  However, a relationship 

between MTRasym and increased CBF or CBV were not apparent on scatterplots.   
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Figure 59. Comparison of quantitative image contrasts in a patient with anaplastic 

glioma.  Anatomical images show a diffuse area of FLAIR enhancement.  An acidic 

nodule can be seen that is also hyperintense on ADC and T2 maps (black arrow).  

However there are two additional lesions present on ADC and T2 maps that are not 

present on pH-weighted MRI (gray arrows).  Maps of CBF and CBV largely show 

hypoperfusion in the FLAIR-enhancing area.  Scatterplots did not show any apparent 

relationship between MTRasym and the other four quantitative imaging metrics.   
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Results for a patient with anaplastic glioma are shown in Figure 59.  pH-weighted MRI 

showed a small acidic lesion within one region of FLAIR enhancement but not the remaining 

diffuse FLAIR enhancement.  ADC and T2 maps both appeared to show elevated contrast in this 

acidic region as well as two other non-acidic regions within the FLAIR-enhancing area.  

Scatterplots did not show any apparent relationship between MTRasym and ADC or T2.  Perfusion 

maps again showed decreased CBF and CBV within the FLAIR-enhancing area, although the 

scatterplots again did not show an apparent relationship between MTRasym and CBF or CBV. 

 These examples indicate that pH-weighted MRI provides unique contrast compared with 

other quantitative MRI techniques.  Survival analysis of this patient cohort is warranted once 

survival data are complete to determine whether pH-weighted MRI can show increased 

predictive value of PFS and OS compared to these more traditional quantitative contrasts. 

 

ix. 18F-FDOPA PET in Surgical Biopsy Patients 

PET imaging using 18F-FDG is the most commonly used radiotracer method for 

examining metabolic activity of malignant tumors. Despite its widespread use in oncology, 18F-

FDG often provides relatively poor contrast in the brain between background tissue and tumor 

because of high uptake in normal brain tissue [156].  3,4-dihydroxy-6-[18F]-fluoro-L-

phenylalanine (18F-FDOPA) is an amino acid analog PET radiotracer.  Compared with 18F-FDG, 

18F-FDOPA has shown improved contrast between tumor and normal brain tissue in patients 

with high-grade glioma because of elevated amino acid transportation in malignant tumor cells 

[157].  We have previously shown that 18F-FDOPA PET uptake can serve as a biomarker for 

survival in GBM patients undergoing treatment with bevacizumab [150] (Figure 60).   
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In addition, other studies have shown that 18F-FDOPA can be predictive of tumor grade 

and proliferative activity [158].  We therefore hypothesized that regions of increased 18F-FDOPA 

uptake may correlate with regions of increased pH-weighted contrast.  This correlation may also 

occur due to the fact that 18F-FDOPA is an amino acid analog, and amines of the type found on 

amino acids are targeted during pH-weighted imaging.  Because 18F-FDOPA PET imaging 

Figure 60. Quantitative analysis of serial 18F-FDOPA PET data can be used to stratify 

overall (A) and progression-free (B) survival in GBM patients (n=24) [150].  

Stratifications shown in this figure have a statistical significance of P<0.05. 
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requires the use of an exogenous and radioactive tracer, noninvasive and endogenous imaging 

methods like amine CEST are preferred for identifying these regions of tumor.  Furthermore, 

CEST MRI has higher spatial resolution than PET imaging in general, allowing for finer 

delineation of the tumor contrast.  During the course of our human subject data collection, 18F-

FDOPA PET data were acquired whenever possible. 

 

Quantitative Comparison of 18F-FDOPA Uptake With Acidic Tissue 

Eight patients received 18F-FDOPA PET imaging within one month of their pre-operative 

MRI, which included pH-weighted CEST-EPI.  Previous studies have shown that 18F-FDOPA 

data can be normalized to the basal ganglia to account for differences in body weight and 

injected dose, as the basal ganglia take up a large amount of the tracer that is relatively consistent 

across the population [150].  Therefore, all 18F-FDOPA PET data were normalized by drawing 

an ROI on the basal ganglia and extracting the mean uptake value from this ROI.  If the tumor 

region approached the location of the basal ganglia, that hemisphere’s ganglion was not used.  

After normalization, PET data was registered to the patient’s T1+C image.  As each of these 

patients had FLAIR data acquired as well, each FLAIR image was registered to its corresponding 

T1+C image.  Tumor contours were then drawn on each FLAIR image using the semi-automated 

thresholding method described previously.  FLAIR data were used because five of these tumors 

were non-enhancing on T1+C images.  For each voxel within the FLAIR-hyperintense region, 

normalized 18F-FDOPA PET uptake as well as MTRasym at 3.0 ppm were extracted and plotted 

against each other for each patient.  Linear regression was then performed on the data to 

determine whether there was a positive relationship between MTRasym and 18F-FDOPA uptake.  

Scatterplots for all eight patients are shown in Figure 61. 
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For all eight patients, the slope between MTRasym and 18F-FDOPA uptake within the 

FLAIR-enhancing region was positive (Figure 61), suggesting a general trend between increased 

18F-FDOPA uptake and increased MTRasym.  A one-sample t-test revealed that these slopes 

Figure 61.  (A-H) Scatterplots comparing 18F-FDOPA uptake to MTRasym on a voxel-

wise basis within the FLAIR-enhancing regions of eight glioma patients.  Axes differ 

between patients to provide the best visualization of the data for each patient.  18F-

FDOPA uptake has been normalized to uptake in the basal ganglia (BG).  The slope 

obtained by linear regression of the data is shown in red.  I) The slopes obtained by 

linear regression of the data for patients A-H are all greater than zero. 
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differed significantly from zero, with a mean of 1.69±1.12 (Figure 61I; P=0.0037), supporting 

this hypothesis. 

To further test this quantitatively, both the upper 20% threshold and lower 20% threshold 

for 18F-FDOPA uptake values within the FLAIR-enhancing region was calculated for each 

patient.  Mean MTRasym values within these regions were then calculated separately, 

hypothesizing that the region of high 18F-FDOPA uptake values would have higher mean 

MTRasym than the region of low 18F-FDOPA uptake values.  A paired t-test was used to 

determine whether high-uptake and low-uptake regions had significantly different MTRasym.   

 

Figure 62.  Within the FLAIR-enhancing region of eight glioma patients, MTRasym is 

higher within the upper 20% of 18F-FDOPA uptake values than within the lower 20% 

of 18F-FDOPA uptake values, indicating an overall correlation between 18F-FDOPA 

uptake and acidity as measured by pH-weighted MRI. 
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Results showed that regions of high tracer uptake had significantly higher MTRasym than 

regions of low tracer uptake (Figure 62, P=0.0020).  Additionally, MTRasym was higher in high-

uptake regions than in low-uptake regions for all eight patients with available 18F-FDOPA PET 

data.  Examples of patients with pH-weighted MRI and 18F-FDOPA PET data are shown below.   

 

 

 

 

Figure 63.  Three malignant glioma patients with 18F-FDOPA lesions co-localized 

with acidic lesions seen on pH-weighted MRI (black arrows). 18F-FDOPA uptake is 

normalized to the basal ganglia. 
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Qualitative Comparison of 18F-FDOPA PET and pH-weighted MRI in Human Gliomas 

Figure 63 shows three patients with 18F-FDOPA lesions closely matching acidic lesions 

seen on pH-weighted imaging.  In all three of these cases, the tumor was an anaplastic 

oligoastrocytoma (WHO grade III) and was non-enhancing on T1+C but enhancing on FLAIR.  

Figure 63A shows two distinct lesions co-localized on both pH-weighted MRI and PET anterior 

and posterior to an abnormally large ventricle.  While both of these regions are enhancing on 

FLAIR, there are many other regions enhancing on FLAIR that do not display these elevated 

acidic or elevated 18F-FDOPA uptake characteristics.  Figures 63B&C appear to show a nodule 

within the FLAIR lesion that is enhancing on both pH-weighted MRI and PET, while other 

FLAIR-enhancing regions appear normal on pH-weighted MRI and PET. 

 However, pH-weighted data appeared to provide unique information compared with PET 

in two out of the eight patients examined.  Figure 64 shows two patients with GBM.  The patient 

in Figure 64A appears to have a large posterior lesion in the right hemisphere on both pH-

weighted MRI and PET.  However, another lesion can also be seen on PET superior to this that is 

not apparent on pH-weighted MRI.  Conversely, the patient in Figure 64B shows a single lesion 

on PET within the FLAIR-enhancing area, but appears to show two distinct regions of high 

acidity on pH-weighted MRI.  This suggests that although pH-weighted MRI and 18F-FDOPA 

are often sensitive to the same lesions, they can sometimes provide complimentary information 

as well.   
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x. pH-weighted Imaging in Patients Treated with Bevacizumab 

 GBMs and other malignant gliomas flourish and accelerate their growth rates by both co-

opting existing vasculature and inducing neovascularization [159, 160], primarily through the 

overexpression of vascular endothelial growth factor (VEGF).  VEGF is a signal protein that 

stimulates angiogenesis, and its overexpression can allow for the growth of new blood vessels to 

supply tumors with an adequate blood supply as they increase in size.  Because of this, a class of 

therapeutics has been developed to combat the formation of these new blood vessels.  

Bevacizumab is a humanized monoclonal antibody to VEGF and is currently the only anti-

Figure 64.  Two GBM patients each with an 18F-FDOPA lesion that is co-localized 

with an acidic lesion seen on pH-weighted MRI (black arrows).  Patient A has an 

additional lesion seen on PET that is not present on pH-weighted MRI (gray arrow), 

and patient B has an additional lesion seen on pH-weighted MRI that is not present on 

PET (gray arrow).  18F-FDOPA uptake is normalized to the basal ganglia. 
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angiogenic agent FDA-approved for use in recurrent in GBM [161].  Bevacizumab is often used 

as a second-line treatment when standard radiotherapy and concurrent temozolomide has failed.  

As anti-angiogenic agents are expected to have a significant and direct impact on tumor 

vasculature, there is a growing interest in biomarkers for evaluating the changes in tumor 

characteristics following treatment. 

