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ABSTRACT OF THE DISSERTATION

Complex Motion Pattern Queries for Trajectories
by
Marcos Rodrigues Vieira

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2011
Dr. Vassilis J. Tsotras, Chairperson

This thesis presents several new query processing techniques, called complex
motion pattern queries, specifically designed for trajectories. First, it begins with the
definition of flexible pattern query, a very powerful, yet easy to use motion pattern query
which allows users to select trajectories based on specific events of interest. Flexible
pattern query is described as regular expressions over a spatial alphabet that can be
implicitly /explicitly “anchored” to the time domain. Moreover, it allows users to include
variables in the pattern query, and thus greatly increase its expressive power. Second, the
Spatio-Temporal Pattern System (STPS) is presented, which is an adaptation of flexible
pattern query for mobile phone-call databases. These databases contain many millions of
records with information about mobile phone calls, including the user’s location, when
the call was made/received, and duration of the call, among other information. The
design of STPS takes into consideration the layout of the areas being covered by the
cellular towers, as well as areas that label places of interest (e.g. neighborhoods, parks).

Third, density-based pattern query is described for discovering trajectories that follow a
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pattern that captures the aggregate behavior of trajectories as groups. Several evaluation
algorithms are presented for finding groups of trajectories that move together, i.e. within
a predefined distance to each other for a continuous period of time. The last complex
motion pattern query proposed in this thesis is for diversifying query results. The goal
of this query is to build a result that contains relevant elements to the user’s query and
diverse elements to other elements in the result. This pattern query is useful when, for
example, an exploratory query to a very large database leads to a vast number of answers
in the result. Navigating through such a large result requires huge effort and users give up
after perusing through the first few results, thus some interesting results hidden further
down the result set can easily be missed. To overcome this problem, a generic framework
for diversifying query results is presented. T'wo new evaluation methods, as well as several
existing ones, are described and tested in the proposed framework. The efficiency and
effectiveness of the proposed complex motion pattern queries are demonstrated through

an extensive experimental evaluation.
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Chapter 1

Introduction

The wide availability and use of location and mobile technologies (e.g. cheap
GPS devices, ubiquitous cellular networks, RFIDs), has enabled many applications that
generate and maintain large amounts of trajectorial data. For example, new generations of
monitoring/tracking systems have emerged, providing complex services to their end users.
The quality and accuracy of the produced spatio-temporal data has also improved: instead
of the traditional cell phone tower triangulation method, assisted GPS (A-GPS) [69] was
recently introduced to improve location accuracy (such as enhanced 911 service [18]).
These advances have led to the creation of large volumes of accurate spatio-temporal data
in the form of trajectories. A trajectory has a unique identifier and contains location data
(e.g. latitude/longitude) gathered for a specific moving object over an ordered sequence
of time instants (or intervals). Given the huge volume of data generated in the form
of trajectories, there is a need to develop better and more efficient techniques for data

organization and query evaluation over trajectories.



Past research efforts on querying trajectory data has mainly concentrated on
traditional spatio-temporal queries, such as range and nearest neighbors searches (e.g.
finding trajectories that passed by a predefined area), or similarity /clustering based tasks,
such as extracting similar movement patterns and periodicities from trajectory data (e.g.
finding all trajectories that are similar to a given query trajectory according to some
similarity measure). Nevertheless, trajectories are complex objects whose behavior over
space and time can be better captured as a sequence of interesting events, or the aggregate
behavior of trajectories as groups. These two types of patterns for querying trajectories
are called “motion patterns queries” [103], which are discussed in more detail in this
thesis.

In this thesis, we first introduce flexible pattern queries [97, 98], which allow
users to select trajectories based on specific interesting events. Such pattern queries are
described as regular expressions over a spatial alphabet that can be implicitly or explicitly
“anchored” to the time domain. Moreover, it allows users to include wariables in the
pattern query, and thus greatly increase its expressive power. We describe our proposed
framework, called FlexzTrack [98], for efficient processing of flexible pattern queries on
trajectorial databases.

Next, we present the Spatio-Temporal Pattern System (STPS) for querying
spatio-temporal patterns in mobile phone-call databases [100]. In this work, we adopt [97]
and study its application in the domain of Call Detail Record (CDR) databases. The STPS
allows users to express mobility pattern queries with a regular expression-like language.
The join-based evaluation algorithm proposed in [97] was modified to handle trajectories

specified in CDR format rather than the traditional form. This change in the data format



also poses changes in the query languages. The query evaluation system is redesigned
to work with the features (e.g. tables, BT-trees and so on) of a commercially available
Relational Database Management System (RDBMS), since CDR databases are typically
implemented in such systems.

We then turn our attention to density-based pattern queries [96, 99], which search
for trajectories that follow a pattern that captures the aggregate behavior of trajectories
as groups. Such queries discover groups of moving objects that have a “strong” relation-
ship in the space for a given time duration. In this work we consider the discovery of
flock patterns among the moving objects, i.e., the problem of identifying all groups of
trajectories that stay “together” for the duration of a given time interval. We consider
moving objects to be “close” together if there exists a disk with a given radius that covers
all moving objects in the pattern. A trajectory satisfies the above pattern as long as
“enough” other trajectories are contained inside the disk for the specified time interval;
that is, the answer is based not only on a given trajectory’s behavior but also on the
ones near it. Consider, for example, finding groups of trajectories that move “together”,
i.e. within a predefined distance to each other, for a certain continuous period of time.
Such queries typically arise in surveillance applications, e.g., identify groups of suspicious
people, convoys of vehicles, migration of birds, flocks of animals.

In all of the pattern queries previously described, all the elements in the answer
are relevant to the user’s pattern query. Nevertheless, with the availability of very large
databases, an exploratory query can easily lead to a vast answer set, typically based on an
answer’s relevance to the user query. Navigating through such an answer set requires huge

effort and users give up after perusing through the first few answers, thus some interesting



answers hidden further down the answer set can easily be missed. An approach to address
this problem is to present the user with the most diverse among the answers based on
some diversity criterion. To cope with this problem, we propose the DivDB framework,
a general framework for evaluation and optimization of methods for diversifying query
results [102, 101]. In the DivDB framework, an initial ranking candidate set produced by a
query is used to construct a result set, where elements are ranked with respect to relevance
and diversity features, i.e., the retrieved elements should be as relevant as possible to
the query, and, at the same time, the result set should be as diverse as possible. While
addressing relevance is relatively simple and has been heavily studied, diversity is a harder
problem to solve. One major contribution of this work is that several existing methods
for diversifying query results were adapted, implemented and evaluated in the DivDB
framework. We also propose two new approaches, namely the Greedy with Marginal
Contribution (GMC) and the Greedy Randomized with Neighborhood Expansion (GNE)
methods. Both methods iteratively construct a result set using a scoring function that
ranks candidate elements using not only relevance and diversity to the existing result set,
but also accounts for diversity against the remaining candidates.

The rest of this thesis is organized as follows: Chapter 2 presents flexible pat-
tern queries; Chapter 3 describes the Spatio-Temporal Pattern System (STPS) for mobile
phone-call databases; Chapter 4 discusses density-based pattern queries; Chapter 5 pro-
poses the DivDB framework for diversifying query results; Finally, Chapter 6 concludes

this thesis.



