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ARTICLE

Shotgun transcriptome, spatial omics, and
isothermal profiling of SARS-CoV-2 infection
reveals unique host responses, viral diversification,
and drug interactions

In less than nine months, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-

2) killed over a million people, including >25,000 in New York City (NYC) alone. The COVID-

19 pandemic caused by SARS-CoV-2 highlights clinical needs to detect infection, track strain

evolution, and identify biomarkers of disease course. To address these challenges, we

designed a fast (30-minute) colorimetric test (LAMP) for SARS-CoV-2 infection from naso/

oropharyngeal swabs and a large-scale shotgun metatranscriptomics platform (total-RNA-

seq) for host, viral, and microbial profiling. We applied these methods to clinical specimens

gathered from 669 patients in New York City during the first two months of the outbreak,

yielding a broad molecular portrait of the emerging COVID-19 disease. We find significant

enrichment of a NYC-distinctive clade of the virus (20C), as well as host responses in

interferon, ACE, hematological, and olfaction pathways. In addition, we use 50,821 patient

records to find that renin–angiotensin–aldosterone system inhibitors have a protective effect

for severe COVID-19 outcomes, unlike similar drugs. Finally, spatial transcriptomic data from

COVID-19 patient autopsy tissues reveal distinct ACE2 expression loci, with macrophage and

neutrophil infiltration in the lungs. These findings can inform public health and may help

develop and drive SARS-CoV-2 diagnostic, prevention, and treatment strategies.

https://doi.org/10.1038/s41467-021-21361-7 OPEN
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In March 2020, the World Health Organization declared a
pandemic of the coronavirus disease 2019 (COVID-19), an
infection caused by severe acute respiratory syndrome cor-

onavirus 2 (SARS-CoV-2)1. Since the start of the pandemic, more
than >100 million cases and 2 million deaths have been reported
(https://coronavirus.jhu.edu), with an especially high burden of
early cases in New York City (NYC). Genomic epidemiology
efforts have already played a crucial public health role in con-
firming community spread of SARS-CoV-2 in the USA2–4 as well
as in China5 and around the world6–8. However, standard
approaches to viral profiling (i.e., qRT-PCR or targeted methods)
fail to provide information on either the host immune response
or microbial co-infections, both of which might impact the
clinical presentation of COVID-19 and provide directions for
therapeutic intervention and management.

Studies of SARS infection have shown that regulation of the
innate immune response is associated with the development of
adaptive immunity and disease severity. Moreover, a robust
inflammatory response is characterized by an upregulation of
cytokines including IL-6, IL-10, and MCP-1 in tissues and
serum, as well as infiltration of infected tissues by inflammatory
cells such as macrophages9. SARS-CoV-2 infection studies have
shown that viral load peaks during the first week of illness,
which may account for the high transmissibility of SARS-CoV-
22. Furthermore, antibody profiling by10 demonstrates both
IgM and IgG antibodies began to increase around the 10th day
after symptom onset, and most patients had seroconversion
within the first 3 weeks of infection, underscoring the need for
rapid testing in the acute phase of infection. Moreover, phe-
notyping of COVID-19 patients has also been shown to identify
molecular signatures to distinguish severity of symptoms11,12,
but limited information about the association of the viral
sequences and outcome exists, nor viral propagation within
human tissues.

To better understand the impact and progression of SARS-
CoV-2 infection, we applied a multi-platform and molecular
diagnostic approach to samples collected during the outbreak in
NYC. Out of concern for the scalability and sensitivity of
standard diagnostic assays (qRT-PCR), we developed and
validated a rapid reverse transcription loop-mediated
isothermal amplification (RT-LAMP) assay to detect SARS-
CoV-2 infection from nasopharyngeal swab specimens and
oropharyngeal swab lysates. We simultaneously developed a
large-scale host and viral profiling platform employing
shotgun metatranscriptomics (total RNA-seq). We applied this
total RNA-seq platform to 732 clinical samples, including
669 confirmed or suspected COVID-19 cases at New York-
Presbyterian Hospital-Weill Cornell Medical Center (NYPH-
WCMC). In addition, we report an observational study of
renin–angiotensin–aldosterone system inhibitors and severe
COVID-19 outcomes using data (n= 50,821) from NYPH-
WCMC and New York-Presbyterian Hospital-Columbia Uni-
versity Irving Medical Center (NYPH-CUIMC).