 

 

We have recently shown that changes in cerebral blood volume (CBV) and cerebral 

blood flow (CBF) can stratify GBM patients by overall and progression-free survival following 

Figure 65.  Changes in relative CBV (RBV) and relative CBF (RBF) following 

treatment with bevacizumab can stratify GBM patients (n=45) by overall and 

progression-free survival [162].  oSVD and sSVD represent perfusion deconvolution 

methods that are discussed in the publication. 
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treatment with bevacizumab [162] (Figure 65).  Although our results suggested that a decrease in 

CBV and CBF following treatment was associated with an improved prognosis, it remains 

unclear whether the anti-angiogenic therapy results in increased hypoxia in the tumor region or 

whether it results in a normalization of the vasculature by removing leaky and abnormal blood 

vessels while repairing the blood-brain barrier.  Some evidence exists that either situation might 

occur depending on the individual patient.  As acidity of the microenvironment is a downstream 

characteristic of hypoxia as described earlier, we might expect changes in hypoxia to result in 

changes in pH-weighted image contrast following treatment with bevacizumab.  Therefore, we 

implemented pH-weighted CEST-EPI in GBM patients undergoing treatment with bevacizumab 

to determine what changes occurred.   

 

Data Acquisition in Bevacizumab Patients 

Treatment with bevacizumab often results in a reduction in the volume of tumor contrast 

enhancement, CBV, and CBF as the vasculature is normalized and the growth of leaky blood 

vessels is inhibited.  As these changes in the tumor microenvironment may cause alterations in 

pH, we tested whether pH-weighted image contrast changes following bevacizumab treatment, 

and whether growing acidic regions on serial CEST MRI scans can be predictive of future tumor 

growth as seen on anatomical MRI. 

Patients with recurrent GBM who were selected for treatment with bevacizumab were 

enrolled in this prospective study.  All patients gave informed consent and this trial was 

compliant with the Health Insurance Portability and Accountability Act and approved by the 

institutional review board at our institution.  As of this writing, three patients have been enrolled.  

All patients received anatomical MRI on a 3T MR system (Siemens 3T Prisma) that included 
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pre- and post-contrast (Gd-DTPA at a dose of 0.1 mmol/kg body weight; Magnevist) axial T1-

weighted two-inversion contrast MPRAGE (MP2RAGE), axial T2-weighted, and axial FLAIR 

sequences.  In addition to anatomical MRI, patients received multi-b-value DWI with b-values 

ranging from 0 to 5000 s/mm2; q-space imaging, another form of DWI that was not used in this 

analysis; and DSC-MRI.  Patients also received a pH-weighted CEST-EPI scan.  Enrolled 

patients received a pre-treatment scan within one week prior to bevacizumab treatment and a 

post-treatment scan approximately six weeks following the start of treatment.  Standard clinical 

scans were then acquired following these research scans whenever clinically indicated. 

 For each time point, CEST-EPI data was post-processed as described previously to 

generate maps of MTRasym.  FLAIR and T2-weighted images were registered to the post-contrast 

MPRAGE image, with the second inversion of the MP2RAGE sequence used as the MPRAGE 

image.  T1 subtraction maps were calculated by normalizing the pre- and post-contrast MPRAGE 

images to z-score images, registering the pre-contrast image to the post-contrast image, and then 

subtracting the pre-contrast image from the post-contrast image [144].  This T1 subtraction map 

technique has the effect of increasing the contrast-to-noise of contrast enhancement in the tumor 

region compared to the surrounding tissue as well as reducing unwanted T1 shortening effects.  

The tumor region was contoured on both FLAIR and post-contrast T1-weighted images using a 

semi-automated thresholding method.  The mean MTRasym value was extracted from within these 

contours to determine whether the pH-weighted contrast changes following treatment.  Also, 

serial images including follow-up clinical images were qualitatively examined to determine 

whether changes in pH-weighted CEST MRI could be predictive of future tumor growth. 
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Bevacizumab Patient Results 

  All three patients showed a reduction in MTRasym within the FLAIR-hyperintense region 

following treatment, with a mean reduction of 0.53±0.45%.  All three patients also showed a 

reduction in MTRasym within the contrast-enhancing region following treatment, with a mean 

reduction of 0.79±0.83%.  Qualitatively, we observed an overall decrease in acidity following 

treatment within the tumor region (Figure 66). 

 

 

Figure 66.  Anatomic and pH-weighted data for two recurrent GBM patients (A&B) 

both before and after treatment with bevacizumab.  A reduction in pH-weighted image 

contrast within the tumor region is seen following bevacizumab therapy in both 

patients. 
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Interestingly, we also saw that in two of the three patients, the appearance of an acidic 

lesion preceded the appearance of a contrast-enhancing lesion in the same location.  Figure 67 

shows a bevacizumab patient with a highly acidic necrotic core at baseline and post-treatment, 

who develops a smaller acidic lesion adjacent to the necrotic core on the post-treatment scan, 

despite a lack of contrast enhancement on the T1 subtraction image.  At two follow up time 

points, a contrast-enhancing lesion has appeared in that location and appears to be growing in 

size. 
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 Figure 68 shows a bevacizumab patient with a contrast-enhancing lesion at baseline that 

that shows greatly reduced contrast enhancement following treatment.  The contrast-enhancing 

lesion shows a strongly acidic signature at baseline, and although the post-treatment scan also 

shows an acidic lesion in this region, it shows a reduction in acidity compared to baseline.  

Figure 67.  Serial anatomic and pH-weighted data for a recurrent GBM patient treated 

with bevacizumab. 
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However, the post-treatment scan also shows an acidic lesion appearing superior to the right 

ventricle, despite a lack of contrast enhancement in this region on the T1 subtraction image.  

After two follow-up time points, a contrast-enhancing lesion has again appeared in this area and 

appears to be growing in size, while the region that showed a reduction in acidity following 

treatment is not developing further contrast enhancement.  Similar to the results from the cohort 

of patients imaged using single-slice CEST-GRE, these results suggest that changes in acidity as 

measured with serial CEST-EPI can be predictive of future tumor growth. 

 

Figure 68.  Serial anatomic and pH-weighted data for another recurrent GBM patient 

treated with bevacizumab. 
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CHAPTER VI 

Advanced CEST Techniques 

 

Development of novel and creative imaging techniques is essential to forward progress in 

the radiological sciences.  In this chapter, we explore two recently developed advancements that 

build upon pH-weighted CEST imaging.   

 

i. Multi-Echo CEST-EPI 

Our group has recently developed a quadruple-echo EPI readout for use in dynamic 

susceptibility contrast (DSC) perfusion imaging.  This readout employs two gradient echoes at 

14.0 ms and 34.1 ms, followed by an asymmetric spin echo at 58.0 ms and a standard spin echo 

at 92.4 ms.  From this information, the readout echoes can be used to calculate quantitative T2* 

maps [163] from the gradient echo data and T2 maps from the spin echo data.  By implementing 

this quadruple echo readout in our CEST-EPI sequence, we can obtain these spin echo contrasts 

in addition to the first two echoes which provide a similar information to our traditional CEST-

EPI readout.  As short and long echoes are sensitive to more and less restricted water molecules, 

respectively, these echoes can in theory provide information on different tissue components. 

Multi-echo CEST EPI was implemented clinically in a cohort of five glioma patients, 

replacing the standard CEST-EPI sequence acquired in patients prior to surgery and used for 

biopsy target selection.  Scan parameters were TE = 14.0/34.1/58.0/92.4, TR = 428 ms, matrix 

size = 128x104, FOV = 256x217 mm, GRAPPA = 3, bandwidth = 1628 Hz/pixel, slice thickness 

= 4 mm with no gap, number of slices = 25, phase encode direction = A>>P, number of runs = 2.  

A saturation pulse train of 3x100 ms 6 µT Gaussian pulses separated by a deadtime of 10 ms was 
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applied prior to water-selective excitation and readout.  The saturation offset frequency was 

swept from -3.5 to -2.5 ppm, from -0.3 to 0.3 ppm, and from 2.5 to 3.5 ppm, in units of 0.1 ppm 

for a total of 29 spectral measurements.  An S0 image was also acquired by keeping all 

parameters the same and reducing the B1 amplitude to zero (number of averages = 4). 

Although contrast was in some cases similar between the four echoes, some patients 

displayed more highly acidic lesions at longer echo times.  An example is shown in Figure 69.  

At a short echo time of 14 ms, a small lesion is visible in the left hemisphere.  However, at 

higher echo times, the original lesion shows increasingly higher contrast and additional lesions 

appear in the right hemisphere.  This may be due to these regions having less restricted water 

molecules that that are more highly weighted using longer echoes. 

 

Figure 69.  Comparison of MTRasym calculated with four different echoes using a 

multi-echo CEST-EPI readout in a high-grade glioma patient.  Some regions (white 

arrows) appear more acidic when measuring contrast using longer echoes. 
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To determine the effect of differing echo time on the noise characteristics within tissue, 

ROIs were drawn within regions of NAWM for all patients.  The mean value of MTRasym along 

with the standard deviation of MTRasym was pulled from the NAWM region for each patient and 

each echo.  We observed that while the mean value of MTRasym remaining fairly constant, the 

noise increased with increasing echo time (Echo 1, MTRasym = 1.00±0.64%; Echo 2, MTRasym = 

1.03±0.72%; Echo 3, MTRasym = 1.07±1.05%; Echo 4, MTRasym = 1.06±1.41%).  This is an 

intuitive result as waiting longer to record the echo data will result in lower SNR.  

 

ii. Quantitative pH Mapping 

 When processing pH-weighted data, the resultant values of MTRasym calculated for each 

image voxel are a nonlinear function of the variables described in Equation 11.  Variables related 

to the saturation pulse train, image acquisition parameters, and proton resonance frequencies are 

known when imaging, leaving the relaxation rates of tissue and the amine pool, as well as the 

amine concentration and exchange rate, unknown.  The amine relaxation rates T1b and T2b have 

been shown to have a negligible effect on the resulting contrasts within a typical range of 

unbound metabolite values (Figure 14).  Therefore, the remaining unknown variables are T1a, T2a, 

and the amine concentration and exchange rate.  The exchange rate is dependent upon pH as 

given by Equation 17.  The relaxation rates T1a and T2a can be measured for each voxel by a 

series of anatomical T1-weighted and T2-weighted images, respectively.  While we currently 

have no accurate method for measuring the amine concentration on a voxel-wise basis, it can be 

estimated as 50 mM for the purpose of these calculations as described in Chapter II,  leaving pH 

as the only unknown variable influencing MTRasym.  Therefore, using our CEST simulation in 
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conjunction with maps of MTRasym generated by our pH-weighted CEST-EPI sequence, we can 

quantitatively estimate pH in each voxel if T1a and T2a in that voxel are also known. 