Chapter 2

Flexible Pattern Queries

The wide adaptation of GPS and cellular technologies has created many ap-
plications (e.g. location-based, tracking, surveillance) that collect and maintain large
repositories of data in the form of trajectories. Each trajectory contains the spatial lo-
cations collected for a given moving object over an ordered sequence of time instants.
Previous work on querying and analyzing trajectorial data typically falls into methods
that either address spatial range and nearest neighbor queries, or similarity based queries.
Nevertheless, trajectories are complex objects whose behavior over time and space can
be better captured as a sequence of interesting events. We thus facilitate the use of mo-
tion pattern queries which allow the user to select trajectories based on specific motion
patterns. Such patterns are described as regular expressions over a spatial alphabet that
can be implicitly or explicitly anchored to the time domain. Moreover, we are interested
in “flexible” patterns that allow the user to include variables in the pattern query and
thus greatly increase its expressive power. In this chapter, we introduce a framework for

efficient processing of flexible pattern queries. The framework includes an underlying in-



dexing structure and algorithms for query processing using different evaluation strategies.
An extensive performance evaluation of this framework shows significant performance

improvement when compared to previous solutions.

2.1 Introduction

The wide availability of location and mobile technologies (cheap GPS devices,
ubiquitous cellular networks, etc.) as well as the improved location accuracy (A-GPS) [69]
has enabled many applications that generate and maintain data in the form of trajectories.
Examples include AccuTracking [3], tracNET24 [45], Path Intelligence’s FootPath [72],
InSTEDD’s GeoChat [43], among many others. Each trajectory has a unique identifier and
consists of location data gathered for a specific moving object over an ordered sequence of
time instants. Given the high data volume, more efficient techniques for query evaluation
over trajectory data are needed.

Previous work on querying trajectories can be divided in two categories: (a)
querying the future movements of moving objects based on their current positions (e.g.
[52, 73]); and (b) querying trajectory archives, which is also the focus of this chapter.
Recent research efforts on querying trajectory archives has concentrated on (i) tradi-
tional spatio-temporal queries, such as Range and Nearest Neighbor (NN) searches (e.g.
[37, 74]) (e.g. finding all trajectories that passed by downtown LA at 10:30am), or (ii)
similarity /clustering based tasks (e.g. [59, 65]), such as extracting similar movement pat-
terns and periodicities from a trajectory archive (e.g. finding all trajectories in the archive

that are similar to a given query trajectory according to some similarity measure).



However, given the nature of trajectories as typically long sequences of events,
a single range predicate may provide too many results (many trajectories passed through
downtown LA) while a similarity-based query may be too restrictive (not many trajec-
tories match the full extent or large part of the query trajectory). We thus advocate a
different approach, i.e., using motion pattern queries. A motion pattern query specifies
a combination of predicates that can thus capture only the parts of the trajectories that
are of interest to the user. For example: “find trajectories that first went by downtown
LA, later went by West Hollywood and ended up in Beverly Hills”. This query simply
provides a sequence of range predicates that have to be satisfied in the specified order.
One can also add NN conditions as well (in the above query: “... and they were closest

“

to the LAX airport”) as well as explicit time constraints: “... ended up in Beverly Hills
between 10am and 1lam”. Conceptually, motion pattern queries cover the query choices
between the above two extremes: single predicates and similarity queries.

In this chapter, we introduce a general and powerful framework that describes
pattern queries as regular expressions over a finite spatial alphabet. Each letter in the
spatial alphabet corresponds to a non-overlapping region; their union covers the whole

space where the trajectories lie. We note that there are various advantages from these

choices:

1. The use of non-overlapping regions is natural: trajectories correspond to real entities

and hence a trajectory can be in a single region at a given time;

2. Raw trajectory data typically come from sensors, GPS, RFID readers, etc., and

provide extra detail that becomes cumbersome to query. Instead, the regions offer



a more user-friendly way to express queries since the user is more familiar with the

spatial regions [27] (e.g. Downtown, LAX airport);

3. The use of spatial regions allows high-level summarization /filtering of the trajecto-
ries. The region description of a trajectory is much smaller, leading to faster query

processing, while the raw data is still kept if more detail is needed;

4. This enables easy and effective indexing; it further enables the use of alternative

evaluation algorithms (e.g. joins among inverted indexes, pattern matching, NFAs);

5. The region alphabet facilitates querying by regular expressions as a query language:

the user can now describe complex queries over paths using this fixed alphabet.

This work is part of a larger prototype, called FlexTrack, we built for querying
trajectories using regions [98]. The FlexTrack system uses a hierarchical region alphabet,
where the user has the ability to define queries with finer alphabet granularity (zoom in)
for the portions of greater interest and higher granularity (zoom out) elsewhere. Through
a GUI the user specifies a pattern query by selecting regions (using various levels of the
hierarchy); this query is automatically translated into a regular expression over the finest
region granularity and then executed. This chapter describes how queries are executed at
the finer granularity of our prototype. Hence in the rest we assume that all query regions
are at the same (finer) granularity. This finer granularity is chosen by and depends on
the application needs.

Our framework further allows the use of variables within the pattern query. We
term these variable-enabled queries as “flexible” patterns as they lead to a very powerful

way to query the trajectory archive. Moreover, in our framework, the fized and/or variable



spatial predicates can express explicit temporal constraints (“between 10am and 1lam”)
and/or implicit temporal ordering between them (“anytime later”). Queries can also
include “numerical” conditions (NN and their variants) over the duration of the trajectory.
Using this general and powerful querying framework the user can “focus” only on the
portions/events in a trajectory’s lifetime that are of interest.

Novel methods are needed to efficiently process such complex queries over large
trajectory repositories. We propose two query evaluation algorithms which first concen-
trate on trajectories that satisfy the fixed predicates specified in the query. As such, they
prune effectively large portions of the repository that cannot lead to query answers. The
first proposed algorithm uses the merge-join paradigm over the lists of trajectories associ-
ated with the query predicates. The second algorithm is based on a dynamic programming
technique that finds subsequence matches between the trajectory representations and the
pattern query. Efficient techniques are then used for the evaluation of the remaining
variable predicates.

We note that patterns as effective ways to query have been examined in the
past. For instance, [82, 87] examine patterns over time series while [4] over event streams.
Trajectories differ since they have both spatial and temporal behavior. In spatio-temporal
databases patterns have been examined in [24, 26, 36, 83]; as detailed in the related
work section, these approaches either concentrate on language/modeling related issues,
provide less query support (e.g. no temporal and/or numerical constraints) and have less
efficient /general evaluation methods.

To summarize, the contributions of this chapter are the following:



1. we define a simple yet powerful framework using a query language based on regular

expressions;

2. we allow patterns to contain variables over the query space regions;

3. using lightweight index structures that can be easily implemented in most commer-

cial DBMS nowadays, we propose two efficient evaluation algorithms;

4. finally, we present an extensive experimental evaluation of the proposed techniques
against two other methods that we extended and implemented in our framework: a

NFA-based method [4] and a KMP-based method [24].

It should be noted that none of the original previous approaches can evaluate
our proposed pattern query language. The experimental results reveal that the proposed
evaluation framework achieves always better query performance over modified existing
solutions, making our framework a very robust approach for querying and analyzing very
large trajectory repositories.

The remainder of this chapter is organized as follows: Section 2.2 discusses
the related work; Section 2.3 provides the basic definitions and formal description of
the spatio-temporal query language; The proposed framework is described in details in
Section 2.4 and its experimental evaluation appears in Section 2.5; Section 2.6 concludes

the chapter with the final remarks.
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2.2 Related Work

Previous research has focused on either the evaluation of a single spatio-temporal
predicate (Range or Nearest Neighbor NN queries), or similarity /clustering queries where
a full (or a portion of) trajectory is given and similar trajectories are sought.