Our results define and map the viral genetic features of the
NYC outbreak and associate specific host responses and gene
expression perturbations with SARS-CoV-2 infection. We also
link findings from host transcriptomics to findings from clinical
data related to the angiotensin converting enzyme (ACE)
pathway using patients at two NYPH sites. Finally, we used
spatial transcriptomics to map ACE expression in SARS-CoV-2
infected lungs from COVID-19 patient autopsies. We have
made these data available in the database of genotypes and
phenotypes (dbGAP) and also in an interactive analytics portal
to enable others to explore additional genomic, transcriptomic,
and clinical covariate associations (https://covidgenes.weill.
cornell.edu/).

Results
Validation of LAMP for detection of SARS-CoV-2. We devel-
oped a colorimetric assay to quickly detect and quantify SARS-
CoV-2 viral load in patient samples, using a set of LAMP primers
and simple single-tube protocol (Fig. 1a, b). To validate the assay,
we first evaluated two synthetic RNAs (see “Methods”) whose
sequences matched the viral sequences of patients from Wuhan,
China and Melbourne, Australia (Supplementary Fig. 1). The
reaction output was measured at 0-, 20-, and 30 min intervals
(Fig. 1c) before the samples were heated to 95 °C for inactivation.
LAMP fluorescence correlated closely with SARS-CoV-2 RNA
viral copies (Fig. 1d), with an overlap of the median signal from
negative controls at lower levels (0–10 total copies per reaction) of
viral RNA (n= 10). The LoD was found to be between 5 and 25
viral total copies for the dual primer, single-tube reaction (N gene
and E gene), and this was then replicated to show a similar LoD
on the second synthetic control (Supplementary Fig. 1b).

We next used a set of 201 samples from known or suspected
COVID-19 cases that were tested for SARS-CoV-2 by a
commercial qRT-PCR assay (Altona) that has been a standard
clinical test at NYPH-WCMC since early March. These
comprised 69 nasopharyngeal (NP) swab samples that tested
positive (qRT-PCR positives, Ct < 40) and 132 samples that tested
negative (qRT-PCR negative, Ct ≥ 40) (see “Methods”). qRT-PCR
positive samples showed a much higher LAMP fluorescence than
qRT-PCR negative samples. Analysis of Receiver Operator
Characteristic (ROC) curves yielded an overall sensitivity of
95.6% and specificity of 99.2% (Fig. 1e, Supplementary Fig. 2).
These results were also confirmed with a capture-based SARS-
CoV-2 panel from Twist (Supplementary Fig. 2b, c). Of note, we
obtained similar performance on bulk oropharyngeal swab lysate
(Supplementary Fig. 3), including increasing reaction sensitivity
as a function of viral copy number, but with deteriorating
performance Ct > 30. We observed higher LAMP sensitivity at
higher viral loads, as determined by qRT-PCR Ct values
(Supplementary Fig. 4).

Shotgun metatranscriptomics platform for viral and bacterial
detection. To further investigate the biological characteristics of
qRT-PCR positive and negative specimens, as well as to compare
to RT-LAMP, we developed a shotgun metatranscriptomics
platform utilizing total RNA-seq (RNA-sequencing with riboso-
mal RNA depletion) to profile all RNAs from patient specimens
(Fig. 1a). We sequenced 857 RNA-seq libraries (Fig. 2) across
732 specimens from 669 patients treated for influenza-like illness
(ILI) at NYPH-WCMC to an average of 63.2M read pairs per
sample. This included 215 qRT-PCR positive samples (201 of
which were also tested with LAMP), 17 positive (Vero E6 cells),
and 33 negative (buffer) controls. To assess the ability of deep
shotgun transcriptomics to identify qRT-PCR false negatives,
including those that might arise from uncharacterized SARS-Cov-
2 variants, we sequenced 517 qRT-PCR negative samples. Among
these qRT-PCR negative samples, 311 were tested for the stan-
dard clinical respiratory virus panel (BioFire, which included
several common cold coronavirus strains and influenza virus).

