
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Complex Motion Pattern Queries for Trajectories

Permalink
https://escholarship.org/uc/item/41d182b9

Author
Vieira, Marcos Rodrigues

Publication Date
2011
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/41d182b9
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

RIVERSIDE

Complex Motion Pattern Queries for Trajectories

A Dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Marcos Rodrigues Vieira

December 2011

Dissertation Committee:

Dr. Vassilis J. Tsotras, Chairperson
Dr. Michalis Faloutsos
Dr. Eamonn J. Keogh



Copyright by
Marcos Rodrigues Vieira

2011



The Dissertation of Marcos Rodrigues Vieira is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

I am extremely grateful to my research advisor and mentor, Prof. Vassilis Tso-

tras, who took me under his wing early on. Vassilis provided constant encouragement

and kept me focused, always asking sharp, challenging questions and helping me find

the right research problems. Thank you for reading countless drafts of my papers and

providing invaluable comments and suggestions in such a timely manner. I am lucky to

have counted on his guidance, dedication, availability, and support.

I am also grateful to the other members of my dissertation committee. I have to

thank Prof. Faloutsos and Prof. Keogh for their many interesting discussions and their

impressive vision and insight into research.

I am ever so grateful to Prof. Caetano Traina Jr., my Master’s advisor from

University of São Paulo (USP), for his support and his ability to put research questions

in perspective.

I was fortunate to do four very productive and gratifying internships during my

studies. I would also like to express my gratitude to Petko Bakalov and Erik Hoel (Esri),

Enrique Friaz-Martinez (Telefónica Research–Spain), Marios Hadjieleftheriou and Divesh

Srivastava (AT&T Labs–Research), Kirsten Hildrum and Rohit Khandekar (IBM T. J.

Watson Research Center) for giving me the opportunity to work with them in various

research projects that greatly expanded my field of knowledge.

My thanks also go to the members of the UCR database research group for

providing me with valuable discussion and collaboration. I also want to thank my friends

and colleagues from UCR for all the encouragement and support.

iv



Special thanks to Amy Ricks (CSE Dept.) and Laurie Stevens (Fulbright/IIE),

two of the finest staff members a student can count on.

It goes without saying that I have an unmeasurable gratitude towards my par-

ents. Darci (In memoriam) and Benita have no bounds for their love and dedication, and

I simply have no words to thank them. I love you all very much!

I can’t hope to find words to express my gratitude for my love, Denise. It is no

overstatement that none of this would be possible were it not for her relentless support,

unconditional and unmeasurable love. She has always been the brightest light by my side,

in good and tough times, and I couldn’t have been any more lucky to have her. Thank

you, Denise, for all your sacrifices, support, help, love, encouragement, for putting up

with the long nights and crazy schedules, for helping me write these acknowledgments,

and, most of all, for simply being the most special person there is!

And finally, thanks to the Brazilian Federal Agency for Post-Graduate Education

(CAPES), the Fulbright Program, and the National Science Foundation (NSF) for their

financial support.

v



ABSTRACT OF THE DISSERTATION

Complex Motion Pattern Queries for Trajectories

by

Marcos Rodrigues Vieira

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2011

Dr. Vassilis J. Tsotras, Chairperson

This thesis presents several new query processing techniques, called complex

motion pattern queries, specifically designed for trajectories. First, it begins with the

definition of flexible pattern query, a very powerful, yet easy to use motion pattern query

which allows users to select trajectories based on specific events of interest. Flexible

pattern query is described as regular expressions over a spatial alphabet that can be

implicitly/explicitly “anchored” to the time domain. Moreover, it allows users to include

variables in the pattern query, and thus greatly increase its expressive power. Second, the

Spatio-Temporal Pattern System (STPS) is presented, which is an adaptation of flexible

pattern query for mobile phone-call databases. These databases contain many millions of

records with information about mobile phone calls, including the user’s location, when

the call was made/received, and duration of the call, among other information. The

design of STPS takes into consideration the layout of the areas being covered by the

cellular towers, as well as areas that label places of interest (e.g. neighborhoods, parks).

Third, density-based pattern query is described for discovering trajectories that follow a

vi



pattern that captures the aggregate behavior of trajectories as groups. Several evaluation

algorithms are presented for finding groups of trajectories that move together, i.e. within

a predefined distance to each other for a continuous period of time. The last complex

motion pattern query proposed in this thesis is for diversifying query results. The goal

of this query is to build a result that contains relevant elements to the user’s query and

diverse elements to other elements in the result. This pattern query is useful when, for

example, an exploratory query to a very large database leads to a vast number of answers

in the result. Navigating through such a large result requires huge effort and users give up

after perusing through the first few results, thus some interesting results hidden further

down the result set can easily be missed. To overcome this problem, a generic framework

for diversifying query results is presented. Two new evaluation methods, as well as several

existing ones, are described and tested in the proposed framework. The efficiency and

effectiveness of the proposed complex motion pattern queries are demonstrated through

an extensive experimental evaluation.

vii



Contents

List of Figures x

List of Tables xii

1 Introduction 1

2 Flexible Pattern Queries 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 The Flexible Pattern Query Language . . . . . . . . . . . . . . . . . . . . 13
2.4 Query Evaluation Framework . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 The Index-Join Pattern Algorithm (IJP) . . . . . . . . . . . . . . . 21
2.4.2 The Dynamic Programming Pattern Algorithm (DPP) . . . . . . . 30

2.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5.1 Queries with Spatial Predicates . . . . . . . . . . . . . . . . . . . . 40
2.5.2 Scalability Experiments . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5.3 Patterns with Spatial Predicates and Nearest Neighbors . . . . . . 46
2.5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.6 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Pattern Queries for Mobile Phone-Call Databases 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3 Infrastructure for Data Acquisition . . . . . . . . . . . . . . . . . . . . . . 55
3.4 The STPS Pattern Query Language . . . . . . . . . . . . . . . . . . . . . 58

3.4.1 STPS Language Syntax . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.2 Spatial Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.3 Temporal Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.4 Spatio-Temporal Constraints . . . . . . . . . . . . . . . . . . . . . 63
3.4.5 STPS Language Example . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Query Evaluation System . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5.1 Index structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5.2 The Index-Join Pattern Algorithm (IJP) . . . . . . . . . . . . . . . 66

viii



3.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.6.1 IJP vs KMP Comparison . . . . . . . . . . . . . . . . . . . . . . . 74
3.6.2 Patterns with Spatial Predicates . . . . . . . . . . . . . . . . . . . 75
3.6.3 Patterns with Variable Predicates . . . . . . . . . . . . . . . . . . 76
3.6.4 Patterns with User Defined Area Predicates . . . . . . . . . . . . . 78
3.6.5 Patterns with Temporal Predicates . . . . . . . . . . . . . . . . . . 79

3.7 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Flock Pattern Queries 83
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.4 Discovering Flock Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4.1 The Basic Flock Evaluation Algorithm . . . . . . . . . . . . . . . . 98
4.4.2 Filtering Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.6 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5 Diversifying Query Results 114
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2.1 Query Result Diversification . . . . . . . . . . . . . . . . . . . . . . 119
5.2.2 Max-Sum Dispersion Problem . . . . . . . . . . . . . . . . . . . . . 122

5.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.4 Known Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.4.1 Swap Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.4.2 BSwap Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.4.3 Maximal Marginal Relevance Method . . . . . . . . . . . . . . . . 129
5.4.4 Motley Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
5.4.5 Max-Sum Dispersion Method . . . . . . . . . . . . . . . . . . . . . 131
5.4.6 Clustering-Based Method . . . . . . . . . . . . . . . . . . . . . . . 132

5.5 Proposed Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.5.1 GMC Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.5.2 GNE Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.5.3 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.6.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.6.2 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.6.3 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.7 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6 Conclusion 153

Bibliography 156

ix



List of Figures

2.1 Region-based trajectory representation. . . . . . . . . . . . . . . . . . . . 18
2.2 Trajectory examples T1, T2 and T3. . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Segmentation of T2 for IJP (Seg2 = ∅). . . . . . . . . . . . . . . . . . . . 27
2.4 Variable list generation for IJP. . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5 Total number of index records for different alphabet sizes. . . . . . . . . . 41
2.6 Query time (s) when increasing the number of patterns in P. . . . . . . . 42
2.7 Query I/O when increasing the number of patterns in P. . . . . . . . . . . 43
2.8 Avg. running time vs. number of ?∗ in P. . . . . . . . . . . . . . . . . . . 44
2.9 Avg. running time vs. number of trajectories. . . . . . . . . . . . . . . . . 45
2.10 Avg. running time vs. number of distance terms in D. . . . . . . . . . . . 46

3.1 (a) Original coverage areas of BTSs and (b) approximation of coverage
areas by Voronoi diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 The STPS Pattern Query Language. . . . . . . . . . . . . . . . . . . . . . 60
3.3 Index framework: (a) R-tree for the set of BTS; (b) B+-tree and (c)

inverted-index for each BTS; and (d) CDR archive. . . . . . . . . . . . . . 65
3.4 CDR examples for inverted-indexes LM=231 and LD=121. . . . . . . . . 67
3.5 Segmentation of phone user 4333434 into Seg1 and Seg2. . . . . . . . . . . 70
3.6 Total I/O and query runtime for spatial predicates. . . . . . . . . . . . . . 75
3.7 Total I/O and query runtime for patterns with 1 variable. . . . . . . . . . 76
3.8 Total I/O and query runtime for patterns with 2 variables. . . . . . . . . 77
3.9 Total I/O and query runtime for patterns with 1 defined area. . . . . . . . 78
3.10 Total I/O and query runtime for patterns with 2 defined areas. . . . . . . 80
3.11 Total I/O and query runtime for patterns with temporal predicates. . . . 81

4.1 A flock pattern example: {T1, T2, T3}. . . . . . . . . . . . . . . . . . . . . 85
4.2 Convoy query and moving clustering vs. flock pattern query. . . . . . . . 90
4.3 Flock pattern example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4 Finding a disk c′′tik that cover a set of flock points . . . . . . . . . . . . . . 93
4.5 Disks for {l1, l2}, d(l1, l2) ≤ ǫ . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.6 A grid-based index example. . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.7 Steps on finding flocks for time t. . . . . . . . . . . . . . . . . . . . . . . . 97

x



4.8 Pipe filtering δ for T2 and radius ǫ. . . . . . . . . . . . . . . . . . . . . . . 102
4.9 CFE steps to find flock patterns. . . . . . . . . . . . . . . . . . . . . . . . 105
4.10 Total time for the Trucks dataset. . . . . . . . . . . . . . . . . . . . . . . 108
4.11 Total time for the Cars dataset. . . . . . . . . . . . . . . . . . . . . . . . 108
4.12 Total time for the Caribous dataset. . . . . . . . . . . . . . . . . . . . . . 109
4.13 Total time for the Buses dataset. . . . . . . . . . . . . . . . . . . . . . . . 109
4.14 Total time for the SG dataset. . . . . . . . . . . . . . . . . . . . . . . . . 111

5.1 Avg. precision vs. tradeoff λ values. . . . . . . . . . . . . . . . . . . . . . 143
5.2 Avg. gap vs. tradeoff λ values. . . . . . . . . . . . . . . . . . . . . . . . . 144
5.3 Avg. F value vs. tradeoff λ values. . . . . . . . . . . . . . . . . . . . . . . 147
5.4 Avg. F value vs. result set k size. . . . . . . . . . . . . . . . . . . . . . . 148
5.5 Avg. F value vs. candidate set S size. . . . . . . . . . . . . . . . . . . . . 148
5.6 Avg. running time vs. λ, k and S for the dblp dataset. . . . . . . . . . . . 150

xi



List of Tables

2.1 MatrixM for trajectory T2 and pattern S. . . . . . . . . . . . . . . . . . 36
2.2 Query time (s) for real datasets. . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 A set of CDRs representing 4 different calls. . . . . . . . . . . . . . . . . . 57

4.1 Parameters values for each dataset. . . . . . . . . . . . . . . . . . . . . . . 107
4.2 Number of flock patterns discovered. . . . . . . . . . . . . . . . . . . . . . 110
4.3 Min/Max Number of disks per time. . . . . . . . . . . . . . . . . . . . . . 112

5.1 Description of the methods evaluated. . . . . . . . . . . . . . . . . . . . . 139
5.2 Datasets statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.3 Parameters tested in the experiments. . . . . . . . . . . . . . . . . . . . . 142
5.4 Result sets for dblp dataset: top-5 results (λ = 0), and two diversified

results (λ = 0.3 and 0.7) produced by GNE. . . . . . . . . . . . . . . . . . 146

xii



Chapter 1

Introduction

The wide availability and use of location and mobile technologies (e.g. cheap

GPS devices, ubiquitous cellular networks, RFIDs), has enabled many applications that

generate and maintain large amounts of trajectorial data. For example, new generations of

monitoring/tracking systems have emerged, providing complex services to their end users.

The quality and accuracy of the produced spatio-temporal data has also improved: instead

of the traditional cell phone tower triangulation method, assisted GPS (A-GPS) [69] was

recently introduced to improve location accuracy (such as enhanced 911 service [18]).

These advances have led to the creation of large volumes of accurate spatio-temporal data

in the form of trajectories. A trajectory has a unique identifier and contains location data

(e.g. latitude/longitude) gathered for a specific moving object over an ordered sequence

of time instants (or intervals). Given the huge volume of data generated in the form

of trajectories, there is a need to develop better and more efficient techniques for data

organization and query evaluation over trajectories.

1



Past research efforts on querying trajectory data has mainly concentrated on

traditional spatio-temporal queries, such as range and nearest neighbors searches (e.g.

finding trajectories that passed by a predefined area), or similarity/clustering based tasks,

such as extracting similar movement patterns and periodicities from trajectory data (e.g.

finding all trajectories that are similar to a given query trajectory according to some

similarity measure). Nevertheless, trajectories are complex objects whose behavior over

space and time can be better captured as a sequence of interesting events, or the aggregate

behavior of trajectories as groups. These two types of patterns for querying trajectories

are called “motion patterns queries” [103], which are discussed in more detail in this

thesis.

In this thesis, we first introduce flexible pattern queries [97, 98], which allow

users to select trajectories based on specific interesting events. Such pattern queries are

described as regular expressions over a spatial alphabet that can be implicitly or explicitly

“anchored” to the time domain. Moreover, it allows users to include variables in the

pattern query, and thus greatly increase its expressive power. We describe our proposed

framework, called FlexTrack [98], for efficient processing of flexible pattern queries on

trajectorial databases.

Next, we present the Spatio-Temporal Pattern System (STPS) for querying

spatio-temporal patterns in mobile phone-call databases [100]. In this work, we adopt [97]

and study its application in the domain of Call Detail Record (CDR) databases. The STPS

allows users to express mobility pattern queries with a regular expression-like language.

The join-based evaluation algorithm proposed in [97] was modified to handle trajectories

specified in CDR format rather than the traditional form. This change in the data format

2



also poses changes in the query languages. The query evaluation system is redesigned

to work with the features (e.g. tables, B+-trees and so on) of a commercially available

Relational Database Management System (RDBMS), since CDR databases are typically

implemented in such systems.

We then turn our attention to density-based pattern queries [96, 99], which search

for trajectories that follow a pattern that captures the aggregate behavior of trajectories

as groups. Such queries discover groups of moving objects that have a “strong” relation-

ship in the space for a given time duration. In this work we consider the discovery of

flock patterns among the moving objects, i.e., the problem of identifying all groups of

trajectories that stay “together” for the duration of a given time interval. We consider

moving objects to be “close” together if there exists a disk with a given radius that covers

all moving objects in the pattern. A trajectory satisfies the above pattern as long as

“enough” other trajectories are contained inside the disk for the specified time interval;

that is, the answer is based not only on a given trajectory’s behavior but also on the

ones near it. Consider, for example, finding groups of trajectories that move “together”,

i.e. within a predefined distance to each other, for a certain continuous period of time.

Such queries typically arise in surveillance applications, e.g., identify groups of suspicious

people, convoys of vehicles, migration of birds, flocks of animals.

In all of the pattern queries previously described, all the elements in the answer

are relevant to the user’s pattern query. Nevertheless, with the availability of very large

databases, an exploratory query can easily lead to a vast answer set, typically based on an

answer’s relevance to the user query. Navigating through such an answer set requires huge

effort and users give up after perusing through the first few answers, thus some interesting

3



answers hidden further down the answer set can easily be missed. An approach to address

this problem is to present the user with the most diverse among the answers based on

some diversity criterion. To cope with this problem, we propose the DivDB framework,

a general framework for evaluation and optimization of methods for diversifying query

results [102, 101]. In the DivDB framework, an initial ranking candidate set produced by a

query is used to construct a result set, where elements are ranked with respect to relevance

and diversity features, i.e., the retrieved elements should be as relevant as possible to

the query, and, at the same time, the result set should be as diverse as possible. While

addressing relevance is relatively simple and has been heavily studied, diversity is a harder

problem to solve. One major contribution of this work is that several existing methods

for diversifying query results were adapted, implemented and evaluated in the DivDB

framework. We also propose two new approaches, namely the Greedy with Marginal

Contribution (GMC) and the Greedy Randomized with Neighborhood Expansion (GNE)

methods. Both methods iteratively construct a result set using a scoring function that

ranks candidate elements using not only relevance and diversity to the existing result set,

but also accounts for diversity against the remaining candidates.

The rest of this thesis is organized as follows: Chapter 2 presents flexible pat-

tern queries; Chapter 3 describes the Spatio-Temporal Pattern System (STPS) for mobile

phone-call databases; Chapter 4 discusses density-based pattern queries; Chapter 5 pro-

poses the DivDB framework for diversifying query results; Finally, Chapter 6 concludes

this thesis.

4



Chapter 2

Flexible Pattern Queries

The wide adaptation of GPS and cellular technologies has created many ap-

plications (e.g. location-based, tracking, surveillance) that collect and maintain large

repositories of data in the form of trajectories. Each trajectory contains the spatial lo-

cations collected for a given moving object over an ordered sequence of time instants.

Previous work on querying and analyzing trajectorial data typically falls into methods

that either address spatial range and nearest neighbor queries, or similarity based queries.

Nevertheless, trajectories are complex objects whose behavior over time and space can

be better captured as a sequence of interesting events. We thus facilitate the use of mo-

tion pattern queries which allow the user to select trajectories based on specific motion

patterns. Such patterns are described as regular expressions over a spatial alphabet that

can be implicitly or explicitly anchored to the time domain. Moreover, we are interested

in “flexible” patterns that allow the user to include variables in the pattern query and

thus greatly increase its expressive power. In this chapter, we introduce a framework for

efficient processing of flexible pattern queries. The framework includes an underlying in-

5



dexing structure and algorithms for query processing using different evaluation strategies.

An extensive performance evaluation of this framework shows significant performance

improvement when compared to previous solutions.

2.1 Introduction

The wide availability of location and mobile technologies (cheap GPS devices,

ubiquitous cellular networks, etc.) as well as the improved location accuracy (A-GPS ) [69]

has enabled many applications that generate and maintain data in the form of trajectories.

Examples include AccuTracking [3], tracNET24 [45], Path Intelligence’s FootPath [72],

InSTEDD’sGeoChat [43], among many others. Each trajectory has a unique identifier and

consists of location data gathered for a specific moving object over an ordered sequence of

time instants. Given the high data volume, more efficient techniques for query evaluation

over trajectory data are needed.

Previous work on querying trajectories can be divided in two categories: (a)

querying the future movements of moving objects based on their current positions (e.g.

[52, 73]); and (b) querying trajectory archives, which is also the focus of this chapter.

Recent research efforts on querying trajectory archives has concentrated on (i) tradi-

tional spatio-temporal queries, such as Range and Nearest Neighbor (NN ) searches (e.g.

[37, 74]) (e.g. finding all trajectories that passed by downtown LA at 10:30am), or (ii)

similarity/clustering based tasks (e.g. [59, 65]), such as extracting similar movement pat-

terns and periodicities from a trajectory archive (e.g. finding all trajectories in the archive

that are similar to a given query trajectory according to some similarity measure).

6



However, given the nature of trajectories as typically long sequences of events,

a single range predicate may provide too many results (many trajectories passed through

downtown LA) while a similarity-based query may be too restrictive (not many trajec-

tories match the full extent or large part of the query trajectory). We thus advocate a

different approach, i.e., using motion pattern queries. A motion pattern query specifies

a combination of predicates that can thus capture only the parts of the trajectories that

are of interest to the user. For example: “find trajectories that first went by downtown

LA, later went by West Hollywood and ended up in Beverly Hills”. This query simply

provides a sequence of range predicates that have to be satisfied in the specified order.

One can also add NN conditions as well (in the above query: “... and they were closest

to the LAX airport”) as well as explicit time constraints: “... ended up in Beverly Hills

between 10am and 11am”. Conceptually, motion pattern queries cover the query choices

between the above two extremes: single predicates and similarity queries.

In this chapter, we introduce a general and powerful framework that describes

pattern queries as regular expressions over a finite spatial alphabet. Each letter in the

spatial alphabet corresponds to a non-overlapping region; their union covers the whole

space where the trajectories lie. We note that there are various advantages from these

choices:

1. The use of non-overlapping regions is natural: trajectories correspond to real entities

and hence a trajectory can be in a single region at a given time;

2. Raw trajectory data typically come from sensors, GPS, RFID readers, etc., and

provide extra detail that becomes cumbersome to query. Instead, the regions offer

7



a more user-friendly way to express queries since the user is more familiar with the

spatial regions [27] (e.g. Downtown, LAX airport);

3. The use of spatial regions allows high-level summarization/filtering of the trajecto-

ries. The region description of a trajectory is much smaller, leading to faster query

processing, while the raw data is still kept if more detail is needed;

4. This enables easy and effective indexing; it further enables the use of alternative

evaluation algorithms (e.g. joins among inverted indexes, pattern matching, NFAs);

5. The region alphabet facilitates querying by regular expressions as a query language:

the user can now describe complex queries over paths using this fixed alphabet.

This work is part of a larger prototype, called FlexTrack, we built for querying

trajectories using regions [98]. The FlexTrack system uses a hierarchical region alphabet,

where the user has the ability to define queries with finer alphabet granularity (zoom in)

for the portions of greater interest and higher granularity (zoom out) elsewhere. Through

a GUI the user specifies a pattern query by selecting regions (using various levels of the

hierarchy); this query is automatically translated into a regular expression over the finest

region granularity and then executed. This chapter describes how queries are executed at

the finer granularity of our prototype. Hence in the rest we assume that all query regions

are at the same (finer) granularity. This finer granularity is chosen by and depends on

the application needs.

Our framework further allows the use of variables within the pattern query. We

term these variable-enabled queries as “flexible” patterns as they lead to a very powerful

way to query the trajectory archive. Moreover, in our framework, the fixed and/or variable

8



spatial predicates can express explicit temporal constraints (“between 10am and 11am”)

and/or implicit temporal ordering between them (“anytime later”). Queries can also

include “numerical” conditions (NN and their variants) over the duration of the trajectory.

Using this general and powerful querying framework the user can “focus” only on the

portions/events in a trajectory’s lifetime that are of interest.

Novel methods are needed to efficiently process such complex queries over large

trajectory repositories. We propose two query evaluation algorithms which first concen-

trate on trajectories that satisfy the fixed predicates specified in the query. As such, they

prune effectively large portions of the repository that cannot lead to query answers. The

first proposed algorithm uses the merge-join paradigm over the lists of trajectories associ-

ated with the query predicates. The second algorithm is based on a dynamic programming

technique that finds subsequence matches between the trajectory representations and the

pattern query. Efficient techniques are then used for the evaluation of the remaining

variable predicates.

We note that patterns as effective ways to query have been examined in the

past. For instance, [82, 87] examine patterns over time series while [4] over event streams.

Trajectories differ since they have both spatial and temporal behavior. In spatio-temporal

databases patterns have been examined in [24, 26, 36, 83]; as detailed in the related

work section, these approaches either concentrate on language/modeling related issues,

provide less query support (e.g. no temporal and/or numerical constraints) and have less

efficient/general evaluation methods.

To summarize, the contributions of this chapter are the following:

9



1. we define a simple yet powerful framework using a query language based on regular

expressions;

2. we allow patterns to contain variables over the query space regions;

3. using lightweight index structures that can be easily implemented in most commer-

cial DBMS nowadays, we propose two efficient evaluation algorithms;

4. finally, we present an extensive experimental evaluation of the proposed techniques

against two other methods that we extended and implemented in our framework: a

NFA-based method [4] and a KMP -based method [24].

It should be noted that none of the original previous approaches can evaluate

our proposed pattern query language. The experimental results reveal that the proposed

evaluation framework achieves always better query performance over modified existing

solutions, making our framework a very robust approach for querying and analyzing very

large trajectory repositories.

The remainder of this chapter is organized as follows: Section 2.2 discusses

the related work; Section 2.3 provides the basic definitions and formal description of

the spatio-temporal query language; The proposed framework is described in details in

Section 2.4 and its experimental evaluation appears in Section 2.5; Section 2.6 concludes

the chapter with the final remarks.

10



2.2 Related Work

Previous research has focused on either the evaluation of a single spatio-temporal

predicate (Range or Nearest Neighbor NN queries), or similarity/clustering queries where

a full (or a portion of) trajectory is given and similar trajectories are sought.

Single spatio-temporal predicate queries for trajectory data have been well stud-

ied in the past (e.g. [74, 92]). To make the evaluation process more efficient, the query

predicates are typically evaluated utilizing hierarchical spatio-temporal indexing struc-

tures [37]. Most structures use the concept of Minimum Bounding Regions (MBR) to

approximate the trajectories, which are then indexed using traditional spatial access

methods, like the MVR-tree [91]. These solutions, however, are focused only on sin-

gle spatio-temporal predicate queries. None of them can be used for efficient evaluation

of flexible pattern queries with multiple predicates. Moreover, our work is different than

(and orthogonal to) approaches like [66], that can handle many single but independent

predicates (i.e. different queries). In our case, all predicates appear in the same query

and should all be satisfied by each trajectory in the result set.

Similarity search among trajectories has also been well studied. (e.g., [6, 12, 71,

60, 106]). Work in this area focuses on the use of different distance metrics to measure

the similarity between trajectories. Non-metric similarity functions based on the Longest

Common Subsequence (LCS), are examined in [104]. [12] proposes to approximate and

index a multidimensional spatio-temporal trajectory with a low order continuous Cheby-

shev polynomial which can then lead to efficient indexing for similarity queries [71].

11



The importance of pattern queries has been recognized in the relational domain

as well. For example, Informix [42] introduced a time-series database and provided a

library of functions for pattern searching that can be called from within an SQL query.

Most commercial databases nowadays support similar extensions. The importance of

sequence query processing was also discussed in [82, 87], where several ways to specify

patterns as part of SQL, as well as their query optimization, are presented. Pattern

queries have also been used for evaluating event streams using a NFA-based evaluation

method [4]; however, the environment in [4] is different than the trajectories considered

here. However, all of the above works are focused on patterns for time-series or event

streams data and are not explicitly designed for handling trajectories and spatio-temporal

patterns.

For moving object data, patterns have been examined in the context of query

language and modeling issues [26, 67, 83], as well as query evaluation algorithms [36, 24].

[26] proposes the use of spatio-temporal patterns as a systematic and scalable query

mechanism to model complex object behavior in space and time. [67] presents a powerful

query language able to model complex pattern queries using a combination of logical

functions and quantifiers. [77] focuses on the direction of the “movement” patterns, while

queries related to the relative movement of objects are examined in the Relative Motion

(REMO) system [56]. In [36], it is examined incremental ranking algorithms in the case of

simple spatio-temporal pattern queries. Those queries consist of range and NN predicates

specified using only fixed regions. Our work differs in that we provide a more general

and powerful query framework where queries can involve both fixed and variable regions

as well as regular expression structures (repetitions, negations, optional structures, etc)

12



and explicit ordering of the predicates along the temporal axis. Moreover our proposed

language introduces explicit ordering of the predicates along the temporal axis which

allows the users to specify ordering constraints like “immediately after” or “immediately

before”. In [24], a KMP -based algorithm [51] is used to process patterns. This work,

however, focuses only on range spatial predicates and cannot handle explicit and implicit

temporal ordering of the predicates. Furthermore, this approach on evaluating patterns

is effectively reduced to a sequential scanning over the list of trajectories stored in the

repository: each trajectory is checked individually, which becomes prohibitive for large

trajectory archives.

While the use of variable predicates in specifying patterns greatly improves the

expressive power, the query evaluation becomes more challenging. This is because variable

spatio-temporal predicates provide many more opportunities for matching the pattern

query to a specific trajectory in the repository (by simply changing the variable bindings

in the pattern).

2.3 The Flexible Pattern Query Language

We assume that a trajectory Tid of a moving object Oid is stored as a sequence of

w pairs {(l1, t1),. . . (lw, tw)}, where ti is a timestamp and li is the moving object location

recorded at ti (li ∈ R
d, ti ∈ N, ti−1 < ti, and 0 < i ≤ w). Such raw data is collected

from the application and stored in the repository. Typically, monitored objects report

their position to the data collection device using data packets containing their identifier

id (Tid), current location li and timestamp ti. Depending on the application, objects

13



may report continuously or simply when they change their location. For instance, if a

trajectory is represented by a function f() [12], the (li, ti) pairs can be created by sampling

f() at discrete timestamps. We further assume that the spatial domain is partitioned to

a fixed set Σ of non-overlapping regions. Regions correspond to areas of interest (e.g.

school districts, airports, city malls) and form the alphabet used in our pattern query

specification. In the following we use capital letters to represent the region alphabet,

Σ = {A,B,C, ...}.

A general pattern query Q = (S [
⋃
D]) consists of a sequential pattern S and

(possibly) a set of constraints D. Here S corresponds to a sequence of spatial predicates,

specified using regions from Σ, while D represents a collection of distance functions (e.g.

NN and their variations) that may contain regions defined in S. A trajectory matches

the pattern query Q if it satisfies both S and D. We first describe how a pattern S is

formed and then elaborate on the distance constraints D. In particular, a pattern S is

expressed as a path expression of an arbitrary number of spatio-temporal predicates P :

S → S.S | P | !P | P# | ?+ | ?∗

here “!” defines the negation operator, “#” the optional modifier, “+” the one or

more repetition modifier, “∗” the zero or more repetition modifier, and “?” the

wild-card. The sequence of predicates in S is defined recursively by S.S where the

sequencer “.” appears between every spatio-temporal predicate P in S.

Each spatio-temporal predicate Pi ∈ S is defined by a triplet Pi = 〈opi,Ri, [inti]〉.

Here Ri corresponds to a predefined spatial region or a variable, i.e., Ri ∈ Σ ∪ Γ (where

14



Γ is the set of variables, to be discussed later). The operator opi describes the topo-

logical relationship that a trajectory Tid and the spatial region Ri must satisfy over the

(optional) time interval inti. In particular, we use the topological relationships described

in [26]; examples of such operators are the relations Equal, Inside, Touch, Meet, among

others. Given a trajectory Tid and a region Ri, the operator opi returns a boolean value

B ≡ {true, false} whether the trajectory Tid and the region Ri satisfy the topological

relationship opi (e.g., an Inside operator will be true if the trajectory was sometime inside

region Ri during time interval inti). For simplicity in the following we assume that the

spatial operator is set to Inside and it is thus omitted from the query examples.

Within the pattern S, the wild-card “?” is used to specify “don’t care” parts

in a trajectory’s lifetime and can be of two types: (i) “?+”: one or more occurrences

of any region predicate (e.g. Pi.?
+.Pi+1 implies that the predicate Pi+1 is satisfied after

predicate Pi with one or more regions visited between them); or, (ii) “?∗”: zero or more

occurrences of any region visit (e.g. Pi.?
∗.Pi+1 which implies that the predicate Pi+1 can

be satisfied any time after predicate Pi).

A predefined region Ri ∈ Σ is explicitly specified by the user in the query

predicate (e.g. “the convention center”). In contrary, a variable denotes an arbitrary

region and it is denoted by a lowercase letter preceded by the “@” symbol (e.g. @x). A

variable region is defined using symbols in Γ, where Γ = {@a,@b,@c, ...}. Unless otherwise

specified, a variable takes a single value (instance) from Σ (e.g. @a=C); however, in

general, one can also specify the possible values of a variable as a subset of Σ (e.g., “any

city district with museums”). Conceptually, variables work as placeholders for explicit

15



spatial regions and can become instantiated (bound to a specific region) during the query

evaluation in a process similar to unification in logical programming.

Moreover, the same variable @x can appear in several different predicates of

pattern S, referencing to the same region everywhere it occurs. This is useful for specifying

complex queries that involve revisiting the same region many times. For example, a

pattern like S = {@x.?∗.B.@x} finds trajectories that started from some region (denoted

by variable @x) , then at some point passed by region B and immediately after they

visited the same region they started from. Note that for our purposes, wild-card “?” is

also considered a variable; however it refers to any region, and not necessarily the same

region if it occurs multiple times within a pattern S.