Single spatio-temporal predicate queries for trajectory data have been well stud-
ied in the past (e.g. [74, 92]). To make the evaluation process more efficient, the query
predicates are typically evaluated utilizing hierarchical spatio-temporal indexing struc-
tures [37]. Most structures use the concept of Minimum Bounding Regions (MBR) to
approximate the trajectories, which are then indexed using traditional spatial access
methods, like the MVR-tree [91]. These solutions, however, are focused only on sin-
gle spatio-temporal predicate queries. None of them can be used for efficient evaluation
of flexible pattern queries with multiple predicates. Moreover, our work is different than
(and orthogonal to) approaches like [66], that can handle many single but independent
predicates (i.e. different queries). In our case, all predicates appear in the same query
and should all be satisfied by each trajectory in the result set.

Similarity search among trajectories has also been well studied. (e.g., [6, 12, 71,
60, 106]). Work in this area focuses on the use of different distance metrics to measure
the similarity between trajectories. Non-metric similarity functions based on the Longest
Common Subsequence (LCS), are examined in [104]. [12] proposes to approximate and
index a multidimensional spatio-temporal trajectory with a low order continuous Cheby-

shev polynomial which can then lead to efficient indexing for similarity queries [71].
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The importance of pattern queries has been recognized in the relational domain
as well. For example, Informix [42] introduced a time-series database and provided a
library of functions for pattern searching that can be called from within an SQL query.
Most commercial databases nowadays support similar extensions. The importance of
sequence query processing was also discussed in [82, 87], where several ways to specify
patterns as part of SQL, as well as their query optimization, are presented. Pattern
queries have also been used for evaluating event streams using a NFA-based evaluation
method [4]; however, the environment in [4] is different than the trajectories considered
here. However, all of the above works are focused on patterns for time-series or event
streams data and are not explicitly designed for handling trajectories and spatio-temporal
patterns.

For moving object data, patterns have been examined in the context of query
language and modeling issues [26, 67, 83], as well as query evaluation algorithms [36, 24].
[26] proposes the use of spatio-temporal patterns as a systematic and scalable query
mechanism to model complex object behavior in space and time. [67] presents a powerful
query language able to model complex pattern queries using a combination of logical
functions and quantifiers. [77] focuses on the direction of the “movement” patterns, while
queries related to the relative movement of objects are examined in the Relative Motion
(REMO) system [56]. In [36], it is examined incremental ranking algorithms in the case of
simple spatio-temporal pattern queries. Those queries consist of range and NN predicates
specified using only fized regions. Our work differs in that we provide a more general
and powerful query framework where queries can involve both fixed and wvariable regions

as well as regular expression structures (repetitions, negations, optional structures, etc)
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and explicit ordering of the predicates along the temporal axis. Moreover our proposed
language introduces explicit ordering of the predicates along the temporal axis which
allows the users to specify ordering constraints like “immediately after” or “immediately
before”. In [24], a KMP-based algorithm [51] is used to process patterns. This work,
however, focuses only on range spatial predicates and cannot handle explicit and implicit
temporal ordering of the predicates. Furthermore, this approach on evaluating patterns
is effectively reduced to a sequential scanning over the list of trajectories stored in the
repository: each trajectory is checked individually, which becomes prohibitive for large
trajectory archives.

While the use of variable predicates in specifying patterns greatly improves the
expressive power, the query evaluation becomes more challenging. This is because variable
spatio-temporal predicates provide many more opportunities for matching the pattern
query to a specific trajectory in the repository (by simply changing the variable bindings

in the pattern).

2.3 The Flexible Pattern Query Language

We assume that a trajectory T;4 of a moving object O,4 is stored as a sequence of
w pairs {(I1,t1),... (lw,tw)}, where t; is a timestamp and [; is the moving object location
recorded at t; (I; € Rd, t; € N, t;1 < t;, and 0 < ¢ < w). Such raw data is collected
from the application and stored in the repository. Typically, monitored objects report
their position to the data collection device using data packets containing their identifier

id (T;q), current location [; and timestamp ¢;. Depending on the application, objects
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may report continuously or simply when they change their location. For instance, if a
trajectory is represented by a function f() [12], the (;, ;) pairs can be created by sampling
f() at discrete timestamps. We further assume that the spatial domain is partitioned to
a fixed set ¥ of non-overlapping regions. Regions correspond to areas of interest (e.g.
school districts, airports, city malls) and form the alphabet used in our pattern query
specification. In the following we use capital letters to represent the region alphabet,
> ={A,B,C,..}.

A general pattern query Q = (S [|JD]) consists of a sequential pattern S and
(possibly) a set of constraints D. Here S corresponds to a sequence of spatial predicates,
specified using regions from ¥, while D represents a collection of distance functions (e.g.
NN and their variations) that may contain regions defined in S. A trajectory matches
the pattern query Q if it satisfies both & and D. We first describe how a pattern S is
formed and then elaborate on the distance constraints D. In particular, a pattern S is

expressed as a path expression of an arbitrary number of spatio-temporal predicates P:

S— SS|P|IP|PF |2 |7

(4'77

here defines the negation operator, “#” the optional modifier, “*” the one or
more repetition modifier, “*” the zero or more repetition modifier, and “?” the
wild-card. The sequence of predicates in S is defined recursively by S§.S where the
sequencer “.” appears between every spatio-temporal predicate P in S.

Each spatio-temporal predicate P; € S is defined by a triplet P, = (op;, R;, [int;]).

Here R; corresponds to a predefined spatial region or a variable, i.e., R; € ¥ UT (where
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I" is the set of variables, to be discussed later). The operator op; describes the topo-
logical relationship that a trajectory T;4 and the spatial region R; must satisfy over the
(optional) time interval int;. In particular, we use the topological relationships described
in [26]; examples of such operators are the relations Equal, Inside, Touch, Meet, among
others. Given a trajectory T;4 and a region R;, the operator op; returns a boolean value
B = {true, false} whether the trajectory T;4 and the region R; satisfy the topological
relationship op; (e.g., an Inside operator will be true if the trajectory was sometime inside
region R; during time interval int;). For simplicity in the following we assume that the
spatial operator is set to Inside and it is thus omitted from the query examples.

Within the pattern S, the wild-card “?” is used to specify “don’t care” parts
in a trajectory’s lifetime and can be of two types: (i) “?*”: one or more occurrences
of any region predicate (e.g. P;.?".P;y; implies that the predicate P, is satisfied after

“P%7 zero or more

predicate P; with one or more regions visited between them); or, (ii)
occurrences of any region visit (e.g. P;.7*.P, 11 which implies that the predicate P41 can
be satisfied any time after predicate F;).

A predefined region R; € ¥ is explicitly specified by the user in the query
predicate (e.g. “the convention center”). In contrary, a variable denotes an arbitrary
region and it is denoted by a lowercase letter preceded by the “@” symbol (e.g. Qzx). A
variable region is defined using symbols in ', where I' = {@Qa, @b, Qc, ...}. Unless otherwise
specified, a variable takes a single value (instance) from ¥ (e.g. @a=C'); however, in

general, one can also specify the possible values of a variable as a subset of ¥ (e.g., “any

city district with museums”). Conceptually, variables work as placeholders for explicit
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spatial regions and can become instantiated (bound to a specific region) during the query
evaluation in a process similar to unification in logical programming.