 

Quantitative pH maps in Human Subjects 

CEST-EPI data were acquired in five clinical glioma patients using the multi-echo pH-

weighted CEST sequence described previously.  For T1 measurement, a series of four spin-echo 

inversion-recovery EPI sequences were acquired with a TE/TR = 85/10000 ms and variable 

inversion times (TIs) of 50, 400, 1100, and 2500 ms.  The data were fit using a nonlinear least-

squares algorithm (lsqnonlin) in Matlab via the inversion recovery signal equation 

𝑀 = 𝑀)(1 − 2𝑒;5�/5> + 𝑒;5�/5>)            (19) 

to obtain a quantitative map of T1.  For T2 measurement, the 14 ms and 92 ms echoes of the S0 

multi-echo readout were used to calculate a T2 map.  The data were fit to the exponential signal 

equation 

𝑀 = 𝑀)(1 − 𝑒;5�/5>)𝑒;5�/56         (20) 

using Matlab.  T1 maps were then resampled to the resolution of the CEST data.  No resampling 

of T2 maps was necessary because they were calculated from the S0 image.    

 The clinical CEST-EPI simulation described in Chapter II was used to estimate pH for 

each image voxel.  T1 and T2 for each voxel were input into the simulation using an initial 

condition of pH=7.0.  The difference between the resulting value of MTRasym and the 

experimentally measured value of MTRasym was then minimized on a voxel-wise basis using the 

lsqnonlin function in Matlab to obtain quantitative pH maps.  The region of abnormal FLAIR 

enhancement for these patients was contoured using a semi-automated thresholding method as 



 143 

described previously and values of MTRasym as well as quantitative pH were pulled from this 

region for all voxels and compared to examine the relationship between the two contrasts.  

 

 

Two examples of quantitative pH maps are shown in Figure 70.  Results showed that 

although healthy tissue appeared to be more differentiated from tumor tissue, the area of acidity 

seen did not appear significantly different between pH-weighted images and quantitative pH 

maps.  Because these quantitative pH maps are corrected for T1 and T2 effects by incorporating 

them into the simulation, this indicates that although the CEST effect is dependent on T1 and T2 

properties at low pH, the effects of T1 and T2 do not significantly alter the observed contrast or 

Figure 70.  Quantitative pH maps in two high-grade glioma patients (A&B) and 

their comparison with pH-weighted images expressed by MTRasym.  Regions of 

acidity appear consistent between pH-weighted and quantitative pH images.   
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areas of acidity seen on pH-weighted images.  Nonetheless, quantitative pH maps are a better 

way to display information about heterogeneous acidity, as units of pH are more intuitive and 

correction for T1 and T2 effects is more robust. 

 

A comparison of MTRasym and quantitative pH for all image voxels within the FLAIR-

enhancing lesion of two high-grade glioma patients is shown in Figure 71.  Linear regression 

showed that the slope for both comparisons was significantly different from zero (P<0.0001), 

although the data did not appear linear and rather appeared to have a more negative slope 

between pH values of 6.2 and 7.0 than between 7.0 and 8.0.  This is reasonable to expect due to 

the more negative slope between MTRasym and pH at pH values below 7.0 as seen in simulations.  

The vertical variance in MTRasym at each pH value is likely due to the effects of compensating 

Figure 71.  Comparison of MTRasym on pH-weighted images and pH on quantitative pH 

maps for the two high-grade glioma patients (A&B) shown in Figure 70.  The dotted 

line represents MTRasym = 0%.  The solid line represents a linear fit to the data. 
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for T1 and T2 in our quantitative pH model, as regions of high T1 or T2 and high MTRasym may 

result in the same pH value as a region of lower T1 or T2 and a lower MTRasym.   

 

Quantitative pH Mapping in Mice 

 The quantitative pH mapping technique was then applied to pH-weighted MRI data 

acquired in a mouse tumor model as described in Chapter III, Section iv.  On a subset of three 

mice, in addition to collection of the MSME sequence for T2 mapping, a series of three T1-

weighted fast low-angle shot (FLASH) sequences were acquired with flip angles of 10º, 20º, and 

30º.  Other parameters were TE/TR = 3.8/135 ms, FOV = 2x2 cm, matrix size = 256x256, slice 

thickness 1 mm, slices = 11, bandwidth = 44642 Hz, total acquisition time = 1:08.  The data were 

fit to Eqn. 19 using Matlab to generate a T1 map.  The T1 map and T2 map were then registered 

to the CEST data and downsampled to a resolution of 128x128 to improve processing time.  

Quantitative pH maps were calculated using the lsqnonlin function in Matlab as described 

previously.  An ROI was then drawn encompassing the brain over all five slices of CEST data.  

Values of MTRasym and pH were pulled from this ROI and compared on a voxel-wise basis. 
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Quantitative pH maps for two mice are shown in Figure 72.  Similar to human data, the contrasts 

provided by maps of MTRasym and pH were fairly similar.  Scatterplot data again showed a 

relationship between MTRasym and pH that resembled the simulation data. 

Some previous studies have attempted to correct for T1 relaxation effects in CEST 

experiments.  Zaiss et al. proposed a simple voxel-wise linear correction of T1 when using a 

novel inverse z-spectra method of calculating CEST contrast in a stroke model [164].  This T1 

correction was then also applied in human glioblastoma at 7T [128].  However, to our 

knowledge, our technique is the first to implement a correction for T2 during analysis of 

quantitative CEST data.  Our technique also utilizes a nonlinear correction for T1 and T2 derived 

from the Bloch-McConnell equations rather than a simple linear correction.  

Figure 72.  Quantitative pH maps in glioma-bearing mice (A&B) and their 

comparison with pH-weighted images expressed by MTRasym.  Regions of acidity 

appear fairly consistent between pH-weighted and quantitative pH images.  

Scatterplots comparing MTRasym to quantitative pH on a voxel-wise basis for each 

mouse are shown on the right. 
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One limitation of this model is that it appears to produce very few pH values below 

approximately 6.2 for either human or pre-clinical imaging.  This is likely due to the peak that 

occurs at a pH of approximately 6.2 in the simulated curve of MTRasym versus pH at both field 

strengths that is used as the basis of this algorithm.  Because our quantitative pH solver uses an 

initial condition of pH=7.0, the algorithm does not proceed past this peak in most cases.  

Although tissue pH values below 6.2 are likely uncommon, pH values just below 6.2 would be 

expected to have similar values of MTRasym as pH values just above 6.2.  
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CHAPTER VII 

Conclusions 

 

Tissue acidification in gliomas serves as an important biomarker for tumor proliferation 

and treatment response.  This work describes the development of a novel application of CEST 

MRI that can be used for pH-weighted imaging of the brain.  MRI has advantages in spatial 

resolution over other imaging modalities such as MRS and PET, which is important in the 

context of brain tumor imaging due to the heterogeneity of many tumors.  A theoretical basis for 

pH-weighted contrast using CEST MRI targeted to amino acid amine protons was derived from 

the Bloch-McConnell equations, and the effects of scan parameters and tissue properties on the 

CEST signal were described.  Our pH-weighted sequence was applied in animal models of 

glioma, showing that pH-weighted MRI provides unique contrast within the tumor region and 

can serve as a biomarker in mice undergoing dendritic cell therapy.  To our knowledge, we also 

performed the first in vivo comparison of measured tissue pH with pH-weighted imaging in an 

animal model.  Our pH-weighted sequence was then applied serially in a cohort of human 

glioblastoma patients undergoing standard of care radiochemotherapy.  The resulting contrast 

served as a biomarker for progression-free survival and was able to identify regions of 

proliferating tissue in select patients with biopsy data.  Over time, our pH-weighted sequence 

was upgraded from a GRE readout to an EPI readout using manual modifications to the source 

code of these sequences.  This allows us to collect full coverage of the brain, with additional 

spectral points and multiple averages within a clinically feasible scan time.  We have shown a 

correlation between acidic contrast on pH-weighted imaging and uptake of 18F-FDOPA PET, an 

amino acid analog tracer sensitive to tumor proliferation.  We have also implemented our pH-
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weighted sequence in a cohort of glioma patients prior to surgery and demonstrated that 

histological markers of tumor proliferation are elevated in regions of acidity.  We have shown 

that acidity as measured by pH-weighted MRI decreases following bevacizumab treatment, and 

that acidic lesions can sometimes be indicative of tumor growth at later time points.  Finally, we 

have described some advanced techniques related to the acquisition and processing of pH-

weighted MRI.  We have introduced a multi-echo technique sensitive to multiple water 

compartments and that can be used to calculate T2 maps.  We have also developed an algorithm 

for calculating quantitative pH maps corrected for T1 and T2 using our previously described 

simulation, which incorporates the Bloch-McConnell equations as well as clinical scan 

parameters.   