Finally, a predicate Pi may include an explicit temporal constraint inti in the

form of an interval, which implies that the spatial relationship opi between a trajectory

and region Ri should be satisfied in the specified time interval inti (e.g. “passed by area

B between 10am and 11am”). If the temporal constraint is missing, we assume that the

spatial relationship can be satisfied any time in the duration of a trajectory lifespan. For

simplicity we assume that if two predicates Pi, Pj occur within pattern S (where i < j)

and have temporal constraints inti, intj, then these intervals do not overlap and inti

occurs before intj on the time domain.

Spatio-temporal predicates however cannot answer queries with constraints (for

example, “best-fit” type of queries – like NN and the related – that find trajectories which

best match a specified pattern). This is because topological predicates are binary and

thus cannot capture distance based properties of the trajectories. The optional D part of

a general query Q is thus used to describe distance-based or other constraints among the

16



variables used in the S part. A simple kind of constraint can involve comparisons among

the used variables (e.g., @x!=@y). More interesting is the distance-based constraint which

has the form (Aggr(d1, d2, ...); θ) and is described below.

For simplicity in the following we assume Euclidean distance (L2) but other

distances, like Manhattan (L1), Infinity (L∞), among others, can also be used. Consider

for example a Q query whose pattern S contains three variables @x, @y, @z, i.e., S =

{A.?∗.B.@x.@y.C.?∗.@z}. Among the trajectories that satisfy S, the user may specify

that in addition, the sum of the distance between regions @x and @y and the distance

between @z and a fixed region E is less than 100 feet. Hence D contains a collection

of distance terms d1, d2, ..., where term di represents the distance between two variable

regions or between a variable region and a fixed one. In our example there are two distance

terms: d1 = d(@x,@y) and d2 = d(@z,E).

Distance terms need to be aggregated into a single numerical value using an

aggregation function (depicted as Aggr() in the formal definition of D). In the previous

example Aggr() = Sum(), but other aggregators like Avg(), Min(), Max(), etc., can also

be used. The aggregated numerical score for each trajectory still needs to be mapped

to a binary value so as to determine if the trajectory satisfies D. This is done by the

θ operator defined in D. This operator can be a simple check function (using =, ≤

and others). In our example θ corresponds to “< 100 feet” and returns true for all

trajectories whose aggregate distance is less than 100 feet. It is also possible to use other

θ operators, e.g. Min(), Max(), Top-k(), etc. In the previous example, if the θ operator

is changed to Top-k(), the query will return true only for the trajectories with the Top-k()

17



aggregated distances. For simplicity of the description, in the remainder of this work we

use Aggr() = Sum() and θ = Min() (which corresponds to a NN query).

The use of variables in describing both the topological predicates and the nu-

merical conditions provides a very powerful language to query trajectories. To describe a

query, the user can use fixed regions for the portions of the trajectory where the behavior

should satisfy known (strict) requirements, and variables for portions where the exact be-

havior is not known (but can be described by a sequence of variables and the constraints

between them). The ability to use the same variable many times in the query allows for

revisiting areas, while the ability to refer to these variables in the distance functions allows

for easy description of NN and related queries. It is exactly this “flexibility” allowed by

the use of variables in selecting trajectories that led to the term “flexible pattern queries”.

2.4 Query Evaluation Framework

To simplify the presentation we first start with the evaluation of the spatial

predicates for a pattern S. Later we extend the discussion to cover queries that in addition

contain distance constraints D. Finally we present the incorporation of time constraints

inside the pattern query Q.

For simplicity we assume that the space is partitioned into 2-dimensional non-

overlapping regions (Figure 2.1(a)). To efficiently evaluate flexible pattern queries we will

facilitate two lightweight index structures in the form of ordered lists (Figures 2.1(b)-

(c)), that are stored in addition to the raw trajectory data (Figure 2.1(d)). There is

one region-list per region and one trajectory-list per trajectory. The region-list LA of

18



Figure 2.1: Region-based trajectory representation.

a given region A acts as an inverted index that contains all trajectories that passed by

region A. Each entry in LA is a record that contains a trajectory identifier Tid, the time

interval (t-entry :t-exit) during which the moving object was inside A, and a pointer to

the trajectory-list of Tid. If a trajectory visits a given region A multiple times in different

time intervals, we store a record for each visit. Records in a region-list are ordered first

by the trajectory-id Tid and then by t-entry. For example, in Figure 2.1 the region-list

entry for the region D (Downtown) is {T2(7, 9); T2(21, 23); T3(5, 10); ...}.

In order to fast prune trajectories that do not satisfy the pattern S, each trajec-

tory is approximated by the sequence of regions it visited. A record in the trajectory-list

of trajectory Tid contains the region and the time interval (t-entry :t-exit) during which

this region was visited by Ti, ordered by t-entry. In Figure 2.1 the trajectory-list en-

try for T2 is {X(1, 3); I(3, 5); S(5, 7); D(7, 9); P (9, 10); H(10, 13); B(13, 15); U(15, 18);

M(18, 21); D(21, 23); H(23, 24); B(24, 25); M(25, 27)}. Note that records from a region-

list index point to the corresponding records in a trajectory-list index. For example, the

record T2(21,23) in the region-list LD (Downtown) contains a pointer to the page in the

trajectory-list of T2 that contains the corresponding record D(21,23).

19



Since variables in pattern S can take values from the whole set Σ of regions,

we need a representation of each trajectory using the alphabet elements in Σ. While

one could always use the raw trajectory data, it is more efficient to maintain a region

representation of each trajectory to fast prune trajectories that do not satisfy the pattern

S. That is, each trajectory is approximated by the sequence of regions it visited. This

compact representation of each trajectory is stored in the trajectory-list index. A record

in the trajectory-list of trajectory Tid contains the region and the time interval (t-entry :t-

exit) during which this region was visited by Ti, ordered by t-entry. Figures 2.1(b-c)

depict various region–lists and trajectory-lists. Note that records from a region-list index

point to the corresponding records in a trajectory-list index. For example, consider the

region-list LD (Downtown) of region D and a record in this list for trajectory T2 with

interval (t1,t2). The pointer included in this record points to the page in the trajectory-list

of T2 that contains the corresponding record D(t1,t2).

The only requirement for the region partitioning is that regions should be non-

overlapping. In practice, there may be a difference between the regions presented to the

user and what lists are created. In such scenarios we use uniform grid and overestimate

a region by approximating it with the smallest collection of grid cells which completely

encloses it. False positives may be generated from regions that do not completely fit the

set of covering grid cells, however, they can be removed with a verification step using the

original trajectory data. Finding the best grid granularity can be done by an optimization

process which combines the number of grid cells and the total overestimated area into a

single objective function. Moreover, instead of a uniform grid, one could facilitate instead

a dynamic space partitioning structure (e.g. adaptive grid files, kdb-trees, among many

20



others) that assigns grid cells sizes according to the data density. Then, dense areas will

have more, finer cells which in return allow for better approximation of the regions and

thus fewer false positives are generated.

For evaluating pattern queries we propose two different strategies: (1) the Index

Join Pattern (IJP) is based on a merge-join operation performed over the region-lists

corresponding to every fixed predicate in the pattern S; (2) the Dynamic Programming

Pattern (DPP) performs subsequence matching between the pattern S and the trajectory

approximations stored as the trajectory-lists. Both algorithms use the same two indexing

structures for pruning purposes, but in different ways: IJP uses the region-lists for pruning

and the trajectory-lists for the variable binding; DPP uses mainly the trajectory-lists for

the subsequence matching and performs an intersection-based pruning on the region-

lists. Which algorithm would behave better will thus depend on the pruning capabilities

provided by its main index; this in turn depends on the trajectory archive and the query

characteristics.

2.4.1 The Index-Join Pattern Algorithm (IJP)

Spatial Predicate Evaluation

We start with the case where the pattern S does not contain any explicit tem-

poral constraints. In this scenario, the pattern specifies the order by which its predicates

(whether fixed or variable) need to be satisfied. Assume S contains m predicates and let

Sf denote the set of n fixed predicates, while Sv denotes the set of r variable predicates

(m=n+r). The evaluation of S with the IJP Algorithm can be divided in two steps: (i)

the algorithm evaluates the set Sf using the region-list index to fast prune trajectories

21



that do not qualify for the answer; (ii) then the collection of candidate trajectories is

further refined by evaluating the set of Sv.

(i) Fixed predicate evaluation: All n fixed predicates in Sf can be evaluated

concurrently using an operation similar to a merge-join among their region-lists Li, i ∈

1..n. Records from these n lists are retrieved in sorted order of Tid and then joined by

their Tid’s. Records are pruned using the trajectory ids and the temporal intervals (t-

entry :t-exit). In each list Li we keep a pointer pi that points to the record currently

considered for the join. This pointer scans the list Li starting from the top.

If the same region appears more than once in the pattern S, a separate pointer

traversing that region-list is used for each region appearance in S. For example, to process

the pattern S = {?∗.M.D.M}, the region-lists of M and D are accessed using one pointer

for region-list LD (pD) and two pointers for traversing region-list LM (pM1
and pM2

). If

a trajectory-id Tid appears in all of the n region-lists involved in the pattern query, and

their corresponding time intervals in all n region-lists satisfy the ordering of the predicates

in S, this Tid is saved as a possible solution. The pseudo code is shown in Algorithm 1.

During the merge-join operation, there are cases where records from a region-list

can be skipped, thus resulting in faster processing. For example, assume that predicate

Pi ∈ S (corresponding to the region-list Li) is before predicate Pj ∈ S (corresponding to

Lj). Further assume that in list Li the current record considered for the join has trajectory

identifier Tr, while in list Lj the current record considered has trajectory identifier Ts. If

Ts < Tr, processing in list Lj can skip all its records with Tid < Tr. That is, the pointer pj

in list Lj can advance to the first record with Tid ≥ Tr. Essentially, predicate Pi cannot

be satisfied by any of the trajectories in Lj with smaller Tid than Tr. Since records in a

22



Figure 2.2: Trajectory examples T1, T2 and T3.

region-list are sorted by Tid, Li does not contain trajectories with smaller identifiers than

r.

Similarly, when a record from the same trajectory (e.g. Ts) is found in two

region-lists (e.g. Li,Lj), the algorithm checks whether the corresponding time intervals

of the records match the order of predicates in the pattern S. Hence a trajectory that

satisfies S should visit the region of Li before visiting the region of Lj. If the record of

Ts in Li has t-entry that falls after the corresponding t-entry of Ts in list Lj , this record

can be skipped in Li, since it cannot satisfy the query. Since region-lists are stored in

ordered way, advancing a region-list forward to a specific location stamp by Tid or by (Tid,

t-entry) can be easily implemented using an index B+-tree on the (Tid, t-entry) composite

attribute.

Example : The first step of IJP algorithm is illustrated using the example in

Figure 2.2. Assume the pattern S in the query Q contains three fixed (M,D,M) and

23



three variable predicates (?+,@x,@x), as in:

S = {?+.@x.?∗.M.?∗.D.?∗.@x.?∗.M}

This pattern looks for trajectories that first visited an arbitrary region (denoted by ?+)

one or more times, then visited some region denoted by variable @x, then (after visiting

zero or more regions) it visited region M , then region D and then visited again the same

region @x before finally returning to M . The first step of the merge-join algorithm uses

the region-list for M and D (LM and LD). For simplicity, instead of using two separate

pointers in list LM , Figure 2.2 depicts two copies of list LM , namely LM1
and LM2

.

Conceptually, LM1
represents the first occurrence of M in S (before D) and LM2

the

second occurrence of M (after D).

The algorithm starts from the first record in list LM1
, namely T1(10,13). It then

checks the first record in list LD, i.e., trajectory T2. We can deduce immediately that T1

is not a candidate trajectory, since it does not appear in the list of LD, so we can skip

T1 from the LM1
list and continue with the next record there, trajectory T2(18,21). Since

T2(7,9) in list LD has interval before (18,21), list LD moves to its next record T2(21:23).

These two occurrences of T2 coincide with the pattern M.?∗.D of S, so we need to check

if T2 passes again by region M . Thus we consider the first record of list LM2
, namely

trajectory T1(10:13). Since it is not from T2 it cannot be an answer so list LM2
advances

to the next record T2(18,21). Now pointers in all lists point to records of T2. However,

T2(18,21) in LM2
does not satisfy the pattern since its time interval should follow the

interval (21,23) of T2 in D. Hence LM2
is advanced to the next record, which happens

24



Algorithm 1 IJP : Fixed Spatial Predicates
Input: Pattern S
Output: Trajectories satisfying Sf
1: n← |Sf | ⊲ number of fixed predicates in S
2: for i← 1 to n do ⊲ for each Sf
3: Initialize Li with the cell-list of Pi

4: Candidate Set U ← ∅
5: for w← 1 to |L1| do ⊲ analyze each entry in L1

6: p1 = w ⊲ set the pointer for L1

7: for j ← 2 to n do ⊲ examine all other lists
8: if L1[w].id 6∈ Lj then

9: break ⊲ L1[w].id does not qualify
10: Let k be the first entry for L1[w].id in Lj

11: while L1[w].id = Lj [k].id and Lj−1[pj−1].t > Lj [k].t do
12: k ← k + 1 ⊲ align Lj−1[pj−1].t and Lj [k].t
13: if L1[w].id 6= Lj [k].id then

14: break ⊲ L1[w] does not qualify
15: else pj = k ⊲ set the pointer for Lj

16: if L1[w] qualifies then
17: U ← U ∪ L1[w].id ⊲ L1[w] satisfy all Sf

to be T2(25,27). Again we have a record from the same trajectory T2 in all lists and

this occurrence of T2 satisfies the temporal constraints and thus the pattern S. As a

result, trajectory T2 is kept as a candidate in U . The processing moves to the next record

in list LM1
, namely T2(25,27). However, this record cannot satisfy the pattern S so it is

skipped. Eventually LM1
will consider T3(10,11) which causes list LD to move to T3(5,10).

Trajectory T3 cannot satisfy the temporal constraint, so it is skipped from list LD and

the algorithm terminates since one of the lists reached its end. �

In the case where the region partitioning is represented internally by a grid of

smaller cells, Algorithm 1 can still be applied. But to evaluate such region’s predicate,

we need first to materialize a sorted list from all cell-lists involved in this region. How-

ever, since the individual cell-lists participating in the enclosure are already ordered by

trajectory-id Tid, the sort order can be materialized s on the fly by feeding the algo-

rithm with the record that has the smallest Tid among the heads of the participating

25



cell-lists. Hence the algorithm proceeds without having to actually sort the participating

region-lists.

(ii) Variable predicate evaluation: The second step of the IJP algorithm

evaluates the variable predicates r in Sv, over the set of candidate trajectories U generated

in the first step. For a fixed predicate its corresponding region-list contains all trajectories

that satisfy it. However, variable predicates can be bound to any region, so one would

have to look at all region-lists, which is not realistic. We will again need one list per each

variable predicate (termed variable-list), however such variable-lists are not precomputed

like the region-lists. Rather, they are created on the fly using the candidate trajectories

filtered from the fixed predicate evaluation step.

To populate a variable-list for a variable predicate Pj ∈ Sv, we compute the

possible assignments for variable Pj by analyzing the trajectory-list for each candidate

trajectory. In particular, we use the time intervals in a candidate trajectory to identify

which portions of the trajectory can be assigned to this particular variable predicate. An

example is shown in Figure 2.3, using the candidate trajectory T2 from Figure 2.2. From

the previous step we know that T2 satisfies the fixed predicates at the following regions:

M(18,21), D(21,23), M(25,27) (shown in bold in the trajectory-list of T2). Using the

pointers from the region-lists of the previous step, we know where the matching regions

are in the trajectory-list of T2. As a result, T2 can be conceptually partitioned is three

segments {Seg1, Seg2, Seg3}, as shown in Figure 2.3. Note that Seg2 is empty since there

is no region between M(18,21) and D(21,23).

26



Figure 2.3: Segmentation of T2 for IJP (Seg2 = ∅).

These trajectory segments are used to create the variable-lists by identifying the

possible assignments for every variable. Since a variable’s assignments need to maintain

the pattern, each variable is restricted by the two fixed predicates that appear before

and after the variable in the pattern. All variables between two fixed predicates are

first grouped together. Then for every group of variables, the corresponding trajectory

segment (the segment between the fixed predicates) is used to generate the variable-lists

for this group. Grouping is advantageous, since it can create variable lists for multiple

variables through the same pass over the trajectory segments. Moreover, it ensures that

the variables in the group maintain their order consistent with the pattern S.

Assume that a group of variable predicates has w members. Each trajectory

segment that affects the variables of this group is then “streamed” through a window of

size w. The first w elements of the trajectory segment are placed in the corresponding

predicate lists for the variables. The first element in the segment is then removed and

the window shifts by one position. This proceeds until the end of the segment is reached.

In the above example there are two groups of variables: the first consists of variables ?+

27



Figure 2.4: Variable list generation for IJP.

and @x in that order (i.e., w=2), while the second group has a single member @x (w=1).

Figure 2.4 depicts the first three steps in the variable list generation for the group of

variables ?+ and @x. This group streams through segment Seg1, since it is restricted on

the right by the fixed predicate M in pattern S. Each list is shown under the appropriate

variable. A different variable list will be created for the second group with variable @x,

since this group streams through segment Seg3 (the second @x variable is restricted by

fixed predicates D and M).

The generated variable-lists are then joined in a way similar to the previous step.

Because the variable-lists are populated by trajectory segments coming from the same

trajectory (trajectory T2 in our example), the join criteria checks only if the ordering of

pattern S is satisfied. In addition, if the pattern contains variables with the same name

(e.g. @x), the join condition verifies that they are matched to the same region and time

interval.

28



Complexity Analysis for variable predicate evaluation: Assume that the

fixed predicate evaluation step generates k candidate trajectories in U and let l denote

the maximum trajectory segment length. The worst case scenario is when all variable

lists have length l. Thus the variable predicate evaluation in the worst case scenario is

O(klr).

Explicit Temporal Constraints: The IJP algorithm can easily support ex-

plicit temporal constraints (assigned to the spatial predicates) by incorporating them as

extra conditions in the join evaluations among the list records.

Adding Distance-based Constraints

The evaluation of distance constraints D inside a pattern query Q is performed

as a post filtering step after the pattern S evaluation. The intuition is that the spatial

predicates in S will greatly reduce the number of candidate trajectories which need to be

examined by the distance-based algorithm. Nevertheless, since the distance terms contain

variables, there are still many possibilities to bound the values of these variables. The

IJP algorithm has the advantage of re-using the variable lists created during the spatial

predicate search. These lists effectively enumerate all possible value bindings. However,

instead of using a brute force approach that will examine all possible bindings, the IJP

approach uses a variation of the Threshold Algorithm [29] and examines these possibilities

in an incremental ordered fashion. As a result, it avoids examining all possible bindings.

Regarding the IJP approach, assume that the S evaluation has returned a col-

lection of trajectories T . For each variable in S one variable-list per trajectory in T is

also created. All variable-lists for a given variable are concatenated and sorted, first by

29



region and then by trajectory id. Note that the same region may be associated with

different trajectory ids. For simplicity, consider the scenario where the distance terms

are combinations of a variable with a fixed region (i.e., d(@x,A)). The case where the

distance term contains two variables is omitted for brevity.

For each distance term in D a separate list is created. As with the variable-lists,

distance-lists are also computed on the fly. The idea is to incrementally examine the

vicinity around the fixed variable of each distance term di. To evaluate distances between

regions, we use the uniform grid that has been introduced in Section 3. We will use the

distance between grid cells to lower bound the Euclidean distance between regions.

For example, given a term d(@x,A), in the first iteration we examine the grid

cells, and the regions approximated with those grid cells, that are one cell away from the

grid approximation of region A. The next iteration will expand the vicinity by one cell,

and so on. When we discover a region which appears also in the sorted concatenated list

for @x, we load all the corresponding trajectory ids and place them in the list for this

distance term. As the lists for all distance terms in D have been created incrementally,

the TA algorithm finds the trajectory that appears in all distance-lists and minimizes the

sum of the distances.

2.4.2 The Dynamic Programming Pattern Algorithm (DPP)

The DPP algorithm is divided into two steps: (i) Trajectory Selection and

(ii) Matching . Using the trajectory-lists the first step selects a candidate set of trajecto-

ries T̄ based on the fixed predicates in pattern S. The second step uses pattern matching

to eliminate trajectories that do not match the sequence order in S. It also checks for

30



appropriate variable bindings with possible verification on duplicate variables in S. The

pseudo code for the DPP algorithm is shown in Algorithm 2.

(i) Trajectory Selection: For each region-list of a fixed region that appears

in S, we select the ids Tid for all trajectories that visited this region. Candidate set

T̄ is computed by intersecting the collected ids (per region). That is, T̄ contains ids

of the trajectories that have visited (independently of what order) all the regions in S.

Nevertheless, since no order of these appearances has been verified, a further verification

step must be performed on each T ′ ∈ T̄ to enforce the order of S. This verification step

is performed using dynamic programming.

(ii) Matching: For each trajectory T ′ ∈ T̄ a dynamic programming matrix

M (function BuildDPM ) is first created; it will later retrieve the matches of S in the

trajectory T ′ (function ScanDPM ). TheM matrix enables the DPP algorithm to match

all occurrences of the pattern S in T ′ in the specified order defined in S. Matrix M

has a column j for each region visited by the trajectory T ′. Multiple visits to the same

region are represented with multiple columns in M, as it is stored the same way in the

trajectory-list index. The rows i in the matrix correspond to the predicates Pi ∈ S.

Therefore, the size ofM is |S|.|T ′|. The value in each entry inM[i][j] is computed based

on the predicate Pi and the j-th element in the region approximation of the trajectory T ′

denoted as T ′j . (This is the j-th element in the trajectory-list of T ′).

It should be noted that if pattern S contains only fixed spatial predicates, the

matrixM can be shrunk by eliminating the regions in T ′ that are not present in S. This

31



Algorithm 2 DPP : Fixed and Variable Spatial Predicates
Input: Pattern S which consists of predicates Pi

Output: Trajectories satisfying S
1: Let T̄ be the set of candidate trajectories from trajectory-list having all fixed predicates in S
2: Answer Set A← ∅ ⊲ initialize the answer set
3: for each trajectory T ′ ∈ |T̄ | do
4: BuildDPM (T ′, S) ⊲ construct matrixM
5: if Abs(M[|S|][|T ′|]) ≥ P|S|.idx then

6: ScanDPM (|S|,|T ′|) ⊲ analyze matrixM

Function: BuildDPM (T , S)
1: for i← 0 to |S| do ⊲ for each row ofM
2: for j ← 0 to |T | do ⊲ for each column ofM
3: if i = 0 or j = 0 thenM[i][j]← 0 ⊲ trivial case
4: else

5: if Pi.type is a Fixed Spatial Predicate then

6: if Pi.R = T.Rj then

7: M[i][j] ← (−(Abs(M[i− 1][j − 1]) + 1))
8: else

9: M[i][j] ←Max(Abs(M[i− 1][j]), Abs(M[i][j − 1]))
10: else ⊲ Pi.type is a variable or wild-card
11: if Pi.type = {?

+,@} then
12: M[i][j] ← (−(Abs(M[i− 1][j − 1]) + 1))
13: else ⊲ case where Pi.type = {?∗}
14: if i = Pi.idx then

15: M[i][j]← Abs(M[i− 1][j])
16: elseM[i][j]← (−(Abs(M[i− 1][j − 1]) + 1))

Function: ScanDPM (i,j)
1: if i > 0 then ⊲ valid column inM
2: for k ← j to k ≥ Pi.idx downto 1 do

3: if Abs(M[i][k]) ≥ Pi.idx then

4: if M[i][k] ≤ 0 then ⊲ found a match inM
5: if Pi.type = {@} and Match[Pi.link] 6= T ′.Rk then continue

6: Match[i]← T ′.Rk ⊲ found a match for T ′.Rk

7: if Pi−1.type = {?∗} then
8: ScanDPM (i− 1, k) ⊲ next iteration
9: else

10: ScanDPM (i− 1, k − 1) ⊲ next iteration
11: else A← A∪ T ′.id ⊲ found T ′.id to the answer set

optimization does not compromise the sequence of patterns found because for each Rj in

T ′, the attribute (t-entryj :t-exit j) is also kept.

Each matrix entry can a take numerical value in the range (-|S|;|S|). The ab-

solute value stored in the matrix entries corresponds to the length of the longest match

between the pattern S and the trajectory approximation T ′ discovered so far. A negative

number inM[i][j] denotes a match between the pattern Pi and the trajectory region Ri,

32



and its absolute value is the length of the longest match found so far. In this way, the

matrixM is used to store both the match occurrences, represented with negative value,

and the length of each match, the absolute values inM[i][j].

The matrix M is computed row by row, column by column starting from the

M[0][0] entry until the M[|S|][|T ′|] entry. At every step the BuildDPM function com-

pares the values of the current predicate Pi and the current region from the trajectory

approximation Tj (the same as the T ′j). If there is no match between Pi and Tj, then

the value of M[i][j] is the biggest absolute value among the neighbors (M[i − 1][j] or

M[i][j− 1]). If there is a match between Pi and Tj then the entryM[i][j] takes the value

|M[i − 1][j − 1]| + 1, but it is stored as a negative number indicating that the current

pair Pi, Tj participates in the match.

The previous description applies only for fixed spatial predicates. For wild-card

(?+,?∗) and variable (@) spatial predicates, the computation of the entryM[i][j] is done

differently. Because such variables can be bound with any value of Tj , the value ofM[i][j]

is computed as a “match”. Therefore, the entry value is −(|M[i − 1][j − 1]| + 1), as

previously described. This phase does not handle the case where a pattern S contains

variables which appear multiple times. This verification step is performed in the ScanDPM

function. Instances of the same variable are “linked” in a backward way using a “pointer”

(link) with the following constraint: Pi.link ← Pj if Pi = Pj and i < j. Because matrix

M is verified for matching in a “backward” way (fromM[|S|][|T ′|] toM[1][1] entry), the

pointers are associated to the next occurrence in the pattern S.

There is also a special case where the predicate Pi is optional in the pattern S.

In this case, the computation and further verification of matrix M has to consider the

33



case where Pi does not match Tj . To deal with this, another attribute Pi.idx is associated

with each predicate in S. Basically, this attribute stores the position of each predicate Pi

in cases the optional predicate does not match with any Tj. This idx attribute is defined

in the following manner:

Pi.idx←































1 if i = 1

Pi−1.idx if Pi.type = {?∗, ?#}

Pi−1.idx+ 1 otherwise

After the matrix M is computed, the matches on it have to be searched. This

is performed by the ScanDPM function which “searches” for negative numbers stored in

M; such numbers denote the occurrence of a match. The operation goes row by row,

column by column in a direction opposite to the direction of construction, starting with

the bottom right entry. If the last matrix entryM[i][|T ′|] has an absolute value greater

than the last idx in P (i.e. Abs(M[|S|][|T ′|]) ≥ P|S|.idx), then there is at least one

match between S and T ′. Otherwise we can safely prune the trajectory avoiding further

processing. Because we are only interested in finding the longest and complete match

between S and T ′, we only look for entries that have values greater or equal than the

Si.idx index (smaller values indicate that there is a partial match but not a complete

one). If the cell value is less than the current pattern index Si.idx, then the function

ScanDPM aborts the processing of the current row i.

If there is a match inM[i][j], then the function ScanDPM is called recursively

to process the sub-matrix with bottom right corner M[i − 1][j − 1]. If the predicate Pi

is optional (# and ∗) then the function is called for the M[i − 1][j] entry instead. The

34



algorithm stops when all predicates in S are processed (i=0), thus finding all possible

matches of S in T ′.

Complexity Analysis: The BuildDPM function calculates the value for each

matrix entry just once. Let s denote the length of a trajectory T ′ in terms of number of

regions visited. Then the matrixM has m rows (|S|) and s columns, and the complexity

of this method is O(sm). The complexity of ScanDPM is O(m+ s) because at each step

we move one step left-up diagonally or up (e.g., at least one of i and j is decremented).

Therefore, the time complexity for processing a single trajectory T ′ with the DPP algo-

rithm is O(vsm), where v = |T̄ | (i.e., the number of candidate trajectories produced from

the trajectory selection step). The reader should note that the two algorithms produce

candidate trajectory sets using different methods (IJP considers the temporal order and

DPP does not); hence in the complexity analysis they are represented as k and v.

Explicit Temporal Constraints: When the pattern S has explicit temporal

constrains inti in its definition, the DPP algorithm only performs a check along with the

match checks in order to satisfies inti too (not shown in Algorithm 2). If only one of

the above conditions is satisfied, then the value of M[i][j] is computed as not a match.

Otherwise, it is computed as a match.

Example : We use the same example of pattern S in Figure 2.2 to illustrate

how the DPP algorithm works. Using the region-list the trajectory identifiers that have

all the grids M and D are in T̄ = {T2, T3}. For each trajectory T ′ in T̄ , the matrix

M is computed using the function BuildDPM. The computation of matrix M for T2

and S appears in Table 2.1. Since P|S|.idx is 6, the ScanDPM function looks for entry

values equal to M[10][j] ≥ | − 6| in the 10-th row of matrix M. In ScanDPM, the

35



Table 2.1: MatrixM for trajectory T2 and pattern S.
T2 X I S D P H B U M D H B M

j 1 2 3 4 5 6 7 8 9 10 11 12 13

S i idx 0 0 0 0 0 0 0 0 0 0 0 0 0 0

?+ 1 1 0 -1⊛ -1⊛ -1⊛ -1⊛ -1⊛ -1∗ -1 -1 -1 -1 -1 -1 -1

@x 2 2 0 0 -2 -2 -2 -2 -2◦ -2∗ -2 -2 -2 -2 -2 -2

?∗ 3 2 0 0 2 -3 -3 -3 -3 -3◦ -3⊛ -3 -3 -3 -3 -3

M 4 3 0 0 0 3 3 3 3 3 3 -4⊛ 4 4 4 -4

?∗ 5 3 0 0 0 3 -4 -4 -4 -4 -4 -4 -5 -5 -5 -5

D 6 4 0 0 0 0 -4 4 4 4 4 4 -5⊛ 5 5 5

?∗ 7 4 0 0 0 0 4 -5 -5 -5 -5 -5 -5 -6∗ -6 -6

@x 8 5 0 0 0 0 0 -5 -6 -6 -6 -6 -6 -6◦ -7∗ -7

?∗ 9 5 0 0 0 0 0 5 -6 -7 -7 -7 -7 -7 -7◦ -8

M 10 6 0 0 0 0 0 0 6 7 7 -8 8 8 8 -8⊛

entry M[10][13] passes the checks of the algorithm and the entry M[10][13] is stored as

a match in Match[10] (M was found in the 13th column of T2) and then the function

ScanDPM is called for theM[9][12] matrix. Again, entryM[9][12] passes all the checks

and it is called forM[8][12]. Because P8 is a variable (i.e., variable @x) and it is the first

variable encountered so far, it passes the bounded value check (link test) and then it is

bounded to the grid B. Then the function ScanDPM is called in the following sequence

for entries in M: M[7][11], M[6][10], M[5][10], M[4][9], M[3][8] and then for M[2][8],

but it fails for this last one because the link test does not pass (M[2][8] 6= M[8][12]).

Then it is called for M[2][7], and the link test satisfies because variable @x is bounded

to grid B (M[2][7] =M[8][12]). Then ScanDPM is called forM[1][6] until j is 0. In the

end, the pattern ?+.B.?∗.M.?∗.D.?∗.B.?∗.M is found and added to A. The backtracking

also evaluates the entry M[8][11] and finds pattern ?+.H.?∗.M.?∗.D.?∗.H.?∗.M . Other

calls for other entries are called, e.g. M[10][9] (-8), but they all fails to bound to other

predicates in S. The 2 patterns found for the pattern S in trajectory T2 are highlighted

36



in Table 2.1 (yellow∗ for the first pattern found, blue◦ for the second, and green⊛ when

the entries are found for both of patterns). �

Adding Distance-based Constraints

The evaluation of distance constraints D inside a pattern query Q is performed

as a post filtering step after the pattern S evaluation. The DPP algorithm can only use

a brute force approach since it maintains a trajectory as a sequence of regions but loses

the spatial properties of these regions. Therefore, the DPP algorithm can only compute

the distance for the constraint as a final step.

2.5 Experimental Evaluation

We run various experiments with real world and synthetic datasets to test the

behavior of each technique under different settings. All experiments were run on an

Intel Pentium-4 2.6 GHz processor running Linux 2.6.22 with 1 GB main memory. All

implementations used the same disk manager framework with disk page size set to 4KB

for each index (region-list and trajectory-list indexes) and 16KB for the raw trajectory

archive.

For comparison purposes, we examined two previous pattern matching approaches.