Moreover, the same variable Qr can appear in several different predicates of
pattern S, referencing to the same region everywhere it occurs. This is useful for specifying
complex queries that involve revisiting the same region many times. For example, a
pattern like S = {@Qx.7*.B.Qzx} finds trajectories that started from some region (denoted
by variable @z) , then at some point passed by region B and immediately after they
visited the same region they started from. Note that for our purposes, wild-card “?” is
also considered a variable; however it refers to any region, and not necessarily the same
region if it occurs multiple times within a pattern S.

Finally, a predicate P; may include an explicit temporal constraint int; in the
form of an interval, which implies that the spatial relationship op; between a trajectory
and region R; should be satisfied in the specified time interval int; (e.g. “passed by area
B between 10am and 1lam”). If the temporal constraint is missing, we assume that the
spatial relationship can be satisfied any time in the duration of a trajectory lifespan. For
simplicity we assume that if two predicates P;, P; occur within pattern S (where i < j)
and have temporal constraints int;,int;, then these intervals do not overlap and int;
occurs before int; on the time domain.

Spatio-temporal predicates however cannot answer queries with constraints (for
example, “best-fit” type of queries — like NN and the related — that find trajectories which
best match a specified pattern). This is because topological predicates are binary and
thus cannot capture distance based properties of the trajectories. The optional D part of

a general query Q is thus used to describe distance-based or other constraints among the
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variables used in the S part. A simple kind of constraint can involve comparisons among
the used variables (e.g., Qz!=Qy). More interesting is the distance-based constraint which
has the form (Aggr(di,ds,...);0) and is described below.

For simplicity in the following we assume Euclidean distance (Lg) but other
distances, like Manhattan (L1), Infinity (L), among others, can also be used. Consider
for example a Q query whose pattern S contains three wvariables Qx, Qy, Qz, ie., S =
{A.7*.B.Qz.Qy.C.7*.Qz}. Among the trajectories that satisfy S, the user may specify
that in addition, the sum of the distance between regions @Qx and @y and the distance
between @Qz and a fixed region E is less than 100 feet. Hence D contains a collection
of distance terms dj,ds, ..., where term d; represents the distance between two wvariable
regions or between a variable region and a fixed one. In our example there are two distance
terms: dj = d(Qz, Qy) and dy = d(Qz, ).

Distance terms need to be aggregated into a single numerical value using an
aggregation function (depicted as Aggr() in the formal definition of D). In the previous
example Aggr() = Sum(), but other aggregators like Avg(), Min(), Maz(), etc., can also
be used. The aggregated numerical score for each trajectory still needs to be mapped
to a binary value so as to determine if the trajectory satisfies D. This is done by the
0 operator defined in D. This operator can be a simple check function (using =, <
and others). In our example 6 corresponds to “< 100 feet” and returns true for all
trajectories whose aggregate distance is less than 100 feet. It is also possible to use other
0 operators, e.g. Min(), Max(), Top-k(), etc. In the previous example, if the 6 operator

is changed to Top-k(), the query will return ¢rue only for the trajectories with the Top-k()
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aggregated distances. For simplicity of the description, in the remainder of this work we
use Aggr() = Sum() and § = Min() (which corresponds to a NN query).

The use of wariables in describing both the topological predicates and the nu-
merical conditions provides a very powerful language to query trajectories. To describe a
query, the user can use fixed regions for the portions of the trajectory where the behavior
should satisfy known (strict) requirements, and variables for portions where the exact be-
havior is not known (but can be described by a sequence of variables and the constraints
between them). The ability to use the same variable many times in the query allows for
revisiting areas, while the ability to refer to these variables in the distance functions allows
for easy description of NN and related queries. It is exactly this “flexibility” allowed by

the use of variables in selecting trajectories that led to the term “flexible pattern queries”.

2.4 Query Evaluation Framework

To simplify the presentation we first start with the evaluation of the spatial
predicates for a pattern S. Later we extend the discussion to cover queries that in addition
contain distance constraints D. Finally we present the incorporation of time constraints
inside the pattern query Q.

For simplicity we assume that the space is partitioned into 2-dimensional non-
overlapping regions (Figure 2.1(a)). To efficiently evaluate flexible pattern queries we will
facilitate two lightweight index structures in the form of ordered lists (Figures 2.1(b)-
(c)), that are stored in addition to the raw trajectory data (Figure 2.1(d)). There is

one region-list per region and one trajectory-list per trajectory. The region-list L4 of
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region-list trajectory-list raw trajectories
Downtown: T,(7.9); To(21,23); T, L(1,5) R(5,9) X(9,10) T::(7.52.2,1)(6.8,2.4,2)
T4(5,10) ... M(10,13) U(13,14) B(14,16) ggggﬁgg (6.0,3.0,4)
Santa Monica: T,(10,13); T,(18,21); T,: X(1,3) 1(3,5) S(5,7) D(7,9) —
T,(25,27); T4(10,11) ... P(9,10) H(10,13) B(13,15) T, (39,5.9,1) (4.16.1.2)
- U(15,18) M(18,21) D(21,23) (5.06.2,3) (5.8,6.4.4)
Beverly Hills: T,(14,16); T,(13,15); H(23,24) B(24,25) M(25,27) (6.5,6.4,5) ...
Ty(24,25); To(11,13) ... T2 N(1.2) A@2.5) D(5.10) TJ:((3'3’53’31))((38'3’3;5))
LAX: T,(9,10); T,(1,3) ... M(10,11) B(11,13) T77es
(a) Region-based trajectory representation (b) region-list index (c) trajectory-list index (d) raw trajectory archive

Figure 2.1: Region-based trajectory representation.

a given region A acts as an inverted index that contains all trajectories that passed by
region A. Each entry in L4 is a record that contains a trajectory identifier T;4, the time
interval (t-entry:t-exit) during which the moving object was inside A, and a pointer to
the trajectory-list of T;4. If a trajectory visits a given region A multiple times in different
time intervals, we store a record for each visit. Records in a region-list are ordered first
by the trajectory-id T;; and then by t-entry. For example, in Figure 2.1 the region-list
entry for the region D (Downtown) is {T(7,9); T5(21,23); T5(5,10);...}.

In order to fast prune trajectories that do not satisfy the pattern S, each trajec-
tory is approximated by the sequence of regions it visited. A record in the trajectory-list
of trajectory T;q contains the region and the time interval (¢-entry:t-exit) during which
this region was visited by T;, ordered by t-entry. In Figure 2.1 the trajectory-list en-
try for Ty is {X(1,3); 1(3,5); S(5,7); D(7,9); P(9,10); H(10,13); B(13,15); U(15,18);
M (18,21); D(21,23); H(23,24); B(24, 25); M(25,27)}. Note that records from a region-
ltst index point to the corresponding records in a trajectory-list index. For example, the
record T5(21,23) in the region-list Lp (Downtown) contains a pointer to the page in the

trajectory-list of Ty that contains the corresponding record D(21,23).

19



Since wvariables in pattern S can take values from the whole set ¥ of regions,
we need a representation of each trajectory using the alphabet elements in . While
one could always use the raw trajectory data, it is more efficient to maintain a region
representation of each trajectory to fast prune trajectories that do not satisfy the pattern
S. That is, each trajectory is approximated by the sequence of regions it visited. This
compact representation of each trajectory is stored in the trajectory-list index. A record
in the trajectory-list of trajectory T;4 contains the region and the time interval (t-entry:t-
exit) during which this region was visited by T;, ordered by t-entry. Figures 2.1(b-c)
depict various region—lists and trajectory-lists. Note that records from a region-list index
point to the corresponding records in a trajectory-list index. For example, consider the
region-list Lp (Downtown) of region D and a record in this list for trajectory Tb with
interval (t1,t2). The pointer included in this record points to the page in the trajectory-list
of Ty that contains the corresponding record D(t1,t2).