Although the work presented here has advanced our knowledge of CEST MRI and pH-

weighted imaging in gliomas, further work remains to be done.  Many ailments of the brain are 

associated with tissue acidification, including stroke; research on the effectiveness of pH-

weighted MRI for delineating salvageable tissue is needed in these patients.  Furthermore, 

tumors in other organs often present acidification of the tissue as well.  Although there are 

logistical hurdles that must be surmounted in other settings such as prostate or thoracic imaging, 

pH-weighted imaging may show value in these settings and should be explored.  Regardless, this 

work has described an encompassing development of our technique by incorporating simulations, 

phantom testing, animal experiments, and human data to show that CEST MRI can serve as a 

pH-weighted biomarker in gliomas. 
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Appendix A 

CEST Simulation Code (Matlab) 

% function [pHcurve] = CEST_Simulation_Iterative_v5(parA,parB)  %% Activate 
when solving 
  
%% MASTER SWITCH FOR CODE %% 
% 1 - Signal vs ppm, MTRasym vs ppm 
% 2 - Signal vs time, MTRasym vs time 
% 3 - MTRasym vs pH 
%% MASTER SWITCH FOR CODE %% 
  
% x0 = [500, 5]; 
% ExchRateFunction =@(x) data - CEST_Simulation_Iterative_v5( x(1),x(2) ); 
% x = lsqnonlin( ExchRateFunction,x0 ); 
  
M_az_spectra = zeros(101,1); 
M_bz_spectra = zeros(101,1); 
M_cz_spectra = zeros(101,1); 
MTRasym = zeros(50,1); 
  
timespectra = zeros(101,50);  %% #TimePoints 
timeMTRasym = zeros(50,50);   %% #TimePoints 
m_spectra = zeros(101,50);   
m_MTRasym = zeros(50,50);   
  
pHcurve = zeros(1,51);    %% DEACTIVATE when solving 
% pHcurve = zeros(1,12);    %% ACTIVATE when solving 
ppmxaxis = linspace(-5,5,101); 
ppmxposaxis = linspace(0.1,5,50); 
  
% data = [15.2231   18.64195    20.38035    22.87845    22.40435    18.17615    
13.27825    9.30111 4.8995  2.573925    1.791075    1.667245]; % sinc6  
data = [18.7587 22.0734 26.3334 28.0175 27.12   22.4367 18.7575 14.2706 
7.90236 4.23159 1.45495 1.51561]; %gauss 6 uT 
% data = [20.1494     22.6863   25.1745   25.4579   21.4094   17.7415   
10.3182   6.094     3.2317    2.577   2.2421    2.6649]; %gauss 4 uT 
% data = [15.0552     16.7991   18.7687   18.747    15.857      12.8547   
7.4873    4.4007  2.5025  1.8358  1.875   2.2028]; %sinc 4 uT 
% data = [ 6.30315  5.65791 11.0303 11.4946 2.54487 1.39609 6.00787 3.96174 
1.76724 1.00656 6.89547 8.74515 0.639372    1.98446 5.14876 5.88682] ; % 7T 
Fit 
 
% pHcurve = zeros(1,16); % 7T Fit 
% pHarray = [6.948  6.962   6.784   6.704   6.85    6.85    6.55    6.65    
6.71    6.92    6.9 6.8 6.72101 6.67101 6.56101 6.52101]; 
  
% pHarray = linspace(5.4,7.6,12);    %% ACTIVATE when solving 
pHarray = linspace(4,9,51);     %% DEACTIVATE when solving 
 
% ExchRateArray = parA + (parB*10^10).*(10.^-(14-pHarray));    %% ACTIVATE 
when solving 
 
% ExchRateArray = 4258 + (0.0808*10^10).*(10.^-(14-pHarray));    %% 



 151 

DEACTIVATE when solving 
% ExchRateArray = 134.7678 + (5.1443*10^10).*(10.^-(14-pHarray));    %% 
DEACTIVATE when solving 
 
ExchRateArray = 75.8854 + (5.6414*10^10).*(10.^-(14-pHarray));    %% 
DEACTIVATE when solving 
  
% for e = 11:41  %%% 3 
% for e = 1:12  %%% 3     %% ACTIVATE when solving 
for e = 21  %%% 3 
     
    exportx07 = []; 
  
% for i = -5:0.1:5  %%% 1 
for i = -3.0:6.0:3.0  %%% 2,3  %% ACTIVATE when solving 
% for i = 3.0 
  
GMR = 42.576; 
FieldStrength = 3.0; 
BaseFrequency = GMR * FieldStrength;  % In MHz 
  
B1 = 6; 
GaussPulseNorm = [0.037775253   0.043008072 0.048837602 0.055312138 
0.062481052 0.070394379 0.079102353 0.088654867 0.099100885 0.11048778  
0.122860627 0.13626144  0.150728364 0.166294837 0.182988716 0.200831402 
0.219836953 0.240011216 0.261350988 0.283843216 0.307464274 0.3321793   
0.357941651 0.38469246  0.412360329 0.440861168 0.470098193 0.499962099 
0.53033141  0.561073017 0.592042906 0.623087081 0.654042662 0.684739173 
0.714999991 0.744643949 0.773487072 0.801344424 0.828032047 0.853368951 
0.87717914  0.899293634 0.919552457 0.937806557 0.953919631 0.967769819 
0.979251234 0.988275312 0.994771952 0.998690418 1   0.998690418 0.994771952 
0.988275312 0.979251234 0.967769819 0.953919631 0.937806557 0.919552457 
0.899293634 0.87717914  0.853368951 0.828032047 0.801344424 0.773487072 
0.744643949 0.714999991 0.684739173 0.654042662 0.623087081 0.592042906 
0.561073017 0.53033141  0.499962099 0.470098193 0.440861168 0.412360329 
0.38469246  0.357941651 0.3321793   0.307464274 0.283843216 0.261350988 
0.240011216 0.219836953 0.200831402 0.182988716 0.166294837 0.150728364 
0.13626144  0.122860627 0.11048778  0.099100885 0.088654867 0.079102353 
0.070394379 0.062481052 0.055312138 0.048837602 0.043008072 0.037775253]; 
SincPulseNorm = [  0   -0.0058   -0.0183   -0.0305   -0.0421   -0.0532   -
0.0639   -0.0742 -0.0839   -0.0932   -0.1018   -0.1095   -0.1162   -0.1215   
-0.1251   -0.1268 -0.1260   -0.1226   -0.1162   -0.1064   -0.0932   -0.0763   
-0.0556   -0.0311 -0.0027    0.0296    0.0656    0.1051    0.1480    0.1940    
0.2427    0.2937 0.3466    0.4008    0.4557    0.5108    0.5653    0.6187    
0.6703    0.7195 0.7658    0.8086    0.8477    0.8826    0.9133    0.9394    
0.9608    0.9777   0.9898    0.9973    1.0000    0.9982    0.9916    0.9804    
0.9645    0.9439 0.9187    0.8890    0.8549    0.8166    0.7744    0.7288    
0.6801    0.6290  0.5759    0.5215    0.4665    0.4115    0.3571    0.3039    
0.2525    0.2033  0.1568    0.1132    0.0730    0.0363    0.0034   -0.0258   
-0.0511   -0.0726  -0.0902   -0.1041   -0.1145   -0.1216   -0.1256   -0.1268   
-0.1256   -0.1223  -0.1173   -0.1109   -0.1033   -0.0949   -0.0858   -0.0761   
-0.0660   -0.0554  -0.0443   -0.0328   -0.0208   -0.0083         0]; 
  
GaussPulse = GaussPulseNorm .* (B1*2*pi*GMR); 
SincPulse = SincPulseNorm .* (B1*2*pi*GMR); 
RectPulse = zeros(1,101) + (B1*2*pi*GMR); 
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PulseBins = 101; 
  
w_a = 0; 
w_b = BaseFrequency * 3.0;  
w_c = BaseFrequency * 3.5; 
w = BaseFrequency * i; 
  
M_a0 = 1; 
M_b0 = 0.0009009; 
M_c0 = 0.000; 
  
C_b = ExchRateArray(e);  %%% 3   %%% 1,2  % index=pH, 21=6, 26=6.5, 31=7 
C_c = 10;  % Dummy value when M_c0 = 0 (can't be zero or equations will fail) 
C_ab = (M_b0 / M_a0) * C_b; 
C_ac = (M_c0 / M_a0) * C_c; 
C_a = C_ab + C_ac; 
  
T_1a = 1.22;  %% 3.374 from Chen et al  %% 1.22 for tissue   %% 1.36 for 
tumor (Chistopher Larsson 2015) %% 1.939 7T  
T_1b = 0.2;   %% using 0.2 
T_1c = 0.1; 
T_2a = 0.107;  %% 2.5 from Araujo et al % 0.107 for tissue (Ellingson 
paper)  %% 0.170 for NET (Ellingson paper) % 0.055 7T 
T_2b = 0.1;    %% using 0.1 
T_2c = 0.1;  
  
k_1a = (1 / T_1a) + C_a; 
k_2a = (1 / T_2a) + C_a; 
k_1b = (1 / T_1b) + C_b; 
k_2b = (1 / T_2b) + C_b; 
k_1c = (1 / T_1c) + C_c; 
k_2c = (1 / T_2c) + C_c; 
  
da = (w - w_a) * 2*pi; 
db = (w - w_b) * 2*pi; 
dc = (w - w_c) * 2*pi; 
  
 
    % Sherry 2005 
    % DY/dt = A*Y + b 
     
 %  Y = [ M_ax(t) M_bx(t) M_cx(t) M_ay(t) M_by(t) M_cy(t) M_az(t) M_bz(t) 
M_cz(t) ]; 
  
     I = eye(9);  %identity matrix     
           
     b = [0; 0; 0; 0; 0; 0; M_a0/T_1a; M_b0/T_1b; M_c0/T_1c];  
              
     for t = 1:1        % added for TIME LOOP 
      
     t;  
     time = 1.0*t;  %seconds 
     timestep = time / PulseBins; 
      
     x0 = [ 0; 0; 0; 0; 0; 0; M_a0; M_b0; M_c0] ;     
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     Y = zeros(9,1);    %allocate memory for Y matrix 
      
     Slices = 25; 
      
     ReadoutLength = 60; %% in ms 
      
     Deadtime = 10; %% in ms 
  
     % ADDED FOR M->0 per slice readout 
     %  x0(7) = M_a0 - ( M_a0 - 0 ) * exp( -Slices*TR / T_1a ); 
     %  x0(7) = 0; 
     % ADDED FOR M->0 per slice readout 
      
  
     for m = 1:25  %% m is multiple RF influence from short TR loop (#slices) 
          
     x0(1) = 0; 
     x0(2) = 0; 
     x0(3) = 0; 
     x0(4) = 0; 
     x0(5) = 0; 
     x0(6) = 0; 
          
         for ReadoutLoop = 1:ReadoutLength    
        % for ReadoutLoop = 1:1 
  
     % x0(7) = M_a0 - ( M_a0 - x0(7) ) * exp( -Readout / T_1a ); 
     % x0(8) = M_b0 - ( M_b0 - x0(8) ) * exp( -Readout / T_1b ); 
     % x0(9) = M_c0 - ( M_c0 - x0(9) ) * exp( -Readout / T_1c ); 
     x0(7) = M_a0 - ( M_a0 - x0(7) ) * exp( -00.001 / T_1a ); 
     x0(8) = M_b0 - ( M_b0 - x0(8) ) * exp( -00.001 / T_1b ); 
     x0(9) = M_c0 - ( M_c0 - x0(9) ) * exp( -00.001 / T_1c ); 
             
             exportx07 = [exportx07 x0(7)]; 
                         
         end  %% ReadoutLoop End 
          
         NumberOfPulses = 1; 
      
     for N_RF = 1:NumberOfPulses  %% NumberOfPulses is number of RF pulses 
          
         N_RF; 
          
     longGaussPulse = 
interp1(linspace(1,101,101),GaussPulse,linspace(1,101,PulseBins)); 
 
     longSincPulse = 
interp1(linspace(1,101,101),SincPulse,linspace(1,101,PulseBins)); 
 
     longRectPulse = 
interp1(linspace(1,101,101),RectPulse,linspace(1,101,PulseBins)); 
      
     for z = 1:PulseBins  %% z is Gaussian Pulse shape loop 
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       w_1 = longGaussPulse(z);  %% Input variable B1 amplitude 
       % w_1 = longSincPulse(z);  a 
       % w_1 = longRectPulse(z);   
  