In particular, we modified [24] and [4] (called here Extended-KMP (E-KMP) and Extended-

NFA (E-NFA) respectively) and implemented them in our proposed framework in order

to fair compare them against the IJP and DPP algorithms. The E-KMP contains exten-

sions to handle the variable predicates (?∗, ?+) as well as the implicit/explicit temporal

constraints. The NFA used in [4] finds simple event patterns in streaming data. Hence it

37



is not formulated to evaluate topological relations or temporal constraints, as described in

Section 2.2. We thus extend it to cover these as well, as to process queries with variables.

To this end, a stack is created for each variable @x. If a variable appears in the query

many times, a post processing check is performed at the accept state of the NFA. For fair-

ness, all algorithms were tested using the same index framework (i.e., the E-KMP and the

E-NFA algorithms receive a candidate set of trajectories similar to the DPP approach).

For real datasets, we use the Truck and Buses trajectorial data from [2]. Both

datasets represent moving objects in the metropolitan area of Athens, Greece. The Truck

dataset has 112,203 moving object locations generated from 276 trajectories where the

longest trajectory timestamp is 13,540 timestamps. The Buses contains 66,096 moving

object locations obtained from 145 trajectories of school buses with maximum timestamp

992. For simplicity of the experimental evaluation, we do not use real regions; instead

we assume that the spatial domain (area of Athens) is partitioned into (artificial) regions

using a uniform grid. These grid cells become the alphabet for our queries; hence in the

rest the terms “region” and “cell” have the same meaning. To examine the effect of the

alphabet size on the index structures we experiment with grid granularity starting from

25×25 up to 100×100.

We take this opportunity to note that in practice the region partition (i.e., the

alphabet) depends only on the application and it is fixed. For example, if the user is

interested in posing very detailed queries (e.g., street level) a finer partition should be

used. We expect that in a real implementation one may use a fine grid partition at the

lower level and (coarser) regions that the user understands at a higher level. Then an

interesting problem is what size of grid partition will optimize the query response at the

38



region level. Since the coverage of a region by grid cells may not be exact, false positives

can be returned by the query, thus affecting query performance. This however is an

orthogonal problem and is not addressed here; hence in the rest the terms “region” and

“cell” have the same meaning.

For the synthetic datasets, we generated datasets of moving object trajectories.

The dataset represents the freeway network of Indiana and Illinois states together. The

2-dimensional spatial universe is 1,000 miles long in each direction and contains up to

200,000 objects. Objects start at random positions on predefined routes in a road network

and follow a Normal distribution with mean 60 MPH and standard deviation 15 MPH.

We run simulations for 500 minutes (timestamps). For these datasets, the spatial universe

was partitioned with a grid 100×100.

In order to generate relevant pattern queries, we randomly sample and fragment

100 trajectories. The length and location of each fragment are randomly chosen. These

fragments are then concatenated to create a query. For the synthetic datasets we used

pattern length from 5 up to 10 predicates. We also generated sets of pattern queries with

different number of variable predicates (from 0 to 2). The location of each variable inside

the query was randomly chosen. For queries with 2 variables, half of the patterns have

the same variable twice, and the other half use two different variables (i.e. @x and @y).

For each experiment, we measured the average running time (in seconds) and the average

I/O for a set of 100 queries. The query cost shown consists of the CPU time and the I/O

time.

39



Table 2.2: Query time (s) for real datasets.
P Dataset |S| |Sf | |A| E-NFA E-KMP DPP IJP

S1 Buses 10 3 57 2.46 1.90 1.11 1.53

S2 Buses 20 7 29 89.62 62.75 28.99 3.03

S3 Trucks 20 7 76 111.91 54.68 30.28 10.57

S4 Trucks 46 29 11 3.06 0.73 0.22 1.56

2.5.1 Queries with Spatial Predicates

The first experiment, shown in Table 2.2, evaluates the total time (in seconds)

required to execute four complex pattern queries on the Buses and Truck datasets. Since

in the real datasets objects move in relatively similar ways, we experimented with larger

number of predicates so as to create more selective queries. Moreover, queries S1 - S4

contain between 2 and 4 variables and several wild-cards ?+ and ?∗. The total number

of predicates is specified by |S|, the number of fixed predicates is |Sf |, the number of

trajectories returned is shown under |A|.

The results show that the E-NFA algorithm performs worse for all queries. This

is because it cannot take advantage of the existing indexing structures so as to focus the

search only on those parts of the trajectories that might contain answer (except from the

original trajectory pruning using the region-list intersection). This is to be expected since

the method has been designed for identifying patterns over streaming (non-archived) data.

We experienced a similar behavior with the other real and also the synthetic datasets;

hence we remove the E-NFA method from the following comparisons. Among the rest,

the DPP and IJP algorithms, have typically more robust behavior; nevertheless, E-KMP

still shows competitive behavior for some queries.

40



 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

25x25 50x50 100x100

n
u

m
b

e
r 

o
f 

in
d

e
x
 r

e
c
o

rd
s

Alphabet size

Buses
Trucks

Figure 2.5: Total number of index records for different alphabet sizes.

To examine the effect of the size of the alphabet on the index size, we exper-

imented with the real datasets and different alphabets (by changing the grid size). As

expected the increased number of letters in the alphabet increases the size of the index

(see Figure 2.5). Each trajectory visits more regions (which have smaller size) during its

lifetime and thus generates more records in the index structure. Note that in this exper-

iment, the size of index was very small compared to the raw data size (varying between

4% and 6% for the Buses and 2% and 5% for the Trucks dataset). The number of I/Os

during the query evaluation however stays the same because each predicate in the query

still corresponds to a single (though smaller) grid cell. As a result, the observed query

times remain similar to the ones shown in Table 2.2.

To further examine the performance of the DPP, IJP and E-KMP algorithms

we use the synthetic datasets. The next experiment evaluates the average running time

required to execute 100 pattern queries while varying the number of spatial predicates in

P from 5 to 10. It uses a synthetic dataset with 50,000 trajectories. The results appear

in Figure 2.6 (in log-scale) and for patterns with (a) no variable, (b) 1 variable, and (c)

2 variables.

41



 0.1

 1

 10

 100

 5  6  7  8  9  10

A
V

G
 T

o
ta

l 
T

im
e

 (
s
)

Number of predicates

E-KMP
DPP

IJP

 0.1

 1

 10

 100

 1000

 5  6  7  8  9  10

A
V

G
 T

o
ta

l 
T

im
e

 (
s
)

Number of predicates

E-KMP
DPP

IJP

 0.1

 1

 10

 100

 1000

 5  6  7  8  9  10

A
V

G
 T

o
ta

l 
T

im
e

 (
s
)

Number of predicates

E-KMP
DPP

IJP

(a) no variable (b) 1 variable (c) 2 variables

Figure 2.6: Query time (s) when increasing the number of patterns in P.

As observed from these experiments, when increasing the number of predicates

in the pattern, the query time of the DPP and E-KMP algorithms increases. For the

DPP the larger pattern implies a larger matrix and thus more processing. The E-KMP

is very sensitive to the number of ?∗ in the query; as the pattern increases in size the

probability of more ?∗ increases (this effect will be examined further later). Nevertheless,

the DPP algorithm is always more efficient than the E-KMP (typically by an order of

magnitude).

The IJP algorithm is affected the least by the number of predicates. This is

because processing in the IJP algorithm is guided by the region-lists of the first few

predicates in the pattern (for example, the third list is accessed after a match in the first

two lists is found, etc.). Hence, adding more lists does not directly affect the processing.

As more predicates are added, the processing of the E-KMP and DPP starts increasing

making the IJP a faster solution.

For the same experiments, Figure 2.7 depicts the average I/O’s for (a) 0 variable,

(b) 1 variable, and (c) 2 variables. In particular E-KMP and DPP have identical I/O

behavior since they are using the same approach to pick candidate trajectory-lists (without

using the time constraints). Even though all three algorithms use the same indexes to

42



 20

 25

 30

 35

 40

 45

 5  6  7  8  9  10

A
V

G
 I

/O
 O

p
e

ra
ti
o

n
s

Number of predicates

E-KMP
DPP

IJP

 20

 22

 24

 26

 28

 30

 32

 34

 36

 38

 5  6  7  8  9  10

A
V

G
 I

/O
 O

p
e

ra
ti
o

n
s

Number of predicates

E-KMP
DPP

IJP

 15

 20

 25

 30

 35

 40

 5  6  7  8  9  10

A
V

G
 I

/O
 O

p
e

ra
ti
o

n
s

Number of predicates

E-KMP
DPP

IJP

(a) no variable (b) 1 variable (c) 2 variables

Figure 2.7: Query I/O when increasing the number of patterns in P.

retrieve objects, the IJP uses a different strategy (as described in Section 2.4) which

results in a different I/O behavior. Nevertheless, all algorithms have comparable I/O

behavior, leading us to the conclusion that the major differences in the overall processing

time among the algorithms are not I/O based but mainly CPU bound.

We also performed experiments comparing the proposed index structure with

R-trees. The R-tree was outperformed by our simpler grid structure. Since R-trees are

data-driven structures the overlapping implies that several sub-trees need to be analyzed.

Furthermore, when MBRs over-approximate regions, the verification step at the end of

the algorithm had to process significant amount of false positives.

2.5.2 Scalability Experiments

Number of wild-cards

We next examined the performance of the three algorithms when varying the

number of ?∗ wild-cards in the pattern. For these experiments, we randomly sampled

100 trajectories from the previous synthetic dataset and then extracted pattern queries

of length 10. These patterns contain only the “.” sequencer (i.e., no ?∗). Using this query

43



 0.1

 1

 10

 100

 0  1  2  3  4  5  6  7  8

A
V

G
 T

o
ta

l 
T

im
e

 (
s
)

Total number of ’?*’

E-KMP
DPP

IJP

 0.1

 1

 10

 100

 1000

 0  1  2  3  4  5  6  7  8

A
V

G
 T

o
ta

l 
T

im
e

 (
s
)

Total number of ’?*’

E-KMP
DPP

IJP

 0.1

 1

 10

 100

 1000

 0  1  2  3  4  5  6  7  8

A
V

G
 T

o
ta

l 
T

im
e

 (
s
)

Total number of ’?*’

E-KMP
DPP

IJP

(a) no variable (b) 1 variable (c) 2 variables

Figure 2.8: Avg. running time vs. number of ?∗ in P.

set we created a new set that has queries with one ?∗. This set was created by randomly

replacing one “.” by a ?∗. We continued in the same way creating a new query set with

queries having two ?∗ by replacing an additional “.”, etc. Figure 2.8 shows the average

running time (in log-scale) to execute 100 queries varying the total number of ?∗ (from 0

to 8) in each pattern with (1) no variable, (b) 1 variable, and (c) 2 variables.

Again we observed that in all experiments the DPP algorithm is always faster

than the E-KMP. As the number of ?∗ increases, the performance of E-KMP deteriorates

drastically, showing the dependence of E-KMP to the ?∗ wild-cards. This is because each

such wild-card forces the E-KMP approach to run more, shorter queries. More queries

add to the processing time but also since these queries are smaller, the shifting function of

E-KMP is not as effective. The DPP is up to 4 times faster than the E-KMP when there

are 8 wild-cards. For the DPP, the total processing time increases because more matches

qualify as an answer. The performance of the IJP algorithm is independent of the number

of the ?∗ wild-cards, since they are evaluated in the same way as the “.” sequencers. As

a result, as more wild-cards appear in the query, IJP will eventually become faster than

the DPP.

44



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

50 75 100 125 150 175 200

A
V

G
 T

o
ta

l 
T

im
e

 (
s
)

Dataset size (x 1,000)

E-KMP
DPP

IJP

 0

 1

 2

 3

 4

 5

 6

50 75 100 125 150 175 200

A
V

G
 T

o
ta

l 
T

im
e

 (
s
)

Dataset size (x 1,000)

E-KMP
DPP

IJP

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

50 75 100 125 150 175 200

A
V

G
 T

o
ta

l 
T

im
e

 (
s
)

Dataset size (x 1,000)

E-KMP
DPP

IJP

(a) no variable (b) 1 variable (c) 2 variables

Figure 2.9: Avg. running time vs. number of trajectories.

Number of Trajectories

We then varied the indexed dataset size to examine the scalability of the proposed

algorithms. For these experiments, we used a synthetic dataset of 200,000 trajectories.

We started with inserting the first 50,000 trajectories in the indexes and measured the

query time (for an average of 100 queries each with 5 predicates, including 0, 1 and 2

variables). We repeated the experiment after adding an additional 25,000 trajectories.

This incremental process continued with increments of 25,000 trajectories until the total

of 200,000 trajectories in the archive.

The behavior of all algorithms grows linearly with the dataset size, as shown in

Figure 2.9. Recall that from our complexity analysis, both the IJP and DPP algorithms

are proportional to the number of candidate trajectories; as more trajectories are added,

this number increases thus affecting the overall performance accordingly. Again, the DPP

algorithm behaves consistently better than the E-KMP. Among all algorithms, the IJP

has the faster rate of increase. This is because, the larger datasets create large region-

lists which directly affects the join processing cost. Moreover, IJP performs two join

45



 10

 100

 1000

 10000

 100000

1 2 3 4

A
V

G
 T

o
ta

l 
T

im
e
 (

s
)

Number of distance terms

DPP
IJP

Figure 2.10: Avg. running time vs. number of distance terms in D.

operations (one in the region-lists and one in the variable-lists) and both of them are

directly affected by the size of the lists.

2.5.3 Patterns with Spatial Predicates and Nearest Neighbors

We also performed experiments to examine how the algorithms behave when

adding nearest neighbor predicates (i.e., pattern queries that contain both P and D). We

examined four query datasets varying the number of distance terms from one to four.

Each distance term uses two variables (i.e., it is of the form d(@x,@y) which corresponds

to the very processing demanding NN query). All variables in each pattern query are

different and their positions were randomly chosen. Figure 2.10 shows the results for

queries using 10 predicates while increasing the number of distance terms. Clearly, the

IJP approach outperforms the “brute-force” approach of the DPP (up to two orders of

magnitude). This is because IJP maintains the spatial properties of trajectories and can

thus reuse the variable lists to avoid examining all possible bindings.

46



2.5.4 Discussion

In all our experiments the previous E-KMP -based approach (even optimized

to use indexes) was outperformed by the DPP algorithm. Furthermore, its performance

deteriorates drastically as the number of ?∗ wild-cards increases. Similarly, the E-NFA was

outperformed by all algorithms. When comparing our two new algorithms, we observed

the following:

1. For a small number of predicates the DPP algorithm is faster than the IJP algo-

rithm. This is because the matrix M is small and thus it is processed very fast;

2. For larger number of predicates the IJP algorithm becomes faster since its perfor-

mance is not affected by the increase in predicates, while the DPP is affected by

the increase in the matrix size;

3. On the other hand, IJP is a join-based algorithm, hence the larger the dataset, the

more expensive is the join step;

4. Nevertheless, IJP has more robust performance when considering distance-based

queries (NN ) as well, while the DPP (and E-KMP) algorithm needs to use a very

consuming “brute-force” approach.

2.6 Final Remarks

In this chapter, we introduced a framework for processing “flexible pattern

queries” over trajectory archives. Such queries combine the ability of fixed and variable

predicates, with explicit or implicit temporal constraints and distance-based constraints.

47



Previous works have considered only subsets of this framework and are based on vari-

ations of the KMP algorithm or use finite automata (NFA). We introduced two query

processing techniques, one based on merge joins (IJP) and one based on subsequence

matching (DPP). The experimental evaluation shows that our techniques improve sub-

stantially even over optimized (using indexing and preprocessing techniques) KMP and

NFA approaches. Among our approaches, IJP is more robust in that it can easily support

NN queries, while DPP is better for patterns with smaller number of predicates or wild-

cards. Since however both approaches use the same indexing schemes, they can both be

available to the user. As a future research topic, one could explore cost models that will

enable a query optimizer to pick the best technique based on the query parameters (size

of the pattern query, number of variables, wild-cards, etc). Another topic is to extend

the FlexTrack framework to support complex pattern trajectory joins.

48



Chapter 3

Pattern Queries for Mobile

Phone-Call Databases

Call Detail Record (CDR) databases contain many millions of records with in-

formation about mobile phone calls, including the users’ location, when the call was

made/received, and call duration. This huge amount of spatio-temporal data opens the

door for the study of human trajectories on a large scale without the bias that other

sources, like GPS or WLAN networks, introduce in the population studied. Furthermore,

it provides a platform for the development of a wide variety of studies ranging from the

spread of diseases to planning of public transportation. Nevertheless, previous work on

spatio-temporal queries does not provide a framework “flexible” enough for expressing

the complexity of human trajectories. In this chapter, we present Spatio-Temporal Pat-

tern System (STPS) to query spatio-temporal patterns in very large CDR databases.

STPS uses a regular-expression query language that is intuitive and that allows for any

49



combination of spatial and temporal predicates with constraints, including the use of

variables. The design of the language takes into consideration the layout of the areas

being covered by the cellular towers, as well as “areas” that label places of interested (e.g.

neighborhoods, parks). An extensive performance evaluation of the STPS shows that it

can efficiently find very complex mobility patterns in large CDR databases.

3.1 Introduction

The recent adoption of ubiquitous computing technologies by very large portions

of the world population has enabled – for the first time in human history – to capture large

scale spatio-temporal data about human motion. In this context, mobile phones play a

key role as sensors of human behavior since they are typically owned by one individual

that carries it at (almost) all times and are nearly ubiquitously used. Hence, it is no

surprise that most of the quantitative data about human motion has been gathered via

Call Detail Records (CDRs) of cell phone networks.

When a cell phone makes/receives a phone call the information regarding the

call is logged in the form of a CDR. This information includes, among others, originating

and destination phone numbers, the time and date when the call started, and the towers

used, which gives an approximation of the caller’s/callee’s geographical location. Such

data is very rich and has been used recently for several applications, such as to study

user’s social networks [20, 68, 86], human mobility behaviors [33, 39], and cellular network

improvement [108].

50



The volume of data generated by a given operator in the form of CDRs is huge,

and it contains valuable spatio-temporal information at different levels of granularity (e.g.

citywide, statewide, nationwide). This information is relevant not only for telecommuni-

cation operators but also as a base for a broader set of applications with social connota-

tions like commuting patterns, transportation routes, concentrations of people, modeling

of virus spreading, etc. The ability to efficiently query CDR databases to search for

spatio-temporal patterns is key to the development of such applications. Nevertheless,

the commercial systems available cannot efficiently handle this kind of spatio-temporal

processing. One possible solution to search for such patterns is to perform a sequential

scanning of the entire CDR database and, for each user, check whether it qualifies us-

ing a subsequence matching-like algorithm (e.g. Knuth-Morris-Pratt (KMP) [51]). Such

naive approach however is computationally extremely expensive due to the amount of

users/CDRs to be processed. Furthermore, there is the fact that no information about

the temporal dimension of the pattern (e.g. within given time frame) or spatial properties

(e.g. in a given neighborhood) can be specified.

Taking into consideration the large volume of data and current implementation

of the CDR storage systems for telecommunication providers, one effective way to support

such spatio-temporal pattern queries is to extend the current systems with some indexes

and algorithms to efficiently process such queries. One aspect that has to be considered is

that commercial storage systems are in their majority implemented on top of Relational

Database Management System (RDBMS). Therefore the provided solution should use

the available RDBMS infrastructure such as tables, indexes (e.g. inverted indexes and

B-trees), merge-join algorithms, and so on.

51



In this chapter, we present the Spatio-Temporal Pattern System (STPS) to query

spatio-temporal patterns in CDR databases. The STPS allows users to express mobility

pattern queries with a regular expression-like language that can include “variables” in the

pattern specification. Variables serve as “placeholders” in the pattern for explicit spatial

regions and their value is determined during the pattern query evaluation. An example

for a query with variables is the pattern “find users who visited the same mall twice in

the last 24 hours”. In this scenario we do not know in advance which one is the mall

visited by the user. So we use variables which can take values from the set of malls to

specify the user behavior in a pattern query. We have to pay attention that in the above

example the variable should appear twice in the pattern.

STPS also includes lightweight index structures that can be easily implemented

in most commercially RDBMS. We present an extensive experimental evaluation of the

proposed techniques using two large, real-world CDR databases. The experimental results

reveal that the proposed STPS framework is scalable and efficient under several scenarios

tested. Our proposed system is up to 1,000 times faster than a base line implementation,

making the STPS a very robust approach for querying and analyzing very large phone-call

databases.

This chapter presents a continuation of our previous work, described in Chap-

ter 2, in pattern query evaluation in trajectorial archives. In this chapter we adopt that

approach and study its application in the domain of CDR databases. In particular, we

modified the join-based evaluation algorithm to handle trajectories specified in CDR for-

mat rather than the traditional form, defined as sequence of object locations with their

longitude and latitude coordinates. This change in the data format poses changes in the

52



query languages as well. In Chapter 2, the query language includes several query predi-

cates that are well suited when the exact location of the object is known for a continuous

period of time. An example of such a predicate is the distance-based predicate used to find

trajectories that passed as close as possible to some area of interest. In a CDR database

however, the exact location of the mobile user is unknown and users are not continu-

ously monitored. Thus, the pattern language proposed here is more suitable for CDR

databases (e.g. cells, user defined areas, temporal predicates to track hopping during a

call or for different calls). The language proposed in this chapter also supports user de-

fined constraints (e.g. conditions, inequalities, time constraints). Furthermore, the query

evaluation system is redesigned to work with the features (e.g. tables, B+-trees and so

on) of a commercially available RDBMS, since CDR databases are typically implemented

in such systems.

The remainder of this chapter is organized as follows: Section 3.2 discusses the

related work; Section 3.3 provides some basic descriptions on the infrastructure; Sec-

tion 3.4 provides the formal description of the STPS language; the proposed system is

described in Section 3.5 and its experimental evaluation appears in Section 3.6; Section 3.7

concludes the chapter with the final remarks.

3.2 Related Work

Infrastructures for querying spatio-temporal patterns have already been studied

in the literature in different contexts, mainly for: (1) time-series databases; (2) similarity

between trajectories; and (3) single predicate for trajectory data.

53



Pattern queries have been used in the past for querying time series using SQL-

like query language [82, 87], or event streams using a NFA-based method [4]. Our work

differs from those solutions mainly because it provides a richer language to specify spatio-

temporal patterns and an efficient way to evaluate them. For moving object data, patterns

have been examined in the context of query language and modeling issues [26, 67] as well

as query evaluation algorithms [36].

Similarity search among trajectories has been also well studied. Work in this

area focuses on the use of different distance metrics to measure the similarity between

trajectories (e.g. [6, 12, 71, 104]).

Single predicate queries for trajectory data, like Range and NN queries, have

been well studied in the past (e.g. [74]). In these contexts, a query is expressed by

a single range or NN predicate. To make the evaluation process more efficient, the

query predicates are typically evaluated utilizing hierarchical spatio-temporal indexing

structures [37]. Most structures use the concept of Minimum Bounding Regions (MBR)

to approximate the trajectories, which are then indexed using traditional spatial access

methods, like the MVR-tree [91]. These solutions, however, are focused only on single

predicate queries and further constructions to build a more complex query, e.g. a sequence

of combination of both predicates, are not supported. In [36] an incremental ranking

algorithm for simple spatio-temporal pattern queries is presented. These queries consist

of range and NN predicates specified using only fixed regions. Our work differs in that we

provide a more general and powerful query framework where queries can involve both fixed

and variable regions as well as topological operators, temporal predicates, constraints,

etc., and an explicit ordering of the predicates along the temporal axis.

54



Figure 3.1: (a) Original coverage areas of BTSs and (b) approximation of coverage areas
by Voronoi diagram.

In [24] a KMP -based algorithm [51] is used to process patterns in trajectorial

achieves. This work, however, focuses only on the contain topological predicate and

cannot handle explicit or implicit temporal ordering of predicates. Furthermore, this ap-

proach on evaluating patterns is effectively reduced to a sequential scanning over the list

of trajectories stored in the repository: each trajectory is checked individually, which be-

comes prohibitive for large trajectory archives. We show in Section 3.6 that this approach

is very inefficient.

3.3 Infrastructure for Data Acquisition

Cell phone networks are built using a set of Base Transceiver Stations (BTS)

that are in charge of communicating mobile phone devices with the cell network. The area

covered by a BTS is called a cell. A BTS has one or more directional antennas (typically

two or three, covering 180 or 120 degrees, respectively) that define a sector and all the

sectors of the same BTS define the cell. At any given moment in time, a cell phone is

covered by one or more antennas. Depending on the network traffic, the phone selects

the BTS to connect to. The geographical area covered by a cell depends mainly on the

55



power of individual antennas. Depending on the population density, the area covered by

a cell ranges from less than 1 Km2, in dense urban areas, to more than 5 Km2, in rural

areas. Each BTS has latitude/longitude attributes that indicate its location, a unique

identifier BTSid, and the polygon representing its cell. For simplicity, we assume that the

cell of each BTS is a 2-dimensional non-overlapping region, and we use Voronoi diagrams

to define the covering areas of the set of BTSs considered. Figure 3.1(a) presents a set

of BTSs with the original coverage for each cell, and (b) the simulated coverage obtained

using Voronoi diagrams. While simple, this approach gives us a good approximation of

the coverage area of each BTS. In practice, to build the real diagram of coverage, one

has to consider several factors in the mobile network, e.g. power and orientation of each

antenna.

CDR databases are populated when a mobile phone, connected to the network,

makes/receives a phone call or uses a service in the network (e.g., SMS, MMS). In the

process, the information regarding the time and the BTS where the user was located

when the call was initiated is logged, which gives an indication of the user’s geographical

location at a given period in time. Note that no information about the exact user’s

location inside a cell is known. Furthermore, for a given call it is possible to store not

only the initial BTS during the period of a call, but also all BTSs used during it in case

caller/callee move to other cells in the network (hopping). The STPS supports this richer

representation of the users’ mobility.

The following attributes from CDR databases are used in the STPS system: (1)

the originating phone number phoneoid; (2) the destination phone number phonedid; (3)

the type of service (voice: V, SMS: S, MMS: M, etc.); (4) the BTS identifier used by

56



Table 3.1: A set of CDRs representing 4 different calls.
timestamp dur phoneo

id
phoned

id
BTSo

id
BTSd

id
type

1123001 3 4324542 4333434 231 121 V
1123004 2 4324542 4333434 232 435 V
1123006 5 4324542 4333434 234 121 V

1123235 2 4324542 5334212 235 231 V
1123237 4 4324542 5334212 231 233 V

1124113 3 4333434 4324541 238 231 V
1124116 4 4333434 4324541 239 231 V

1124116 1 5334212 4333434 451 239 S

the originating number (BTSoid); (5) the BTS identifier used by the destination number

(BTSdid); (6) timestamp (date/time) of the connection between phoneoid and phonedid in

BTSoid and BTSdid, respectively; and (7) the duration dur while phoneoid and phonedid

connected to BTSoid and BTSdid (hopping enabled), respectively. Since in the STPS we

are only interested in users’ mobility, we do not make any distinctions between caller and

callee. Therefore, the superscript symbols (o and d) in phoneid and BTSid are omitted in

the STPS language and framework. The BTS identifier is only known for phoneid that are

clients of the telecommunication operator keeping the CDR database. When the hopping

is enabled, a new CDR row is created every time either users connects to different BTSid

during the same phone call, otherwise, a single CDR is stored to represent the initial

position of phoneoid and phonedid for the total duration of the call dur.

Table 3.1 shows a set of CDRs for 4 distinct calls. In this example the BTS

hopping option is enabled. Phone number 4324542 makes a phone call to 4333434 starting

in BTSoid=231 at timestamp 1123212. Then the user 4324542 moves from BTSoid=231 to

BTSoid=232 3 minutes after starting the call, generating another record in the database.

After 2 minutes, user 4324542 moves to BTSoid=234 staying there for 5 minutes. The user

4333434 is connected to BTSdid=121, then to 435, and then back to 121 during the call.

57



When a user is connected to a particular BTSid, it does not necessary mean that the

user is on the same place for the whole period of connection. The second call represents

the call made from 4324542 to 5334212, and the third one from 4333434 to 4324541.

The eight entry of the table details an SMS sent from 5334212 to 4333434 when they

were connected to BTSoid=451 and BTSdid=239, respectively. If the BTS hopping was not

enabled, the first three entries would have been presented as a single one, with just the

initial BTSoid=231 and a total duration of 10 minutes.

3.4 The STPS Pattern Query Language

We define a trajectory T (phoneid) of a mobile user with identifier phoneid in CDR

databases as a sequence of records {〈phoneid,BTSid, t1, dur1〉, . . . , 〈phoneid,BTSid, tm, durm〉},

where BTSid is the BTS identifier which serviced the mobile user phoneid at timestamp ti

for the duration of time duri (ti, tm ∈ N, ti < tm and duri ∈ N). This trajectory definition

covers both formats described in the previous section: (i) as a sequence of BTSs where the

user was connected to the mobile network; or (ii) as a sequence of a trajectory segments

(at a BTS level) where each segment represents the movement of the user between two

BTS during a phone call. We assume that CDRs using this representation are stored in

an archive as shown in Figure 3.3(d).

The STPS language uses the above definition of a trajectory to covers both data

formats; i.e., we can query for patterns using records for the same phone call or different

calls. This is achieved by associating temporal predicates for each spatial predicate which

can be used to restrict the user movements into a time frame of a single phone call. In

58



the following we describe in details the syntax of the STPS pattern query language and

its components: the spatial predicates, the temporal predicates, and the set of spatio-

temporal constraints.

3.4.1 STPS Language Syntax

A pattern query Q is defined as Q = (S [
⋃
C]), where S is a sequential pattern

and C is an optional set of spatio-temporal constraints. The set of constraints C is used

to specify spatial and/or temporal constraints that an answer has to satisfy in order

to be considered as part of the result. A trajectory with identifier phoneid matches the

pattern query Q if it satisfies both the sequential pattern S and the set of spatio-temporal

constraints C. A sequential pattern S is defined as a sequence of an arbitrary number n

of spatio-temporal predicates S = {P1.P2., ..., .Pn}.

Each spatio-temporal predicate Pi ∈ S is defined by a triplet Pi = 〈opi,Ri[, ti]〉,

where opi represents a topological relationship operator, Ri a spatial region, and ti the

optional temporal predicate. The operator opi describes the topological relationship that

the spatial region Ri and the coverage area of the BTS defining a trajectory with identifier

phoneid must satisfy over the (optional) temporal predicate ti. Figure 3.4 details formally

the syntax of the STPS language.

3.4.2 Spatial Predicates

A key part of our STPS language syntax is the definition of the spatial alphabet

Σ, used in the spatio-temporal predicates Pi. We choose the Voronoi diagram cells, that

represent the covering areas of each BTS, to serve as “letters” in our alphabet Σ. This is

59



Q := (S [
⋃
C])

S := {P1.P2., ..., .Pn}, |S| = n
Pi := 〈opi,Ri[, ti]〉

opi := disjoint |meet |overlap|equal |
inside|contains|covers|coveredby

Ri ∈ {Σ ∪ Γ}
ti := (tfrom : tto) | ts | tr

Figure 3.2: The STPS Pattern Query Language.

because the BTS coverage areas represent the finest level of granularity in which the data

is stored in CDR databases. In the rest of the chapter we use capital letters to represent

the set of BTS coverage areas in the system, e.g. Σ = {A,B,C, ...}. Such coverage areas

can participate as spatial regions Ri in the definition of the spatio-temporal predicates

Pi.

The users however are not restricted to use only BTS coverage areas in their

queries. On top of this BTS coverage partitioning the user can define its own geographical

maps with different resolution and different types of regions (school districts, airports,

shopping, etc.). Also, users can define polygons defined by a set of latitude/longitude pairs

to define a set of areas. All other regions, defined by the user, have to be approximated

by set of coverage areas in the alphabet Σ. For instance, one can define the downtown

area of a city by creating regions Downtown = {D,E,H} and Stadium-1 = {S1}, where

the Downtown area is approximated by the union of the coverage areas of BTS D, E and

H and the Stadium-1 is approximated by the coverage area of BTS S1. The same BTSid

can be used in the definition of multiple regions and not all BTS have to be included in

each geographical map.

60



Inside the spatial predicates Pi we use finite set of spatial regions Ri. Those

regions can be one of the following: (i) a particular BTSid ∈ Σ; (ii) an alias A defined by

a set of one or more BTSid ∈ Σ; or (iii) a variable in Γ. We refer to the first two groups

of spatial regions Ri as predefined spatial regions. A predefined region (i.e., S1 ∈ Σ)

is explicitly specified by the user in the query predicate (e.g. Stadium-1 = {S1} in our

example). In contrary, the third group of spatial regions, termed variable spatial regions,

references an arbitrary region in the map and it is denoted by a lowercase letter preceded

by the @ symbol (e.g. @x). A variable region is defined using symbols from the set

Γ = {@a,@b,@c, ...}. Unless otherwise specified, a variable takes a single value (instance)

from Σ (e.g. @a=C); however, in general, one can also specify in C the possible values of a

specific variable as a subset of Σ (e.g., “any city district with museums”). Conceptually,

variables work as placeholders for explicit spatial regions and can become instantiated

(bound to a specific region) during the query evaluation in a process similar to unification

in logical programming.