First, the taxonomic composition of samples was detailed by
aligning total RNA-seq reads to the human reference genome
GRCh38 and NCBI reference databases (see “Methods”). Kraken2
classification of non-human sequences revealed abundant bacter-
ial and SARS-CoV-2 RNA among qRT-PCR positive samples and
infrequent mappings to fungi, archaea, or other viruses (Fig. 2a).
Positive controls and clinical samples with medium/high-viral
load-consistent qRT-PCR Ct values were significantly (p < 1 ×
10−16) enriched in SARS-CoV-2 genome alignments (median
reads per kilobase per million mapped reads, RPKM) relative to
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negative controls and qRT-PCR negative clinical samples (Fig. 2a).
LAMP fluorescence, qRT-PCR Ct values, and total-RNA Seq
RPKM showed consistent estimates of SARS-CoV-2 viral
abundance across these three technologies and 201 clinical
specimens (Rseq_vs._Ct=−0.84, Rseq_vs._lamp= 0.82, Rlamp_vs._Ct=
−0.80) (Supplementary Fig. 4a, b). Analysis of SARS-Cov-2 read
coverage across 517 qRT-PCR negative samples revealed 7 (1.3%)
samples with more than 0.01% of reads matching SARS-CoV-2.
In summary, these results indicate close concordance with SARS-
Cov-2 viral load across diverse diagnostic platforms, with rare
examples of occult SARS-Cov-2 infection among qRT-PCR
negative cases.

Next, an analysis of total RNA-seq sequences showed the
presence of commensal species and viruses across both qRT-PCR
positives and negative samples (Fig. 2a). We found a statistically
significant higher load of other (i.e., non-SARS-CoV-2) respira-
tory viruses in qRT-PCR negative vs. positive samples (Wilcoxon
test, P= 0.0008) (Fig. 2b). Oral and airway commensal taxa were
compared between the high-viral load group and other patient
categories using linear modeling in log-normal space using
MaAsLin2 package (see methods) and relative to the negative
controls. This includes a correction for the SARS-CoV-2 or Homo
sapiens matching reads, which can show variable depth of
coverage due to higher SARS-CoV-2 fraction in the high-viral
load group. After this correction, 17 species were significantly
depleted in COVID-19 patients, including A. xylosoxidans, E.
faecalis, and L. bacterium (Supplementary Fig. 5).

Among respiratory viruses discovered across all patients
(COVID+ and COVID−), we found frequent Influenza A

(23% of viral positive cases), rhinovirus A (16%), and human
metapneumovirus (12%). Overall, we found close concordance
between these results and the findings of a transcriptomics based
viral detection to the results of a standard (BioFire) respiratory
pathogen PCR panel performed within 7 days of the NP swab
used for RNA sequencing (N= 356 patients across 404 tests)
(Fig. 2c). The metatranscriptomics platform yielded an Area
Under the Receiver Operator Characteristic (AUROC) curve of
0.890 (F-score= 0.725), and an accuracy of 0.994, sensitivity of
0.758, specificity of 0.997, and precision of 0.694 (see methods).
These data also enabled an examination of co-infection within
COVID+ patients. Among qRT-PCR positive cases, only 7
(3.2%) harbored sequences mappable to other respiratory viruses.
Among these, we found human coronaviruses 229E, NL63 and
HKU1, influenza A, and human mastadenovirus and metapneu-
movirus (Fig. 2b). In summary, these results indicate that
common respiratory viruses were frequently implicated in many
Influenza-like Illness (ILI) cases that were COVID-, and
demonstrate low incidence of co-infection of SARS-CoV-2 with
other respiratory viruses (3.2%), matching results (3%) from
other studies13.

SARS-CoV-2 assemblies from shotgun metatranscriptomes.
The abundance of SARS-CoV-2 alignments from total RNA-seq
was sufficient to provide >10× coverage of the viral genomes and
yield high quality, full-length assemblies for 155 samples (Sup-
plementary Fig. 6). When examining the viral genomes, we
identified a total of 1147 instances of 165 unique variants across