   A = [  -k_2a       C_b        C_c        -da          0          0         
0        0       0 ; 
           C_ab     -k_2b          0          0        -db          0         
0        0       0 ; 
           C_ac         0      -k_2c          0          0        -dc         
0        0       0 ; 
            
             da         0          0      -k_2a        C_b        C_c      -
w_1        0       0 ;  
              0        db          0       C_ab      -k_2b          0         
0     -w_1       0 ;     
              0         0         dc       C_ac          0      -k_2c         
0        0    -w_1 ; 
               
              0         0          0        w_1          0          0     -
k_1a      C_b     C_c ; 
              0         0          0          0        w_1          0      
C_ab    -k_1b       0 ; 
              0         0          0          0          0        w_1      
C_ac        0   -k_1c   ]; 
          
              

Ainvb = A\b; 
            y0 = x0; 
            Y(:,1) = expm(A*timestep)*(y0+Ainvb)-Ainvb; 
 
            % compared to Jin code: M0 = b, M = A % 
            % so A\b = M\M0 ; 
            % and y0 = x0 = Mi ; 
            % so Ainvb = -Meq ; 
                     
            x0 = [ double(Y(1,1)); double(Y(2,1)); double(Y(3,1)); 
double(Y(4,1)); double(Y(5,1)); double(Y(6,1)); double(Y(7,1)); 
double(Y(8,1)); double(Y(9,1)) ]; 
             
            exportx07 = [exportx07 x0(7)]; 
  
     end  %% from z loop 
      
       %   timespectra(int16(i*10+51),NumRF) = double(Y(7,1));   % use for RF 
LOOP 
           
           timespectra(int16(i*10+51),t) = double(Y(7,1));     % use for TIME 
LOOP 
            
           if N_RF ~= NumberOfPulses 
                
           for DeadtimeLoop = 1:Deadtime 
  
                     x0(7) = M_a0 - ( M_a0 - x0(7) ) * exp( -0.001 / T_1a ); 
                     x0(8) = M_b0 - ( M_b0 - x0(8) ) * exp( -0.001 / T_1b ); 
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                     x0(9) = M_c0 - ( M_c0 - x0(9) ) * exp( -0.001 / T_1c ); 
             
                     exportx07 = [exportx07 x0(7)]; 
              
           end %% DeadtimeLoop End 
            
           end  %% N_RF~=Max loop End 
           
     end %% from RFnum loop 
      
     m_spectra(int16(i*10+51),m) = double(Y(7,1)); 
             
     end  %% from m loop, #### MAGNETIZATION READ OUT HERE #### 
      
            M_az_spectra(int16(i*10+51),1) = double(Y(7,1));   
             
     end   %% from t loop 
                 
end 
  
for k = 0.1:0.1:5  %%% 2,3 
     
   % MTRasym(k,:) = ( M_az_spectra(51-k,:) - M_az_spectra(51+k,:) ); 
     MTRasym(int16(k*10),1) = ( M_az_spectra(int16(51-k*10),1) - 
M_az_spectra(int16(51+k*10),1) ) * 100; 
     timeMTRasym(int16(k*10),:) = ( timespectra(int16(51-k*10),:) - 
timespectra(int16(51+k*10),:) ) * 100; 
     m_MTRasym(int16(k*10),:) = ( m_spectra(int16(51-k*10),:) - 
m_spectra(int16(51+k*10),:) ) * 100; 
end 
  
  
  pHcurve(1,e) = MTRasym(30,1) ;  %%% 3 
  
      e  %%% 3 
      % plot(ppmxaxis,M_az_spectra(:,1)) 
      pause(0.1) 
  
  end  %%% 3 
  
%% PLOTS 
%% 1 - plot(ppmxaxis,M_az_spectra(:,1))   or  plot(ppmxposaxis,MTRasym(:,1)) 
%% 2 - plot(timespectra(21,:))  or  plot(timespectra(81,:))  or  
plot(timeMTRasym(30,:)) 
%% 3 - plot(pHarray,pHcurve)  or  plot(pHarray,pHcurveMaz)  or  
plot(pHarray,pHcurveMazNeg) 
  
%% semilogx(ExchRateArray,pHcurve) 
%% plot(m_spectra(21,:))  or  plot(m_spectra(81,:))  or  
plot(m_MTRasym(30,:)) 
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Appendix B 

pH Solver Code (Matlab) 

[err, MTRasymdata, Info, ErrMessage] = 
BrikLoad('Echo1and2_MTRasym+orig.BRIK'); 
[err, T1map, Info, ErrMessage] = BrikLoad('T1map+orig.BRIK'); 
[err, T2map, Info, ErrMessage] = BrikLoad('T2map+orig.BRIK'); 
[err, MaskForMatlab, Info, ErrMessage] = BrikLoad('MaskForMatlab+orig.BRIK'); 
  
 
XX = size(MTRasymdata,1); 
YY = size(MTRasymdata,2); 
ZZ = size(MTRasymdata,3); 
  
pHmap = zeros(XX,YY,ZZ); 
vcount = 0; 
  
for i = 1:XX 
    for j = 1:YY 
        for k = 1:ZZ 
  
            if MTRasymdata(i,j,k) ~=0; 
                if T1map(i,j,k) ~=0; 
                    if T2map(i,j,k) ~=0; 
                        if MaskForMatlab(i,j,k) ~=0; 
       
            try 
                     
            x0 = [7.0]; 
            SolvingFunction =@(x) MTRasymdata(i,j,k) - 
CEST_pH_Solver2( T1map(i,j,k) , T2map(i,j,k), x(1) ); 
            x = lsqnonlin( SolvingFunction, x0, 6.0, 8.0 ); 
             
            pHmap(i,j,k) = x; 
  
            catch 
                pHmap(i,j,k) = 0; 
            end 
          
            x 
            vcount = vcount+1 
             
                        end             
                    end 
                end 
            end 
             
        end 
    end 
end 
  
Opt.Prefix = 'pHMap'  
WriteBrik(pHmap, Info, Opt); 



 157 

REFERENCES 

1. Dolecek, T.A., et al., CBTRUS statistical report: primary brain and central nervous 
system tumors diagnosed in the United States in 2005-2009. Neuro Oncol, 2012. 14 
Suppl 5: p. v1-49. 

 
2. Grier, J.T. and T. Batchelor, Low-grade gliomas in adults. Oncologist, 2006. 11(6): p. 

681-93. 
 
3. Omuro, A. and L.M. DeAngelis, Glioblastoma and other malignant gliomas: a clinical 

review. JAMA, 2013. 310(17): p. 1842-50. 
 
4. Stupp, R., et al., Radiotherapy plus concomitant and adjuvant temozolomide for 

glioblastoma. N Engl J Med, 2005. 352(10): p. 987-96. 
 
5. Venur, V.A., D.M. Peereboom, and M.S. Ahluwalia, Current medical treatment of 

glioblastoma. Cancer Treat Res, 2015. 163: p. 103-15. 
 
6. Ellingson, B.M., et al., Probabilistic radiographic atlas of glioblastoma phenotypes. 

AJNR Am J Neuroradiol, 2013. 34(3): p. 533-40. 
 
7. Gerweck, L.E. and K. Seetharaman, Cellular pH gradient in tumor versus normal tissue: 

potential exploitation for the treatment of cancer. Cancer Res, 1996. 56(6): p. 1194-8. 
 
8. Griffiths, J.R., Are cancer cells acidic? Br J Cancer, 1991. 64(3): p. 425-7. 
 
9. Helmlinger, G., et al., Interstitial pH and pO2 gradients in solid tumors in vivo: high-

resolution measurements reveal a lack of correlation. Nat Med, 1997. 3(2): p. 177-82. 
 
10. Gallagher, F.A., et al., Magnetic resonance imaging of pH in vivo using hyperpolarized 

13C-labelled bicarbonate. Nature, 2008. 453(7197): p. 940-3. 
 
11. Estrella, V., et al., Acidity generated by the tumor microenvironment drives local 

invasion. Cancer Res, 2013. 73(5): p. 1524-35. 
 
12. Raghunand, N., R.A. Gatenby, and R.J. Gillies, Microenvironmental and cellular 

consequences of altered blood flow in tumours. Br J Radiol, 2003. 76 Spec No 1: p. S11-
22. 

 
13. Helmlinger, G., et al., Acid production in glycolysis-impaired tumors provides new 

insights into tumor metabolism. Clin Cancer Res, 2002. 8(4): p. 1284-91. 
 
14. Gatenby, R.A. and R.J. Gillies, Why do cancers have high aerobic glycolysis? Nat Rev 

Cancer, 2004. 4(11): p. 891-9. 
 



 158 

15. Harris, R.J., et al., pH-weighted molecular imaging of gliomas using amine chemical 
exchange saturation transfer MRI. Neuro Oncol, 2015. 17(11): p. 1514-24. 

 
16. Lardner, A., The effects of extracellular pH on immune function. J Leukoc Biol, 2001. 

69(4): p. 522-30. 
 
17. Morita, T., et al., Clastogenicity of low pH to various cultured mammalian cells. Mutat 

Res, 1992. 268(2): p. 297-305. 
 
18. Martinez-Zaguilan, R., et al., Acidic pH enhances the invasive behavior of human 

melanoma cells. Clin Exp Metastasis, 1996. 14(2): p. 176-86. 
 