The only requirement for the region partitioning is that regions should be non-
overlapping. In practice, there may be a difference between the regions presented to the
user and what lists are created. In such scenarios we use uniform grid and overestimate
a region by approximating it with the smallest collection of grid cells which completely
encloses it. False positives may be generated from regions that do not completely fit the
set of covering grid cells, however, they can be removed with a verification step using the
original trajectory data. Finding the best grid granularity can be done by an optimization
process which combines the number of grid cells and the total overestimated area into a
single objective function. Moreover, instead of a uniform grid, one could facilitate instead

a dynamic space partitioning structure (e.g. adaptive grid files, kdb-trees, among many
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others) that assigns grid cells sizes according to the data density. Then, dense areas will
have more, finer cells which in return allow for better approximation of the regions and
thus fewer false positives are generated.

For evaluating pattern queries we propose two different strategies: (1) the Index
Join Pattern (IJP) is based on a merge-join operation performed over the region-lists
corresponding to every fixed predicate in the pattern S; (2) the Dynamic Programming
Pattern (DPP) performs subsequence matching between the pattern S and the trajectory
approximations stored as the trajectory-lists. Both algorithms use the same two indexing
structures for pruning purposes, but in different ways: IJP uses the region-lists for pruning
and the trajectory-lists for the variable binding; DPP uses mainly the trajectory-lists for
the subsequence matching and performs an intersection-based pruning on the region-
lists. Which algorithm would behave better will thus depend on the pruning capabilities
provided by its main index; this in turn depends on the trajectory archive and the query

characteristics.

2.4.1 The Index-Join Pattern Algorithm (IJP)
Spatial Predicate Evaluation

We start with the case where the pattern S does not contain any explicit tem-
poral constraints. In this scenario, the pattern specifies the order by which its predicates
(whether fixed or variable) need to be satisfied. Assume S contains m predicates and let
Sy denote the set of n fixed predicates, while S, denotes the set of r variable predicates
(m=n+r). The evaluation of S with the IJP Algorithm can be divided in two steps: (%)

the algorithm evaluates the set Sy using the region-list index to fast prune trajectories
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that do not qualify for the answer; (72) then the collection of candidate trajectories is
further refined by evaluating the set of S,.

(i) Fized predicate evaluation: All n fixed predicates in Sy can be evaluated
concurrently using an operation similar to a merge-join among their region-lists L;,i €
1..n. Records from these n lists are retrieved in sorted order of T;; and then joined by
their T;4’s. Records are pruned using the trajectory ids and the temporal intervals (¢-
entry:t-exit). In each list £; we keep a pointer p; that points to the record currently
considered for the join. This pointer scans the list £; starting from the top.

If the same region appears more than once in the pattern S, a separate pointer
traversing that region-list is used for each region appearance in S. For example, to process
the pattern § = {7*.M.D.M}, the region-lists of M and D are accessed using one pointer
for region-list Lp (pp) and two pointers for traversing region-list Ly (par, and par,). If
a trajectory-id T;4 appears in all of the n region-lists involved in the pattern query, and
their corresponding time intervals in all n region-lists satisfy the ordering of the predicates
in S, this T;4 is saved as a possible solution. The pseudo code is shown in Algorithm 1.

During the merge-join operation, there are cases where records from a region-list
can be skipped, thus resulting in faster processing. For example, assume that predicate
P; € S (corresponding to the region-list L;) is before predicate P; € S (corresponding to
L;). Further assume that in list £; the current record considered for the join has trajectory
identifier T}, while in list £; the current record considered has trajectory identifier T§. If
Ty < T, processing in list £; can skip all its records with T;4 < T).. That is, the pointer p;
in list £; can advance to the first record with T;q > T,.. Essentially, predicate P; cannot

be satisfied by any of the trajectories in £; with smaller T;4 than T).. Since records in a
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region-list Ly,
T,(10,13)

region-list L p
T,(7,9)
T,(21.23)
T4(5,10)

region-list L,

T,(10,13)

Figure 2.2: Trajectory examples 77, T and T5.

region-list are sorted by T;4, £; does not contain trajectories with smaller identifiers than

Similarly, when a record from the same trajectory (e.g. Tj) is found in two
region-lists (e.g. L;, L;), the algorithm checks whether the corresponding time intervals
of the records match the order of predicates in the pattern S. Hence a trajectory that
satisfies S should visit the region of £; before visiting the region of £;. If the record of
Ts in £; has t-entry that falls after the corresponding t-entry of Ty in list £;, this record
can be skipped in £;, since it cannot satisfy the query. Since region-lists are stored in
ordered way, advancing a region-list forward to a specific location stamp by T;4 or by (T}4,
t-entry) can be easily implemented using an index B*-tree on the (T4, t-entry) composite
attribute.

Example: The first step of IJP algorithm is illustrated using the example in

Figure 2.2. Assume the pattern S in the query Q contains three fixed (M, D, M) and
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three variable predicates (71, Qz, Qx), as in:

S ={7".Qz.7*.M.7*.D.7*.Qx.7* .M}

This pattern looks for trajectories that first visited an arbitrary region (denoted by ?%)
one or more times, then visited some region denoted by variable Qz, then (after visiting
zero or more regions) it visited region M, then region D and then visited again the same
region @z before finally returning to M. The first step of the merge-join algorithm uses
the region-list for M and D (Lp; and Lp). For simplicity, instead of using two separate
pointers in list Lys, Figure 2.2 depicts two copies of list £y, namely Ly, and Lyy,.
Conceptually, Ly, represents the first occurrence of M in S (before D) and Ly, the
second occurrence of M (after D).

The algorithm starts from the first record in list £y, , namely 77(10,13). It then
checks the first record in list Lp, i.e., trajectory T». We can deduce immediately that T;
is not a candidate trajectory, since it does not appear in the list of Lp, so we can skip
T from the Ly, list and continue with the next record there, trajectory 7»(18,21). Since
T5(7,9) in list Lp has interval before (18,21), list £p moves to its next record T5(21:23).
These two occurrences of T5 coincide with the pattern M.7*.D of S, so we need to check
if T» passes again by region M. Thus we consider the first record of list Ly, namely
trajectory T7(10:13). Since it is not from 7% it cannot be an answer so list £, advances
to the next record 7»(18,21). Now pointers in all lists point to records of T». However,
T5(18,21) in Ly, does not satisfy the pattern since its time interval should follow the

interval (21,23) of T in D. Hence Ly, is advanced to the next record, which happens
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Algorithm 1 IJP: Fixed Spatial Predicates

Input: Pattern &
Output: Trajectories satisfying Sy

1: n« |Sy| > number of fixed predicates in S
2: for i < 1ton do > for each Sy
3: Initialize £; with the cell-list of P;

4: Candidate Set U «+ 0

5: for w <+ 1 to |£1] do > analyze each entry in £
6: p1=w > set the pointer for £
7 for j <+ 2 ton do > examine all other lists
8 if £1]w].id ¢ L; then