Fig. 1 Sample processing, the loop-mediated isothermal (LAMP) reaction and synthetic RNA validation. a Clinical samples collected with
nasopharyngeal (NP) swabs were tested with RNA-sequencing, qRT-PCR, and LAMP. b The test samples were prepared using an optimized LAMP protocol
from NEB, with a reaction time of 30min. c Reaction progress was measured for the Twist SARS-CoV-2 synthetic RNA (MT007544.1) from 1 million
molecules of virus4, then titrated down by log10 dilutions. The colorimetric findings of the LAMP assay are based on a yellow to pink gradient with higher
copies of SARS-CoV-2 RNA corresponding to a yellow color. The limit of detection (LoD) range is shown with a gradient after 30min between 10 and 100
viral copies (lower right). d Replicates of the titrated viral copies using LAMP, as measured by QuantiFluor fluorescence over 201 patient samples. e The
sensitivity and specificity of the LAMP assay from 201 patients (132 negative and 69 positive for SARS-CoV-2, as measured by qRT-PCR). Thresholds are
DNA quantified by the QuantiFluor.
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155 assemblies, including 1143 single nucleotide variants (SNVs)
and four deletions. We compared the 155 full-length NYPH-
WCMC sequences with 46,581 SARS-CoV-2 sequences obtained
from a recent GISAID build (downloaded on 6/16/2020) using
the Nextstrain pipeline7 (Fig. 3a, see Methods). We generated

full-length SARS-CoV-2 assemblies for 9 of 517 (1.7%) of samples
that were found negative by qRT-PCR (Supplementary Fig. 6a).
Each of these demonstrated a high RPKM viral load, an abun-
dance of reads evenly covering the SARS-CoV-2 genome, and
high (>0.5) variant allele fractions (VAFs) of SNV’s commonly

Fig. 2 Full transcriptome profiles of SARS-CoV-2 Patients with NGS, qRT-PCR, and LAMP. a Reads mapping to SARS-CoV-2 (red), other viruses (pink),
human (blue), bacteria (light blue), archaea (black), fungi (dark gray), across samples with high/medium/low viral load according to qRT-PCR (“High”,
“Medium”, and “Low”, respectively), qRT-PCR negative samples with no detection of other respiratory viruses (“None”), and qRT-PCR negative samples in
which other respiratory viruses were detected by RNA sequencing and/or by a BioFire panel (“Other viral infection”). b Heatmap of abundance of a
selection of viral pathogens across samples. c BioFire viral validation of the detection of viral pathogens using RNA sequencing across 669 samples. Box
plots to compare relative abundance of viral pathogens in RNA sequencing between samples that were found as positive or negative for each virus in a
BioFire PCR panel. Box plots show the median as center, first and third quartiles as the box hinges, and whiskers extend to the smallest and largest value no
further than the 1.5× interquartile range (IQR) away from the hinges.
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seen in other positive samples and GISAID (Supplementary
Fig. 6a). These results indicate that qRT-PCR false negatives can
occur, but are rare.

We then used a New York State-focused build of Nextstrain
resulting in the incorporation of our 155 genomes with
3541 sequences from GISAID (Fig. 3a). Analyzing worldwide
groupings annotated by the Nextstrain database, we found a high
proportion (>74%, 116/155) of our assemblies were associated
with clade 20C (Fig. 3b), which overall represents 17% of strains
in the GISAID build. Our metatranscriptomic assembly-based
clade assignments for NYC strains were consistent with those
obtained by parallel targeted-sequencing based studies from the
same period (Fig. 3b). Investigating the geographical and
temporal distribution of non-NYC samples in 20C, we found a
global distribution with a likely origin in Western Europe
(Fig. 3c). The first noted cases of 20C in GISAID were recovered
in France on 2/21/2020, but since then, this clade has represented
a minority (<20%) of Western European cases. In contrast, 20C
represented a steady majority of (>70%) of NYC cases from
March to May 2020. Interestingly, 20C was relatively rare (<50%)
in other regions of the US in March, but increased through June.
The most striking increase was in the southern USA, where 20C
began under 30% prevalence in March and rose to above 80%
prevalence in May and June. The SNVs defining the 20C clade
were non-synonymous variants targeting genes encoding the
nonstructural protein 2 (NSP2), the viral replicase, and ORF3a, a
poorly characterized SARS-CoV-2 protein with putative roles in
inflammation14. These observations refine the results of a
previous study that associated NYC cases with clade A2a3. This

clade is defined by the presence of the Spike p.D614G mutations
and comprises a superset of 20C.