19. Shi, Q., et al., Regulation of vascular endothelial growth factor expression by acidosis in 

human cancer cells. Oncogene, 2001. 20(28): p. 3751-6. 
 
20. Griffiths, L., et al., The influence of oxygen tension and pH on the expression of platelet-

derived endothelial cell growth factor/thymidine phosphorylase in human breast tumor 
cells grown in vitro and in vivo. Cancer Res, 1997. 57(4): p. 570-2. 

 
21. Freeman, M.L. and E. Sierra, An acidic extracellular environment reduces the fixation of 

radiation damage. Radiat Res, 1984. 97(1): p. 154-61. 
 
22. Reichert, M., et al., Modulation of growth and radiochemosensitivity of human malignant 

glioma cells by acidosis. Cancer, 2002. 95(5): p. 1113-9. 
 
23. Lagemaat, M.W., et al., (31) P MR spectroscopic imaging of the human prostate at 7 T: 

T1 relaxation times, Nuclear Overhauser Effect, and spectral characterization. Magn 
Reson Med, 2015. 73(3): p. 909-20. 

 
24. Rata, M., et al., Comparison of three reference methods for the measurement of 

intracellular pH using 31P MRS in healthy volunteers and patients with lymphoma. NMR 
Biomed, 2014. 27(2): p. 158-62. 

 
25. Gerweck, L.E., Tumor pH: implications for treatment and novel drug design. Semin 

Radiat Oncol, 1998. 8(3): p. 176-82. 
 
26. Salamanca-Cardona, L. and K.R. Keshari, (13)C-labeled biochemical probes for the 

study of cancer metabolism with dynamic nuclear polarization-enhanced magnetic 
resonance imaging. Cancer Metab, 2015. 3: p. 9. 

 
27. Lokling, K.E., et al., pH-sensitive paramagnetic liposomes as MRI contrast agents: in 

vitro feasibility studies. Magn Reson Imaging, 2001. 19(5): p. 731-8. 
 
28. Mikawa, M., et al., Gd(3+)-loaded polyion complex for pH depiction with magnetic 

resonance imaging. J Biomed Mater Res, 2000. 49(3): p. 390-5. 
 



 159 

29. Aime, S.B., A; Botta, M; Howard, J; Kataky, R; Lowe, M; Moloney, J; Parker, D; de 
Sousa, A, Dependence of the relaxivity and luminescence of gadolinium and europium 
amino-acid complexes on hydrocarbonate and pH. Chemical Communications, 1999(11): 
p. 1047-1048. 

 
30. Deoni, S.C., Quantitative relaxometry of the brain. Top Magn Reson Imaging, 2010. 

21(2): p. 101-13. 
 
31. Al-Khalili, J., The birth of the electric machines: a commentary on Faraday (1832) 

'Experimental researches in electricity'. Philos Trans A Math Phys Eng Sci, 2015. 
373(2039). 

 
32. Mezrich, R., A perspective on K-space. Radiology, 1995. 195(2): p. 297-315. 
 
33. Woessner, D.E., et al., Numerical solution of the Bloch equations provides insights into 

the optimum design of PARACEST agents for MRI. Magn Reson Med, 2005. 53(4): p. 
790-9. 

 
34. Zaiss, M. and P. Bachert, Chemical exchange saturation transfer (CEST) and MR Z-

spectroscopy in vivo: a review of theoretical approaches and methods. Phys Med Biol, 
2013. 58(22): p. R221-69. 

 
35. Jones, C.K., et al., Nuclear Overhauser enhancement (NOE) imaging in the human brain 

at 7T. Neuroimage, 2013. 77: p. 114-24. 
 
36. Kogan, F., et al., Investigation of chemical exchange at intermediate exchange rates 

using a combination of chemical exchange saturation transfer (CEST) and spin-locking 
methods (CESTrho). Magn Reson Med, 2012. 68(1): p. 107-19. 

 
37. Haris, M., et al., MICEST: a potential tool for non-invasive detection of molecular 

changes in Alzheimer's disease. J Neurosci Methods, 2013. 212(1): p. 87-93. 
 
38. Chan, K.W., et al., Natural D-glucose as a biodegradable MRI contrast agent for 

detecting cancer. Magn Reson Med, 2012. 68(6): p. 1764-73. 
 
39. Walker-Samuel, S., et al., In vivo imaging of glucose uptake and metabolism in tumors. 

Nat Med, 2013. 19(8): p. 1067-72. 
 
40. Ling, W., et al., Assessment of glycosaminoglycan concentration in vivo by chemical 

exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci U S A, 2008. 
105(7): p. 2266-70. 

 
41. Dula, A.N., et al., Optimization of 7-T chemical exchange saturation transfer parameters 

for validation of glycosaminoglycan and amide proton transfer of fibroglandular breast 
tissue. Radiology, 2015. 275(1): p. 255-61. 

 



 160 

42. Wu, R., et al., Quantitative chemical exchange saturation transfer (qCEST) MRI - omega 
plot analysis of RF-spillover-corrected inverse CEST ratio asymmetry for simultaneous 
determination of labile proton ratio and exchange rate. NMR Biomed, 2015. 28(3): p. 
376-83. 

 
43. Saito, S., et al., Factors affecting the chemical exchange saturation transfer of Creatine 

as assessed by 11.7 T MRI. Radiol Phys Technol, 2015. 8(1): p. 146-52. 
 
44. Cai, K., et al., CEST signal at 2ppm (CEST@2ppm) from Z-spectral fitting correlates 

with creatine distribution in brain tumor. NMR Biomed, 2015. 28(1): p. 1-8. 
 
45. Kogan, F., et al., In vivo chemical exchange saturation transfer imaging of creatine 

(CrCEST) in skeletal muscle at 3T. J Magn Reson Imaging, 2014. 40(3): p. 596-602. 
 
46. Sun, P.Z., et al., Investigation of optimizing and translating pH-sensitive pulsed-chemical 

exchange saturation transfer (CEST) imaging to a 3T clinical scanner. Magn Reson Med, 
2008. 60(4): p. 834-41. 

 
47. Chen, L.Q., et al., Evaluations of extracellular pH within in vivo tumors using 

acidoCEST MRI. Magn Reson Med, 2014. 72(5): p. 1408-17. 
 
48. Sun, P.Z., et al., Quantification of iopamidol multi-site chemical exchange properties for 

ratiometric chemical exchange saturation transfer (CEST) imaging of pH. Phys Med Biol, 
2014. 59(16): p. 4493-504. 

 
49. Moon, B.F., et al., A comparison of iopromide and iopamidol, two acidoCEST MRI 

contrast media that measure tumor extracellular pH. Contrast Media Mol Imaging, 2015. 
10(6): p. 446-55. 

 
50. Longo, D.L., et al., A general MRI-CEST ratiometric approach for pH imaging: 

demonstration of in vivo pH mapping with iobitridol. J Am Chem Soc, 2014. 136(41): p. 
14333-6. 

 
51. Ali, M.M., et al., A nano-sized PARACEST-fluorescence imaging contrast agent 

facilitates and validates in vivo CEST MRI detection of glioma. Nanomedicine (Lond), 
2012. 7(12): p. 1827-37. 

 
52. Li, A.X., et al., In vivo detection of MRI-PARACEST agents in mouse brain tumors at 9.4 

T. Magn Reson Med, 2011. 66(1): p. 67-72. 
 
53. Zhang, S., et al., PARACEST agents: modulating MRI contrast via water proton 

exchange. Acc Chem Res, 2003. 36(10): p. 783-90. 
 
54. Wu, Y., et al., pH imaging of mouse kidneys in vivo using a frequency-dependent 

paraCEST agent. Magn Reson Med, 2015. 
 



 161 

55. Sheth, V.R., et al., Measuring in vivo tumor pHe with CEST-FISP MRI. Magn Reson 
Med, 2012. 67(3): p. 760-8. 

 
56. Liu, G., et al., Imaging in vivo extracellular pH with a single paramagnetic chemical 

exchange saturation transfer magnetic resonance imaging contrast agent. Mol Imaging, 
2012. 11(1): p. 47-57. 

 
57. Zhou, J., et al., Amide proton transfer (APT) contrast for imaging of brain tumors. Magn 

Reson Med, 2003. 50(6): p. 1120-6. 
 
58. Togao, O., et al., Amide proton transfer imaging of adult diffuse gliomas: correlation 

with histopathological grades. Neuro Oncol, 2014. 16(3): p. 441-8. 
 
59. Heo, H.Y., et al., Quantitative assessment of amide proton transfer (APT) and nuclear 

overhauser enhancement (NOE) imaging with extrapolated semi-solid magnetization 
transfer reference (EMR) signals: Application to a rat glioma model at 4.7 tesla. Magn 
Reson Med, 2015. 

 
60. Zhou, J., et al., Three-dimensional amide proton transfer MR imaging of gliomas: Initial 

experience and comparison with gadolinium enhancement. J Magn Reson Imaging, 2013. 
38(5): p. 1119-28. 

 
61. Sun, P.Z., et al., Simplified quantitative description of amide proton transfer (APT) 

imaging during acute ischemia. Magn Reson Med, 2007. 57(2): p. 405-10. 
 
62. Tee, Y.K., et al., Comparing different analysis methods for quantifying the MRI amide 

proton transfer (APT) effect in hyperacute stroke patients. NMR Biomed, 2014. 27(9): p. 
1019-29. 

 
63. Klomp, D.W., et al., Amide proton transfer imaging of the human breast at 7T: 

development and reproducibility. NMR Biomed, 2013. 26(10): p. 1271-7. 
 
64. Dula, A.N., et al., Amide proton transfer imaging of the breast at 3 T: establishing 

reproducibility and possible feasibility assessing chemotherapy response. Magn Reson 
Med, 2013. 70(1): p. 216-24. 

 
65. Wang, R., et al., Amide proton transfer magnetic resonance imaging of Alzheimer's 

disease at 3.0 Tesla: a preliminary study. Chin Med J (Engl), 2015. 128(5): p. 615-9. 
 
66. Yuan, J., et al., Amide proton transfer-weighted imaging of the head and neck at 3 T: a 

feasibility study on healthy human subjects and patients with head and neck cancer. 
NMR Biomed, 2014. 27(10): p. 1239-47. 