Moreover, the same variable @x can appear in several different predicates of

pattern S, referencing to the same region everywhere it occurs. This is useful for specifying

complex queries that involve revisiting the same region many times. For example, a query

like @x.S1.@x finds mobile users that started from some region (denoted by variable @x),

then at some point passed by region S1 and then they visited the same region they started

from.

We finish with the description of the last component of the spatial predicate:

the topological relationship operator opi. In this work we use the eight topological re-

lationships: disjoint, meet, overlap, equal, inside, contains, covers and coveredby defined

61



by [26]. Given a phone user record 〈phoneid,BTSj, ti〉 and a region Ri, the operator opi

returns a boolean value whether the coverage area in the phone user record BTSj and

the region Ri satisfy the topological relationship opi (e.g., an Inside operator will return

value true if the user associated with phoneid was serviced by BTS which has coverage

area inside the spatial region Ri. For simplicity in the rest of the chapter we assume that

the spatial operator is Inside and it is thus omitted from the query examples.

3.4.3 Temporal Predicates

As it was mentioned in the definition of the STPS language a spatio-temporal

predicate Pi may include an explicit temporal predicates ti. Those predicates can be in the

form of: (a) time interval (tfrom : tto) where tfrom ≤ tto (for example “between 4pm and

5pm”); (b) time snapshot ts (for example “at 3:35pm”); or (c) time relative tr = ti− ti−1

from the time instance ti−1 when the previous spatio-temporal predicate Pi−1 satisfied

(for example “1 hour after the user left his home”). Those temporal predicates imply

that the spatial relationship opi between BTSj and region Ri should be satisfied in the

specified time frame ti (e.g. “passed by area S1 between 4pm and 5pm”). If the temporal

predicates is not specified, we assume that the spatial relationship can be satisfied any

time in the duration of a call. For simplicity we assume that if two predicates Pi, Pj

occur within pattern S (where i < j) and have temporal predicates ti, tj, respectively,

then these intervals do not overlap and ti occurs before tj on the time dimension.

62



3.4.4 Spatio-Temporal Constraints

In order to restrict values that can be matched to spatio-temporal predicates,

the STPS language supports an optional set of spatio-temporal constraints C. To qualify

a phone user has to first satisfy S and then C. C works like a pos-filter to eliminate

phone users that do not satisfy C. Some examples of spatio-temporal constraints can be:

@x! = @y, @z = {A,B,C}, Period(ti)=“Weekend”, Day(ti)=“Monday”, among many

others.

3.4.5 STPS Language Example

We now provide a complete example of pattern using the STPS language. One

example is: “find all mobile users that, on Saturdays, first start in an arbitrary area

different to District-A in the morning, then immediately went by Downtown, then by the

Stadium-1 between 6pm and 8pm, then went in the District-B neighborhood between

8pm and 10pm, and finally returned to their first area”. This query example finds for

mobile users that followed a pattern of movements where the first and last locations are

not specified but have to be the same (@x); three other spatial predicates are defined over

areas of interests; several temporal predicates are also defined; and finally spatio-temporal

constraints are specified to filter out the results. This pattern query can be expressed

in the STPS language as follows: Q := (〈@x, tfrom=6am : tto=12pm〉. 〈Downtown,

tr=1min〉. 〈Stadium-1, tfrom=6pm : tto=8pm〉. 〈District-B, tfrom=8pm : tto=10pm〉.

〈@x〉 , C={@x!=District-A, ∀ti, tj ∈ S, Date(ti)=Date(tj) ∧ Day(ti)=“Saturday”}).

63



3.5 Query Evaluation System

In this section we provide in depth description of the query evaluation system.

We start with an overview of the indexing structures used to make the query evaluation

more efficient. We then describe the Index Join Pattern (IJP) algorithm for evaluating

pattern queries. This algorithm is based on a merge-join operation performed over the

inverted-indexes corresponding to every fixed predicate in the pattern query S.

3.5.1 Index structures

In order to efficiently evaluate pattern queries we use three indexing structures,

as shown in Figure 3.3: (a) one R-tree build on top of the BTS regions; (b) one B+-tree

for each BTSid which stores CDR records sorted by timestamp; and (c) one inverted-index

for each BTSid which stores CDR records, sorted first by phoneid and then by timestamp,

that used BTSid sometime during a call. Along with these indexes we also store the CDR

records in the archive, grouped by phoneid and ordered by timestamp, as explained in

Section 3.4. The R-tree is used when there is a spatio-temporal predicate in S which has

some user defined regions (e.g. a spatial range predicate). In this case we have to find the

minimal set of coverage areas from the alphabet Σ which completely cover the defined

region. In order to do so, we create a range query with the user defined region and the

R-tree is traversed in order to return the set of BTS that overlap with this region. The

records for the returned set of BTS can be merged to form a single list with all entries

to be further processed by our algorithm. This is only possible because entries in each

inverted-index BTSid has its entries ordered by (phoneid,timestamp) key.

64



Figure 3.3: Index framework: (a) R-tree for the set of BTS; (b) B+-tree and (c) inverted-
index for each BTS; and (d) CDR archive.

The B+-tree is used by the query engine to prune entries that do not satisfy a

temporal constraint. The engine makes the decision on using or not the B+-tree based on

the type of temporal constraint that is being evaluated (discussed later in this section).

The inverted-index of a given BTSid stores pointers to all call records that are related

to this BTSid in sometime during a call. In the inverted-index each entry in BTSid is a

record that contains a phoneid, the timestamp and duration during which the user was

inside region BTSid, and a pointer to the CDR record associated to the call in the CDR

archive. If a user connects to a given BTSid multiple times in different timestamps, we

store a separate record for each use. An example of the indexing structures is shown

in Figure 3.3. The inverted-index entry for the region D=231 is {(4333431|1123000|2);

(4333432|1021421|3); (4333434|1112141|9); (4333434|1123459|3); ...}. Note that records

from an inverted-index point to the corresponding phone user in the CDR archive. For

example, the record (4333434|1112141|9) in the inverted-index 231 contains a pointer to

the phone user 4333434.

65



3.5.2 The Index-Join Pattern Algorithm (IJP)

We start with the simple scenario where the pattern S does not contain any tem-

poral constraints. In this case, the pattern specifies only the order by which its predicates

(whether fixed or variable) needs to be satisfied. Assume Q contains n predicates and

let Qf denote the subset of f fixed predicates, while Qv denotes the subset of v variable

predicates (n=f+v). The evaluation of Q with the proposed algorithm can be divided

in two steps: (i) the algorithm evaluates the set Qf using the inverted-index index to

fast prune phone users that do not qualify for the answer; (ii) then the collection of

the reminding candidate phone users is further refined by evaluating the set of variable

predicates Sv.

(i) Fixed predicate evaluation: All f fixed predicates in Qf can be eval-

uated concurrently using an operation similar to a merge-join among their inverted-

index lists Li, i ∈ 1..f . Records from these f lists are retrieved in sorted order by

(phoneid,timestamp) and then joined by their phoneids and timestamp. The join cri-

teria is Li−1.phoneid = Li.phoneid and Li−1.timestamp < Li.timestamp (for simplicity

we do not consider the duri attribute). The first part of the criteria ensures that we

are connecting records from the same phone user and the second part ensures that we

are satisfying the predicates in the appropriate order. The fact that the records in the

inverted-index lists are sorted by (phoneid,timestamp) allows us to process the join with

a single pass over the lists skipping all records that do not match the join criteria. If the

same region appears multiple times in the pattern S than we use multiple pointers to the

inverted-index lists for this region.

66



LM=231
pM1
pM2

(4333431|1123000|2)
(4333432|1021421|3)
(4333434|1112141|9)
(4333434|1123462|6)
(4333437|0931231|13)
(4333441|1231231|9)

LD=121
pD (4333434|1112150|15)

(4333434|1123662|5)
(4333435|1123470|4)
(4333438|1123471|3)
(4333439|1123461|1)
(4333444|1124132|7)

Figure 3.4: CDR examples for inverted-indexes LM=231 and LD=121.

Example : The first step of IJP algorithm is illustrated using the example in

Figure 3.4. Assume the pattern S in the query Q contains three fixed and two variable

predicates, as in: S = {@x.M.D.@x.M}. This pattern looks for users that first visited

some region denoted by variable @x, then visited region M sometime later (no temporal

predicate is specified here), then visited region D and then visited again the same region

@x before finally returning to M . The first step of the join algorithm uses the inverted-

index for M and D (LM and LD). Conceptually, pM1
and pM2

represent two pointers to

M inverted-index list.

The algorithm starts from the first record in list LM , phone 4333431, using pM1
.

It then checks the first record in list LD, phone 4333434, using pD. We can deduce

immediately that phone 4333431 is not a candidate since it does not appear in the list of

LD. So we can skip 4333431 and also 4333432 from the LM list and continue with the next

record, phone 4333434. Since (4333434|1112150|15) in list LD has timestamp greater than

(4333434|1112141|9), these two occurrences of 4333434 coincide with pattern M.D so we

need to check if 4333434 uses again region M after timestamp 1112150. Thus we consider

the first record of list LM using pM2
, namely user (4333431|1123000|2). Since it is not from

4333434 it cannot be an answer so pointer pM2
advances to record (4333434|1112141|9).

Now pointers in all lists point to records of 4333434. However, (4333434|1112141|9) in

67



Algorithm 3 IJP : Spatial Predicate Evaluation.
Input: Query S
Output: Phones satisfying fixed Sf and variable Sv predicates
1: Candidate Set U ← ∅, f ← |Sf |, Answer← ∅
2: for i← 1 to f do ⊲ for each Sf
3: Initialize Li with the cell-list of Pi

4: for w← 1 to |L1| do ⊲ analyze each entry in L1

5: p1 = w ⊲ set the pointer for L1

6: for j ← 2 to f do ⊲ examine all other lists
7: if L1[w].id 6∈ Lj then break ⊲ does not qualify
8: Let k be the first entry for L1[w].id in Lj

9: while L1[w].id = Lj [k].id and Lj−1[pj−1].t > Lj [k].t do
10: k ← k + 1 ⊲ align Lj−1[pj−1].t and Lj [k].t
11: if L1[w].id 6= Lj [k].id then break ⊲ does not qualify
12: else pj = k ⊲ set the pointer for Lj

13: if L1[w] qualifies then
14: U ← U ∪ L1[w].id ⊲ L1[w] satisfy all Sf
15: if |Sv| = 0 then Answer← U

16: else ⊲ variable predicate evaluation
17: for each u ∈ U do

18: phoneid ← Retrieve(u)
19: Build v segments Segi using phoneid
20: Generate variable-lists for each segment Segi
21: Join variable-lists

22: if phoneid qualifies then
23: Answer← Answer ∪ phoneid

pM2
does not satisfy the pattern since its timestamp should be greater than timestamp

1112150 of 4333434 in D. Hence pM2
is advanced to the next record, which happens to

be (4333434|1123462|6). Again we have a record from the same user 4333434 in all lists

and this occurrence of 4333434 satisfies the temporal ordering, and thus the pattern S.

As a result, user 4333434 is kept as a candidate in U . �

In cases where a spatial predicate Pi in Q is a user defined area, then the above

join algorithm has to materialize the inverted-index list for the user defined area. This

materialized list has entries from the set of inverted-index lists for the coverage areas

in the alphabet Σ which approximate the user defined area. This can be done eas-

ily since records in each inverted-index list in the coverage area are already ordered by

(phoneid,timestamp). Thus, the materialized list can be computed on-the-fly by feeding

68



the IJP algorithm with the record that has the smallest (phoneid,timestamp) key among

the heads of the participating inverted-indexes.

(ii) Variable predicate evaluation: The second step of the IJP algorithm

evaluates the v variable predicates in Qv , over the set of candidate phone users U gener-

ated in the first step. For a fixed predicate its corresponding inverted-index contains all

phone users that satisfy it. However, variable predicates can be bound to any region, so

one would have to look at all inverted-indexes, which is not realistic. We will again need

one list for each variable predicate (termed variable-list), however such variable-lists are

not pre-computed (like the inverted-indexes). Rather they are created on-the-fly using

the candidate phone users filtered from the fixed predicate evaluation step.

To populate a variable-list for a variable predicate Pi ∈ Sv we compute the

possible assignments for variable Pi by analyzing the inverted-index for each candidate

phone user. In particular, we use the time intervals in a candidate phone call record

to identify which phone call record of the phone user can be assigned to this particular

variable predicate. An example is shown in Figure 3.5 using the candidate phone user

4333434. From the previous step we know that 4333434 satisfies the fixed predicates

at the following regions: (M ,1112141), (D,1112150), (M ,1123462). Using the pointers

from the inverted-indexes of the previous step, we know where the matching regions

are in the inverted-index of phone user 4333434. As a result, the phone user 4333434

can be conceptually partitioned in two segments: phone call records that happen before

pM1
=(4333434|1112141|9) are stored in Seg1; and phone call records that happen after

69



Seg1
(4333434|349|1112140|1)

Seg2
(4333434|125|1123456|3)
(4333434|349|1123459|3)

Figure 3.5: Segmentation of phone user 4333434 into Seg1 and Seg2.

pD=(4333434|1112150|15) and before pM2
=(4333434|1123462|6) are stored in Seg2. Note

that records in between pM1
and pD do not need to be considered.

These segments are used to create the variable-lists by identifying the possible

assignments for every variable. Since a variable’s assignments need to maintain the pat-

tern, each variable is restricted by the two fixed predicates that appear before and after

the variable in the pattern. All variables between two fixed predicates are first grouped

together. Then for every group of variables the corresponding segment (the segment be-

tween two fixed predicates) is used to generate the variable-lists for this group. Grouping

is advantageous, since it can create variable lists for multiple variables through the same

pass over the phone user segments. Moreover, it ensures that the variables in the group

maintain their order consistent with the pattern S.

Assume that a group of variable predicates has w members. Each segment that

affects the variables of this group is then streamed through a window of size w. The first

w elements of the phone user segment are placed in the corresponding predicate lists for

the variables. The first element in the segment is then removed and the window shifts by

one position. This proceeds until the end of the segment is reached.

The generated variable-lists are then joined in a way similar to the fixed predicate

evaluation step. Because the variable-lists are populated by records coming from the same

user, the join criteria checks only if the ordering of pattern S is obeyed. In addition, if

70



the pattern contains variables with the same name, (e.g. two @x like in our example),

the join condition verifies that they are matched to the same region.

Temporal Predicate Evaluation

The IJP algorithm can easily support explicit temporal predicates by incorpo-

rating them as extra conditions in the join evaluations among the list records. There are

three cases for a temporal predicate: (1) interval time (tfrom : tto); (2) snapshot time ts;

or (3) relative time tr.

For the interval and snapshot temporal predicates, the B+-tree associated to the

region in the spatial predicate can be used to retrieve all phone call records that satisfy

both spatial and temporal predicates. For the interval all records that are within the

tfrom and tto, included, are retrieved, while for the snapshot all records that match the ts

temporal predicate are retrieved. Another approach is to verify the interval or snapshot

temporal predicate for each phone call record while processing the inverted-index associate

to a spatial predicate, without using the B+-tree. In the next section we show that for

some types of interval temporal predicates, evaluating the interval time while processing

the inverted-index in the IJP algorithm is better than accessing the B+-tree index.

For the relative time predicate, there are two possible strategies: (1) the straight-

forward way to evaluate it is, when the spatial predicate is being evaluated, to check

whether the temporal predicate is satisfied, in the same way the Algorithm works; (2)

another approach is to just use the B+-tree to retrieve all records that satisfy the temporal

predicate for Pi when the previous one Pi−1 was already evaluated. The drawback of this

second approach is that, every time a match for Pi−1 occurs, a search on the B+-tree is

71



performed. If the number of matches for Pi−1 is high, so the number of searches on the

B+-tree, then the first approach become more advantageous. Because the first approach

is much simple and seems to be more efficient most of the times, we decided to always

perform it when there is a relative temporal predicate.

Spatio-Temporal Constraints

The evaluation of spatio-temporal constraints C can be performed as a post

filtering step after the pattern S evaluation is done. Other approaches to verify the set

of constraints while processing the spatial predicates are also possible.

3.6 Experimental Evaluation

In this case study, we consider two real CDR databases. The first one is a

CDR database from an urban environment (hereafter Urban Database) and the second

one is a CDR database at a state level (State Database). The BTS hopping option was

not enabled in either of the databases. Between the two databases there is no shared

CDR. Furthermore, the two databases differ regarding both the number of BTSs that the

infrastructure has and the spatio-temporal information available for each user (number

of calls, frequency of calls, density of BTSs, etc.). This information is to a large extent

affected by the sociocultural characteristics of the regions where the data was collected

from. Also, these differences deeply affect the number and characteristics of the patterns

that can be detected.

Regarding the Urban Database, cell phone CDRs for 300,000 anonymous cus-

tomers from a single carrier for a period of six months were obtained from a metropolitan

72



area. In order to select urban users, all phone calls from a set of BTSs within the city

were traced over a 2-week period (sampling period) and the (anonymous) numbers that

made or received at least 3 calls per day from those BTSs were selected. Although the

selection of subscribers was carried out in an urban environment, they could freely move

anywhere within the nation. In total there are around 50,000,000 entries in the database

considering voice, SMS and MMS. The BTS database contained the position of 30,000

towers.

As for the State Database, we considered 500,000 users from a state for a period

of six months. No selection of users was made, i.e. all users that made or received a phone

call from any BTS of that particular state during a six month period were included in

the database. In total there were close to 30,000,000 entries in the database. The BTS

database contained the position of 20,000 towers.

We randomly sampled 500 phone numbers from each database to generate sample

queries. For each sampled phone we then randomly selected fragments in its history of

calls to generate queries with varying number of predicates. Hence, these queries return

at least one entry in their respective databases. For each experiment we measured the

average query running time and total number of I/O for 500 queries. The query running

time reports the average computational cost (as the total wall-clock time, averaged over

a number of executions) for 500 queries. To maintain consistency, we set page size equals

to 4KB for indexes and data structures. All experiments were performed on a Dual Intel

Xeon E5540 2.53GHz running Linux 2.6.22 with 32 GB memory.

For evaluation purposes, we compared the IJP algorithm against an extended

version of the KMP algorithm proposed in [24], which we call here Extended-KMP (E-

73



KMP). The E-KMP supports all spatio-temporal features proposed in our language and

process all phone users in the CDR database.

3.6.1 IJP vs KMP Comparison

In order to preserve details in all graphs, we decided to suppress the E-KMP plots

since the differences in performance between E-KMP and IJP are very large. Instead, we

describe the results and comparison between both algorithms here in this section. The

average number of I/O for the E-KMP execution is constant in both databases since it

performs a sequential scanning of the phone archive. For the State database the number of

I/O is 1,788,384 per query, while for the Urban it is 2,022,020. These values correspond to

the total number of data disk pages each database has. The E-KMP algorithm performs

at least 18 times more I/O than the IJP algorithm (for patterns with 2 user defined area

predicates with a large number of BTS each for the Urban database). This difference is

bigger if pattern queries with only spatial predicates are considered. For instance, the

difference in total number of I/O for patterns with 4 spatial predicates is 108 and 260

times for the State and Urban database, respectively.

For the running time the E-KMP algorithm on its best performance (patterns

with 4 spatial predicates for the Urban database) takes on average 853s per query. For the

same set of experiment the IJP takes on average only 0.85s per query, which makes the

IJP 1000 times faster than the E-KMP. Even though the cost related to I/O operations

is constant when increasing the number of predicates for the E-KMP, the running time

74



 15

 20

 25

 30

 35

4 8 12 16

T
o
ta

l 
I/
O

 (
x
1
0
0
0
)

Number of predicates

(a) State Database

IJP

 6

 8

 10

 12

 14

 16

 18

4 8 12 16

T
o
ta

l 
I/
O

 (
x
1
0
0
0
)

Number of predicates

(b) Urban Database

IJP

 4

 4.5

 5

 5.5

 6

 6.5

 7

4 8 12 16

A
V

G
 Q

u
e
ry

 R
u
n
ti
m

e
 (

s
)

Number of predicates

(a) State Database

IJP

 0.6

 0.7

 0.8

 0.9

 1

 1.1

4 8 12 16

A
V

G
 Q

u
e
ry

 R
u
n
ti
m

e
 (

s
)

Number of predicates

(b) Urban Database

IJP

Figure 3.6: Total I/O and query runtime for spatial predicates.

is not. The total time to evaluate patterns with larger number of predicates increases

substantially due to the fact that more predicates have to be evaluated for a match.

3.6.2 Patterns with Spatial Predicates

The first set of experiments evaluates patterns with different number of spatial

predicates. Figure 3.6 shows the number of I/O (first row) and runtime time (second

row) for 4, 8, 12 and 16 spatial predicates. For this kind of patterns only the inverted

indexes associated with the predicates in the pattern are accessed. Increasing the number

of spatial predicates in the query also increases the number of I/O since more inverted

indexes are retrieved. Also, the number of entries to be joined by the IJP algorithm

75



 22

 24

 26

 28

 30

 32

 34

 36

4 8 12 16

T
o
ta

l 
I/
O

 (
x
1
0
0
0
)

Number of predicates

(a) State Database

IJP

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

4 8 12 16

T
o
ta

l 
I/
O

 (
x
1
0
0
0
)

Number of predicates

(b) Urban Database

IJP

 5

 5.5

 6

 6.5

 7

4 8 12 16

A
V

G
 Q

u
e
ry

 R
u
n
ti
m

e
 (

s
)

Number of predicates

(a) State Database

IJP

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

4 8 12 16

A
V

G
 Q

u
e
ry

 R
u
n
ti
m

e
 (

s
)

Number of predicates

(b) Urban Database

IJP

Figure 3.7: Total I/O and query runtime for patterns with 1 variable.

increases, which makes the total time increase. On the average 306 and 41 phone users

match a pattern for the State and Urban databases, respectively.

3.6.3 Patterns with Variable Predicates

We also analyzed pattern queries with variables. We tested patterns with 1

variable (Figure 3.7) and 2 variables (Figure 3.8), varying the total number of spatial

predicates from 2 to 14. For instance, in the case of patterns with 16 predicates, two

query sets were generated: one with 1 variable and 15 spatial predicates; and a second

one with 2 variables and 12 spatial predicates. The number of I/O for queries with 4

predicates is bigger than for queries with more predicates for some experiments. This is

due to the fact that the CDR database is accessed once a match is found after the IJP

76



 20

 30

 40

 50

 60

 70

4 8 12 16

T
o
ta

l 
I/
O

 (
x
1
0
0
0
)

Number of predicates

(a) State Database

IJP

 10

 15

 20

 25

4 8 12 16

T
o
ta

l 
I/
O

 (
x
1
0
0
0
)

Number of predicates

(b) Urban Database

IJP

 4

 6

 8

 10

 12

 14

 16

4 8 12 16

A
V

G
 Q

u
e
ry

 R
u
n
ti
m

e
 (

s
)

Number of predicates

(a) State Database

IJP

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

4 8 12 16

A
V

G
 Q

u
e
ry

 R
u
n
ti
m

e
 (

s
)

Number of predicates

(b) Urban Database

IJP

Figure 3.8: Total I/O and query runtime for patterns with 2 variables.

algorithm evaluates the spatial predicates. This behavior is noticed in all the experiments

except for the Urban database for patterns with 1 variable.

The differences in the total number of I/O for patterns with 4 predicates increase

substantially from 1 to 2 variables. This is due to the fact that the number of spatial

predicates drops from 3 to 2, which makes the spatial predicate evaluation phase of the

IJP algorithm less selective (there are only 2 spatial predicates to filter out CDR entries

that for sure do not match the query). Therefore more CDR entries are analyzed in

the variable predicate evaluation phase of the IJP. This behavior also occurs, but with

small differences, for patterns with 8, 12 and 16 predicates. For these queries the spatial

predicate evaluation phase filters out more CDR candidates than queries with only 4

77



 36
 36.5

 37
 37.5

 38
 38.5

 39
 39.5

 40
 40.5

 41
 41.5

1 2 3 4 5

T
o
ta

l 
I/
O

 (
x
1
0
0
0
)

window size (km)

(a) State Database

IJP

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

1 2 3 4 5

T
o
ta

l 
I/
O

 (
x
1
0
0
0
)

window size (km)

(b) Urban Database

IJP

 16

 16.5

 17

 17.5

 18

 18.5

 19

1 2 3 4 5

A
V

G
 Q

u
e
ry

 R
u
n
ti
m

e
 (

s
)

window size (km)

(a) State Database

IJP

 0

 10

 20

 30

 40

 50

 60

1 2 3 4 5

A
V

G
 Q

u
e
ry

 R
u
n
ti
m

e
(s

)

window size (km)

(b) Urban Database

IJP

Figure 3.9: Total I/O and query runtime for patterns with 1 defined area.

predicates. Thus less accesses associated to the phone database are performed, reflecting

in the total number of I/O shown in the graphs.

The addition of variable predicates in the pattern also increases the number of

matches per query. For instance, for the Urban database, on average 41, 230 and 1200

phone users match for patterns with only 4 spatial predicates, 3 spatial and 1 variable

predicates, and 2 spatial and 2 variable predicates respectively.

3.6.4 Patterns with User Defined Area Predicates

In order to evaluate patterns with user defined area predicates, we generated 1

and 2 user defined area predicates by swapping a spatial predicate with an area containing

a set of regions. This set of regions were selected by performing a range query on the

78



BTS locations with center in the original spatial predicate location and a specific window

size length. We then swapped the original spatial predicate with the set of regions. We

generated several query sets for different window size lengths varying from 1 km2 to 5

km2. For the Urban database a user defined area predicate contain, on average, 2 and

400 regions for 1 km2 and 5 km2 window size length, respectively. For the State database

the average number of areas selected is up to 130 regions.

Figure 3.9 and Figure 3.10 show the results for queries with 1 and 2 user defined

area predicates, respectively, for different window size lengths. For large window sizes

both the total number of I/O and running time increase because more inverted indexes

associated to the user defined area predicates are retrieved. Having many more entries

in the inverted indexes also increases the running time since more entries are candidates

to be merge-joined by the IJP algorithm. The same behavior is noticed when increasing

the number of user defined area predicates from 1 to 2.

3.6.5 Patterns with Temporal Predicates

In the last set of experiments we evaluated patterns with interval temporal pred-

icates (Figure 3.11). We generated temporal predicates from the original CDR fragments

and then added them to their correspondent spatial predicate. For each pattern query all

predicates have two components: a spatial and a temporal predicate. We then increased

the interval in time in all temporal predicates in order to select more candidate entries.

The interval values in each temporal predicate range from two to ten days covering the

original timestamp of the CDR database. We evaluated patterns with temporal predicates

79



 42

 44

 46

 48

 50

 52

1 2 3 4 5

T
o
ta

l 
I/
O

 (
x
1
0
0
0
)

window size (km)

(a) State Database

IJP

 20

 40

 60

 80

 100

 120

1 2 3 4 5

T
o
ta

l 
I/
O

 (
x
1
0
0
0
)

window size (km)

(b) Urban Database

IJP

 38

 40

 42

 44

 46

 48

 50

 52

1 2 3 4 5

A
V

G
 Q

u
e
ry

 R
u
n
ti
m

e
 (

s
)

window size (km)

(a) State Database

IJP

 0

 20

 40

 60

 80

 100

 120

1 2 3 4 5

A
V

G
 Q

u
e
ry

 R
u
n
ti
m

e
 (

s
)

window size (km)

(b) Urban Database

IJP

Figure 3.10: Total I/O and query runtime for patterns with 2 defined areas.

in two ways (as explained in Section 3.5): the first method (SEQ) validates temporal pred-

icates while processing each entry in the inverted indexes; the second method (INDEX )

employs the B+-tree, for each spatial predicate, to first evaluate the temporal predicate.

In INDEX, entries that satisfy the temporal predicate are further grouped by phoneid and

then sorted by timestamp to be further processed by the IJP algorithm.

The total number of I/O for the SEQ method is constant since, for each spatial

predicate, all pages in the inverted indexes are accessed. On the other hand, the number

of I/O for the INDEX approach is much smaller than SEQ since only entries that satisfy

the temporal predicates are retrieved. The running time of the INDEX approach is

worse than in the SEQ method when increasing the interval time. This is due the factor

that many more entries retrieved by the B+-tree need to be further sorted before being

80



 0

 5

 10

 15

 20

 25

 30

 35

2 4 6 8 10

T
o
ta

l 
I/
O

 (
x
1
0
0
0
)

temporal interval (days)

(a) State Database

SEQ
INDEX

 0

 2

 4

 6

 8

 10

 12

 14

2 4 6 8 10

T
o
ta

l 
I/
O

 (
x
1
0
0
0
)

temporal interval (days)

(b) Urban Database

SEQ
INDEX

 0

 50

 100

 150

 200

 250

 300

 350

2 4 6 8 10

A
V

G
 Q

u
e
ry

 R
u
n
ti
m

e
(s

)

temporal interval (days)

(a) State Database

SEQ
INDEX

 0

 5

 10

 15

 20

 25

 30

 35

 40

2 4 6 8 10

A
V

G
 Q

u
e
ry

 R
u
n
ti
m

e
(s

)

temporal interval (days)

(b) Urban Database

SEQ
INDEX

Figure 3.11: Total I/O and query runtime for patterns with temporal predicates.

analyzed by the IJP algorithm. The INDEX approach start to become more appealing

for temporal predicates with high selectivity (e.g. temporal predicates with interval less

than 1 hour (not shown in the graphs)).

3.7 Final Remarks

The ability to detect and characterize mobility patterns using CDR databases

opens the door to a wide range of applications ranging from urban planning to crime or

virus spread. Nevertheless, the spatio-temporal query systems proposed so far cannot

express the flexibility that such applications require. In this case study, we described the

Spatio-Temporal Pattern System (STPS) for processing spatio-temporal pattern queries

over mobile phone-call databases. STPS defines a language to express pattern queries

81



which combine fixed and variable spatial predicates with explicit and implicit temporal

constraints. We described the STPS index structures and algorithm in order to effi-

ciently process such pattern queries. The experimental evaluation shows that the STPS

can answer spatio-temporal patterns very efficiently even for very large mobile phone-call

databases. Among the advantages of the STPS is that it can be easily integrated in

commercial telecommunication databases and also be implemented in any current com-

mercially available RDBMS. As a future research topic, one could extend the STPS to

evaluate continuous pattern queries for streaming phone-call data.

82



Chapter 4

Flock Pattern Queries

With the recent advancements and wide usage of location detection devices,

large quantities of data are collected by GPS and cellular technologies in the form of

trajectories. While most previous work on trajectory-based queries has concentrated on

traditional range, nearest-neighbor and similarity queries, there is an increasing interest

in queries that capture the “aggregate” behavior of trajectories as groups. Consider, for

example, finding groups of moving objects that move “together”, i.e. within a predefined

distance to each other for a continuous period of time. Such queries typically arise in

surveillance applications, e.g. identify groups of suspicious people, convoys of vehicles,

flocks of animals. In this chapter, we first show that the on-line flock discovery problem

is polynomial and then propose a framework and several strategies to discover such pat-

terns in streaming spatio-temporal data. Experiments with real and synthetic trajectorial

datasets show that the proposed algorithms are efficient and scalable.

83



4.1 Introduction

Recent advances in the area of location-detection devices (RFID, GPS, etc.)

and their widespread use have enabled the creation of complex tracking and situational

awareness systems which continuously monitor the position of moving objects of interest.

This abundance of information, generated by those systems, motivates the need to develop

efficient techniques for answering interesting queries about the past behavior of the moving

objects, like discovering similarity patterns among the object trajectories.

The existing methods for querying trajectories are mainly focused on answer-

ing simple single predicate range [74] or nearest neighbor queries [92]. Examples in-

clude queries like “find all moving objects that were in area A at 10am (in the past)”

or “find the car which drove as close as possible to the location B during the time in-

terval (10am:1pm)”. Recently, a new group of similarity search querying methods have

emerged [12, 60, 104], where the result is a trajectory closest to the query trajectory

according to some metric distance (e.g. Euclidean, Dynamic Time Warping). There are

also works on spatio-temporal joins (e.g. [7, 8]). Common to all the above methods is

that the query answer is validated per trajectory. That is, a trajectory is reported to

the user if its individual behavior satisfies the query predicate(s). In other words, all the

above queries focus on the behavior of a trajectory as a single object and thus cannot be

used to discover group patterns between the trajectories.