While the majority of the known variation in SARS-Cov-2
represents SNVs, one hundred distinct deletion variants have
been reported in previous analyses15. Of the four deletions we
detected in our assemblies, three represented the same in-frame
deletion in nsp1 (p.141_143del) (Supplementary Fig. 7a). This
deletion was well supported by reads in our samples (Supple-
mentary Fig. 7b). While it was not exclusive to genomes from our
study, we only detected this deletion in 168 GISAID genomes
(0.3%). Interestingly, rather than forming a single monophyletic
subclade, genomes carrying this deletion spanned all major
SARS-Cov-2 clades (19A: 12, 19B: 4, 20A: 68, 20B: 30, 20c: 53,
none: 4) suggesting that this deletion may have evolved many
times during SARS-CoV-2 community spread (Supplementary
Fig. 7c). In addition, while the dominant (171/172) version of this
deletion involved the in-frame deletion of nucleotide positions
686-694, a single genome included an alternative in-frame
deletion of positions 684–692, resulting in the same amino-acid
deletion.

Variant calling of assemblies and RNA-seq reference align-
ments showed most (87.5%) variants have VAFs >0.95 and high
(>100) numbers of variant-supporting reads. Analysis of VAF
posterior probability distributions identified a subset of alleles
whose VAFs were confidently (probability > 0.95) above 0.05 but
below 0.95 (Fig. 3d, e). We labeled these alleles as “het”
(heterogenous) variants and refer to the remaining (high VAF)
consensus assembly variants as "homogeneous.” Many of these
het variants were associated with robust read support despite

Fig. 3 Viral genome assemblies and variants. a Time-resolved phylogenetic tree of WCM samples and GISAID samples. Nodes corresponding to the 155
WCM strains are marked with circles. Branches and nodes are colored according to the Nextstrain clade affiliation. b Clade distribution amongst WCM
strains and other NY strains from GISAID. c Longitudinal distribution of clade assignments. Data points represent the portion of the sequences on GISAID
matching to each clade in a given week in each of the 8 regions. Lines show the mean and gray areas around the curve represent 95% confidence intervals.
d Variant allele frequencies (VAF, x-axis) for alternative alleles (y-axis) were calculated for all variants across viral strains, with heterogenous (het, 5% < ×
< 95%, red) variants shown as well as homogenous (black) variants with VAF > 0.95. e The distribution and density of the VAF for three exemplar samples
are shown relative to their variant type (top).
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frequently having VAFs below 0.05 and not being incorporated
into the consensus assembly sequence. (Supplementary Fig. 6b).
These results indicate that SARS-CoV-2 samples frequently
harbor minority viral populations, which can be detected and
characterized with shotgun metatranscriptomics. The relatively
large numbers of these het variants (>10) in a subset of cases,
presumably arising during the course of a single infection and
then rising to a reasonably high oligoclonal VAFs (0.1–0.2) level,
suggests that this intrahost diversification may be rapid and also
associated with positive selection.

Defining the SARS-CoV-2 host transcriptome. We then lever-
aged the total RNA-seq profiles to better understand the host
transcriptome during SARS-CoV-2 infection. Cell proportion
analyses using the MUSIC deconvolution algorithm showed
enriched proportions of cell types spanning goblet, ciliated air-
way, and epithelial cells across all samples (Supplementary
Fig. 8a, b). Differentially expressed genes (DEGs) associated with
SARS-CoV-2 infection were calculated using limma voom and
DESeq2 (see “Methods”). Overall, 757 significant DEGs (q < 0.01,
>1.5-fold change) were found in the qRT-PCR positive vs.
negative samples (Supplementary Data 3), spanning 350 upre-
gulated DEGs and 407 downregulated DEGs, and a total of 8851
unique genes (q < 0.01, >1.5-fold change) (Fig. 4).

Differentially expressed host genes indicated a wide range of
antiviral responses, including a common interferon response
across all ranges of viral levels, which was significantly higher
when compared to SARS-CoV-2 negative samples that harbored
other respiratory viruses (Fig. 4a, b). Notably, host cells showed
an increase in angiotensin converting enzyme 2 (ACE2)
expression (Fig. 4b) (p value= 1.4 × 10−9), which is the SARS-
CoV-2 cellular receptor16. This critical gene for viral entry17