9: break > L1[w].id does not qualify
10: Let k be the first entry for £1[w].id in L;
11: while £[w].id = L;[k].id and L;_1[p;j—1].t > L;[k].t do
12: kE+—k+1 > align £;_1[p;—1].t and L;[k].t
13: if £i]w].id # L;[k].id then
14: break > L1|w] does not qualify
15: else p; =k > set the pointer for £;
16: if £1[w] qualifies then
17: U+ UU Li|w].id > L1[w] satisfy all Sy

to be T5(25,27). Again we have a record from the same trajectory T in all lists and
this occurrence of T, satisfies the temporal constraints and thus the pattern S. As a
result, trajectory 75 is kept as a candidate in U. The processing moves to the next record
in list Lz, namely 75(25,27). However, this record cannot satisfy the pattern S so it is
skipped. Eventually £, will consider 73(10,11) which causes list £p to move to T5(5,10).
Trajectory T3 cannot satisfy the temporal constraint, so it is skipped from list £p and
the algorithm terminates since one of the lists reached its end. [J

In the case where the region partitioning is represented internally by a grid of
smaller cells, Algorithm 1 can still be applied. But to evaluate such region’s predicate,
we need first to materialize a sorted list from all cell-lists involved in this region. How-
ever, since the individual cell-lists participating in the enclosure are already ordered by
trajectory-id T;4, the sort order can be materialized s on the fly by feeding the algo-

rithm with the record that has the smallest T;; among the heads of the participating
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cell-lists. Hence the algorithm proceeds without having to actually sort the participating
region-lists.

(i) Variable predicate evaluation: The second step of the IJP algorithm
evaluates the variable predicates r in S,,, over the set of candidate trajectories U generated
in the first step. For a fixed predicate its corresponding region-list contains all trajectories
that satisfy it. However, variable predicates can be bound to any region, so one would
have to look at all region-lists, which is not realistic. We will again need one list per each
variable predicate (termed variable-list), however such variable-lists are not precomputed
like the region-lists. Rather, they are created on the fly using the candidate trajectories
filtered from the fixed predicate evaluation step.

To populate a variable-list for a variable predicate P; € S,, we compute the
possible assignments for variable P; by analyzing the trajectory-list for each candidate
trajectory. In particular, we use the time intervals in a candidate trajectory to identify
which portions of the trajectory can be assigned to this particular variable predicate. An
example is shown in Figure 2.3, using the candidate trajectory T5 from Figure 2.2. From
the previous step we know that Tb satisfies the fixed predicates at the following regions:
M(18,21), D(21,23), M(25,27) (shown in bold in the trajectory-list of Ty). Using the
pointers from the region-lists of the previous step, we know where the matching regions
are in the trajectory-list of T5. As a result, 75 can be conceptually partitioned is three
segments {Segl, Seg2, Seg3}, as shown in Figure 2.3. Note that Seg2 is empty since there

is no region between M (18,21) and D(21,23).
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X(1,3) [(3,5) S(5,7) D(7,9)
P(9,10) H(10,13) B(13,15)

U(15,18) M(18,21) D(21,23)
H(23,24) B(24,25) M(25,27)

Seg3: H(23,24) B(24,25)

i

Figure 2.3: Segmentation of T for IJP (Seg2 = ().

These trajectory segments are used to create the variable-lists by identifying the
possible assignments for every variable. Since a variable’s assignments need to maintain
the pattern, each wvariable is restricted by the two fixed predicates that appear before
and after the wariable in the pattern. All variables between two fixed predicates are
first grouped together. Then for every group of wvariables, the corresponding trajectory
segment (the segment between the fixed predicates) is used to generate the variable-lists
for this group. Grouping is advantageous, since it can create variable lists for multiple
variables through the same pass over the trajectory segments. Moreover, it ensures that
the variables in the group maintain their order consistent with the pattern S.

Assume that a group of variable predicates has w members. Each trajectory
segment that affects the variables of this group is then “streamed” through a window of
size w. The first w elements of the trajectory segment are placed in the corresponding
predicate lists for the wvariables. The first element in the segment is then removed and
the window shifts by one position. This proceeds until the end of the segment is reached.

In the above example there are two groups of variables: the first consists of variables 7+
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Step1: ?° (%X
tos
X(1,3) I(3,5) S(5,7) D(7,9) P(9,10) H(10,13) B(13,15) U(15,18)

aus

Step2: ?2* X

I(3,5) S(5,7) D(7,9) P(9,10) H(10,13) B(13,15) U(15,18)

Step3: ?°  @x
X(1,3) | I(3,5)
13,5) | S(5,7)

S(5,7) D(7,9) P(9,10) H(10,13) B(13,15) U(15,18)

o

Figure 2.4: Variable list generation for IJP.

and Qz in that order (i.e., w=2), while the second group has a single member Qz (w=1).
Figure 2.4 depicts the first three steps in the wariable list generation for the group of
variables 7t and @Qz. This group streams through segment Segl, since it is restricted on
the right by the fixed predicate M in pattern S. Each list is shown under the appropriate
variable. A different variable list will be created for the second group with variable Qux,
since this group streams through segment Seg3 (the second Qx wvariable is restricted by
fixed predicates D and M).

The generated variable-lists are then joined in a way similar to the previous step.
Because the wvariable-lists are populated by trajectory segments coming from the same
trajectory (trajectory 7% in our example), the join criteria checks only if the ordering of
pattern S is satisfied. In addition, if the pattern contains variables with the same name
(e.g. @Qz), the join condition verifies that they are matched to the same region and time

interval.
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Complexity Analysis for variable predicate evaluation: Assume that the
fixed predicate evaluation step generates k candidate trajectories in U and let [ denote
the maximum trajectory segment length. The worst case scenario is when all variable
lists have length I. Thus the variable predicate evaluation in the worst case scenario is
O(klr).

Ezxplicit Temporal Constraints: The IJP algorithm can easily support ex-
plicit temporal constraints (assigned to the spatial predicates) by incorporating them as

extra conditions in the join evaluations among the list records.

Adding Distance-based Constraints

The evaluation of distance constraints D inside a pattern query Q is performed
as a post filtering step after the pattern S evaluation. The intuition is that the spatial
predicates in S will greatly reduce the number of candidate trajectories which need to be
examined by the distance-based algorithm. Nevertheless, since the distance terms contain
variables, there are still many possibilities to bound the values of these wvariables. The
IJP algorithm has the advantage of re-using the wvariable lists created during the spatial
predicate search. These lists effectively enumerate all possible value bindings. However,
instead of using a brute force approach that will examine all possible bindings, the IJP
approach uses a variation of the Threshold Algorithm [29] and examines these possibilities
in an incremental ordered fashion. As a result, it avoids examining all possible bindings.

Regarding the IJP approach, assume that the S evaluation has returned a col-
lection of trajectories T. For each wariable in S one wvariable-list per trajectory in T is

also created. All variable-lists for a given wvariable are concatenated and sorted, first by
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region and then by trajectory id. Note that the same region may be associated with
different trajectory ids. For simplicity, consider the scenario where the distance terms
are combinations of a wvariable with a fixed region (i.e., d(@Qx, A)). The case where the
distance term contains two wvariables is omitted for brevity.

For each distance term in D a separate list is created. As with the variable-lists,
distance-lists are also computed on the fly. The idea is to incrementally examine the
vicinity around the fixed variable of each distance term d;. To evaluate distances between
regions, we use the uniform grid that has been introduced in Section 3. We will use the
distance between grid cells to lower bound the Euclidean distance between regions.