 
67. Tietze, A., et al., Assessment of ischemic penumbra in patients with hyperacute stroke 

using amide proton transfer (APT) chemical exchange saturation transfer (CEST) MRI. 
NMR Biomed, 2014. 27(2): p. 163-74. 



 162 

68. Zhou, J., et al., Practical data acquisition method for human brain tumor amide proton 
transfer (APT) imaging. Magn Reson Med, 2008. 60(4): p. 842-9. 

 
69. Vogeli, B., The nuclear Overhauser effect from a quantitative perspective. Prog Nucl 

Magn Reson Spectrosc, 2014. 78: p. 1-46. 
 
70. Zhou, J., et al., APT-weighted and NOE-weighted image contrasts in glioma with 

different RF saturation powers based on magnetization transfer ratio asymmetry analyses. 
Magn Reson Med, 2013. 70(2): p. 320-7. 

 
71. Paech, D., et al., Nuclear overhauser enhancement mediated chemical exchange 

saturation transfer imaging at 7 Tesla in glioblastoma patients. PLoS One, 2014. 9(8): p. 
e104181. 

 
72. Goerke, S., et al., Signature of protein unfolding in chemical exchange saturation 

transfer imaging. NMR Biomed, 2015. 28(7): p. 906-13. 
 
73. Li, H., et al., Imaging of amide proton transfer and nuclear Overhauser enhancement in 

ischemic stroke with corrections for competing effects. NMR Biomed, 2015. 28(2): p. 
200-9. 

 
74. Jin, T. and S.G. Kim, Advantages of chemical exchange-sensitive spin-lock (CESL) over 

chemical exchange saturation transfer (CEST) for hydroxyl- and amine-water proton 
exchange studies. NMR Biomed, 2014. 27(11): p. 1313-24. 

 
75. Kogan, F., et al., Imaging of glutamate in the spinal cord using GluCEST. Neuroimage, 

2013. 77: p. 262-7. 
 
76. Scheidegger, R., E.T. Wong, and D.C. Alsop, Contributors to contrast between glioma 

and brain tissue in chemical exchange saturation transfer sensitive imaging at 3 Tesla. 
Neuroimage, 2014. 99: p. 256-68. 

 
77. Olsson, M.B., R. Wirestam, and B.R. Persson, A computer simulation program for MR 

imaging: application to RF and static magnetic field imperfections. Magn Reson Med, 
1995. 34(4): p. 612-7. 

 
78. Gullberg, G.T., et al., An MRI perfusion model incorporating nonequilibrium exchange 

between vascular and extravascular compartments. Magn Reson Imaging, 1991. 9(1): p. 
39-52. 

 
79. Graham, S.J. and R.M. Henkelman, Understanding pulsed magnetization transfer. J 

Magn Reson Imaging, 1997. 7(5): p. 903-12. 
 
80. Jin, T., et al., Magnetic resonance imaging of the Amine-Proton EXchange (APEX) 

dependent contrast. Neuroimage, 2012. 59(2): p. 1218-27. 
 



 163 

81. Sun, P.Z., Simplified and scalable numerical solution for describing multi-pool chemical 
exchange saturation transfer (CEST) MRI contrast. J Magn Reson, 2010. 205(2): p. 235-
41. 

 
82. Sun, P.Z., et al., Evaluation of the dependence of CEST-EPI measurement on repetition 

time, RF irradiation duty cycle and imaging flip angle for enhanced pH sensitivity. Phys 
Med Biol, 2013. 58(17): p. N229-40. 

 
83. Zaiss, M. and P. Bachert, Exchange-dependent relaxation in the rotating frame for slow 

and intermediate exchange -- modeling off-resonant spin-lock and chemical exchange 
saturation transfer. NMR Biomed, 2013. 26(5): p. 507-18. 

 
84. Zaiss, M., et al., A combined analytical solution for chemical exchange saturation 

transfer and semi-solid magnetization transfer. NMR Biomed, 2015. 28(2): p. 217-30. 
 
85. Liepinsh, E. and G. Otting, Proton exchange rates from amino acid side chains--

implications for image contrast. Magn Reson Med, 1996. 35(1): p. 30-42. 
 
86. Chen, F.e.a., Positive and Negative Lattice Shielding Effects CO-existing in Gd (III) Ion 

Doped Bifunctional Upconversion Nanoprobes. Advanced Functional Materials, 2011. 
21(22): p. 4285-4294. 

 
87. Araujo, E.C., Y. Fromes, and P.G. Carlier, New insights on human skeletal muscle tissue 

compartments revealed by in vivo t2 NMR relaxometry. Biophys J, 2014. 106(10): p. 
2267-74. 

 
88. Choi, C., et al., T2 measurement and quantification of glutamate in human brain in vivo. 

Magn Reson Med, 2006. 56(5): p. 971-7. 
 
89. Traber, F., et al., 1H metabolite relaxation times at 3.0 tesla: Measurements of T1 and T2 

values in normal brain and determination of regional differences in transverse relaxation. 
J Magn Reson Imaging, 2004. 19(5): p. 537-45. 

 
90. Li, Y., et al., Comparison of T(1) and T(2) metabolite relaxation times in glioma and 

normal brain at 3T. J Magn Reson Imaging, 2008. 28(2): p. 342-50. 
 
91. Perry, T.L., et al., Free amino acids and related compounds in biopsies of human brain. J 

Neurochem, 1971. 18(3): p. 521-8. 
 
92. Wright, P.J., et al., Water proton T1 measurements in brain tissue at 7, 3, and 1.5 T using 

IR-EPI, IR-TSE, and MPRAGE: results and optimization. MAGMA, 2008. 21(1-2): p. 
121-30. 

 
93. Ellingson, B.M., et al., Quantification of Nonenhancing Tumor Burden in Gliomas Using 

Effective T2 Maps Derived from Dual-Echo Turbo Spin-Echo MRI. Clin Cancer Res, 
2015. 21(19): p. 4373-83. 



 164 

94. Larsson, C., et al., T1 in high-grade glioma and the influence of different measurement 
strategies on parameter estimations in DCE-MRI. J Magn Reson Imaging, 2015. 42(1): p. 
97-104. 

 
95. Schmitt, B., et al., Optimization of pulse train presaturation for CEST imaging in clinical 

scanners. Magn Reson Med, 2011. 65(6): p. 1620-9. 
 
96. Zong, X., et al., Sensitivity and source of amine-proton exchange and amide-proton 

transfer magnetic resonance imaging in cerebral ischemia. Magn Reson Med, 2014. 
71(1): p. 118-32. 

 
97. Xiao, G., P.Z. Sun, and R. Wu, Fast simulation and optimization of pulse-train chemical 

exchange saturation transfer (CEST) imaging. Phys Med Biol, 2015. 60(12): p. 4719-30. 
 
98. Ashwal, S., et al., Proton MR spectroscopy detected glutamate/glutamine is increased in 

children with traumatic brain injury. J Neurotrauma, 2004. 21(11): p. 1539-52. 
 
99. van Wageningen, H., et al., A 1H-MR spectroscopy study of changes in glutamate and 

glutamine (Glx) concentrations in frontal spectra after administration of memantine. 
Cereb Cortex, 2010. 20(4): p. 798-803. 

 
100. Bustillo, J.R., et al., Increased glutamine in patients undergoing long-term treatment for 

schizophrenia: a proton magnetic resonance spectroscopy study at 3 T. JAMA Psychiatry, 
2014. 71(3): p. 265-72. 

 
101. Liubinas, S.V., et al., Glutamate quantification in patients with supratentorial gliomas 

using chemical shift imaging. NMR Biomed, 2014. 27(5): p. 570-7. 
 
102. Elster, A.D., Gradient-echo MR imaging: techniques and acronyms. Radiology, 1993. 

186(1): p. 1-8. 
 
103. Antonios, J.P., R.G. Everson, and L.M. Liau, Dendritic cell immunotherapy for brain 

tumors. J Neurooncol, 2015. 123(3): p. 425-32. 
 
104. Suzuki, S., et al., Current status of immunotherapy. Jpn J Clin Oncol, 2016. 
 
105. Antonios, J.P., Journal of Clinical Investigation, 2016. [Manuscript under review]. 
 
106. Converse, A.K., et al., Mathematical modeling of positron emission tomography (PET) 

data to assess radiofluoride transport in living plants following petiolar administration. 
Plant Methods, 2015. 11: p. 18. 

 
107. Jeraj, R., T. Bradshaw, and U. Simoncic, Molecular Imaging to Plan Radiotherapy and 

Evaluate Its Efficacy. J Nucl Med, 2015. 56(11): p. 1752-65. 
 



 165 

108. Young, A.M., et al., Aberrant NF-kappaB expression in autism spectrum condition: a 
mechanism for neuroinflammation. Front Psychiatry, 2011. 2: p. 27. 

 
109. Monoranu, C.M., et al., pH measurement as quality control on human post mortem brain 

tissue: a study of the BrainNet Europe consortium. Neuropathol Appl Neurobiol, 2009. 
35(3): p. 329-37. 

 
110. Grant, S.B., K; Krulevitch, P; Hamilton, J; Glass, R, In vitro and in vivo measurements of 

fiber optic and electrochemical sensors to monitor brain tissue pH. Sensors and 
Actuators B: Chemical, 2000. 72(2): p. 174-179. 

 
111. Schwarzkopf, T.M., et al., Blood gases and energy metabolites in mouse blood before 

and after cerebral ischemia: the effects of anesthetics. Exp Biol Med (Maywood), 2013. 
238(1): p. 84-9. 

 
112. G, E.W.H.A.A.G.P.B.B., A comparitive study with various anesthetics in mice 

(pentobarbitone, ketamine-xylazine, carfentanyl-etomidate). Res Exp Med, 1984(184(3)): 
p. 159-69. 

 
113. Saab, B.J., et al., Short-term memory impairment after isoflurane in mice is prevented by 

the alpha5 gamma-aminobutyric acid type A receptor inverse agonist L-655,708. 
Anesthesiology, 2010. 113(5): p. 1061-71. 

 
114. Constantinides, C., R. Mean, and B.J. Janssen, Effects of isoflurane anesthesia on the 

cardiovascular function of the C57BL/6 mouse. ILAR J, 2011. 52(3): p. e21-31. 
 
115. Kim, M., et al., Water saturation shift referencing (WASSR) for chemical exchange 

saturation transfer (CEST) experiments. Magn Reson Med, 2009. 61(6): p. 1441-50. 
 