exhibited an expression level concomitant with the higher levels
of SARS-CoV-2 virus, along with IFI27 (Interferon Alpha
Inducible Protein 27, p < 2.2 × 10−16) and IFI6 (Interferon Alpha
Inducible Protein 6, p < 2.2 × 10−16). The DEGs also included
HERC6 (HECT Containing E3 Ubiquitin Protein Ligase Family
Member 6), which aids Class I MHC-mediated antigen processing
and Interferon-Stimulated Genes (ISGs) (Fig. 4c), underscoring
the impact of the virus on these cells’ immune response18. Also, a
subset of cytokines (CXCL10, CXCL11, and CCL8) showed the
highest spike of expression in the higher viral load sub-group,
matching previous results from animal models and infected
cells19. Of note, these expression patterns significantly overlapped
with those taken from an independent cohort (UCSF) of 286 NP
swabs also processed by RNA-seq (see Methods and Supplemen-
tary Fig. 8c, p= <2.2 × 10−16). The host transcriptome that
exhibited the greatest amount of DEGs were those with the
highest viral titer (Supplementary Fig. 9).

Downregulated genes and those with a negative enrichment
score (NES) were functionally distinct (Fig. 4d). This included a
significant decrease in gene expression for the olfactory receptor
pathway genes (q value= 0.0005, Supplementary Data 4), which
is consistent with a COVID-19 phenotype wherein patients lose
their sense of smell. Other downregulated genes included the
transmembrane serine protease TMPRSS-11B, which regulates
lung cell growth20 and ALAS2, a gene which makes erythroid
ALA-synthase21 that is found in developing erythroblasts (red
blood cells). ALA-synthase plays an important role in the
production of heme TRIM2 E3 ubiquitin ligase induced during
late erythropoiesis, which indicated a connection to hematologi-
cal and iron (heme) regulation during infection. Accordingly,
genes in a related biological network were significantly enriched
based on Gene Ontology (GO) pathways for iron regulation (q
value= 0.04, Supplementary Data 4). Both the upregulated and

downregulated gene expression differences were distinct from
those of house-keeping genes, which stayed mostly stable during
infection (Supplementary Fig. 10).

ACE inhibitor/angiotensin receptor blocker usage correlates
with COVID-19. Given our observation of increased ACE2 gene
expression in patients with high SARS-CoV-2 viral load, we
investigated the interplay of receiving pharmacologic angiotensin
converting enzyme inhibition (ACEI) or angiotensin receptor
blockers (ARBs) for hypertension and clinical features of
COVID-19. Since ACE2 expression can be increased in patients
taking ACEIs and ARBs22, the observed correlation of viral titer
with ACE2 expression may be attributed to the pre-infection use
of such inhibitors, which is common in older patients and those
with comorbidities23.

To address this, we analyzed ACEI/ARB use and severe
COVID-19 outcomes in an observational cohort of individuals
(n= 50,821) suspected of SARS-CoV-2 infection at New York-
Presbyterian Hospitals, comprising 23,170 patients from Colum-
bia University Irving Medical Center (NYP-CUIMC) and 27,651
patients from Weill Cornell Medical Center (NYP-WCMC;
Table 1). At both sites, we found evidence that ACEI/ARB use
is associated with lower rates of intubation (CUIMC Hazard
ratio, HR= 0.79, 95% confidence interval, CI: 0.68–0.91, WCMC
HR= 0.62, CI: 0.48–0.81) and lower risk of death (CUIMC HR=
0.66, CI: 0.58–0.75, WCMC HR= 0.73, CI: 0.56–0.95) following
confirmed SARS-CoV-2 infection (Fig. 5). Each comparison
used propensity matching (PSM) and Cox proportional hazards
models with covariate adjustments for age, sex, race, ethnicity,
drug indications, and relevant comorbidities (see “Methods”;
Table 1).