Lately there has also been increased interest in querying patterns capturing

collaborative or group behavior between moving objects. This includes queries like moving

clusters [50, 48], convoy queries [49] and flocks patterns [10, 9, 34]. Such queries discover

84



Figure 4.1: A flock pattern example: {T1, T2, T3}.

groups of moving objects that have a strong relationship in the space for a given time

duration. The difference between all those patterns is the way they define the relationship

between the moving objects and their duration in time. In this work we consider the

discovery of flock patterns among moving objects, i.e., the problem of identifying all

groups of trajectories that stay “together” for the duration of a given time interval. We

consider moving objects to be “close” together if there exists a disk with given radius

that covers all moving objects in the pattern (see Figure 4.1). A trajectory satisfies the

above pattern as long as “enough” other trajectories are contained inside the disk for

the specified time interval; that is, the answer is based not only on a given trajectory’s

behavior but also on the trajectories near it. Such patterns are useful in security and

monitoring applications, for example to potentially identify suspicious behavior within

a large number of people (e.g. “Identify all groups of five or more people that were

always within a disk of 100 feet in the last 30 minutes”) or to study patterns of animal

behavior [25, 105, 11] (e.g. migration of sharks, whales, birds).

85



The example in Figure 4.1 shows a flock pattern containing 3 trajectories {T1, T2, T3}

that are within a query defined disk for 3 consecutive time instances. Note that the loca-

tion of the disk can freely “move” in the 2-dimensional space in order to accommodate all

three moving objects and the center of the disk does not need to coincide with any moving

object location. This makes the discovery of flock patterns difficult because there is an

infinite number of possible placements of the disk at any time instance. It is that difficulty

that makes the existing methods for flock pattern discovery [10, 9, 34] suffer from severe

limitations. Such methods either find approximate solutions or can be applied only for a

single time instance of the problem (i.e. the solution does not support the minimum time

duration in the query). To the best of our knowledge, our work is the first one to present

exact solutions for reporting flock patterns in polynomial time. It is also the first one

that does so for on-line environments. Our work is also different than clustering-based

approaches since they are not restricted to a specific shape. More details of the previous

methods are discussed in Section 4.2.

In this chapter, we first provide a complexity analysis for the on-line version of

the flock pattern problem. Our analysis reveals that a polynomial time solution can be

found through identifying a discrete number of locations to place the center of the flock

disk inside the spatial domain. The number of such possible locations is polynomial in

the total number of moving objects. Based on this analysis we propose several evaluation

algorithms that can be used to find flock patterns in polynomial time. The first algorithm

is based on time-joins, i.e., merging the results from two consecutive time instances.

The other proposed methods use the filter-and-refinement paradigm with the purpose of

reducing the total number of candidates and thus the overall computation cost of the

86



algorithm. We evaluate our solutions using several real and synthetic moving object

datasets.

The rest of the chapter is organized as follows: Section 4.2 highlights related

work; Section 4.3 formally defines the on-line flock pattern and provides a complexity

analysis on the problem; Section 4.4 describes the proposed algorithms for flock pattern

discovery; Section 4.5 presents the performance evaluation of our proposed algorithms;

Section 4.6 concludes this chapter with the final remarks.

4.2 Related Work

Related works can be classified in: (i) research on clustering moving objects;

(ii) research on discovering convoys among trajectories; and (iii) previous works on flock

discovery. Various clustering algorithms have been proposed for static spatial datasets,

with different strategies ranging from partitioning (e.g. k-medoids [70]), to hierarchical

(e.g. BIRCH [111], CURE [35]), and density-based (e.g. DBSCAN [28]). The DBSCAN

algorithm works for arbitrary-shaped clusters based on the notion of density reachability.

This method utilizes two parameters to identify dense areas: maximum distance eps and

minimum number of points minPts. The DBSCAN starts with an arbitrary starting

point that has not been visited. A point that has more than minPts within eps distance

is considered to be in a dense area and flagged as such. All points inside the dense area are

processed recursively the same way. Otherwise, those points are considered not reachable

from a dense area and are labeled as outliers.

87



Clustering for moving objects was examined in [50], where the DBSCAN algo-

rithm is performed for every time instance of the dataset. Clusters that have been found

for two consecutive time instances are then joined only if the number of common objects

among them are above the predefined threshold parameter θ. A cluster is reported if no

other new cluster can be joined to it. This process is applied for every time instances in

the dataset. Other works on clustering moving objects also include [48, 90, 62, 59, 58].

In [48] clustering techniques were proposed to incrementally update clusters of moving

objects based on the center of clusters. The object’s movements are used to predict the

cluster evolution over time. The MONIC framework [90] deals with transitions in moving

clusters, e.g. disappearance and splitting. [62] presented the microclustering technique

that groups moving objects that are not only close to each other at a specific time instance,

but are also expected to move together in the near future. Recently, [58, 59] proposed to

segment trajectories into line segments, then clusters are built by grouping line segments.

However, time is not consider in [58, 59], which makes some line segments to be clustered

together even though they are not close in space when time is considered. Nevertheless,

all of the above approaches for clustering moving objects cannot solve flock pattern query

since: (1) they use different criteria when joining the moving object clusters for two con-

secutive time instances; (2) they employ clustering algorithms, and therefore no “strong”

relationship among all elements are enforced; and (3) moving clustering does not require

the same set of moving objects to stay in a cluster all the time for the specified minimum

duration.

Related to discovering collaborative behavior between trajectories is the work

on finding convoy patterns in trajectory archives [49]. A convoy query is defined as a

88



dense cluster of trajectories that stay together at least for a predefined continuous time.

This type of query has four parameters: eps and minPts (the same used by the DBSCAN

algorithm), θ′ (threshold used to join clusters), and δ′ (minimum duration time). Convoy

patterns are closely related to moving clustering since both use clustering algorithms

as the base of their algorithms. The main difference between these two methods is on

the criteria for how clusters are joined between two consecutive timestamps. However,

neither of them can solve the flock pattern query since clusters do not assume any shape

restriction. For example, in Figure 4.2(a) convoy query returns trajectories {T1, T2, T3}

for θ = 3 and for 3 time instances, while in Figure 4.2(b) it returns nothing. For the

moving clustering, if θ = 1 then moving clusters return nothing in both Figures 4.2(a)

and (b). On the other hand, if θ = 1/2 then moving clustering returns {T1, T2, T3} in

Figure 4.2(a) and {T1, T3, T4} in Figure 4.2(b), but the last one is not a convoy query.

Both examples return results based on the density of the objects, but for the flock pattern

it would return nothing in either of the examples. The reason is that in both examples

the objects belong to dense areas, but they do not have a strong interaction among other

objects near them.

Flock pattern query was first introduced in [10, 9, 57] without the notion of

minimum lasting time, and then reformulated later in [34] with the minimum duration as

a parameter of the flock pattern. Unlike the convoy pattern, in a flock pattern the cluster

has a predefined shape – a disk with radius r. A set of moving objects is considered as

a flock answer if there is a disk with radius r covering the entire set of moving objects

and the total number of moving objects inside the disk is greater than or equal to a

89



Figure 4.2: Convoy query and moving clustering vs. flock pattern query.

given threshold. [34] shows that the discovery of the longest duration flock pattern is

an NP-hard problem. As a result, [34] presents only approximation algorithms when the

entire dataset is available (i.e. their approach does not work for the on-line version of the

problem). To the best of our knowledge, our work is the first to propose a polynomial

time solution to the on-line version of the flock pattern problem given the time duration.

4.3 Preliminaries

We assume that moving object Oid is uniquely identified by identifier id. Its

movement is represented by a trajectory Tid which is defined as an ordered sequence of

n multidimensional points Tid = {(l, t1), (l, t2), . . . , (l, tn)}. Here (l, ti) (also represented

by ltiid) is the location of moving object Oid in the two dimensional space R
2 as recorded

at timestamp ti (ti ∈ N, ti−1 < ti, and 0 < i ≤ n). For simplicity, ti is omitted when we

discuss the current time instance, and we just use lid to denote the location of moving

object Oid.

90



Given two moving object locations ltia and ltib in a specific time instance ti from

trajectories Ta and Tb respectively, d(ltia , l
ti
b ) denotes the L2 Euclidean distance between

la and lb. Even though here in this work we only use the L2 distance, our methods can

be generalized to other metrics as well.

A flock pattern query Flock(µ, ǫ, δ) is defined as follows:

Definition 1 Flock(µ, ǫ, δ): Given are a set of trajectories T , a minimum number of

trajectories µ > 1 (µ ∈ N), a maximum distance ǫ > 0 defined over the distance function

d, and a minimum time duration δ > 1 (δ ∈ N). A flock pattern Flock(µ, ǫ, δ) reports

all maximal size collections of trajectories F where: for each fk ∈ F , the number of

trajectories in fk is greater or equal than µ (|fk| ≥ µ) and there exist δ consecutive time

instances such that for every ti ∈ [f t1
k ..f t1+δ

k ], there is a disk with center ctik (center of

the flock fk at time ti) and radius ǫ/2 covering all points in f ti
k . That is: ∀fk ∈ F ,∀ti ∈

[f t1
k ..f t1+δ

k ],∀Tj ∈ fk : |f ti
k | ≥ µ, d(ltij , c

ti
k ) ≤ ǫ/2.

In the above definition, a flock pattern can be viewed as a “tube” shape formed

by the centers ctik , diameter ǫ and length δ (consecutive time instants) such that there are

at least µ trajectories which stay inside the tube for the entire length δ. As an example

shown in Figure 4.3, for Flock(µ = 3, ǫ, δ = 3) the flocks F reported are f1 = {T1, T2, T3},

from time instance t1 to t3 and disks c11, c
2
1, and c31, and f2 = {T4, T5, T6}, from time

instance t2 to t4 and disks c22, c
3
2, and c42.

We now proceed with the complexity analysis of the flock pattern. The major

challenge in this type of query is the fact that the center of the flock pattern ctik may not

belong to any of the trajectory’s locations. Hence, we cannot iterate over the discrete

91



Figure 4.3: Flock pattern example

number of all locations stored in the database and then check whether one of them is

a center of a flock. Moreover, since any point in the spatial domain can be a center

of a flock, there is an infinite number of possible locations to test. Nevertheless, using

Theorem 2, we show that there is a limited and discrete number of locations where we

can look for flocks among the infinite number of options.

Theorem 2 If for a given time instance ti there exists a point in the space ctik such

that ∀Tj ∈ f, d(ltij , c
ti
k ) ≤ ǫ/2 and there exists another point in the space c′tik such that

∀Tj ∈ f, d(ltij , c
′ti
k ) ≤ ǫ/2, then there are at least two trajectories Ta ∈ f and Tb ∈ f such

that ∀Tj ∈ {Ta, Tb}, d(l
ti
j , c
′ti
k ) = ǫ/2.

Theorem 2 states that if there is a disk ctik with diameter ǫ that covers all

trajectories in the flock f at time instance ti, then there exists another disk with the

same diameter but with different center c′tik that also covers all trajectories covered by

disk ctik and has at least two common points on its circumference. Theorem 2 can be

easily proved by construction.

92



Figure 4.4: Finding a disk c′′tik that cover a set of flock points

Proof Sketch. Assume that we have a disk with diameter ǫ and center ck that

covers all trajectories in the flock at given time instance ti, as shown in Figure 4.4(a).

For simplicity, assume that there is no trajectory point on the circumference of the disk

defined by ck and ǫ, i.e. ∀Tj ∈ f, d(Tj, ck) < ǫ/2. We can find another disk with the same

properties but with different center c′k by using a combination of translation and rotation

of the disk with center ck. As a first step of the construction the center of the disk ck is

moved along the x axis until the first point, among all trajectory’s locations, lies on the

circumference of the disk. For example, in Figure 4.4(b) the first point which falls on the

circumference after the horizontal move of the disk center is l1. The new center of the

disk is point c′k, and all points in the flock are covered by the new disk with center c′k and

diameter ǫ. Otherwise, there would be a contradiction to the assumption that l1 is the

first point on the circumference. The next step of the construction rotates the new disk

using as a pivot the first point l1 on the circumference c′k. The disk is rotated until another

point falls on its circumference. In the example of Figure 4.4(c), the disk is rotated until

point l2 is on the circumference of disk c′′k. All points in the flock are still covered by

the new disk with center c′′k and diameter ǫ (otherwise there will be a contradiction to

the assumption that l2 is the first one to be on the circumference of the disk during the

93



Figure 4.5: Disks for {l1, l2}, d(l1, l2) ≤ ǫ

rotation process). The new disk c′′k has at least two points on its circumference (points l1

and l2) �

Theorem 2 has a great impact on the search for flock patterns since it limits the

number of locations where to look for flocks inside the spatial domain. For a database of

|T | trajectories there are at most |T |2 possible pairs of points at any given time instance.

For each such pair, there are at most two disks with radius ǫ/2 that have the two points

on their circumference (see Figure 4.5). For each disk we test if it contains the required

minimum number of µ trajectories. We have to perform 2|T |2 tests for flock pattern for

each time instance in the time-interval δ. The total number of possible flock patterns

that need to be tested is 2|T |2δ . In order to solve the flock problem, the algorithm has

to not only consider each such sequence of disks (a possible flock pattern), but also to

identify the trajectories that match it. This step of checking if the trajectory stays within

the sequence of disks can be done in O(δ) time. For the whole database it takes O(δ|T |)

time, and the total running time of the algorithm will be O(δ|T |(2δ)+1).

94



Figure 4.6: A grid-based index example.

4.4 Discovering Flock Patterns

In this section we describe a grid-based structure and further optimizations in

order to efficiently compute flock disks. We also describe several on-line algorithms to

process spatio-temporal data in an incremental fashion.

In all the proposed algorithms, we employ a grid-based structure based on grid

cells with edges of distance ǫ. The organization of this structure is illustrated in Fig-

ure 4.6. Each trajectory location ltiid reported for a specific time instance ti is inserted in a

specific grid cell. The total number of cells in the index is thus affected by the trajectory

distribution in each specific time instance ti and distance ǫ. The smaller the value of ǫ,

the larger number of grid cells are needed. Grid cells that have no trajectory location

(empty cells), are not allocated and thus do not need to be checked. Other structures,

e.g. k-d-trees, could be employed for organizing the trajectory’s locations. However, we

chose the grid-based structure because of its simplicity, and fast construction and query

times.

95



Algorithm 4 Computing disks in grid-based index
Input: set of points T [ti] for timestamp ti
Output: sets of maximal disks C
1: C ← ∅
2: Index.Build(T [ti], ǫ)
3: for each non-empty cell gx,y ∈ Index do

4: Lr ← gx,y
5: Ls ← [gx−1,y−1 ... gx+1,y+1]
6: if |Ls| ≥ µ then

7: for each lr ∈ Lr do

8: H ← Range(lr, ǫ), |H| ≥ µ, d(lr, ls) ≤ ǫ, ls ∈ Ls

9: for each lj ∈ H do

10: if {lr, lj} not yet computed then

11: compute disks {c1, c2} defined by {lr, lj} and diameter ǫ
12: for each disk ck ∈ {c1, c2} do
13: c← ck ∩H
14: if |c| ≥ µ then

15: C.Add(c)

Once the grid structure is built for the current time instance ti, Algorithm 4 can

be used to find disks for ti. For each grid cell gx,y, only the 9 adjacent grid cells, including

itself, are analyzed. Algorithm 4 analyzes points in gx,y and points in [gx−1,y−1...gx+1,y+1]

in order to find pair of points (lr, ls) whose distances satisfy: d(lr, ls) ≤ ǫ. Since cells

in the grid index have distance ǫ, for points in a particular cell gx,y there is no need to

analyze points further away of the range of cells in [gx−1,y−1...gx+1,y+1]. Pairs that have

not been processed yet and are within ǫ to each other are further used to compute the

two disks c1 and c2. In case that the pairs are exactly at distance d(lr, ls) = ǫ, c1 and c2

have the same center, and thus only one needs to be analyzed.

It should be noted that not all points in [gx−1,y−1...gx+1,y+1] have to be paired

with each point in gx,y, but only those that have distance d(lr, ls) ≤ ǫ (as illustrated in

Figure 4.6). The grid-based structure can also be used to find all the points inside a given

disk, as illustrated in Figure 4.7. For each point lr ∈ gx,y (e.g. point l1 in Figure 4.7(a)), a

range query with radius ǫ is performed over all 9 grids [gx−1,y−1...gx+1,y+1] to find points

96



Figure 4.7: Steps on finding flocks for time t.

that can be paired with lr, d(lr, ls) ≤ ǫ. Only the points in the result H that has at

least µ trajectories (|H| ≥ µ) are considered. For a particular disk, points in H are

checked if they are inside the disk (Figure 4.7(b)). Only the disks that have at least µ,

|ck| ≥ µ, points are maintained. In Figure 4.7(c) disk c1 is discarded and c2 is considered

a valid disk. Because we are interested only in maximal instances of flock patterns, a valid

disk is further checked whether another disk has a superset of instances that the current

disk has just computed. In this particular case, disks that have subset of instances are

discarded and only those ones stored in C that have the maximal instances are returned

by Algorithm 4.

The process that Algorithm 4 employs to keep only the maximal set of disks

is based on the center of the disks and the total number of common elements between

the disks. Disks are only checked with other disks that are close to each other, that is,

disk c1 is checked with c2 only if d(c1, c2) ≤ ǫ. If d(c1, c2) > ǫ, we can safely state that

they do not have any common elements. To efficiently perform the operations described

above, we store disks in C using a k-d-tree. When checking for a particular entry c1, we

only need to check entries in the k-d-tree that intersect with the new one. Only those

disks that cannot be pruned are then further verified using their trajectory’s identifiers.

97



Because we store entries that belong to each disk in a binary tree, we can efficiently

check if one disk has superset/subset elements of other disk. Therefore, we only need to

count common elements in both disks by scanning entries in each disk. If the cardinality

of common elements are |c1 ∩ c2| = |c1| then c1 is a subset of c2 disk, or they have all

common elements when |c1| = |c2|. Thus, c1 can be discarded and only c2 is kept in C. c2

can be discarded when |c1 ∩ c2| = |c2|, otherwise both c1 and c2 are kept in C since one is

not maximal with regards to the other one.

In the following subsection we describe the basic flock pattern evaluation algo-

rithm, which evaluates flock patterns by joining the candidate disks from two consecutive

time instances. We then describe four variations of the basic algorithm which use different

filtering heuristics in order to reduce the number of candidate disks.

4.4.1 The Basic Flock Evaluation Algorithm

The Basic Flock Evaluation algorithm (BFE ) generates the candidate disks for

every time instance ti, starting with the first one t1 and moving one time instance at a

time. Each candidate disk generated in a given time instance ti is analyzed and joined

with potential flocks generated in the previous time instance ti−1. Only those potential

flocks that are successfully augmented with a disk in the current time instance are kept

for further processing in the next time instance. This method reports flock patterns as

soon as they satisfy the temporal constraint δ (i.e. we have at least δ candidate disks

successfully joined in a flock).

As it was mentioned in the previous section, we use a grid-based index to find

disks for the current time instance ti. For the first time instance t1, all disks returned

98



by the grid-based index are stored as potential flocks (we can view a candidate disk as a

partial flock with length 1) in the list of candidate flocks for this time instance F ti . In

the following time instances all disks returned by the grid-based index are stored in their

candidate flock lists F ti and then joined with the candidate flocks from the previous time

instance F ti−1 . The join condition used for this operation is |c ∩ f | ≥ µ, i.e. the total

number of common elements between the candidate flock and the disk has to be greater

than or equal to µ. If this condition is satisfied then we move the join result into the

list of candidate flocks for the current time instance ti. A flock is found if there are at

least δ join operations applied over the same candidate flock, i.e. u.tend − u.tstart = δ. In

this case, the flock pattern is immediately reported to the user and its u.tstart attribute is

updated and reinserted in F ti to be further joined with other disks in the following time

instance.

It should be noted that F ti only maintains potential flocks starting at some

previous time instance tstart > ti − δ and ending in the current time instance tend = ti.

Entries that cannot be joined in the next time instance are discarded and not transferred

into the list of candidate flocks for the next time instance.

One advantage of the BFE Algorithm is that for each time instance being pro-

cessed, the algorithm stores only the trajectory ids in F ti . There is no need to keep the

actual trajectory’s locations in F ti since they do not participate in the join condition.

Another advantage is that the trajectory’s locations for each time instance are processed

only once, that is, there is no need to buffer trajectory data for a time window with length

δ, like the other algorithms explained later in this section.

99



Algorithm 5 BFE : Basic Flock Evaluation
Input: parameters µ, ǫ and δ

1: Ft0 ← ∅
2: for each new time instance ti do

3: Fti ← ∅, C ← Index.Disks(T [ti])
4: for each c ∈ C do

5: for each f ∈ Fti−1 do

6: if |c ∩ f | ≥ µ then

7: u← c ∩ f

8: u.tstart ← f.tstart
9: u.tend ← ti
10: if (u.tend − u.tstart) = δ then

11: report flock pattern u from u.tstart to u.tend

12: update u.tstart
13: Fti ← Fti ∪ u

14: Fti ← Fti ∪ c

4.4.2 Filtering Heuristics

Since the number of candidate disks in a given time instance can be quite large,

the total cost of joining those candidate disks can be very expensive. In order to improve

the performance of the BFE algorithm we propose four different heuristics used to limit

the number of generated candidate disks. These heuristics are described next.

Top Down Evaluation Algorithm

Different than the BFE approach that uses a bottom-up fashion to find flock

patterns (i.e. by extending flocks one candidate disk at a time until they have length δ),

the Top Down Evaluation (TDE ) employs a top-down approach. Here we compare the

candidate disks for time instances which are apart by δ. This is based on the assumption

that the difference between the candidate disks in two consecutive time instances will

be small (thus resulting in a large number of short flocks which still have to be kept as

candidates until it becomes clear that they do not have the required length), while the

100



Algorithm 6 TDE : Top Down Evaluation
Input: parameters µ, ǫ and δ

1: for each new time instance ti do

2: let L be trajectories in windows size |w| = δ (ti−δ...ti)
3: F ← ∅, U ← ∅
4: C1 ← Index.Disks(L[1]), Cw ← Index.Disks(L[w])
5: for each c1 ∈ C1 do

6: for each cw ∈ Cw do

7: if |c1 ∩ cw| ≥ µ then

8: U ← U ∪ {c1 ∩ cw}
9: for each u ∈ U do

10: L′ ← u, F1 ← u1

11: for t← 2 to |w| − 1 do

12: Ft ← ∅, Ct ← Index.Disks(L′[t])
13: for each c ∈ Ct do

14: for each f ∈ Ft−1 do

15: if |c ∩ f | ≥ µ then

16: Ft ← Ft ∪ {c ∩ f}
17: if |Ft| = 0 then

18: break

19: for each f ∈ Fw−1 do

20: for each cw ∈ Cw do

21: if |f ∩ cw| ≥ µ then

22: F ← F ∪ {f ∩ cw}
23: report flocks F

differences between candidate disks from time instances which are δ time instances apart

will be significantly large (and thus resulting in much fewer number of candidate flocks).

The TDE approach, described in Algorithm 6, uses a buffer to keep the trajec-

tory’s locations for time window w of length δ. This approach also performs a different

strategy on joining the candidate disks in w. First, BFE calculates the candidate disks C1

for the first time instance ti−δ+1 in the window w. Then, disks for the last time instance ti

in w are calculated and joined with the ones in C1. In the last step, only the flock results

that qualify from the last step are further analyzed for the remainder time instances (i.e.,

from ti−δ+2 to tδ−1).

101



Figure 4.8: Pipe filtering δ for T2 and radius ǫ.

The Pipe Filter Evaluation Algorithm

The second heuristic, the Pipe Filtering Evaluation (PFE ), also employs the

filter-and-refine paradigm. This approach first filters all trajectories that have at least

µ trajectories within distance ǫ of them for a duration of δ time instances. Then in a

refinement step performed over the trajectories returned by the filtering step, it searches

for flock patterns using the BFE Algorithm. Figure 4.8 illustrates a pipe for trajectory

T2 with radius ǫ. Trajectories {T1, T2, T3, T4} are in the pipe for all δ times stamps and

are further processed in the refinement step.

The PFE Algorithm, described in Algorithm 7, first builds a grid-based index

for the first time instance ti−δ in the w window. Then, it performs a range search with the

center using each trajectory’s location Tj in ti−δ. The purpose of this range search is to

examine how many other trajectory’s locations are within distance ǫ from the trajectory

Tj being analyzed. If the size of the result set is greater than or equal to the threshold

µ, then it applies the same procedure from time instance ti−δ+1 to ti. The resultant

102



Algorithm 7 PFE : Pipe Filter Evaluation
Input: parameters µ, ǫ and δ

1: for each new time instance ti do

2: let L be trajectories in windows size |w| = δ, (ti−δ...ti)
3: F ← ∅
4: for each Tj ∈ L do

5: L′ ← Index.Range(Tj, ǫ)
6: if |L′| ≥ µ then

7: U ← ∅
8: for each Tk ∈ L

′ do

9: if ∀ti ∈ w, l
ti
k ∈ Tk, l

ti
j ∈ Tj , d(l

ti
k , l

ti
j ) ≤ ǫ then

10: U ← U ∪ Tk

11: if |U| ≥ µ then

12: M←M∪U
13: for each m ∈ M do

14: F1 ← Index.Disks(m1)
15: for t← 2 to |w| do
16: Ft ← ∅,
17: C ← Index.Disks(mt)
18: for each c ∈ C do

19: for each f ∈ Ft−1 do

20: if |c ∩ f | ≥ µ then

21: Ft ← Ft ∪ {c ∩ f}
22: if |Ft| = 0 then

23: break

24: F ← F ∪ Ft

25: report flocks F

trajectories qualify as a candidate for a flock pattern if the total number of trajectories

inside the “pipe” for a given trajectory Tj is |U| ≥ µ. This candidate set of trajectories is

further stored in the list of candidatesM to be further processed in the refinement step

of the algorithm.

In the refinement step, like in the TDE approach, the PFE Algorithm also

employs the BFE Algorithm. The difference however is that now it evaluates only the

trajectory’s locations returned as a result of the filtering step M, instead of using the

entire trajectory database. This approach is beneficial when there is a large number of

trajectories that can be pruned by the pipe filtering, and thus the procedures of candidate

103



Algorithm 8 CRE : Continuous Refinement Evaluation
Input: parameters µ, ǫ and δ

1: for each new time instance ti do

2: let L be trajectories in windows size |w| = δ, (ti−δ...ti)
3: F ← ∅, C1 ← Index.Disks(L[1])
4: for each c1 ∈ C1 do

5: let L′ be the trajectories in c1 with length w

6: F1 ← c1

7: for t← 2 to |w| do
8: Ft ← ∅, Ct ← Index.Disks(L′[t])
9: for each c ∈ Ct do

10: for each f ∈ Ft−1 do

11: if |c ∩ f | ≥ µ then

12: Ft ← Ft ∪ {c ∩ f}
13: if |Ft| = 0 then

14: break

15: F ← F ∪ Ft

16: report flocks F

disk generation and flock construction are performed over a limited subset of trajectories

m ∈ M.

The Continuous Refinement Evaluation Algorithm

The Continuous Refinement Evaluation Algorithm (CRE ), as the name implies,

uses an heuristic that continuously refines the set of trajectories that can participate in

a flock pattern. This approach uses the candidate disk generation step for time instance

ti as a filtering step for the remainder time instances ti+1. That is, only trajectories that

are associated with the candidate disk in time ti are analyzed in ti+1. The CRE approach

can be used in cases where the selectivity of the candidate disks is very large, i.e. the

number of candidate disks is small, as well as the total number of trajectories in them.

The pseudo code for the CRE algorithm is illustrated in Algorithm 8. In its

first step, the CRE algorithm finds disks C1 using locations L[1] for time instance ti−δ.

Then, for each disk c1 ∈ C1 all trajectories associated with it are further processed from

104



Figure 4.9: CFE steps to find flock patterns.

time instance ti−δ+1 to ti. At the first time instance, disks C1 for time instance ti−δ are

stored in F1 (potential flocks with length 1). Then, each instance of c1 is processed to

compute disks to further be joined with disks from previous steps stored in F t. If F t has

no potential flock at time t, then the processing of c1 can be discarded. After this second

step, flock patterns are reported from time ti−δ to ti.

The Cluster Filtering Evaluation Algorithm

The last proposed algorithm, Cluster Filtering Evaluation (CFE ), has two phases:

(1) the DBSCAN clustering algorithm with parameters eps=ǫ and minPts=µ is executed

on the trajectory’s locations for each time instance ti; (2) then the clusters reported for

a given time instance ti are further joined with previous clusters found for ti−1. The

joining condition is based on the common elements between the two clusters, that is, they

have to have at least µ trajectories in common. Only the clusters that satisfy the joining

condition are kept. If a cluster u can be augmented in this way for δ consecutive time

instances (u.tend − u.tstart = δ), then it is saved as a candidate flock, which still has to

be analyzed in a refinement step using the BFE method. The pseudo code for the CFE

method is summarized in Algorithm 9.

105



Algorithm 9 CFE : Clustering Filtering Evaluation
Input: parameters µ, ǫ and δ

1: Iti ← ∅
2: for each new time instance ti do

3: U ← ∅, L ← T [ti]
4: Q ← DBSCAN(L, µ, ǫ)
5: for each q ∈ Q do

6: for each f ∈ Iti−1 do

7: if |q ∩ f | ≥ µ then

8: u← {q ∩ f}
9: u.tstart ← f.tstart
10: u.tend ← t

11: if (u.tend − u.tstart) = δ then

12: F1 ← Index.Disks(u1)
13: for t← 1 to |w| do
14: Ft ← ∅, C ← Index.Disks(mt)
15: for each c ∈ C do

16: for each f ∈ Ft−1 do

17: if |c ∩ f | ≥ µ then

18: Ft ← Ft ∪ {c ∩ f}
19: if |Ft| = 0 then

20: break

21: F ← F ∪ Ft

22: update u.tstart
23: U ← U ∪ u

24: U ← U ∪ q

25: Iti ← U

Figure 4.9 illustrates the steps performed by the CFE algorithm. In Figure 4.9(a),

the DBSCAN is applied to a specific trajectory’s location l1 with parameters eps=ǫ and

minPts=µ. Then Figure 4.9(b) shows the propagation of the DBSCAN algorithm over

l1’s neighbors. Trajectory’s locations that do not belong to any cluster are then discarded.

In Figure 4.9(c), the final two clusters ({l2, l5, l6} and {l1, l4, l9}) reported by the DBSCAN

algorithm are then further analyzed in the refinement step by the CFE Algorithm.

4.5 Experimental Evaluation

In order to evaluate the performance of the proposed methods, we performed

several experiments with several trajectory datasets and different parameters. In partic-

ular we show the results for one (SG) synthetic and four real (Trucks, Buses, Cars and

106



Caribous) datasets. The first two real datasets, Trucks and Buses [2], contain 112,203

and 66,096 moving object locations generated from 276 and 145 moving trucks and buses,

respectively, collected in the greater metropolitan area of Athens, Greece. The third

dataset Cars [47] contains 134,263 object locations collected from 183 private cars mov-

ing in Copenhagen, Denmark. The last real trajectory dataset Caribous [11] is generated

from the analysis of the migration movements of 43 caribous in northwestern states of

Canada. The size of the dataset is 15,796 object locations.

Since the real datasets that we could find in public domain are relatively small,

we also use a synthetic dataset SG in order to test the scalability of our methods. The

SG dataset is generated by simulating the movement of 50,000 vehicles on road network

of Singapore. Those moving objects have different velocities and their starting locations

were randomly placed in the road network. The size of the synthetic dataset is 2,548,084

moving object locations.

Table 4.1: Parameters values for each dataset.

Dataset
µ [default] ǫ [default] δ [default]
min #traj. max dist. min time

Trucks 4, 6,..., 20 [5] 0.8, 0.9,..., 1.5 [1.2] 4, 6,..., 20 [10]

Cars 4, 6,..., 20 [5] 0.8, 0.9,..., 1.5 [1.2] 4, 6,..., 20 [10]

Caribous 2, 3,..., 10 [5] 0.1, 0.2,..., 0.8 [1.6] 4, 6,..., 20 [10]

Buses 4, 6,..., 20 [5] 0.4, 0.5,..., 1.1 [1.2] 4, 6,..., 20 [10]

SG 4, 6,..., 20 [5] 2.2, 2.6,..., 5.0 [3.4] 4, 6,..., 20 [10]

In our experiments we use several values for the flock parameters µ, ǫ and δ.

The ranges of values for each dataset are shown in Table 4.1, where in bold we show the

default values for each parameter. Those default values are used when the value of the

parameter is not explicitly specified for a given experimental set. The total number of

107



 0

 1

 2

 3

 4

4 6 8 10 12 14 16 18 20

T
o
ta

l 
T

im
e
 (

s
) 

x
 1

0
3 BFE

PFE
CRE
TDE
CFE

 0

 1

 2

 3

 4

 5

 6

 7

 8

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

T
o
ta

l 
T

im
e
 (

s
) 

x
 1

0
3 BFE

PFE
CRE
TDE
CFE

 0

 1

 2

 3

 4

 5

4 6 8 10 12 14 16 18 20

T
o
ta

l 
T

im
e
 (

s
) 

x
 1

0
3 BFE

PFE
CRE
TDE
CFE

(a) varying µ (min #traj.) (b) varying ǫ (max dist.) (c) varying δ (min time)

Figure 4.10: Total time for the Trucks dataset.