For example, given a term d(Qz, A), in the first iteration we examine the grid
cells, and the regions approximated with those grid cells, that are one cell away from the
grid approximation of region A. The next iteration will expand the vicinity by one cell,
and so on. When we discover a region which appears also in the sorted concatenated list
for @z, we load all the corresponding trajectory ids and place them in the list for this
distance term. As the lists for all distance terms in D have been created incrementally,
the TA algorithm finds the trajectory that appears in all distance-lists and minimizes the

sum of the distances.

2.4.2 The Dynamic Programming Pattern Algorithm (DPP)

The DPP algorithm is divided into two steps: (i) Trajectory Selection and
(ii) Matching. Using the trajectory-lists the first step selects a candidate set of trajecto-
ries T based on the fixed predicates in pattern S. The second step uses pattern matching

to eliminate trajectories that do not match the sequence order in S. It also checks for
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appropriate variable bindings with possible verification on duplicate variables in S. The
pseudo code for the DPP algorithm is shown in Algorithm 2.

(i) Tragectory Selection: For each region-list of a fixed region that appears
in S, we select the ids T4 for all trajectories that visited this region. Candidate set
T is computed by intersecting the collected ids (per region). That is, T contains ids
of the trajectories that have visited (independently of what order) all the regions in S.
Nevertheless, since no order of these appearances has been verified, a further verification
step must be performed on each 77 € T to enforce the order of S. This verification step
is performed using dynamic programming.

(ii) Matching: For each trajectory T" € T a dynamic programming matrix
M (function BuildDPM) is first created; it will later retrieve the matches of S in the
trajectory T” (function ScanDPM). The M matrix enables the DPP algorithm to match
all occurrences of the pattern S in 7" in the specified order defined in S. Matrix M
has a column j for each region visited by the trajectory 7”. Multiple visits to the same
region are represented with multiple columns in M, as it is stored the same way in the
trajectory-list index. The rows ¢ in the matrix correspond to the predicates P, € S.
Therefore, the size of M is |S|.|T’|. The value in each entry in M{i][j] is computed based
on the predicate P; and the j-th element in the region approximation of the trajectory 7"
denoted as Tj. (This is the j-th element in the trajectory-list of T").

It should be noted that if pattern S contains only fixed spatial predicates, the

matrix M can be shrunk by eliminating the regions in 7" that are not present in S. This
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Algorithm 2 DPP: Fixed and Variable Spatial Predicates
Input: Pattern S which consists of predicates P;
Output: Trajectories satisfying S
1: Let T be the set of candidate trajectories from trajectory-list having all fixed predicates in S

2: Answer Set A+ () > initialize the answer set
3: for each trajectory T’ € |T| do
4: BuildDPM (T, S) > construct matrix M
5: if Abs(M[|S||[|T']]) > Ps|-idx then
6: ScanDPM (|S|,|T']) > analyze matrix M
Function: BuildDPM(T, S)
1: for i + 0 to |S| do > for each row of M
2: for j < 0 to |T| do > for each column of M
3: if i =0 or j =0 then MJi][j] < 0 > trivial case
4: else
5: if P;.type is a Fixed Spatial Predicate then
6: if PZR = TRJ then
T: Mil[5] = (=(Abs(M[i = 1][j —1]) + 1))
8: else
9: M(i][j] + Max(Abs(M][i — 1][5]), Abs(M[i][j — 1]))
10: else > P;.type is a variable or wild-card
11: if Pi.type = {77, @} then
12: M) (—(Abs(Mi — 1][j — 1)) + 1))
13: else > case where P;.type = {7*}
14: if ¢ = P;.idz then
15: M(i][j] + Abs(M[i — 1][5])
16: else M[i][j] + (—(Abs(M([i —1][j —1]) + 1))
Function: ScanDPM (i,7)
1: if i > 0 then > valid column in M
2: for k < j to k > P;.idr downto 1 do
3: if Abs(M[i][k]) > P;.idz then
4: if MJi][k] < 0 then > found a match in M
5: if P;.type = {@Q} and Match|P;.link] # T'.Rj, then continue
6: Matchli] < T'.Ry, > found a match for 7”. Ry,
7 if P_1.type = {?*} then
8: ScanDPM (i — 1, k) > next iteration
9: else
10: ScanDPM (i — 1, k — 1) > next iteration
11: else A+ AUT .id > found T".id to the answer set

optimization does not compromise the sequence of patterns found because for each R; in
T', the attribute (t-entry;:t-exit;) is also kept.

Each matrix entry can a take numerical value in the range (-|S|;|S|). The ab-
solute value stored in the matrix entries corresponds to the length of the longest match
between the pattern S and the trajectory approximation 7" discovered so far. A negative

number in M[i][j] denotes a match between the pattern P; and the trajectory region R;,
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and its absolute value is the length of the longest match found so far. In this way, the
matrix M is used to store both the match occurrences, represented with negative value,
and the length of each match, the absolute values in M[i][j].

The matrix M is computed row by row, column by column starting from the
M]0][0] entry until the M[|S|][|T’|] entry. At every step the BuildDPM function com-
pares the values of the current predicate P; and the current region from the trajectory
approximation 7} (the same as the T]’) If there is no match between P; and T}, then
the value of M[i|[j] is the biggest absolute value among the neighbors (M[i — 1][j] or
M(i][j —1]). If there is a match between P; and T} then the entry M[i][j] takes the value
|IM[i — 1][j — 1]| + 1, but it is stored as a negative number indicating that the current
pair P;, T participates in the match.

The previous description applies only for fixed spatial predicates. For wild-card
(?7*,7*) and variable (@) spatial predicates, the computation of the entry M[i][;] is done
differently. Because such variables can be bound with any value of T}, the value of M|i][;]
is computed as a “match”. Therefore, the entry value is —(|M[i — 1][j — 1]| + 1), as
previously described. This phase does not handle the case where a pattern S contains
variables which appear multiple times. This verification step is performed in the ScanDPM
function. Instances of the same variable are “linked” in a backward way using a “pointer”
(link) with the following constraint: P;.link < P; if P; = Pj and i < j. Because matrix
M is verified for matching in a “backward” way (from M[|S|][|T”’|] to M[1][1] entry), the
pointers are associated to the next occurrence in the pattern S.

There is also a special case where the predicate P; is optional in the pattern S.

In this case, the computation and further verification of matrix M has to consider the
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case where P; does not match 7. To deal with this, another attribute P;.idx is associated
with each predicate in S. Basically, this attribute stores the position of each predicate P;
in cases the optional predicate does not match with any 7). This idx attribute is defined

in the following manner:

1 ifi=1
Piide < ¢ P, .ide if Pi.type = {7%,7%}

P;_1.idx +1 otherwise

After the matrix M is computed, the matches on it have to be searched. This
is performed by the ScanDPM function which “searches” for negative numbers stored in
M; such numbers denote the occurrence of a match. The operation goes row by row,
column by column in a direction opposite to the direction of construction, starting with
the bottom right entry. If the last matrix entry M(i][|T”]] has an absolute value greater
than the last idz in P (ie. Abs(M][S[|[|T"[]]) > Ps)-idr), then there is at least one
match between S and T”. Otherwise we can safely prune the trajectory avoiding further
processing. Because we are only interested in finding the longest and complete match
between S and T’, we only look for entries that have values greater or equal than the
S;.idx index (smaller values indicate that there is a partial match but not a complete
one). If the cell value is less than the current pattern index S;.idz, then the function
ScanDPM aborts the processing of the current row 1.