116. Wen, P.Y., et al., Updated response assessment criteria for high-grade gliomas: response 

assessment in neuro-oncology working group. J Clin Oncol, 2010. 28(11): p. 1963-72. 
 
117. Schmainda, K.M., et al., Characterization of a first-pass gradient-echo spin-echo method 

to predict brain tumor grade and angiogenesis. AJNR Am J Neuroradiol, 2004. 25(9): p. 
1524-32. 

 
118. Boxerman, J.L., K.M. Schmainda, and R.M. Weisskoff, Relative cerebral blood volume 

maps corrected for contrast agent extravasation significantly correlate with glioma 
tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol, 2006. 27(4): p. 
859-67. 

 
119. Roberts, T.P. and H.A. Rowley, Diffusion weighted magnetic resonance imaging in 

stroke. Eur J Radiol, 2003. 45(3): p. 185-94. 
 
120. Kinahan, P.E., et al., Attenuation correction for a combined 3D PET/CT scanner. Med 

Phys, 1998. 25(10): p. 2046-53. 



 166 

121. Nuyts, J., C. Michel, and P. Dupont, Maximum-likelihood expectation-maximization 
reconstruction of sinograms with arbitrary noise distribution using NEC-transformations. 
IEEE Trans Med Imaging, 2001. 20(5): p. 365-75. 

 
122. Chan, J.K., The wonderful colors of the hematoxylin-eosin stain in diagnostic surgical 

pathology. Int J Surg Pathol, 2014. 22(1): p. 12-32. 
 
123. Scholzen, T. and J. Gerdes, The Ki-67 protein: from the known and the unknown. J Cell 

Physiol, 2000. 182(3): p. 311-22. 
 
124. Zhong, H., et al., Overexpression of hypoxia-inducible factor 1alpha in common human 

cancers and their metastases. Cancer Res, 1999. 59(22): p. 5830-5. 
 
125. Cai, K., et al., Magnetic resonance imaging of glutamate. Nat Med, 2012. 18(2): p. 302-6. 
126. Cai, K., et al., Mapping glutamate in subcortical brain structures using high-resolution 

GluCEST MRI. NMR Biomed, 2013. 26(10): p. 1278-84. 
 
127. Zhou, J., et al., Differentiation between glioma and radiation necrosis using molecular 

magnetic resonance imaging of endogenous proteins and peptides. Nat Med, 2011. 17(1): 
p. 130-4. 

 
128. Zaiss, M., et al., Relaxation-compensated CEST-MRI of the human brain at 7T: Unbiased 

insight into NOE and amide signal changes in human glioblastoma. Neuroimage, 2015. 
112: p. 180-8. 

 
129. Xu, J., et al., On the origins of chemical exchange saturation transfer (CEST) contrast in 

tumors at 9.4 T. NMR Biomed, 2014. 27(4): p. 406-16. 
 
130. McMahon, M.T., et al., Quantifying exchange rates in chemical exchange saturation 

transfer agents using the saturation time and saturation power dependencies of the 
magnetization transfer effect on the magnetic resonance imaging signal (QUEST and 
QUESP): Ph calibration for poly-L-lysine and a starburst dendrimer. Magn Reson Med, 
2006. 55(4): p. 836-47. 

 
131. McVicar, N., et al., Quantitative tissue pH measurement during cerebral ischemia using 

amine and amide concentration-independent detection (AACID) with MRI. J Cereb Blood 
Flow Metab, 2014. 34(4): p. 690-8. 

 
132. Zaiss, M., B. Schmitt, and P. Bachert, Quantitative separation of CEST effect from 

magnetization transfer and spillover effects by Lorentzian-line-fit analysis of z-spectra. J 
Magn Reson, 2011. 211(2): p. 149-55. 

 
133. Yoo, B., et al., Detection of in vivo enzyme activity with CatalyCEST MRI. Magn Reson 

Med, 2014. 71(3): p. 1221-30. 
 



 167 

134. Ortendahl, D.A. and L.E. Crooks, Directions in magnetic resonance imaging technology. 
Med Prog Technol, 1989. 15(3-4): p. 171-84. 

 
135. Hernando, D., et al., Removal of olefinic fat chemical shift artifact in diffusion MRI. 

Magn Reson Med, 2011. 65(3): p. 692-701. 
 
136. Schmiedeskamp, H., et al., Improvements in parallel imaging accelerated functional MRI 

using multiecho echo-planar imaging. Magn Reson Med, 2010. 63(4): p. 959-69. 
 
137. Yang, Q.X., et al., Reduction of magnetic field inhomogeneity artifacts in echo planar 

imaging with SENSE and GESEPI at high field. Magn Reson Med, 2004. 52(6): p. 1418-
23. 

 
138. Schomberg, H., Off-resonance correction of MR images. IEEE Trans Med Imaging, 1999. 

18(6): p. 481-95. 
 
139. Li, T. and S.A. Mirowitz, Fast T2-weighted MR imaging: impact of variation in pulse 

sequence parameters on image quality and artifacts. Magn Reson Imaging, 2003. 21(7): 
p. 745-53. 

 
140. Glockner, J.F., et al., Parallel MR imaging: a user's guide. Radiographics, 2005. 25(5): p. 

1279-97. 
 
141. Hua, J., et al., Quantitative description of the asymmetry in magnetization transfer effects 

around the water resonance in the human brain. Magn Reson Med, 2007. 58(4): p. 786-
93. 

 
142. Ostergaard, L., et al., High resolution measurement of cerebral blood flow using 

intravascular tracer bolus passages. Part I: Mathematical approach and statistical 
analysis. Magn Reson Med, 1996. 36(5): p. 715-25. 

 
143. Leu K, B.J., Cloughesy TF, Lai A, Nghiemphu PL, Liau LM, Pope WB, Ellingson BM., 

mproved Leakage Correction for Single-Echo Dynamic Susceptibility Contrast (DSC) 
Perfusion MRI Estimates of Relative Cerebral Blood Volume (rCBV) in High-grade 
Gliomas by Accounting for Bidirectional Contrast Agent Exchange. Am J Neuroradiol., 
2016; In Press. 

 
144. Ellingson, B.M., et al., Recurrent glioblastoma treated with bevacizumab: contrast-

enhanced T1-weighted subtraction maps improve tumor delineation and aid prediction of 
survival in a multicenter clinical trial. Radiology, 2014. 271(1): p. 200-10. 

 
145. Shih, S.C., et al., Molecular profiling of angiogenesis markers. Am J Pathol, 2002. 

161(1): p. 35-41. 
 



 168 

146. Pusztaszeri, M.P., W. Seelentag, and F.T. Bosman, Immunohistochemical expression of 
endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human 
tissues. J Histochem Cytochem, 2006. 54(4): p. 385-95. 

 
147. Singh, S.K., et al., Identification of a cancer stem cell in human brain tumors. Cancer Res, 

2003. 63(18): p. 5821-8. 
 
148. Bofan, M., et al., Within-day and between-day repeatability of measurements with an 

electronic nose in patients with COPD. J Breath Res, 2013. 7(1): p. 017103. 
 
149. Obuchowski, N.A., et al., Quantitative imaging biomarkers: a review of statistical 

methods for computer algorithm comparisons. Stat Methods Med Res, 2015. 24(1): p. 68-
106. 

 
150. Harris, R.J., et al., 18F-FDOPA and 18F-FLT positron emission tomography parametric 

response maps predict response in recurrent malignant gliomas treated with 
bevacizumab. Neuro Oncol, 2012. 14(8): p. 1079-89. 

 
151. Chang, H.H., et al., Performance measure characterization for evaluating neuroimage 

segmentation algorithms. Neuroimage, 2009. 47(1): p. 122-35. 
 
152. Shrout, P.E. and J.L. Fleiss, Intraclass correlations: uses in assessing rater reliability. 

Psychol Bull, 1979. 86(2): p. 420-8. 
 
153. Saltzherr, M.S., et al., Metric properties of advanced imaging methods in osteoarthritis of 

the hand: a systematic review. Ann Rheum Dis, 2014. 73(2): p. 365-75. 
 
154. Araie, M., Test-retest variability in structural parameters measured with glaucoma 

imaging devices. Jpn J Ophthalmol, 2013. 57(1): p. 1-24. 
 
155. Welton, T., et al., Reproducibility of graph-theoretic brain network metrics: a systematic 

review. Brain Connect, 2015. 5(4): p. 193-202. 
 
156. Demetriades, A.K., et al., Applications of positron emission tomography in neuro-

oncology: a clinical approach. Surgeon, 2014. 12(3): p. 148-57. 
 
157. Chen, W., et al., 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-

FDG PET and evaluation of diagnostic accuracy. J Nucl Med, 2006. 47(6): p. 904-11. 
 
158. Fueger, B.J., et al., Correlation of 6-18F-fluoro-L-dopa PET uptake with proliferation 

and tumor grade in newly diagnosed and recurrent gliomas. J Nucl Med, 2010. 51(10): p. 
1532-8. 

 
159. Holash, J., et al., Vessel cooption, regression, and growth in tumors mediated by 

angiopoietins and VEGF. Science, 1999. 284(5422): p. 1994-8. 
 



 169 

160. Plate, K.H., G. Breier, and W. Risau, Molecular mechanisms of developmental and tumor 
angiogenesis. Brain Pathol, 1994. 4(3): p. 207-18. 

 
161. Narita, Y., Bevacizumab for glioblastoma. Ther Clin Risk Manag, 2015. 11: p. 1759-65. 
 
162. Harris, R.J., et al., MRI perfusion measurements calculated using advanced 

deconvolution techniques predict survival in recurrent glioblastoma treated with 
bevacizumab. J Neurooncol, 2015. 122(3): p. 497-505. 

 
163. Ellingson, A.M., et al., Quantitative T2* (T2 star) relaxation times predict site specific 

proteoglycan content and residual mechanics of the intervertebral disc throughout 
degeneration. J Orthop Res, 2014. 32(8): p. 1083-9. 

 
164. Zaiss, M., et al., Inverse Z-spectrum analysis for spillover-, MT-, and T1 -corrected 

steady-state pulsed CEST-MRI--application to pH-weighted MRI of acute stroke. NMR 
Biomed, 2014. 27(3): p. 240-52. 

 
 
 