 0

 1

 2

 3

 4

4 6 8 10 12 14 16 18 20

T
o
ta

l 
T

im
e
 (

s
) 

x
 1

0
3 BFE

PFE
CRE
TDE
CFE

 0

 1

 2

 3

 4

 5

 6

 7

 8

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

T
o
ta

l 
T

im
e
 (

s
) 

x
 1

0
3 BFE

PFE
CRE
TDE
CFE

 0

 1

 2

 3

 4

 5

 6

 7

4 6 8 10 12 14 16 18 20

T
o
ta

l 
T

im
e
 (

s
) 

x
 1

0
3 BFE

PFE
CRE
TDE
CFE

(a) varying µ (min #traj.) (b) varying ǫ (max dist.) (c) varying δ (min time)

Figure 4.11: Total time for the Cars dataset.

patterns discovered for the minimum and maximum value of each parameter, taken from

Table 4.1, are shown in Table 4.2.

Figures 4.10–4.14 show the results when varying the parameters µ (first column),

ǫ (second column) and δ (third column) for the five different datasets. All plots show the

total time (in seconds) needed to process the whole dataset, including building the grid

index. As it can be seen, when increasing µ, decreasing ǫ, or decreasing δ, the total time

needed to discover the flock patterns for all the proposed methods decreases. This is

expected since the flock queries become more selective, and thus all the algorithms have

to maintain fewer candidate trajectories during the evaluation.

For the Trucks and Cars datasets, the TDE and CRE methods have significantly

better performance compared to the other 3 methods. The gap in performance between

108



 0

 20

 40

 60

 80

 100

 120

 140

2 3 4 5 6 7 8 9 10

T
o
ta

l 
T

im
e
 (

s
)

BFE
PFE
CRE
TDE
CFE

 0

 50

 100

 150

 200

 250

 300

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

T
o
ta

l 
T

im
e
 (

s
)

BFE
PFE
CRE
TDE
CFE

 10

 20

 30

 40

 50

 60

4 6 8 10 12 14 16 18 20

T
o
ta

l 
T

im
e
 (

s
)

BFE
PFE
CRE
TDE
CFE

(a) varying µ (min #traj.) (b) varying ǫ (max dist.) (c) varying δ (min time)

Figure 4.12: Total time for the Caribous dataset.

 0

 20

 40

 60

 80

 100

 120

 140

4 6 8 10 12 14 16 18 20

T
o
ta

l 
T

im
e
 (

s
)

BFE
PFE
CRE
TDE
CFE

 0

 10

 20

 30

 40

 50

 60

 70

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

T
o
ta

l 
T

im
e
 (

s
)

BFE
PFE
CRE
TDE
CFE

 10

 20

 30

 40

4 6 8 10 12 14 16 18 20

T
o
ta

l 
T

im
e
 (

s
)

BFE
PFE
CRE
TDE
CFE

(a) varying µ (min #traj.) (b) varying ǫ (max dist.) (c) varying δ (min time)

Figure 4.13: Total time for the Buses dataset.

these two methods and the other ones increases when the selectivity of the queries becomes

low (for small µ and large ǫ). This is due to the fact that the large number of partial

intermediate results that have to be maintained and processed by the BFE, PFE and CFE

methods. Similar behavior can be observed for large values of δ, but only for the PFE and

CFE methods. This is due to the fact that these two methods keep the trajectory history

in a time window w before computing the disks for each timestamp. Similar behaviors

are observed for the Buses dataset.

For the Caribous dataset the BFE algorithm achieved the best performance,

closely followed by the TDE and CRE. Our analysis shows that the BFE algorithm

performed well in this dataset because of the pattern of the trajectories’ movements. The

109



Table 4.2: Number of flock patterns discovered.

Dataset
µ - min #traj. ǫ - max dist. δ - min time
min max min max min max

Trucks 309 14,935 3,741 15,608 2,045 23,222

Cars 62 18,451 3,218 23,440 3,149 24,211

Caribous 124 9,480 5,292 6,915 3,364 4,598

Buses 0 2,988 16 1,021 55 1,730

SG 0 1,304 53 741 112 385

movements of the moving objects in this dataset seem to be very well correlated, e.g. all

43 caribous have similar migration patterns and stay very close together (i.e. they are

grouped in herds during their movement). Because of this, the other methods are not

able to prune a lot of trajectories in their filtering phases. The fact that the data in the

Caribous dataset follows the pattern of the flock queries can also be observed by the total

number of flocks discovered for this dataset (see Table 4.2). The number of discovered

flocks is quite large for a dataset with only 15,796 moving object locations.

In the next group of experiments, we test the performance of the proposed

methods using the synthetic dataset SG. As it can be seen from the plots, the PFE

algorithm is by far the best algorithm for this particular dataset. The main reason for this

behavior is that even though the total number of potential flocks for each timestamp can

be quite big (see Table 4.3 for details), the PFE approach performs more holistic filtering

compared to the other solutions. This heuristic is checking the minimum occupancy

criteria (the number of trajectories closer than the threshold ǫ to a given trajectory

should be more than µ) for the entire duration δ of the flock pattern query. As for the

other four methods, they all join candidate disks for two consecutive timestamps without

considering the holistic view of the trajectories’ movements. Therefore, the first filtering

phase of the PFE has a higher pruning capability compared to the other methods for

110



 0

 1

 2

 3

4 6 8 10 12 14 16 18 20

T
o
ta

l 
T

im
e
 (

s
) 

x
 1

0
5 BFE

PFE
CRE
TDE
CFE

 0

 1

 2

 3

 4

 5

 6

 7

 8

4 4.5 5 5.5 6 6.5 7 7.5 8

T
o
ta

l 
T

im
e
 (

s
) 

x
 1

0
5 BFE

PFE
CRE
TDE
CFE

 0

 1

 2

 3

 4

4 6 8 10 12 14 16 18 20

T
o
ta

l 
T

im
e
 (

s
) 

x
 1

0
5 BFE

PFE
CRE
TDE
CFE

(a) varying µ (min #traj.) (b) varying ǫ (max dist.) (c) varying δ (min time)

Figure 4.14: Total time for the SG dataset.

the SG dataset. We should note that in the real datasets, trajectories follow similar

patterns, while in the SG dataset objects follow random patterns and though they might

be close together in one time instance, they tend not to follow similar patterns for several

consecutive timestamps.

As it can be seen from the plots, for most of the datasets the CFE algorithm

has the worst performance among the proposed methods. This is due to the fact that

the filtering step in the CFE approach employs a clustering technique, which can be

very expensive for large datasets. This approach however works significantly better when

the datasets are relatively small and the trajectory’s movements follow similar moving

patterns (see the results for the Caribous dataset). In such cases, the high computational

cost for the clustering phase pays off when considered the final cost of the CFE algorithm.

In our next set of experiments, we measure the minimum and the maximum

number of disks computed for each time instance using our grid-based index. The results

can be depicted in Table 4.3. As it can be seen even for big values of the parameters

µ, ǫ and δ, the maximum number of disks computed per timestamp is relatively small

111



Table 4.3: Min/Max Number of disks per time.

Dataset
µ - min #traj. ǫ - max dist. δ - min time
min max min max min max

Trucks 505 1,257 812 1,547 1,237 1,237

Cars 72 294 142 387 279 279

Caribous 393 235 587 342 309 309

Buses 7 236 27 183 105 105

SG 1,343 12,894 1,232 2,916 10,934 10,934

compared with the number of trajectories. This shows the efficiency of our grid-based

index structure.

4.6 Final Remarks

Recently there has been increased interest in queries that capture the collab-

orative behavior of spatio-temporal data (e.g. convoys, flocks). In particular, a flock

pattern contains a group of at least µ moving objects which are all “enclosed” by a disk

of diameter ǫ for at least δ consecutive timestamps. Discovering on-line flock patterns is

useful for several applications, ranging from tracking suspicious activities to migrations

of animals. Previous related works either do not work for on-line datasets, or do not

return exact solutions for flock pattern queries. In this chapter, we first showed that the

discovery of flock patterns with fixed time duration can be computed in polynomial time.

We then presented a framework that uses a lightweight grid-based structure in order to

efficiently and incrementally process the trajectory’s locations. Using this framework, we

proposed various on-line flock discovery algorithms. Experiments on various trajectory

datasets showed that the proposed methods can efficiently report flock patterns even for

large datasets and for different variations of the flock parameters (µ, ǫ and δ). As future

112



work, one could examine cost models to enable the user pick the most efficient algorithm

based on the data distribution and query parameters.

113



Chapter 5

Diversifying Query Results

In this chapter we describe a general framework, called DivDB, for evaluation

and optimization of methods for diversifying query results. In these methods, an initial

ranking candidate set produced by a query is used to construct a result set. The elements

in the result set are ranked with respect to relevance and diversity features, i.e., the

retrieved elements should be as relevant as possible to the query, and, at the same time,

the result set should be as diverse as possible. While addressing relevance is relatively

simple and has been heavily studied, diversity is a harder problem to solve. One major

contribution of this work is that, we adapt, implement and evaluate several existing

methods for diversifying query results in the DivDB framework. We also propose two

new approaches, namely the Greedy with Marginal Contribution (GMC) and the Greedy

Randomized with Neighborhood Expansion (GNE) methods. Both methods iteratively

construct a result set using a scoring function that ranks candidate elements using not only

relevance and diversity to the existing result set, but also accounts for diversity against the

remaining candidates. We also present the first thorough experimental evaluation of the

114



various diversification techniques implemented in the DivDB framework. We examine the

methods’ performance with respect to precision, running time and quality of the result.

Our experimental results show that while the proposed methods have higher running

times, they achieve precision very close to the optimal, while also providing the best

result quality. While GMC is deterministic, the randomized approach (GNE) can achieve

better result of the result if the user is willing to tradeoff running time.

5.1 Introduction

Many database and information retrieval applications have recently started to

incorporate capabilities to rank elements with respect to relevance and diversity features,

i.e., the retrieved elements should be as relevant as possible to the query, and, at the same

time, the result set should be as diverse as possible. Examples of such applications range

from exploratory and ambiguous keywords searches (e.g., jaguar, java, windows, eclipse)

[16, 32, 80], diversification of structured databases [64, 21] and user personalized results

[78], to topic summarization [17, 63, 13], or even to exclude near-duplicate results from

multiple resources [44]. While addressing relevance is comparatively straightforward, and

has been heavily studied in both database and information retrieval areas, diversity is

a more difficult problem to solve, where optimal evaluations have worst-case NP-hard

computation time [5, 14].

Typically, in all of the above applications, the final result set is computed in

two phases. First, a ranking candidate set S is retrieved with elements that are relevant

to the user’s query. Then, in the second phase, a result set R, R ⊆ S, is computed

115



containing very relevant elements to the query and, at the same time, as diverse as

possible to other elements in the result set R. Since these two components, relevance and

diversity, compete with each other, previous algorithms for query result diversification

attempt to find a tradeoff between the relevance and diversity components. Thus, the

query result diversification problem can be modeled as a bi-criteria optimization problem.

One advantage of using the tradeoff parameter to tune the importance between relevance

and diversity is that the user can give more preference on one of these two components.

For instance, if a candidate set has a large amount of near-duplicate elements, then a user

can increase the tradeoff value, as necessary, in order to have more diverse elements in

the result set.

Several techniques have been introduced for diversifying query results, with the

majority of them exploring a greedy solution that builds the result set in an incremental

way [13, 19, 107, 89, 46, 95]. These techniques typically choose the first element to be

added to the result set based only on relevance; further elements are added based on an

element’s relevance and diversity against the current result set. The basic assumption of

these techniques is that the result set does not change with the size k of the result set,

i.e., R ⊂ R′, |R| = k and |R′| = k + 1, which is not always true. In some of the above

techniques, there is the additional problem that they are not able to handle different

values of tradeoff between relevance and diversity; and for the few ones that do support

it, e.g., [13, 32], as we show in our experiments they do not perform well.

In this chapter we describe the DivDB framework, which uses a bi-criteria opti-

mization objective function similar to [32] to compare and evaluate different methods of

diversifying query results. Gollapudi and Sharma [32] proposed a set of natural axioms

116



that a diversification system is expected to satisfy and showed that no diversification ob-

jective can satisfy all the axioms simultaneously. Since there is no single objective function

that is suitable for every application domain, the authors describe three diversification

objective functions: max-sum diversification, max-min diversification and mono-objective.

In our work we particularly focus on the max-sum diversification since it can be reduced

to different versions of the well-studied facility dispersion problem [76, 54], for which ef-

ficient approximation algorithms exist (e.g., [40, 53, 30, 88]). Nevertheless, our work can

be easily extended to other functions, e.g. max-min, max-avg.

Since the methods described here and implemented in the DivDB framework

rely only on the relevance and diversity values, our work can be employed in any domain

where relevance and diversity functions can be defined. Moreover, the evaluation of the

different methods described in this chapter is done using only the values computed by the

optimization objective function, and not using any external information (e.g., subtopic

coverage).

In addition, we also describe two new methods that incrementally construct the

result set using a scoring function. This function ranks candidate elements using not only

relevance and diversity to the existing result set, but also accounts for diversity against the

remaining candidate elements. We present a thorough experimental evaluation of several

of the diversification techniques implemented in the DivDB framework. Our experimental

results show that the two proposed methods achieve precision very close to the optimal,

while also providing the best result quality measured using the optimization objective

function.

To summarize, in this work we make the following contributions:

117



1. we present the DivDB framework for evaluation and optimization of methods for

diversifying query results, where a user can adjust the tradeoff between relevance

and diversity;

2. we adapt and evaluate several existing methods using the DivDB framework;

3. we propose a new function to compute the contribution of each candidate element

to the result set. This function not only considers the relevance value between the

candidate element and the query, but also how diverse it is to other elements in the

candidate and result sets;

4. we propose two new methods for diversifying query results using the above contri-

bution function;

5. we perform a thorough experimental evaluation of the various existing diversification

techniques.

The rest of the chapter is organized as follows: Section 5.2 describes the related

work on query result diversification and Max-Sum Dispersion Problem; Section 5.3 defines

the query result diversification problem and the DivDB framework used for evaluation

and optimization of methods for diversifying query results; Sections 5.4 and 5.5 describe,

respectively, previously known and two new methods using the DivDB framework; the

experimental evaluation is shown in Section 5.6; and Section 5.7 concludes this chapter

with the final remarks.

118



5.2 Related Work

We first present related work on query result diversification and then on the

Max-Sum Dispersion Problem, which relates to our GNE method.

5.2.1 Query Result Diversification

Result diversification has recently been examined and applied to several differ-

ent domains [38]. In [94] clustering techniques are employed in order to generate diverse

results, while in [79] learning algorithms based on users’ clicking behavior are used to

re-rank elements in the result set. Techniques to extract compact information from re-

trieved documents in order to test element’s coverage with respect to the query (and at

the same time, avoid excessive redundancy among elements in the result) are explored in

[17, 63]. Similar techniques are employed for structured query results in [64, 21]. Topic

diversification methods based on personalized lists in recommendation systems are pro-

posed in [114]. In [78, 85, 84] techniques to generate related queries to the user’s query

are employed to yield a more diverse result set for documents. [109] proposes a risk mini-

mization framework where users can define a loss function over the result set which leads

to a diverse result.

Greedy algorithms for explanation-based diversification for recommended items

are proposed in [107]. Unlike ours, this approach considers the relevance and diversity of

explanation items as two separate components. Therefore, to optimize both relevant and

diverse explanations, the proposed algorithms rely on parameters’ values that typically

are not easy to tune.

119



Agrawal et al. [5] describe a greedy algorithm which relies on an objective func-

tion computed based on a probabilistic model that admits a sub-modularity structure and

a taxonomy to compute diverse results. Relevance of documents to queries is computed

using standard ranking techniques, while diversity is calculated through categorization

according to the taxonomy. The aim is to find a set of documents that covers several

taxonomies of the query, that is, the result set is diverse for the defined query using the

taxonomy. In [95], it is presented two greedy algorithms to compute a result set; here

the elements in the result set are diverse regarding their frequency in the data collection.

However, the proposed algorithms work only on structural data with explicitly defined

relationships. In [16], a Bayesian network model is used as a blind negative relevance

feedback to re-rank documents, assuming that in each position in the rank order all pre-

vious documents are irrelevant to the query. An affinity graph is used in [110] to penalize

redundancy by lowering an item in the rank order if already seen elements appeared in the

rank order. In [113], absorbing Markov chain random walks is used to re-rank elements,

where an item that has already been ranked becomes an absorbing state, dragging down

the importance of similar unranked states.

The main difference between all these works and the ones described in this

chapter is that we do not rely on external information to generate diverse results, e.g.,

taxonomy, known structure of the data, click-through rates, query logs. Since workloads

and queries are rarely known in advance, the external information discussed above is

typically expensive to compute and provides suboptimal results. Instead, the methods

presented here rely only on computed values using relevance (similarity) and diversity

functions (e.g., tf/idf cosine similarity, Euclidean distance) in the data domain.

120



The Maximal Marginal Relevance (MMR) [13] is one of the earliest proposals

to use a function that re-ranks elements in the result set in order to generate relevant

elements to the query, and, at the same time, diverse to the previously selected elements

in the result. Variations of MMR were also proposed for different domains [19, 15, 23].

At each iteration, the MMR function returns the element with the highest value with

respect to a tradeoff between relevance and diversity to only the current result set. Our

proposed GMC and GNE methods also use a function that computes a tradeoff between

relevance and diversity. However, they both use a function that computes the maximum

contribution that an element can provide to the final result. Moreover MMR always

picks as first the element that is most relevant to the query, which can highly affect the

other elements that are chosen in the result. The MMR is one of several methods that

we implemented and compared against other ones in the DivDB framework.

In [46] a greedy strategy is proposed to compute the result set based on a Boolean

function: one element is included in the result set if it has diversity value more than a

predefined threshold to all elements in the current result set. Thus, the diversity function

is used only to filter out elements in the result set. The aim is to maximize the relevance

while the result set’s diversity remains above a certain threshold. This is different from our

methods which maximize the objective function with respect to relevance and diversity.

Furthermore, the threshold parameter has a great influence on the performance of the

algorithm, which can easily affect the quality of the results.

121



5.2.2 Max-Sum Dispersion Problem

Gollapudi and Sharma [32] proposed a generic framework with eight axioms

that a diversification system is expected to satisfy. The problem formulation that most

relates to our work is the max-sum diversification. [32] also shows how to reduce max-sum

diversification to a max-sum dispersion problem (also known as the p-dispersion in the

Operations Research literature [76, 54]). Given that the objective function is a metric, it

then uses an approximation algorithm [40] to solve the problem.

Instead of an approximation approach, our second proposed method GNE uses a

randomized algorithm to solve the max-sum diversification problem. In particular, we use

an adaptation of a meta-heuristic called Greedy Randomized Adaptive Search Procedure

(GRASP) proposed in [30, 88, 55, 75, 81]. To the best of our knowledge, our proposal

is the first randomized approach applied to the result diversification problem. As it is

shown in the experimental section, the approximation algorithm in [32] is very expensive

to compute and provides results with limited precision when compared to the optimal

solution.

GRASP is a greedy randomized method that employs a multistart procedure

for finding approximate solutions to combinatorial optimization problems. It is composed

of two phases: construction and local search. In the construction phase a solution is

iteratively constructed through controlled randomization. Then, in the local search phase,

a local search is applied to the initial solution in order to find a locally optimal solution,

and the best overall solution is kept as the result. These two phases are repeated until

a stopping criterion is reached. This same procedure is performed in the proposed GNE

122



method, but with different strategies in the construction and local search phases, as

explained in Section 5.5.

5.3 Preliminaries

The Result Diversification Problem can be stated as a tradeoff between finding

relevant (similar1) elements to the query and diverse elements in the result set. Let

S = {s1, ..., sn} be a set of n elements, q a query element and k, k ≤ n, an integer.

Let also the relevance (similarity) of each element si ∈ S be specified by the function

δsim(q, si), δsim : q×S → R
+, where δsim is a metric function (i.e., a higher value implies

that the element si is more relevant to query q). Likewise, let the diversity between two

elements si, sj ∈ S be specified by the function δdiv(si, sj) : S × S → R
+. Informally, the

problem of result diversification can be described as follows: given a set S and a query

q, we want to find R ⊆ S of size |R| = k where each element in R is relevant to q with

respect to δsim and, at the same time, diverse among other elements in R with respect to

δdiv .

In our model, we represent elements in S using the vector space model. For

example, for δsim and δdiv functions the weighted similarity function tf/idf cosine similarity

or the Euclidean distance L2 can be employed to measure the similarity or diversity.

The search for R can be modeled as an optimization problem where there is a

tradeoff between finding relevant elements to q and finding a diverse result set R. This

optimization problem can be divided into two components, one related to similarity, as

defined below, and one related to diversity.

1These two terms are used interchangeably throughout the text.

123



Definition 3 the k-similar set R contains k elements of S that:

R = argmax
S′⊆S,k=|S′|

sim(q, S′)

where sim(q, S′) =

k∑

i=1

δsim(q, si), si ∈ S′

in other words, Definition 3 finds a subset R ⊆ S of size k with the largest sum of

similarity distances among all possible sets of size k in S. Intuitively, sim(q, S′) measures

the amount of “attractive forces” between q and k elements in S′. Basically, any algorithm

that can rank elements in S with respect to δsim and then extract the top-k elements in

the ranked list can evaluate the k-similar set problem.

The diversity component is defined as follows:

Definition 4 the k-diverse set R contains k elements of S that:

R = argmax
S′⊆S,k=|S′|

div(S′)

where div(S′) =

k−1∑

i=1

k∑

j=i+1

δdiv(si, sj), si, sj ∈ S′

hence, the problem in the above definition selects a subset R ⊆ S of size k that maximizes

the sum of inter-element distances amongst elements of R chosen from S. Intuitively,

div(S′) measures the amount of “repulsive forces” among k elements in S′. The above

definition is equivalent to theMax-Sum Dispersion Problem [53] (i.e., maximize the sum of

distances between pairs of facilities) encountered in operations research literature. For the

special case where the distance function δdiv is metric, efficient approximate algorithms

exist to compute the k-diverse set [40].

In both Definitions 3 and 4, the objective function is defined as a max-sum

problem, but other measures could be used as well, e.g., max-min, max-avg, min-max.

124



The proper measure is very much a matter of the application in hand. Here we develop

algorithms specifically for the max-sum problem since it seems it has been the most widely

accepted among previous approaches (e.g. [32, 13, 19, 107, 46, 15]).

Next, we give the formal definition of our problem: computing a set R ⊆ S

of size k with a tradeoff between finding k elements that are similar to the query q,

defined by Definition 3, and finding k elements that are diverse to each other, defined by

Definition 4. Formally, the problem is defined as follows:

Definition 5 given a tradeoff λ, 0 ≤ λ ≤ 1, between similarity and diversity, the k-

similar diversification set R contains k elements in S that:

R = argmax
S′⊆S,k=|S′|

F(q, S′)

where F(q, S′) = (k − 1)(1 − λ) · sim(q, S′) + 2λ · div(S′)

Note that, since both components sim and div have different number of elements

k and k(k−1)
2 , respectively, in the above definition the two components are scaled up. The

variable λ is a tradeoff specified by the user, and it gives the flexibility to return more

relevant, or diverse, results for a given query q. Intuitively, F(q, S′) measures the amount

of “attractive forces”, between q and k elements in S′, and “repulsive forces”, among

elements in S′. Using the same analogy, the above definition selects the “most stable

system” R with k elements of S.

In Definition 5 there are two special cases for the values of λ. The k-similar

diversification set problem is reduced to k-similar set when λ = 0, and the result set

R depends only on the query q. The second case is when λ = 1, and the k-similar

diversification set problem is reduced to finding the k-diverse set. In this case, the query

125



q does not play any role to the result set R. Note that our formula is slightly different than

the Max-Sum Diversification Problem of [32], since it allows us to access both extremes

in the search space (diversity only, when λ = 1, or relevance only, when λ = 0).

Only when λ = 0 the result R is straightforward to compute. For any other

case, λ > 0, the associated decision problem is NP-hard, and it can be easily seen by

a reduction from the maximum clique problem known to be NP-complete [31]. A brute

force algorithm to evaluate the k-similar diversification set when λ > 0 is presented in

Algorithm 10. This algorithm tests for every possible subset R ⊆ S of size k to find the

highest F value. Algorithm 10 takes time O(|S|kk2), where there are O(|S|k) possible

results S of size k to check, each of which has O(k2) distances that need to be computed.

Algorithm 10 k-similar diversification query
Input: candidate set S and result set size k
Output: result set R ⊆ S, |R| = k, with the highest possible F value
1: let R be an arbitrary set of size k
2: for each set R′ ⊆ S of k size do

3: if F(q, R′) > F(q, R) then

4: R← R′

5.4 Known Methods

In this section we summarize the most relevant known methods for diversifying

query results in the literature, for which no extra information other than the relevance

and diversity values are used. All methods are casted in terms of the DivDB framework

presented in the previous section.

126



5.4.1 Swap Method

Perhaps the simplest method to construct the result set R is the Swap method

[107], which is composed of two phases, as described in Algorithm 11. In the first phase,

an initial result R is constructed using the k most relevant elements in S. Then, in the

second phase, each remaining element in S is tested, in decreasing order of δsim, to replace

an element from the current solution R. If there is an operation that improves F , then

the replace operation that improves F the most is applied permanently in R. This process

continues until every element in the candidate set S is checked.

The F value of the final resultR computed by the Swap method is not guaranteed

to be optimal, since elements in the candidate set S are analyzed with respect to their

δsim order. That is, this method does not consider the order of δdiv values in S, which

can result in solutions that do not maximize F .

Algorithm 11 Swap
Input: candidate set S and result set size k
Output: result set R ⊆ S, |R| = k
1: R← ∅
2: while |R| < k do

3: ss ← argmaxsi∈S(δsim(q, si))
4: S ← S \ ss
5: R← R ∪ ss
6: while |S| > 0 do

7: ss ← argmaxsi∈S(δsim(q, si))
8: S ← S \ ss
9: R′ ← R
10: for each sj ∈ R do

11: if F(q, {R \ sj} ∪ ss) > F(q, R′) then

12: R′ ← {R \ sj} ∪ ss
13: if F(q,R′) > F(q, R) then

14: R← R′

127



5.4.2 BSwap Method

The BSwap method [107] uses the same basic idea of the Swap method for

exchanging elements between the candidate set S and the current result R. However,

instead of improving F , BSwap checks for an improvement in the diversity value div of

the current result R, without a sudden drop in δsim between the exchanged elements.

Algorithm 12 shows the pseudo code for the BSwap method. In each iteration,

the element in S with the highest δsim value is swapped with one in R which contributes

the least to δdiv . If this operation improves div, but without dropping δsim by a predefined

threshold θ, then the result set R is updated (i.e. the two elements are exchanged). This

process continues until every element in the candidate set S is tested, or the highest δsim

value in S is below the threshold θ. This later condition is enforced to avoid a sudden

drop in δsim in R. In summary, this method exchanges elements by increasing diversity

in expense of relevance.

While very simple, a drawback of BSwap is the use of θ. Setting the threshold

θ with an appropriate value is a difficult task, and can vary for different datasets and/or

queries. If not set properly, the BSwap may return results that have less than k elements

(if θ is set to a very small value), or with a very low quality in terms of F (if θ is set to a

very large value). As shown in the experimental section, this method also suffers in terms

of precision of the results.

128



Algorithm 12 BSwap Algorithm
Input: candidate set S, result set size k, and distance threshold θ
Output: result set R ⊆ S, |R| = k
1: R← ∅
2: while |R| < k do

3: ss ← argmaxsi∈S(δsim(q, si))
4: S ← S \ ss
5: R← R ∪ ss
6: sd ← argminsi∈R(div(R \ si))
7: ss ← argmaxsi∈S(δsim(q, si))
8: S ← S \ ss
9: while δsim(q, sd)− δsim(q, ss) ≤ θ and |S| > 0 do

10: if div({R \ sd} ∪ ss) > div(R) then

11: R← {R \ sd} ∪ ss
12: sd ← argminsi∈R(div(R \ si))
13: ss ← argmaxsi∈S(δsim(q, si))
14: S ← S \ ss

5.4.3 Maximal Marginal Relevance Method

The Maximal Marginal Relevance (MMR) [13] iteratively constructs the result

set R by selecting one new element in S that maximizes the following function:

mmr(si) = (1 − λ)δsim(si, q) +
λ

|R|

∑

sj∈R

δdiv(si, sj) (5.1)

The MMR method, as illustrated in Algorithm 13, has two important properties

that highly influence the chosen elements in the result set R. First, since R is empty

in the initial iteration, the element with the highest δsim value in S is always chosen in

R, regardless of its λ value. Second, the remainder k-1 elements are chosen from S that

maximize the mmr function. Since the result is incrementally constructed by inserting

a new element to previous results, the first chosen element has a large influence in the

quality of the final result set R. Clearly, if the first element is not chosen properly, then

the final result set may have low quality in terms of F . We show in the experimental

129



section that the quality of the results for the MMR method decreases very fast when

increasing the λ parameter.

Algorithm 13 MMR
Input: candidate set S and result set size k
Output: result set R ⊆ S, |R| = k
1: R← ∅
2: ss ← argmaxsi∈S(mmr(si))
3: S ← S \ ss
4: R← ss
5: while |R| < k do

6: ss ← argmaxsi∈S(mmr(si))
7: S ← S \ ss
8: R← R ∪ ss

5.4.4 Motley Method

Similarly to MMR, theMotley approach [46] also iteratively constructs the result

set R. as illustrated in Algorithm 14)2 In the first iteration, the element with the highest

δsim value is inserted in R. Then, an element from S is chosen to be included in R if

it has δdiv value greater than a predefined threshold θ′ to every element already inserted

in R. If such condition is not satisfied, then the element is discarded from S and the

next element with the highest δsim value in S is evaluated. This process repeats until the

result set R has k elements, or S has no more elements.

Like the MMR method, the Motley approach is also affected by the initial choice

of element. Similarly to the BSwap, Motley uses a threshold parameter to check the

amount of diversity in the result set.

2This is a simplified version of the Buffered Greedy Approach [46]. In our preliminary experiments,
the results of both approaches were very similar, except that the one described here is several orders of
magnitude faster than the Buffered Greedy.

130



Algorithm 14 Motley
Input: candidate set S and result set size k
Output: result set R ⊆ S, |R| = k
1: ss ← argmaxsi∈S(δsim(q, si))
2: S ← S \ ss
3: R← ss
4: while |R| < k do

5: ss ← argmaxsi∈S(δsim(q, si))
6: S ← S \ ss
7: if δdiv(sr, ss) ≥ θ′, ∀sr ∈ R then

8: R← R ∪ ss

5.4.5 Max-Sum Dispersion Method

The Max-Sum Dispersion (MSD) method [32] is based on the 2-approximation

algorithm proposed in [40] for the Max-Sum Dispersion Problem. The MSD method

employs a greedy approach to incrementally construct the result set R by selecting a pair

of elements that are relevant to the query and diverse to each other. More formally, in

each iteration of the MSD method, the pair of elements si, sj ∈ S that maximize the

following function is chosen to be part of the result set R:

msd(si, sj) = (1− λ)(δsim(q, si) + δsim(q, sj)) + 2λδdiv(si, sj) (5.2)

Since a pair of elements is selected in each iteration of the MSD method, the

above description applies only when the value for k is even. If k is odd, in the final phase

of the MSD method an arbitrary element in S is chosen to be included in the result set

R. The pseudo code for the MSD method is shown in Algorithm 15.

131



Algorithm 15 MSD
Input: candidate set S and result set size k
Output: result set R ⊆ S, |R| = k
1: R← ∅
2: while |R| < ⌊k/2⌋ do
3: {si, sj} ← argmaxsi,sj∈S(msd(si, sj))

4: R← R ∪ {si, sj}
5: S ← S \ {si, sj}
6: if k is odd then

7: choose an arbitrary object si ∈ S
8: R← R ∪ si

5.4.6 Clustering-Based Method

The Clustering-Based Method (CLT) [94] is based on clustering techniques, and

its pseudo code is shown in Algorithm 16. In its first phase the k-medoid algorithm

with δdiv as distance function is employed in the elements in S to generate k clusters

C = {c1, c2, ..., ck}. Then, one element from each cluster in C is included in the result

set R. Several strategies on selecting an element from each cluster can be employed. For

example, one can choose the element with the highest δsim value, or also the medoid

element of each cluster C.

Since it is not possible to incorporate the tradeoff λ in the clustering step of

the CLT method, the result set R only depends on the strategy employed for selecting

an element in each cluster. Thus, for low values of λ, the result set R will be of better

quality if the element with the highest δsim is selected. For higher λ values selecting the

medoid element of each cluster might be more suitable since the medoids typically have

higher δdiv values to each other. In our experiments we only consider the medoid-based

strategy since it typically gives more diverse results.