If there is a match in M]i][j], then the function ScanDPM is called recursively
to process the sub-matrix with bottom right corner M[i — 1][j — 1]. If the predicate P;

is optional (# and *) then the function is called for the M[i — 1][j] entry instead. The
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algorithm stops when all predicates in S are processed (i=0), thus finding all possible
matches of S in T".

Complexity Analysis: The Build DPM function calculates the value for each
matrix entry just once. Let s denote the length of a trajectory 7" in terms of number of
regions visited. Then the matrix M has m rows (|S|) and s columns, and the complexity
of this method is O(sm). The complexity of ScanDPM is O(m + s) because at each step
we move one step left-up diagonally or up (e.g., at least one of i and j is decremented).
Therefore, the time complexity for processing a single trajectory 7" with the DPP algo-
rithm is O(vsm), where v = |T'| (i.e., the number of candidate trajectories produced from
the trajectory selection step). The reader should note that the two algorithms produce
candidate trajectory sets using different methods (IJP considers the temporal order and
DPP does not); hence in the complexity analysis they are represented as k and v.

Ezxplicit Temporal Constraints: When the pattern S has explicit temporal
constrains int; in its definition, the DPP algorithm only performs a check along with the
match checks in order to satisfies int; too (not shown in Algorithm 2). If only one of
the above conditions is satisfied, then the value of M[i][j] is computed as not a match.
Otherwise, it is computed as a match.

Example: We use the same example of pattern § in Figure 2.2 to illustrate
how the DPP algorithm works. Using the region-list the trajectory identifiers that have
all the grids M and D are in T = {Tb,T3}. For each trajectory 7' in T, the matrix
M is computed using the function BuildDPM. The computation of matrix M for Th
and § appears in Table 2.1. Since Pjg|.idx is 6, the ScanDPM function looks for entry

values equal to M[10][j] > | — 6] in the 10-th row of matrix M. In ScanDPM, the
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Table 2.1: Matrix M for trajectory T and pattern S.

Tw| X[ I [ S|[D|P|H|B|J|U|M|D|H|B|M

i1 2 3 4 5 16 7] 8 9 [10]11]12] 13
S| ifidz]J0o] 0 0 0 0 ololoflo 0 ololo]o
711 1o === = = -1 | -1 | -1 ] -1 |-1]-1]-11]-1
Qz| 2] 2ol o] 2] 21-21] -2 27 2 21212121 -2
71 3] 21[o] o 2 | 3] -3]-3]-3 =| 3| 3|-3]-3]-3
M| 4] 3]o] o 0 3 3 3 3] 3 3 =45 4 4 | 4| 4
71 5] 3[o] o 0 3 | 4] 444 4a]-4]5]5]-5]--5
D] 6] allof o] ol o] a4 a]la]a] 4B 5]5]5
> 7] 4l[o] o 0 0 4 1 5] 5] 5]5]-5]-5]-6"]-6]-6
Qz| 8] 5]0] 0 0 0 ol-5]6]6]-61-61-6 | -7
21 9] s5llo] o 0 0 0 5 | 6| -7|-7]-71-71-7 -8
Ml10| 6f[o] 0 0 0 0 ole |7 7] 8] 8] 8] 8 [-89

entry M[10][13] passes the checks of the algorithm and the entry M[10][13] is stored as
a match in Match[10] (M was found in the 13th column of T5) and then the function
ScanDPM is called for the M[9][12] matrix. Again, entry M][9][12] passes all the checks
and it is called for M(8][12]. Because P is a variable (i.e., variable Qx) and it is the first
variable encountered so far, it passes the bounded value check (link test) and then it is
bounded to the grid B. Then the function ScanDPM is called in the following sequence
for entries in M: M][7][11], M][6][10], M[5][10], M4][9], M[3][8] and then for M]2][8],
but it fails for this last one because the link test does not pass (M|[2][8] # M[8|[12]).
Then it is called for M[2][7], and the link test satisfies because variable @z is bounded
to grid B (M[2][7] = M[8][12]). Then ScanDPM is called for M[1][6] until j is 0. In the
end, the pattern ?T.B.?7*.M.7*.D.?7*.B.7*.M is found and added to A. The backtracking
also evaluates the entry M([8][11] and finds pattern ?*.H.?*.M.?*.D.7* . H.?*.M. Other
calls for other entries are called, e.g. M][10][9] (-8), but they all fails to bound to other

predicates in §. The 2 patterns found for the pattern S in trajectory T are highlighted
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in Table 2.1 (yellow* for the first pattern found, blue® for the second, and green® when

the entries are found for both of patterns). O

Adding Distance-based Constraints

The evaluation of distance constraints D inside a pattern query Q is performed
as a post filtering step after the pattern S evaluation. The DPP algorithm can only use
a brute force approach since it maintains a trajectory as a sequence of regions but loses
the spatial properties of these regions. Therefore, the DPP algorithm can only compute

the distance for the constraint as a final step.

2.5 Experimental Evaluation

We run various experiments with real world and synthetic datasets to test the
behavior of each technique under different settings. All experiments were run on an
Intel Pentium-4 2.6 GHz processor running Linux 2.6.22 with 1 GB main memory. All
implementations used the same disk manager framework with disk page size set to 4KB
for each index (region-list and trajectory-list indexes) and 16KB for the raw trajectory
archive.

For comparison purposes, we examined two previous pattern matching approaches.
In particular, we modified [24] and [4] (called here Eztended-KMP (E-KMP) and Extended-
NFA (E-NFA) respectively) and implemented them in our proposed framework in order
to fair compare them against the IJP and DPP algorithms. The E-KMP contains exten-
sions to handle the variable predicates (?7*, ?) as well as the implicit/explicit temporal

constraints. The NFA used in [4] finds simple event patterns in streaming data. Hence it
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is not formulated to evaluate topological relations or temporal constraints, as described in
Section 2.2. We thus extend it to cover these as well, as to process queries with variables.
To this end, a stack is created for each variable Qx. If a variable appears in the query
many times, a post processing check is performed at the accept state of the NFA. For fair-
ness, all algorithms were tested using the same index framework (i.e., the E-KMP and the
E-NFA algorithms receive a candidate set of trajectories similar to the DPP approach).

For real datasets, we use the Truck and Buses trajectorial data from [2]. Both
datasets represent moving objects in the metropolitan area of Athens, Greece. The Truck
dataset has 112,203 moving object locations generated from 276 trajectories where the
longest trajectory timestamp is 13,540 timestamps. The Buses contains 66,096 moving
object locations obtained from 145 trajectories of school buses with maximum timestamp
992. For simplicity of the experimental evaluation, we do not use real regions; instead
we assume that the spatial domain (area of Athens) is partitioned into (artificial) regions
using a uniform grid. These grid cells become the alphabet for our queries; hence in the
rest the terms “region” and “cell” have the same meaning. To examine the effect of the
alphabet size on the index structures we experiment with grid granularity starting from
25%25 up to 100x100.

We take this opportunity to note that in practice the region partition (i.e., the
alphabet) depends only on the application and it is fixed. For example, if the user is
interested in posing very detailed queries (e.g., street level) a finer partition should be
used. We expect that in a real implementation one may use a fine grid partition at the
lower level and (coarser) regions that the user understands at a higher level. Then an

interesting problem is what size of grid partition will optimize the query response at the
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region level. Since the coverage of a region by grid cells may not be exact, false positives
can be returned by the query, thus affecting query performance. This however is an
orthogonal problem and is not addressed here; hence in the rest the terms “region” and
“cell” have the same m