132



Algorithm 16 CLT
Input: candidate set S and result set size k
Output: result set R ⊆ S, |R| = k
1: R← ∅
2: let C = {c1, c2, ..., ck} be the result of the k-medoid algorithm, using δdiv
3: for each cluster ci ∈ C do

4: let si be a selected element in ci
5: R← R ∪ si

5.5 Proposed Methods

We proceed with the presentation of two new approaches for diversifying query

results, theGreedy Marginal Contribution (GMC) and theGreedy Randomized with Neigh-

borhood Expansion (GNE) methods. Both methods employ the same function to rank

elements regarding their marginal contribution to the solution. An important difference

between the two methods is that in the GMC the element with the highest partial contri-

bution is always chosen to be part of the solution, while in GNE an element is randomly

chosen, among the top ranked ones, to be included in the solution.

5.5.1 GMC Method

The GMC method incrementally builds the result R by selecting the element

with the highest maximum marginal contribution (mmc) to the solution constructed so

far. In each iteration, the GMC method ranks the elements in the candidate set S using

the following function:

mmc(si) = (1 − λ)δsim(si, q) +
λ

k − 1

∑

sj∈Rp−1

δdiv(si, sj) +
λ

k − 1

l≤k−p∑

l=1
sj∈S−si

δldiv(si, sj) (5.3)

133



where Rp−1 is the partial result of size p − 1, 1 ≤ p ≤ k, and δldiv(si, sj) gives the lth

largest δdiv value in {δldiv(si, sj) : sj ∈ S − Rp−1 − si}. Using the above function we can

compute the maximum contribution value of si to F using the elements already inserted

in the partial result Rp−1 (first two components) and the remaining k − p elements in S

that could be inserted in R (third component). For the third component, the diversity

value of si is upper bounded using the highest k − p values for δdiv that is formed using

the p elements in S. Thus, the mmc function is employed to rank every element in S

using the constructed result Rp−1 so far, and the remaining elements that can be included

in the final result R.

Algorithm 17 GMC
Input: candidate set S and result set size k
Output: result set R ⊆ S, |R| = k
1: R0 ← ∅
2: for p← 1 to p = k do

3: si ← argmaxsi∈S(mmc(si))
4: Rp ← Rp−1 ∪ si
5: S ← S \ si
6: R← Rp

The intuition behind mmc is the following: When the current result set R0 is

empty, then the elements in S are ranked based on their δsim values and their relationships,

defined by δldiv , with other elements in S. In this way, the mmc function gives higher

preference to elements that are very relevant to q and, at the same time, are very diverse

to other elements in the candidate set S, regardless of R0; Whenever elements are inserted

in Rp, then mmc also considers the diversity w.r.t. elements in Rp−1.

Compared to MMR (Section 5.4.3), the GMC method uses a different function

to rank the elements in the candidate set S. Since R is empty in the first step of the

MMR, the diversity component does not play any role in selecting the first element in

134



R. On the other hand, in GMC the selection of the first result element is based on the

maximum marginal contribution value that the element can make to F . Note that mmc

combines the relevance of a new element, its diversity to the already inserted elements in

the result, and its maximum contribution to F considering the remaining elements in S.

Algorithm 17 shows the pseudo code for the GMC method. In the first step of

the method the sum of δdiv in mmc is zero, since the result set R0 is empty. Thus, only

the δsim and δldiv components are considered. In the following iterations mmc considers

the elements in Rp−1, and the value for the δldiv component is updated. As more elements

are inserted in the result set R, the values of the second and third components in the

mmc function increases and decreases, respectively. In the last iteration (p = k), the

third component δldiv is null, since there is only one element to be considered in R.

The δldiv values for each element si ∈ S are computed only once, and it is

done in the first iteration of the GMC method. For each entry si ∈ S, a set of pairs

< sj, δdiv(si, sj) > is maintained, where sj is the element that belongs to one of the δldiv

and its corresponding value δdiv(si, sj). This set begins with k − 1 entries and in each

iteration decreases by 1. The set of pairs for each element in S is updated in each iteration

of the method. Two cases can occur: (1) The first is when there is an element si ∈ S

that has the pair < s′i, δdiv(si, s
′
i) > in its set of pairs, where element s′i is the element

previously inserted in the result set Rp. Then the pair < s′i, δdiv(si, s
′
i) > is dropped from

the set of pairs from si; (2) The second case happens when there is an element si ∈ S

that does not have the pair < s′i, δdiv(si, s
′
i) > in its set of pairs. In this case, the pair

with the lowest δdiv(si, sj) is removed from the set.

135



5.5.2 GNE Method

Our second proposed method uses the GRASP (Greedy Randomized Adaptive

Search Procedure) [30] technique for diversifying query results. To the best of our knowl-

edge, this is the first randomized solution proposed for the diversification problem. Dif-

ferent from the GMC that always selects the top element in the rank, in each iteration of

the GNE algorithm a random element is chosen among the top ranked ones. Algorithm 18

illustrates the general GRASP algorithm with imax iterations. The GNE algorithm has

two phases, the Construction Phase and the Local Search Phase, which are described

below.

Algorithm 18 GRASP
Input: candidate set S and result set size k
Output: result set R ⊆ S, |R| = k
1: R← ∅
2: for i← 0 to i < imax, i← i+ 1 do

3: R′ ← GNE-Construction()
4: R′ ← GNE-LocalSearch(R′)
5: if F(q, R′) > F(q, R) then

6: R← R′

GNE Construction Phase

In the construction phase, a greedy randomized ranking function chooses an

element to be inserted in R. This ranking function ranks the elements in S according

to the mmc function, as described in Equation 5.3. In each of the K iterations of this

phase, a list, called Restricted Candidate List (RCL), is constructed with elements with

the highest individual contributions with respect to mmc. In this phase, the GNE method

incrementally builds the result set R by randomly selecting an element (which may not

be the element with the highest contribution) in the RCL. Therefore, in each iteration all

136



elements in S are re-ordered based on mmc, and only the top elements are stored in the

RCL. This iterative process continues until a solution with k elements is constructed.

Algorithm 19 GNE-Construction
Output: a candidate solution R ⊆ S, |R| = k
1: R0 ← ∅
2: for p← 1 to p = k do

3: smax ← argmaxsi∈S(mmc(si))
4: smin ← argminsi∈S(mmc(si))
5: RCL← {si ∈ S|mmc(si) ≥ smax − α(smax − smin)}
6: si ← random(RCL)
7: Rp ← Rp−1 ∪ si
8: S ← S \ si
9: R← Rp

The selection of the elements with the highest contributions to be included in

the RCL can be based on a fixed-number of candidates or on a predefined threshold.

The intuition behind limiting the size of RCL is that not every element in S contributes

equally to the result set. Therefore, the method performs randomized search over the

elements in the RCL that can more contribute to the solution. In our implementation,

we use the first approach to restrict the number of candidates in the RCL, as shown in

Algorithm 19.

Parameter α controls how greedy and random the Construction phase is. For

α = 0, the Construction corresponds to a pure greedy construction procedure, working

exactly the same as the GMC method. On the other hand, for α = 1 the construction

phase produces a random construction, regardless of the mmc ranking values. Since

both GNE and GMC methods use the same greedy strategies to measure the individual

contribution of an element to the result set, performing random selections during the

construction phase provides the contribution of trying different elements in each multistart

construction.

137



GNE Local Search Phase

Starting with the current solution R of size k provided by the construction phase,

the local search progressively improves it by applying a series of local modifications in

the neighborhood of R. Repeated runs of the construction phase yield diverse starting

solutions for the local search.

Algorithm 20 GNE-LocalSearch
Input: candidate solution R of size k
Output: a candidate solution R ⊆ S, |R| = k
1: smax ← argmaxsi∈S(mmc(si))
2: smin ← argminsi∈S(mmc(si))
3: RCL← {si ∈ S|mmc(si) ≥ smax − α(smax − smin)}
4: for each si ∈ R do

5: R′ ← R
6: for each sj ∈ R, sj 6= si do

7: for l← 1 to l = k − 1 do

8: sli ← {s
′
i ∈ S|δl

div
(si, s

′
i)}

9: if sli /∈ R then

10: R′′ ← R′ − sj + sli
11: if F(q,R′′) > F(q, R′) then

12: R′ ← R′′

13: if F(q,R′) > F(q, R) then

14: R← R′

The proposed local search performs swaps between elements in the result set R

and their most diverse element. If this procedure improves the current solution R, then

a locally optimal solution is found. This is accomplished by a Neighborhood Expansion

that explores the most diverse elements of each entry in the result set. This expansion

phase is performed as follows: for each element in the result set R, the k− 1 most diverse

elements are computed; then, for each of the remaining elements in R, a swap operation

is performed with every element among the k − 1 most diverse elements. If in any of

these swap operations a local solution is found, then this partial solution is made the best

optimal solution. The pseudo code for the local search is shown in Algorithm 20.

138



5.5.3 Complexity Analysis

The time complexity of GMC is O(kn2), since we have to compute the mmc

for each element in S, which is O(kn). GNE has two parts: Algorithm 19 which has

time complexity O(kn2), and Algorithm 20 which is O(k3) (δldiv is computed only once).

Nevertheless, the GNE method runs imax times, which makes it slower in practice than

the GMC method.

5.6 Experimental Evaluation

We proceed with the experimental evaluation of all the methods previously de-

scribed in this chapter. The method’s abbreviation, name and strategy employed to

construct the result set R appear in Table 5.1. As a baseline for our comparisons, we also

included the results for a random method, called Rand, which simply chooses the result

set R with the highest F among 1,000 random runs. The Rand method sets a base line

for comparisons where a specific method needs to outperform random guessing.

Table 5.1: Description of the methods evaluated.
abbrv. method name construction of R

Swap Swap exchanging

BSwap BSwap exchanging

MMR Maximal Marginal Relevance incremental

Motley Motley incremental

MSD Max-Sum Dispersion incremental

CLT Clustering exchanging

GMC Greedy Marginal Contribution incremental

GNE GRASP with Neighbor Expansion random, meta-heuristic

Rand Random random

139



5.6.1 Setup

Six datasets from several different domains were used to evaluate each method

with respect to running time, precision and F of the results. The datasets used in our

experiments are: trajectories, faces, nasa, colors, docs and dblp. trajectories [112] contains

23,793,860 GPS locations generated from 178 users in a period of over three years. In

our experiments, we use 17,621 trajectories which represent the continuous movements

of the 178 users. Besides performing experiments using a trajectory dataset, which is

the main focus of this thesis, we also employed five other datasets from various domains.

The main idea of using other datasets is to show that the DivDB framework is generic

and can also be applied in any domain that the metric functions δsim and δdiv can be

defined. faces consists of 11,900 feature vectors extracted from human face images with

the Eigenfaces method [1]. nasa [22] and colors [41] datasets contain, respectively, 40,150

and 68,040 feature vectors from collection of images. Dataset docs has 25,960 news articles

obtained from the TREC-3 collection [93], while dblp is a set of 2,991,212 publication

entries extracted from the DBLP Bibliography Server [61]. In order to generate duplicate

entries in a controlled way, and thus test the diversity in the result while increasing the λ

parameter, each entry in the dblp dataset contains the author’s name and the publication

title. A DBLP publication with multiple authors thus have multiple entries in dblp, one

entry per author, sharing the same publication title. The detailed statistics of all datasets

are summarized in Table 5.2.

In the experiments we employed the same distance function for both δsim and

δdiv . The Manhattan distance is employed for faces, the Euclidean distance for trajecto-

140



ries, nasa and colors, and the cosine similarity distance for both docs and dblp. For the

faces, nasa, colors datasets δsim was computed using part (one quarter) of the feature

vector, while for δdiv the whole feature vector was used. For instance, for colors the first

8 attributes are employed to compute the δsim, and all the 32 attributes for the δdiv , as

shown in Table 5.2. As for the trajectories dataset, δsim and δdiv use 10 and 20, respec-

tively, sparse locations of the trajectory query. For the docs dataset 10 random terms

were used for δsim while the whole document was utilized for δdiv . The same process was

employed in dblp, but using a few terms extracted from the publication titles.

Table 5.2: Datasets statistics.
# of Max. # of Avg. # of

Dataset elements attributes attributes δsim δdiv

trajectories 17,621 234,744 2,701 1− L2(20, 40..200) L2(13, 26..260)

faces 11,900 16 16 1− L1(1..4) L1(1..16)

nasa 40,150 20 20 1− L2(1..5) L2(1..20)

colors 68,040 32 32 1− L2(1..8) L2(1..32)

docs 25,276 15,116 363 1− cosine(terms) cosine(docs)

dblp 2,991,212 68 7 1− cosine(terms) cosine(title)

To generate a query set we randomly selected 100 queries from each dataset.

The extra parameters θ and θ′ for BSwap and Motley, respectively, were set to 0.1,

which achieved, on average, the best performance in the experiments. For the GNE we

set imax = 10 and α = 0.01. Clearly, GNE returns better results when increasing the

values for those two parameters, but at a cost of higher running times. For example,

when increasing the α parameter, the GNE method slowly converges to good solutions

since there are many more elements in the candidate set S to be considered. From

our preliminary experiments the above values for the GNE parameters provided a good

tradeoff between quality and running time.

141



Table 5.3 summarizes the testing parameters and their corresponding ranges, in

which the default value is marked in bold font. To obtain the candidate set S we employed

an off-the-shelf retrieval system. That is, for a particular query sample, S contains the

top-n elements in the dataset using the ranking function δsim. Generally speaking, each

group of experimental studies is partitioned into two parts: qualitative analysis in terms

of F and precision of each method with respect to the optimal result set ; and scalability

analysis of F and running time when increasing the query parameters.

Table 5.3: Parameters tested in the experiments.
Parameter Range (default)

tradeoff λ values 0.1, 0.3, 0.5, 0.7, 0.9

candidate set size n = |S| 200, 1,000, 2,000, 3,000, 4,000

result set size k = |R| 5, 15, 25, 35

# of sample queries 100

5.6.2 Qualitative Analysis

To measure a method’s precision we need to compare it against the optimal

result set (the one that maximizes F). However, due to the problem complexity, we can

only compute the optimal result set for a limited range of the query parameters. Using

the brute force algorithm (Algorithm 10), we computed the optimal result set for each

dataset with parameters S = 200, k = 5 and λ varying from 0.1 to 0.9. The precision is

measured by counting the number of common elements in the result set from Algorithm 10

and the result set for each method using the same query parameters; clearly, the higher

the precision, the better the method performs.

Figure 5.1 shows the average precision of each method for different values of λ

(preference to diversity increase as λ increases). Note that, the precision of all methods,

142



 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1  0.3  0.5  0.7  0.9

P
R

E
C

IS
IO

N

λ

GNE
GMC
Swap

MMR
BSwap
Motley

Rand
MSD
CLT

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1  0.3  0.5  0.7  0.9

P
R

E
C

IS
IO

N

λ

GNE
GMC
Swap

MMR
BSwap
Motley

Rand
MSD
CLT

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1  0.3  0.5  0.7  0.9

P
R

E
C

IS
IO

N

λ

GNE
GMC
Swap

MMR
BSwap
Motley

Rand
MSD
CLT

(a) trajectories (b) faces (c) nasa

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1  0.3  0.5  0.7  0.9

P
R

E
C

IS
IO

N

λ

GNE
GMC
Swap

MMR
BSwap
Motley

Rand
MSD
CLT

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1  0.3  0.5  0.7  0.9

P
R

E
C

IS
IO

N

λ

GNE
GMC
Swap

MMR
BSwap
Motley

Rand
MSD
CLT

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1  0.3  0.5  0.7  0.9

P
R

E
C

IS
IO

N

λ

GNE
GMC
Swap

MMR
BSwap
Motley

Rand
MSD
CLT

(d) colors (e) docs (f) dblp

Figure 5.1: Avg. precision vs. tradeoff λ values.

except GNE and GMC, typically decreases when increasing λ. Interestingly, four of the

previous approaches (Swap, BSwap, Motley and CLT) performed worse than the Rand

method when λ is greater than 0.5. That is, if diversity is more prominent than relevance,

these methods are easily outperformed.

GNE and GMC outperformed all the methods and showed almost constant pre-

cision regarding λ. Only in the case where λ = 0.1 (i.e., when relevance is much more

important than diversity), the MMR method have precision similar to GNE/GMC for

three datasets (faces, nasa and colors). Previous methods are influenced by the first

most relevant element in their result set, which affects the result precision when diversity

has a higher weight than relevance. In contrast, the variation of λ does not affect the

precision of GNE and GMC. The average precision for GNE and GMC was at least 75%.

143



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.1  0.3  0.5  0.7  0.9

G
A

P
 (

%
)

λ

GNE
GMC
Swap

MMR
BSwap
Motley

Rand
MSD
CLT

 0

 5

 10

 15

 20

 25

 30

 35

 0.1  0.3  0.5  0.7  0.9

G
A

P
 (

%
)

λ

GNE
GMC
Swap

MMR
BSwap
Motley

Rand
MSD
CLT

 0

 10

 20

 30

 40

 50

 60

 0.1  0.3  0.5  0.7  0.9

G
A

P
 (

%
)

λ

GNE
GMC
Swap

MMR
BSwap
Motley

Rand
MSD
CLT

(a) trajectories (b) faces (c) nasa

 0

 10

 20

 30

 40

 50

 60

 0.1  0.3  0.5  0.7  0.9

G
A

P
 (

%
)

λ

GNE
GMC
Swap

MMR
BSwap
Motley

Rand
MSD
CLT

 0

 10

 20

 30

 40

 50

 60

 0.1  0.3  0.5  0.7  0.9

G
A

P
 (

%
)

λ

GNE
GMC
Swap

MMR
BSwap
Motley

Rand
MSD
CLT

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0.1  0.3  0.5  0.7  0.9

G
A

P
 (

%
)

λ

GNE
GMC
Swap

MMR
BSwap
Motley

Rand
MSD
CLT

(d) colors (e) docs (f) dblp

Figure 5.2: Avg. gap vs. tradeoff λ values.

The precision of GNE is better than GMC in all datasets tested, except for

the dblp dataset. This is because GNE selects elements from RCL using a randomized

approach, that is, GNE may not always select the element with the highest contribution

to the result set. Furthermore, given an initial solution the GNE also uses the local search

phase that aims at finding better solutions.

We also compared the F values of each method against the F value of the optimal

result set. This experiment is intended to measure how close the F for a result set is to

the maximum possible F value. Figure 5.2 depicts the “gap” s in F , i.e., the difference

between the F of a particular method and the optimal F , divided by the optimal. The gap

for GNE and GMC is close to zero for every dataset and any value of λ, which indicates

that these two methods constructed results sets with (very close) maximum F values. As

144



for the other methods the gap increases with λ. Again, for for high values of λ the BSwap,

Swap, Motley and CLT are typically outperformed by the Rand method .

The effectiveness of GMC and GNE is also depicted in Table 5.4 which illustrates

the result sets for four example queries, using the dblp dataset (k = 5 and S = 200)

with λ = 0 (no diversification), λ = 0.3 (moderate diversification) and λ = 0.7 (high

diversification). Only GNE is shown since the results for GMC are similar. When λ = 0

the result set contains the top-5 elements of S ranked with the δsim scoring function. Since

the dblp dataset contains several duplicate entries, the result sets with no diversification

contain several duplicate elements (we also show the author names for each entry as an

identification for that entry). As λ increases, less duplicates are found in the result set,

while the elements in the result set “cover” many more subjects (defined by terms in the

publication name). Observe that the result set with high diversification contains elements

that all have the query terms, as well as other terms indicating that the publication is

related to different subjects among the other publications in the result set (i.e., hardware

accelerator, operations research, privacy in spatiotemporal).

5.6.3 Scalability

We next examine the scalability of the methods with respect to F values and

running time while varying the query parameters λ (from 0.1 to 0.9), k (from 5 to 35) and

S (from 200 to 4,000). We omit the results for the trajectories, faces and nasa datasets

since they are similar to colors. Figure 5.3 shows the results for F , with k = 5 and

S = 1, 000, when increasing λ. Regardless λ, for GNE and GMC the F values are the

145



T
ab

le
5.
4:

R
es
u
lt

se
ts

fo
r
d
bl
p
d
at
as
et
:
to
p
-5

re
su
lt
s
(λ

=
0)
,
an

d
tw

o
d
iv
er
si
fi
ed

re
su
lt
s
(λ

=
0.
3
an

d
0.
7)

p
ro
d
u
ce
d
b
y
G
N
E
.

to
p
-k
:
n
o
d
iv
er
si
fi
ca
ti
o
n
(λ

=
0
)

G
N
E
:
m
o
d
er
a
te

d
iv
er
si
fi
ca
ti
o
n
(λ

=
0
.3
)

G
N
E
:
h
ig
h
d
iv
er
si
fi
ca
ti
o
n
(λ

=
0
.7
)

q 1
=

d
a
t
a
b
a
s
e
s
y
s
t
e
m

s

1
:
Y
.T

h
eo

d
o
ri
d
is
:
tr
a
je
ct
o
ry

d
a
t
a
b
a
s
e
s
y
s
t
e
m

s
C
.D

a
te
:
a
n
in
tr
o
d
u
ct
io
n
to

d
a
t
a
b
a
s
e
s
y
s
t
e
m

s
R
.D

es
h
p
a
n
d
e:

a
n
el
ec
tr
o
n
ic

d
a
t
a
b
a
s
e
d
el
iv
er
y
s
y
s
t
e
m

2
:
I.
N
to
u
ts
i:

tr
a
je
ct
o
ry

d
a
t
a
b
a
s
e
s
y
s
t
e
m

s
J
.R

o
th
n
ie
:
d
is
tr
ib
u
te
d
d
a
t
a
b
a
s
e
s
y
s
t
e
m

s
T
.X

u
:
p
b
m
ic
e:

a
n
in
te
g
ra
te
d
d
a
t
a
b
a
s
e
s
y
s
t
e
m

o
f
p
ig
g
y
B
a
c
..
.

3
:
N
.P
el
ek

is
:
tr
a
je
ct
o
ry

d
a
t
a
b
a
s
e
s
y
s
t
e
m

s
N
.P
el
ek

is
:
tr
a
je
ct
o
ry

d
a
t
a
b
a
s
e
s
y
s
t
e
m

s
C
.M

a
th
eu

s:
s
y
s
t
e
m

s
fo
r
k
n
ow

le
d
g
e
d
is
co
v
er
y
in

d
a
t
a
b
a
s
e
s

4
:
E
.F
re
n
tz
o
s:

tr
a
je
ct
o
ry

d
a
t
a
b
a
s
e
s
y
s
t
e
m

s
M
.W

u
:
th
e
d
b
o
d
a
t
a
b
a
s
e
s
y
s
t
e
m

D
.D

im
it
ro
ff
:
a
n
in
te
ll
ig
en

t
im

a
g
e
d
a
t
a
b
a
s
e
s
y
s
t
e
m

5
:
A
.E

lm
a
g
a
rm

id
:
v
id
eo
te
x
t
d
a
t
a
b
a
s
e
s
y
s
t
e
m

s
J
.G

ra
y
:
p
a
ra
ll
el

d
a
t
a
b
a
s
e
s
y
s
t
e
m

s
1
0
1

F
.O

zc
a
n
:
m
et
u
in
te
ro
p
er
a
b
le

d
a
t
a
b
a
s
e
s
y
s
t
e
m

q 2
=

n
e
a
r
e
s
t
n
e
ig
h
b
o
r

1
:
H
.A

lt
:
th
e
n
e
a
r
e
s
t
n
e
ig
h
b
o
r

H
.A

lt
:
th
e
n
e
a
r
e
s
t
n
e
ig
h
b
o
r

W
.T

il
le
r:

a
lg
o
ri
th
m

fo
r
fi
n
d
in
g
a
ll
k
n
e
a
r
e
s
t
n
e
ig
h
b
o
r
s

2
:
G
.Y

u
va

l:
fi
n
d
in
g
n
e
a
r
e
s
t
n
e
ig
h
b
o
r
s

G
.Y

u
va

l:
fi
n
d
in
g
n
e
a
r
e
s
t
n
e
ig
h
b
o
r
s

L
.W

u
:
st
ep

w
is
e
n
e
a
r
e
s
t
n
e
ig
h
b
o
r
d
is
cr
im

in
a
n
t
a
n
a
ly
si
s

3
:
F
.Y

a
o
:
o
n
n
e
a
r
e
s
t
-n

e
ig
h
b
o
r
g
ra
p
h
s

C
.D

o
m
en

ic
o
n
i:

n
e
a
r
e
s
t
n
e
ig
h
b
o
r
en

se
m
b
le

B
.P

it
te
l:

th
e
ra
n
d
o
m

b
ip
a
rt
it
e
n
e
a
r
e
s
t
n
e
ig
h
b
o
r
g
ra
p
h
s

4
:
M
.P
a
te
rs
o
n
:
o
n
n
e
a
r
e
s
t
-n

e
ig
h
b
o
r
g
ra
p
h
s

P
.G

ro
th
er
:
fa
st

im
p
l.

n
e
a
r
e
s
t
n
e
ig
h
b
o
r
cl
a
ss
ifi
er
s
R
.M

ei
ch

e:
a
h
a
rd

w
a
re

a
cc
el
er
a
to
r
fo
r
k
-t
h
n
e
a
r
e
s
t
n
e
ig
h
b
o
r
..
.

5
:
D
.E

p
p
st
ei
n
:
o
n
n
e
a
r
e
s
t
-n

e
ig
h
b
o
r
g
ra
p
h
s

M
.P
a
te
rs
o
n
:
o
n
n
e
a
r
e
s
t
-n

e
ig
h
b
o
r
g
ra
p
h
s

X
.Y

u
:
th
e
re
se
a
rc
h
o
n
a
n
a
d
a
p
ti
v
e
k
-n

e
a
r
e
s
t
n
e
ig
h
b
o
r
s
cl
a
ss
ifi
er

q 3
=

d
a
t
a
m

in
in

g

1
:
D
.O

ls
o
n
:
d
a
t
a
m

in
in

g
K
.R

ih
a
cz
ek

:
d
a
t
a
m

in
in

g
S
.O

la
fs
so
n
:
o
p
er
a
ti
o
n
s
re
se
a
rc
h
a
n
d
d
a
t
a
m

in
in

g

2
:
J
.K

u
n
z:

d
a
t
a
m

in
in

g
J
.K

u
n
z:

d
a
t
a
m

in
in

g
S
.K

ay
a
:
p
ri
va

cy
in

sp
a
ti
o
te
m
p
o
ra
l
d
a
t
a
m

in
in

g

3
:
K
.R

ih
a
cz
ek

:
d
a
t
a
m

in
in

g
D
.O

ls
o
n
:
d
a
t
a
m

in
in

g
M
.S
te
in
b
a
ch

:
to
p
1
0
a
lg
o
ri
th
m
s
in

d
a
t
a

m
in

in
g

4
:
S
.M

o
ri
sh

it
a
:
d
a
t
a
m

in
in

g
to
o
ls

fo
r
th
e
..
.

B
.T
o
u
rs
el
:
d
is
tr
ib
u
te
d
d
a
t
a
m

in
in

g
P
.P
er
n
er
:
d
a
t
a
m

in
in

g
co
n
ce
p
ts

a
n
d
te
ch

n
iq
u
es

5
:
Y
.O

h
y
a
:
d
a
t
a
m

in
in

g
to
o
ls

fo
r
th
e
..
.

R
.A

g
ra
w
a
l:

w
h
it
h
er

d
a
t
a
m

in
in

g
?

C
.G

-C
a
rr
ie
r:

p
er
so
n
a
li
zi
n
g
e-
co
m
m
er
ce

w
it
h
d
a
t
a
m

in
in

g

q 4
=

m
e
d
ic
a
l
im

a
g
e

1
:
O
.P

ia
n
y
k
h
:
m

e
d
ic
a
l
im

a
g
e
en

h
a
n
ce
m
en

t
P
.W

a
n
g
:
m

e
d
ic
a
l
im

a
g
e
p
ro
ce
ss
in
g

M
.M

o
sh

fe
g
h
i:

el
a
st
ic

m
a
tc
h
in
g
o
f
m
u
lt
im

o
d
a
li
ty

m
e
d
ic
a
l
im

a
g
e
s

2
:
J
.T

y
le
r:

m
e
d
ic
a
l
im

a
g
e
en

h
a
n
ce
m
en

t
R
.D

ek
le
rc
k
:
se
g
m
en

ta
ti
o
n
o
f
m

e
d
ic
a
l
im

a
g
e
s

S
.Z
a
g
a
l:

se
g
m
en

ta
ti
o
n
o
f
m

e
d
ic
a
l
im

a
g
e
s
b
y
re
g
io
n
g
ro
w
in
g

3
:
M
.T
ri
fa
s:

m
e
d
ic
a
l
im

a
g
e
en

h
a
n
ce
m
en

t
C
.M

ei
n
el
:
co
m
p
re
ss
io
n
o
f
m

e
d
ic
a
l
im

a
g
e
s

C
-C

.C
h
a
n
g
:
d
et
ec
ti
o
n
a
n
d
re
st
o
ra
ti
o
n
o
f
a
ta
m
p
er
ed

m
e
d
ic
a
l
im

a
g
e

4
:
C
.M

ei
n
el
:
co
m
p
re
ss
io
n
o
f
m

e
d
ic
a
l
im

a
g
e
s

J
.T

y
le
r:

m
e
d
ic
a
l
im

a
g
e
en

h
a
n
ce
m
en

t
C
.F
a
lo
u
ts
o
s:

si
m
il
a
ri
ty

se
a
rc
h
in
g
in

m
e
d
ic
a
l
im

a
g
e
d
a
ta
b
a
se
s

5
:
S
.H

lu
d
ov

:
co
m
p
re
ss
io
n
o
f
m

e
d
ic
a
l
im

a
g
e
s

C
-H

.L
in
:
q
u
a
li
ty

o
f
co
m
p
re
ss
ed

m
e
d
ic
a
l
im

a
g
e
s

P
.R

a
d
ev
a
:
d
is
cr
im

in
a
n
t
sn

a
k
es

fo
r
3
d
re
co
n
st
r.

in
m

e
d
ic
a
l
im

a
g
e
s

146



 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.1  0.3  0.5  0.7  0.9

F

λ

GNE
GMC
Swap

MMR
BSwap
Motley

Rand
MSD
CLT

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.1  0.3  0.5  0.7  0.9

F

λ

GNE
GMC
Swap

MMR
BSwap
Motley

Rand
MSD
CLT

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0.1  0.3  0.5  0.7  0.9

F

λ

GNE
GMC
Swap

MMR
BSwap
Motley

Rand
MSD
CLT

(a) colors (b) docs (c) dblp

Figure 5.3: Avg. F value vs. tradeoff λ values.

highest among all other methods. In the colors dataset, F decreases when increasing λ

because the δdiv values among elements in S are not as high as their δsim values. The

difference between F values for GNE and GMC and the other methods are greater as the

value of λ increases. This is due to the fact that in all previous methods the diversification

of the result set is performed giving preference on the ranking order that the elements are

stored in S, which are ordered by δsim. In other words, as opposed to GNE and GMC,

all previous approaches do not diversify results for arbitrary values of λ.

Figure 5.4 shows F when increasing k, with λ = 0.7 and S = 1, 000. The F

values decrease when increasing k because the δdiv values among elements in R tend to

be smaller for the same candidate set S. In addition, more elements are considered in the

computation of F , which in turn decreases F . Regardless of the value of k, the F values

for GNE and GMC are again higher among all other methods and datasets.

Figure 5.5 depicts the results when increasing the size of the candidate size S,

with k = 5 and λ = 0.7. For the dblp dataset the values of F are constant for all methods,

except for the Rand and CLT. This is because in the dblp dataset there are many more

elements that do not have a high value of δsim and are included in the candidate set S. In

147



 0.8

 1

 1.2

 1.4

 1.6

 1.8

 5  15  25  35

F

k

GNE
GMC
Swap

MMR
BSwap
Motley

Rand
MSD
CLT

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 5  15  25  35

F

k

GNE
GMC
Swap

MMR
BSwap
Motley

Rand
MSD
CLT

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 5  15  25  35

F

k

GNE
GMC
Swap

MMR
BSwap
Motley

Rand
MSD
CLT

(a) colors (b) docs (c) dblp

Figure 5.4: Avg. F value vs. result set k size.

 1

 1.2

 1.4

 1.6

 1.8

 2

 200  1000  2000  3000  4000

F

size of S

GNE
GMC
Swap

MMR
BSwap
Motley

Rand
MSD
CLT

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 200  1000  2000  3000  4000

F

size of S

GNE
GMC
Swap

MMR
BSwap
Motley

Rand
MSD
CLT

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 200  1000  2000  3000  4000

F

size of S

GNE
GMC
Swap

MMR
BSwap
Motley

Rand
MSD
CLT

(a) colors (b) docs (c) dblp

Figure 5.5: Avg. F value vs. candidate set S size.

this case, a good tradeoff between relevance and diversity is found for R with size k = 5

and small size of S (e.g., S = 200). For the other two datasets, colors and docs, a larger

size of S leads to better result set R for the required tradeoff (λ = 0.7).

Interestingly, for the docs and dblp datasets the values of F in the CLT and Rand

methods tend to decrease as the size of S increases. This is because in both methods a

fixed number of runs, i.e. 1,000, is performed in order to select the best solution, but

as the number of candidates increases more runs are needed for these two methods to

converge to good solutions. As a result, the CLT and Rand methods do not scale well for

large sizes of S. On the other hand, the other methods do not exhibit this behavior since

the elements in S are analyzed only once.

148



Overall, for all datasets and query parameters the highest F values were achieved

by the GNE and GMC methods. GNE provides slightly better F values (up to 2% higher

than the GMC). Since the GNE approach randomly selects an element in the RCL to be

included in the result set R, its performance depends not only on the size of the RCL

(defined by α), but also on the size of S. This is because imax is affected by α and

the distribution of contribution of each element in S (measured using mmc). Therefore,

increasing S for the same α also increases the size of RCL, which enables the GNE method

to slowly converge to better result sets. One possible approach to cope with this, without

interfering with GNE’s running time, is to limit the size of RCL and/or to increase the

value for the imax parameter.

And finally, Figure 5.6 depicts the running time (in ms) for the dblp dataset

when varying λ (k = 5 and S = 1, 000), k (λ = 0.7 and S = 1, 000) and S (k = 5 and

λ = 0.7). The same behavior was observed for the running times of the other datasets

and are thus omitted. As expected, the running time is not affected when increasing λ,

as shown in Figure 5.6(a). This parameter does not interfere on how a method operates,

but only dictates the selection of elements in the result set. The GNE method has the

highest running time among all methods, since it executes a few runs over the candidate

set S and also has an expensive local search phase.

In Figure 5.6(b), the running time increases proportionally to the size of k, since

more iterations are performed over S. The BSwap andMotley exhibit the slowest increase.

The running time for GNE and GMC increases for large k since both compute, for each

element in S, the k−1 elements in S that have the highest δdiv values. Nevertheless, GMC

149



 0

 10

 20

 30

 40

 50

 60

 0.1  0.3  0.5  0.7  0.9

C
P

U
 T

im
e
 (

m
s
)

λ

GNE
GMC
Swap

MMR
BSwap
Motley

Rand
MSD
CLT

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 5  15  25  35

C
P

U
 T

im
e
 (

m
s
)

k

GNE
GMC
Swap

MMR
BSwap
Motley

Rand
MSD
CLT

 0

 50

 100

 150

 200

 250

 300

 350

 400

 200  1000  2000  3000  4000

C
P

U
 T

im
e
 (

m
s
)

size of S

GNE
GMC
Swap

MMR
BSwap
Motley

Rand
MSD
CLT

(a) dblp: λ (b) dblp: k (c) dblp: S

Figure 5.6: Avg. running time vs. λ, k and S for the dblp dataset.

is competitive having a similar behavior to Swap for larger k values compared to other

methods. As for GNE, the larger increase is because the number of runs and exchanges

in the local search phase are both proportional to k.

In Figure 5.6(c), the running time of all methods, except for BSwap and Motley,

increases with S since all elements in S has to be checked. Since BSwap and Motley

have early stopping conditions, defined by the threshold conditions θ and θ′, respectively,

their performance is not directly influenced by the size of S but by their threshold values.

Again, GNE had the highest running times since it performs several runs, which depend

on k and S. GMC and MSD have again similar behavior when increasing S.

5.6.4 Discussion

The BSwap, Swap, Motley and CLT methods were outperformed by the Rand

approach in terms of F values in almost all experiments, which indicates that a simple

random selection returns better results than these four methods. As expected, among all

methods the CLT is the one that achieved the lowest F values for the majority of the

experiments. This last result corroborates our initial claim that clustering techniques do

not apply well for query result diversification. Besides having an extra parameter that is

150



not straightforward to tune, both BSwap and Motley provided the lowest precision and F

values in their results. Among the previous methods tested (i.e., excluding our proposed

GNE and GMC methods), MMR was typically better in most of the experiments.

The GNE and GMC methods consistently achieved better results in terms of

precision, gap and F values for every dataset and query parameter tested. Among them,

GNE generally provided the best results, since it performs several runs in a controlled

way. However, this affects its running time; GNE was the slowest method among all

competitors. GMC achieved running times which are similar to MSD and CLT. Overall,

GMC provided high quality results with acceptable running times. If the user is willing

to further improve quality at the expense of higher running time, then GNE should be

preferred over GMC.

5.7 Final Remarks

In this chapter, we describe a simple yet powerful framework, called DivDB,

for evaluation and optimization of methods for diversifying query results. One advan-

tage of the DivDB framework is that users can set the tradeoff between finding the most

relevant elements to the query and finding diverse elements in the result set. Another

advantage is that we can quantitatively compare different methods implemented in the

DivDB framework. We then describe several known methods, as well as two new methods,

for diversifying query results. The two new proposed methods, named GMC and GNE,

construct the result set in an incremental way using a function that computes the con-

tribution of each candidate element considering its relevance to the query and its diverse

151



value to the elements in the current result set and to other elements in the candidate set.

In GMC the element with the highest contribution value is always included in the result

set, while in GNE a randomized procedure is employed to choose, among the top highest

elements, the one to be included in the result set. We show a thorough experimental

evaluation of the various diversification methods using real datasets. GMC and GNE

methods outperformed all known methods for any tradeoff values between relevance and

diversity in the result set.

152



Chapter 6

Conclusion

This thesis presented several novel complex motion pattern queries for trajec-

tory data. Previous works on querying trajectory data have mainly focused on traditional

spatio-temporal queries, similarity/clustering based tasks, or spatio-temporal joins. Nev-

ertheless, trajectories are complex objects whose behavior over space and time can be

better captured as a sequence of interesting events, or the aggregate behavior of trajecto-

ries as groups. Given the deficiencies of previous approaches, this thesis describes several

motion pattern queries which allow users to select trajectories based on specific events of

interest.

This thesis starts introducing the flexible pattern query, a very powerful, yet easy

to use motion pattern query which allows users to select trajectories based on specific

events of interest. Such queries combine the ability of fixed and variable predicates,

with explicit or implicit temporal constraints and distance-based constraints. Two query

processing techniques are described, one based on merge joins (IJP) and one based on

subsequence matching (DPP). The experimental evaluation shows that our techniques

153



improve substantially even over optimized (using indexing and preprocessing techniques)

previous approaches. Among all the described approaches, IJP is more robust in that it

can easily support NN queries, while DPP is better for patterns with smaller number of

predicates or wild-cards. Since, however, both approaches are implemented in the same

framework, they can both be available to the user.

Then, the Spatio-Temporal Pattern System (STPS) is proposed for processing

spatio-temporal pattern queries over mobile phone-call databases. STPS defines a lan-

guage to express pattern queries which combine fixed and variable spatial predicates with

explicit and implicit temporal constraints. The STPS index structures and algorithm are

described in order to efficiently process such pattern queries. The experimental evaluation

shows that the STPS can answer spatio-temporal patterns efficiently even for very large

mobile phone-call databases. Among the advantages of the STPS is that it can be easily

integrated in commercial telecommunication databases and also be implemented in any

current commercially available RDBMS.

The next motion pattern query described in this thesis is the flock pattern query,

which captures the collaborative behavior of spatio-temporal data. The result of the flock

pattern query returns a group of at least µ trajectories which are all “enclosed” by a disk

of diameter ǫ for at least δ consecutive timestamps. Discovering on-line flock patterns is

useful for several applications, ranging from tracking suspicious activities to migrations

of animals. Previous related approaches either do not work for on-line datasets, or do

not return exact solutions for flock pattern queries. We first showed that the discovery

of flock patterns with fixed time duration can be computed in polynomial time. Then, a

framework is presented that uses a lightweight grid-based structure in order to efficiently

154



and incrementally process the trajectory’s locations. Experiments on various trajectory

datasets showed that the proposed methods can efficiently report flock patterns even for

large datasets and for different variations of the flock parameters (µ, ǫ and δ).

Finally, this thesis presented a simple yet powerful framework for evaluation

and optimization of methods for diversifying query results. One advantage of the DivDB

framework is that users can set the tradeoff between finding the most relevant elements

to the query and finding diverse elements in the result set. Another advantage is that

one can quantitatively compare different methods implemented in the DivDB framework.

Then, several known methods as well as two new methods for diversifying query results

are described. The two new proposed methods, named GMC and GNE, construct the

result set in an incremental way using a function that computes the contribution of each

candidate element considering its relevance to the query and its diverse value to the

elements in the current result set and to other elements in the candidate set. In GMC,

the element with the highest contribution value is always included in the result set, while

in GNE, a randomized procedure is employed to choose, among the top highest elements,

the one to be included in the result set. A thorough experimental evaluation of the various

diversification methods using real datasets showed that our proposed methods give better

results than previous approaches.

155



Bibliography

[1] The informedia project. www.informedia.cs.cmu.edu.

[2] R-tree Portal. www.rtreeportal.org.

[3] AccuTracking Inc. AccuTracking. www.accutracking.com.

[4] Jagrati Agrawal, Yanlei Diao, Daniel Gyllstrom, and Neil Immerman. Efficient
pattern matching over event streams. In Proc. of the ACM SIGMOD Int’l Conf. on
Management of Data, pages 147–160, 2008.

[5] Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel Ieong. Diver-
sifying search results. In Proc. of the ACM Int’l Conf. on Web Search and Data
Mining (WSDM), pages 5–14, 2009.

[6] Aris Anagnostopoulos, Michail Vlachos, Marios Hadjieleftheriou, Eamonn J. Keogh,
and Philip S. Yu. Global distance-based segmentation of trajectories. In Proc. of
the ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining, pages
34–43, 2006.

[7] Subramanian Arumugam and Christopher Jermaine. Closest-point-of- approach join
for moving object histories. In Proc. of the IEEE Int’l Conf. on Data Engineering
(ICDE), pages 86–86, 2006.

[8] Petko Bakalov, Marios Hadjieleftheriou, and Vassilis J. Tsotras. Time relaxed spa-
tiotemporal trajectory joins. In Proc. of the ACM SIGSPATIAL Int’l Conf. on
Advances in Geographic Information Systems, pages 182–191, 2005.

[9] Marc Benkert, Joachim Gudmundsson, Florian Hübner, and Thomas Wolle. Re-
porting flock patterns. In Annual European Symp. on Algorithms (ESA), pages
660–671, 2006.

[10] Marc Benkert, Joachim Gudmundsson, Florian Hübner, and Thomas Wolle. Re-
porting flock patterns. Comput. Geom. Theory Appl., 41:111–125, November 2008.

[11] Porcupine Caribou Management Board. Porcupine caribou herd satellite collar
project. www.taiga.net/satellite.

156



[12] Yuhan Cai and Raymond Ng. Indexing spatio-temporal trajectories with Chebyshev
polynomials. In Proc. of the ACM SIGMOD Int’l Conf. on Management of Data,
pages 599–610, 2004.

[13] Jaime Carbonell and Jade Goldstein. The use of MMR, diversity-based reranking
for reordering documents and producing summaries. In Proc. of the ACM SIGIR
Int’l Conf. on Research and Development in Information Retrieval, pages 335–336,
1998.

[14] Ben Carterette. An analysis of NP-completeness in novelty and diversity ranking.
Inf. Retr., 14(1):89–106, 2011.

[15] Olivier Chapelle, Donald Metlzer, Ya Zhang, and Pierre Grinspan. Expected re-
ciprocal rank for graded relevance. In Proc. of the ACM CIKM Int’l Conf. on
Information and Knowledge Management, pages 621–630, 2009.

[16] Harr Chen and David Karger. Less is more: probabilistic models for retrieving
fewer relevant documents. In Proc. of the ACM SIGIR Int’l Conf. on Research and
Development in Information Retrieval, pages 429–436, 2006.

[17] Charles Clarke, Maheedhar Kolla, Gordon Cormack, Olga Vechtomova, Azin
Ashkan, Stefan Büttcher, and Ian MacKinnon. Novelty and diversity in informa-
tion retrieval evaluation. In Proc. of the ACM SIGIR Int’l Conf. on Research and
Development in Information Retrieval, pages 659–666, 2008.

[18] FCC Consumer & Governmental Affairs Bureau. Wireless 911 services.
www.fcc.gov/guides/wireless-911-services.

[19] Maurice Coyle and Barry Smyth. On the importance of being diverse: Analysing
similarity and diversity in web search. In Int’l Conf. on Intelligent Information
Processing, pages 341–350, 2004.

[20] Koustuv Dasgupta, Rahul Singh, Balaji Viswanathan, Dipanjan Chakraborty,
Sougata Mukherjea, Amit A. Nanavati, and Anupam Joshi. Social ties and their rel-
evance to churn in mobile telecom networks. In Proc. of the Int’l Conf. on Extending
Database Technology (EDBT), pages 668–677, 2008.

[21] Elena Demidova, Peter Fankhauser, Xuan Zhou, and Wolfgang Nejdl. DivQ: Diver-
sification for keyword search over structured databases. In Proc. of the ACM SIGIR
Int’l Conf. on Research and Development in Information Retrieval, pages 331–338,
2010.

[22] DIMACS. The Sixth DIMACS Implementation Challenge.
www.dimacs.rutgers.edu/Challenges/Sixth/software.html.

[23] Marina Drosou and Evaggelia Pitoura. Diversity over continuous data. IEEE Data
Eng. Bull., 32(4):49–56, 2009.

157



[24] Cédric du Mouza, Philippe Rigaux, and Michel Scholl. Efficient evaluation of pa-
rameterized pattern queries. In Proc. of the ACM CIKM Int’l Conf. on Information
and Knowledge Management, pages 728–735, 2005.

[25] Environmental Studies. www.environmental-studies.de.

[26] Martin Erwig and Markus Schneider. Spatio-temporal predicates. IEEE Trans. on
Knowl. and Data Eng., 14(4):881–901, July 2002.

[27] Esri. ArcGIS. www.esri.com.

[28] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. In Proc.
of the ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining, pages
226–231, 1996.

[29] Ronald Fagin, Amnon Lotem, and Moni Naor. Optimal aggregation algorithms for
middleware. In Proc. of the ACM SIGMOD-SIGACT-SIGART Symp. on Principles
of Database Systems (PODS), pages 102–113, 2001.

[30] Thomas Feo and Mauricio Resende. Greedy randomized adaptive search procedures.
J. of Global Optimization, 6:109–133, 1995.

[31] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,
1990.

[32] Sreenivas Gollapudi and Aneesh Sharma. An axiomatic approach for result diversi-
fication. In Proc. of the Int’l Conf. on World Wide Web (WWW), pages 381–390,
2009.

[33] Marta C. Gonzalez, Cesar A. Hidalgo, and Albert-Laszlo Barabasi. Understanding
individual human mobility patterns. Nature, 453:779–782, June 2008.

[34] Joachim Gudmundsson and Marc van Kreveld. Computing longest duration flocks
in trajectory data. In Proc. of the ACM SIGSPATIAL Int’l Conf. on Advances in
Geographic Information Systems, pages 35–42, 2006.

[35] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. Cure: An efficient cluster-
ing algorithm for large databases. In Proc. of the ACM SIGMOD Int’l Conf. on
Management of Data, pages 73–84, 1998.

[36] Marios Hadjieleftheriou, George Kollios, Petko Bakalov, and Vassilis J. Tsotras.
Complex spatio-temporal pattern queries. In Proc. of the Int’l Conf. on Very Large
Data Bases (VLDB), pages 877–888, 2005.

[37] Marios Hadjieleftheriou, George Kollios, Vassilis J. Tsotras, and Dimitrios Gunop-
ulos. Indexing spatiotemporal archives. The VLDB Journal, 15(2):143–164, 2006.

158



[38] Marios Hadjieleftheriou and Vassilis J. Tsotras. Letter from the special issue on
result diversity. IEEE Data Eng. Bull., 32(4):6, 2009.

[39] Emir Halepovic and Carey Williamson. Characterizing and modeling user mobility
in a cellular data network. In Proc. of the ACM Int’l Workshop on Performance
evaluation of wireless ad hoc, sensor, and ubiquitous networks (PE-WASUN), pages
71–78, 2005.

[40] Refael Hassin, Shlomi Rubinstein, and Arie Tamir. Approximation algorithms for
maximum dispersion. Oper. Res. Lett., 21(3):133–137, 1997.

[41] Seth Hettich and Stephen D. Bay. The UCI KDD Archive. Irvine, CA: University
of California, Department of Information and Computer Science. kdd.ics.uci.edu,
1999.

[42] IBM. Informix. www.ibm.com/software/data/informix/.

[43] Instedd Inc. GeoChat. www.instedd.org/technologies/geochat/.

[44] Ekaterini Ioannou, Odysseas Papapetrou, Dimitrios Skoutas, and Wolfgang Nejdl.
Efficient semantic-aware detection of near duplicate resources. In Proc. of the Ex-
tended Semantic Web Conf. (ESWC), LNCS, pages 136–150. Springer, 2010.

[45] iSECUREtrac. tracNET24. www.isecuretrac.com.

[46] Anoop Jain, Parag Sarda, and Jayant Haritsa. Providing diversity in k-nearest
neighbor query results. In Proc. of the Pacific-Asia Conf. on Knowledge Discovery
and Data Mining (PAKDD), volume 3056 of LNCS, pages 404–413. Springer, 2004.

[47] Christian S. Jensen. Daisy. www.daisy.aau.dk.

[48] Christian S. Jensen, Dan Lin, and Beng Chin Ooi. Continuous clustering of moving
objects. IEEE Trans. on Knowl. and Data Eng., 19(9):1161–1174, September 2007.

[49] Hoyoung Jeung, Man Lung Yiu, Xiaofang Zhou, Christian S. Jensen, and Heng Tao
Shen. Discovery of convoys in trajectory databases. Proc. of the VLDB Endowment
(PVLDB), 1(1):1068–1080, 2008.

[50] Panos Kalnis, Nikos Mamoulis, and Spiridon Bakiras. On discovering moving clus-
ters in spatio-temporal data. In Proc. of the Int’l Symp. on Advances in Spatial and
Temporal Databases (SSTD), pages 364–381, 2005.

[51] Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern match-
ing in strings. SIAM J. Comput., 6(2):323–350, 1977.

[52] George Kollios, Dimitris Papadopoulos, Dimitrios Gunopulos, and Vassilis J. Tso-
tras. Indexing mobile objects using dual transformations. The VLDB Journal,
14(2):238–256, 2005.

[53] Michael J. Kuby. Programming models for facility dispersion: The p-dispersion and
maxisum dispersion problems. Geogr. Analysis, 19:315–329, 1987.

159



[54] Ching-Chung Kuo, Fred Glover, and Krishna S. Dhir. Analyzing and modeling
the maximum diversity problem by zero-one programming. Decision Sciences,
24(6):1171–1185, 1993.

[55] Manuel Laguna and Rafael Mart́ı. GRASP and path relinking for 2-layer straight
line crossing minimization. INFORMS Journal on Computing, 11(1):44–52, 1999.

[56] Patrick Laube, Stephan Imfeld, and Robert Weibel. Discovering relative motion
patterns in groups of moving point objects. J. of Geog. Inf. Science, 19(6):639–668,
2005.

[57] Patrick Laube, Marc van Kreveld, and Stephan Imfeld. Finding REMO: Detecting
relative motion patterns in geospatial lifelines. In Proc. of the Int’l Symp. on Spatial
Data Handling, pages 201–214. Springer, 2004.

[58] Jae-Gil Lee, Jiawei Han, Xiaolei Li, and Hector Gonzalez. TraClass: trajectory
classification using hierarchical region-based and trajectory-based clustering. Proc.
of the VLDB Endowment (PVLDB), 1:1081–1094, August 2008.

[59] Jae-Gil Lee, Jiawei Han, and Kyu-Young Whang. Trajectory clustering: a partition-
and-group framework. In Proc. of the ACM SIGMOD Int’l Conf. on Management
of Data, pages 593–604, 2007.

[60] Seok-Lyong Lee, Seok-Ju Chun, Deok-Hwan Kim, Ju-Hong Lee, and Chin-Wan
Chung. Similarity search for multidimensional data sequences. In Proc. of the
IEEE Int’l Conf. on Data Engineering (ICDE), pages 599–608, 2000.

[61] Michael Ley. The DBLP Computer Science Bibliography. www.informatik.uni-
trier.de/∼ley/db.

[62] Yifan Li, Jiawei Han, and Jiong Yang. Clustering moving objects. In Proc. of
the ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining, pages
617–622, 2004.

[63] Kun Liu, Evimaria Terzi, and Tyrone Grandison. Highlighting diverse concepts
in documents. In Proc. of the SIAM Int’l Conf. on Data Mining (SDM), pages
545–556, 2009.

[64] Ziyang Liu, Peng Sun, and Yi Chen. Structured search result differentiation. Proc.
of the VLDB Endowment (PVLDB), 2(1):313–324, 2009.

[65] Nikos Mamoulis, Huiping Cao, George Kollios, Marios Hadjieleftheriou, Yufei Tao,
and David W. Cheung. Mining, indexing, and querying historical spatiotemporal
data. In Proc. of the ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data
Mining, pages 236–245, 2004.

[66] Mohamed F. Mokbel and Walid G. Aref. SOLE: scalable on-line execution of con-
tinuous queries on spatio-temporal data streams. 17(5):971–995, August 2008.

160



[67] Hoda Mokhtar, Jianwen Su, and Oscar Ibarra. On moving object queries. In Proc.
of the ACM SIGMOD-SIGACT-SIGART Symp. on Principles of Database Systems
(PODS), pages 188–198, 2002.

[68] Amit A. Nanavati, Siva Gurumurthy, Gautam Das, Dipanjan Chakraborty, Koustuv
Dasgupta, Sougata Mukherjea, and Anupam Joshi. On the structural properties of
massive telecom call graphs: findings and implications. In Proc. of the ACM CIKM
Int’l Conf. on Information and Knowledge Management, pages 435–444, 2006.

[69] U.S. Coast Guard Navigation Center NAVCEN. Navstar gps user equipment intro-
duction. www.navcen.uscg.gov/pubs/gps/gpsuser/gpsuser.pdf, september 1996.

[70] Raymond T. Ng and Jiawei Han. Efficient and effective clustering methods for
spatial data mining. In Proc. of the Int’l Conf. on Very Large Data Bases (VLDB),
pages 144–155, 1994.

[71] Jinfeng Ni and Chinya V. Ravishankar. PA-Tree: A parametric indexing scheme
for spatio-temporal trajectories. In Proc. of the Int’l Symp. on Advances in Spatial
and Temporal Databases (SSTD), pages 254–272, 2005.

[72] Path Intelligence Inc. FootPath. www.pathintelligence.com.

[73] Mindaugas Pelanis, Simonas Saltenis, and Christian S. Jensen. Indexing the past,
present, and anticipated future positions of moving objects. ACM Trans. Database
Syst., 31(1):255–298, 2006.

[74] Dieter Pfoser, Christian S. Jensen, and Yannis Theodoridis. Novel approaches in
query processing for moving object trajectories. In Proc. of the Int’l Conf. on Very
Large Data Bases (VLDB), pages 395–406, 2000.

[75] Marcelo Prais and Celso Ribeiro. Reactive GRASP: An application to a matrix
decomposition problem in TDMA traffic assignment. INFORMS Journal on Com-
puting, 12(3):164–176, 2000.

[76] Oleg Prokopyev, Nan Kong, and Dayna Martinez-Torres. The equitable dispersion
problem. European J. of Operational Research, 197(1):59–67, August 2009.

[77] Yunyao Qu, Changzhou Wang, Like Gao, and X. Sean Wang. Supporting movement
pattern queries in user-specified scales. IEEE Trans. on Knowl. and Data Eng.,
2003.

[78] Filip Radlinski and Susan Dumais. Improving personalized web search using result
diversification. In Proc. of the ACM SIGIR Int’l Conf. on Research and Development
in Information Retrieval, pages 691–692, 2006.

[79] Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. Learning diverse rank-
ings with multi-armed bandits. In Proc. of the Int’l Conf. on Machine Learning
(ICML), pages 784–791, 2008.

161



[80] Davood Rafiei, Krishna Bharat, and Anand Shukla. Diversifying web search results.
In Proc. of the Int’l Conf. on World Wide Web (WWW), pages 781–790, 2010.

[81] Mauricio Resende and Celso Ribeiro. Handbook of Metaheuristics (International Se-
ries in Operations Research & Management Science), chapter Greedy Randomized
Adaptive Search Procedures: Advances, Hybridizations, and Applications, pages
283–320. Springer, 2 edition, 2010.

[82] Reza Sadri, Carlo Zaniolo, Amir Zarkesh, and Jafar Adibi. Expressing and optimiz-
ing sequence queries in database systems. ACM Trans. Database Syst., 29(2):282–
318, June 2004.

[83] Mahmoud Attia Sakr and Ralf Hartmut Güting. Spatiotemporal pattern queries
in SECONDO. In Proc. of the Int’l Symp. on Advances in Spatial and Temporal
Databases (SSTD), pages 422–426, 2009.

[84] Rodrygo Santos, Craig Macdonald, and Iadh Ounis. Exploiting query reformulations
for web search result diversification. In Proc. of the Int’l Conf. on World Wide Web
(WWW), pages 881–890, 2010.

[85] Rodrygo Santos, Jie Peng, Craig Macdonald, and Iadh Ounis. Explicit search result
diversification through sub-queries. In Proc. of the European Conf. on Information
Retrieval (ECIR), volume 5993 of LNCS, pages 87–99. Springer, 2010.

[86] Mukund Seshadri, Sridhar Machiraju, Ashwin Sridharan, Jean Bolot, Christos
Faloutsos, and Jure Leskove. Mobile call graphs: beyond power-law and lognormal
distributions. In Proc. of the ACM SIGKDD Int’l Conf. on Knowledge Discovery
and Data Mining, pages 596–604, 2008.

[87] Praveen Seshadri, Miron Livny, and Raghu Ramakrishnan. SEQ: A model for
sequence databases. In Proc. of the IEEE Int’l Conf. on Data Engineering (ICDE),
pages 232–239, 1995.

[88] Geiza Silva, Marcos de Andrade, Luiz Ochi, Simone Martins, and Alexandre Plas-
tino. New heuristics for the maximum diversity problem. J. of Heuristics, 13(4):315–
336, 2007.

[89] Barry Smyth and Paul McClave. Similarity vs. diversity. In Proc. of the Int’l
Conf. on Case-Based Reasoning: Case-Based Reasoning Research and Development
(ICCBR), pages 347–361, 2001.

[90] Myra Spiliopoulou, Irene Ntoutsi, Yannis Theodoridis, and Rene Schult. Monic:
modeling and monitoring cluster transitions. In Proc. of the ACM SIGKDD Int’l
Conf. on Knowledge Discovery and Data Mining, pages 706–711, 2006.

[91] Yufei Tao and Dimitris Papadias. MV3R-Tree: A spatio-temporal access method
for timestamp and interval queries. In Proc. of the Int’l Conf. on Very Large Data
Bases (VLDB), pages 431–440, 2001.

162



[92] Yufei Tao, Dimitris Papadias, and Qiongmao Shen. Continuous nearest neighbor
search. In Proc. of the Int’l Conf. on Very Large Data Bases (VLDB), pages 287–
298, 2002.

[93] The Text REtrieval Conference (TREC). Trec-3 collection. trec.nist.gov.

[94] Reinier van Leuken, Lluis Garcia, Ximena Olivares, and Roelof van Zwol. Visual
diversification of image search results. In Proc. of the Int’l Conf. on World Wide
Web (WWW), pages 341–350, 2009.

[95] Erik Vee, Utkarsh Srivastava, Jayavel Shanmugasundaram, Prashant Bhat, and
Sihem Amer-Yahia. Efficient computation of diverse query results. In Proc. of the
IEEE Int’l Conf. on Data Engineering (ICDE), pages 228–236, 2008.

[96] Marcos R. Vieira, Petko Bakalov, and Vassilis J. Tsotras. On-line discovery of flock
patterns in spatio-temporal data. In Proc. of the ACM SIGSPATIAL Int’l Conf.
on Advances in Geographic Information Systems, pages 286–295, 2009.

[97] Marcos R. Vieira, Petko Bakalov, and Vassilis J. Tsotras. Querying trajectories
using flexible patterns. In Proc. of the Int’l Conf. on Extending Database Technology
(EDBT), pages 406–417, 2010.

[98] Marcos R. Vieira, Petko Bakalov, and Vassilis J. Tsotras. FlexTrack: A system for
querying flexible patterns in trajectory databases. In Proc. of the Int’l Symp. on
Advances in Spatial and Temporal Databases (SSTD), pages 475–480, 2011.

[99] Marcos R. Vieira, E. Frias-Martinez, N. Oliver, and V. Frias-Martinez. Characteriz-
ing dense urban areas from mobile phone-call data: Discovery and social dynamics.
In Proc. of the IEEE Int’l Conf. on Social Computing (SocialCom), pages 241–248,
2010.

[100] Marcos R. Vieira, Enrique Frias-Martinez, Petko Bakalov, Vanessa Frias-Martinez,
and Vassilis J. Tsotras. Querying spatio-temporal patterns in mobile phone-call
databases. In Proc. of the IEEE Int’l Conf. on Mobile Data Management, pages
239–248, 2010.

[101] Marcos R. Vieira, Humberto Razente, Maria C. Barioni, Marios Hadjieleftheriou,
Divesh Srivastava, Caetano Traina Jr., and Vassilis J. Tsotras. DivDB: A system for
diversifying query results. Proc. of the VLDB Endowment (PVLDB), 4(12):1395–
1398, 2011.

[102] Marcos R. Vieira, Humberto Razente, Maria C. Barioni, Marios Hadjieleftheriou,
Divesh Srivastava, Caetano Traina Jr., and Vassilis J. Tsotras. On query result
diversification. In Proc. of the IEEE Int’l Conf. on Data Engineering (ICDE),
pages 1163–1174, 2011.

[103] Marcos R. Vieira and Vassilis J. Tsotras. Complex motion pattern queries for tra-
jectories. In Proc. of the IEEE Int’l Conf. on Data Engineering (ICDE) Workshops,
pages 280–283, 2011.

163



[104] Michail Vlachos, George Kollios, and Dimitrios Gunopulos. Discovering similar
multidimensional trajectories. In Proc. of the IEEE Int’l Conf. on Data Engineering
(ICDE), pages 673–684, 2002.

[105] WhaleNet. whale.wheelock.edu.

[106] Yutaka Yanagisawa, Jun ichi Akahani, and Tetsuji Satoh. Shape-based similarity
query for trajectory of mobile objects. In Proc. of the IEEE Int’l Conf. on Mobile
Data Management, pages 63–77, 2003.

[107] Cong Yu, Laks Lakshmanan, and Sihem Amer-Yahia. It takes variety to make
a world: diversification in recommender systems. In Proc. of the Int’l Conf. on
Extending Database Technology (EDBT), pages 368–378, 2009.

[108] Hui Zang and Jean Bolot. Mining call and mobility data to improve paging efficiency
in cellular networks. Proc. of the ACM Int’l Conf. on Mobile Computing and
Networking (MobiCom), pages 123–134, 2007.

[109] Cheng Zhai, William Cohen, and John Lafferty. Beyond independent relevance:
methods and evaluation metrics for subtopic retrieval. In Proc. of the ACM SIGIR
Int’l Conf. on Research and Development in Information Retrieval, pages 10–17,
2003.

[110] Benyu Zhang, Hua Li, Yi Liu, Lei Ji, Wensi Xi, Weiguo Fan, Zheng Chen, and
Wei-Ying Ma. Improving web search results using affinity graph. In Proc. of the
ACM SIGIR Int’l Conf. on Research and Development in Information Retrieval,
pages 504–511, 2005.

[111] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH: An efficient data
clustering method for very large databases. In Proc. of the ACM SIGMOD Int’l
Conf. on Management of Data, pages 103–114, 1996.

[112] Yu Zheng, Lizhu Zhang, Xing Xie, and Wei-Ying Ma. Mining interesting locations
and travel sequences from gps trajectories. In Proc. of the Int’l Conf. on World
Wide Web (WWW), pages 791–800, 2009.

[113] Xiaojin Zhu, Andrew B. Goldberg, Jurgen Van Gael, and David Andrzejewski.
Improving diversity in ranking using absorbing random walks. In Proc. of the Human
Language Technology Conference of the North American Chapter of the Association
of Computational Linguistics (NAACL-HLT), pages 97–104, 2007.

[114] Cai-Nicolas Ziegler, Sean McNee, Joseph Konstan, and Georg Lausen. Improving
recommendation lists through topic diversification. In Proc. of the Int’l Conf. on
World Wide Web (WWW), pages 22–32, 2005.

164