ACEI/ARB have a number of indications in addition to
hypertension, so confounding variables remains a challenge. To
address this issue, we repeated the analysis in a cohort of
individuals with recent exposure to one of four antihypertensive
medication classes: ACEI/ARB, beta blockers (BB), calcium
channel blockers (CCB), and thiazide/thiazide-like diuretics
(THZ)). Evaluating each drug class separately using PSM and
covariate adjustment, we found the rate of intubation was
consistently lower for ACEI/ARB exposure (CUIMC HR= 0.74,
CI: 0.64–0.85, WCMC HR= 0.73, CI: 0.56–0.95) and higher for
THZ exposure (CUIMC HR= 1.96, CI: 1.67–2.31, WCMC HR=
1.90, 1.42–2.55). Conversely, we found no statistically significant
associations for CCB (CUIMC HR= 0.92, 0.81–1.05, WCMC
HR= 1.04, CI: 0.83–1.30), and only weak evidence of positive
associations between intubation and BB exposure (CUIMC HR=
1.16, CI: 1.03–1.31, WCMC HR= 1.04, CI: 0.84–1.27). Mean-
while, we found consistently lower rates of death among patients
with ACEI/ARB (CUIMC HR= 0.82, CI: 0.71–0.93, WCMC HR
= 0.67, CI: 0.52–0.87), BB (CUIMC HR= 0.81, CI: 0.71–0.91,
WCMC HR= 0.74, CI: 0.61–0.91), and CCB (CUIMC HR=
0.63, CI: 0.55–0.72, WCMC HR= 0.69, CI: 0.55–0.86) exposures,
while THZ exposure had harmful associations (CUIMC HR=
1.03, CI: 0.87–1.22, WCMC HR= 1.43, CI: 1.04–1.96). In
summary, among SARS-CoV-2-infected individuals with recent
exposure to antihypertensive drugs, ACEI/ARBs were the only
class which were associated with lower risk of intubation, while
ACEI/ARB, BB, and CCB use was negatively associated with
death. (Complete estimates are provided in Supplementary
Data 6).

Spatial expression data. We next used a spatial transcriptomic
technology (GeoMx) to characterize the distribution of a set of
>1800 genes (the GeoMx Cancer Transcriptome Atlas probe set,
or CTA) across tissues from four COVID-19 patients who died
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and then received an autopsy (Fig. 6); these were compared to
three normal lung donors (excess lung material from healthy lung
transplant donors). Samples were processed using the Nanostring
GeoMx protocols (see methods), including illuminating and UV-
cleaving the antibody-linked probes for Areas of Interest (AOIs)
within the patients’ lung FFPE sections and alveoli, followed by
Next-Generation Sequencing (NGS) profiling on the Illumina
NextSeq500. These data showed spatially-restricted expression of
ACE2 at the perimeter of the alveoli (Fig. 6b), as well as the
presence of the SARS-CoV-2 virus in some of the same sections.

We then used cellular deconvolution methods based on the
CTA data across the 107 total AOIs (69 COVID+ and 38
COVID−) to characterize the types of cells present in the lung.
The cell proportions showed an increase in macrophages present
in the lung tissue (Fig. 6c) compared to normal donors,
particularly for patient #3, where 30–52% of the cells found
within the AOIs were macrophages, as well as patient #4 (up to
18%). In contrast, normal lung samples showed <1% across all
AOIs tested (n= 38 total AOIs). Of note, patient #1 showed up to
3.8% presence of neutrophils in the AOIs profiled, compared to

Fig. 4 Host transcriptome responses to SARS-CoV-2. a Samples were quantified by RNA-seq (log10 SARS-CoV-2% of reads), and qRT-PCR (Ct values) to
create a three-tier range of viral load for the positive samples (class, red) and those samples with other viral infections that were SARS-CoV-2 negative
(gray). Differentially expressed genes showed upregulated (orange) genes as well as downregulated (purple) genes compared to non-viral samples.
b Upregulated genes, with violin plots for all samples, include IFI6, ACE2, SHFL, HERC6, IFI27, and IFIT1, based on data from (c), which is the total set of
DEGs, shown here as a volcano plot, with a core set of upregulated genes (orange) distinct from the set of downregulated genes (purple), compared to
genes that are not significantly differently expressed (gray) in any comparison (Statistical tests by negative binomial model in DESeq2, multiple testing
adjusted p value < 0.01, |logFC| >0.58). d GSEA enrichment of significant pathways, with color indicating statistical significance and circle size the number
of genes on the leading edge. e Screenshot of the WCM COVID-19 Genes Portal, an interactive repository for mining the human gene expression changes
in the data from this study (https://covidgenes.weill.cornell.edu).
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no detectable presence in normal donors (Fig. 6, Supplementary
Fig. 11). Both of these enrichments represent unique cellular
distributions in the COVID-19 patients relative to normal donors,
and agrees with reports of immune cell-mediated influence of
inflammation for COVID-19 patients.

Depletion and enrichment of HLA types in COVID patients.
Finally, to probe host genetic diversity in widely expressed genes
broadly implicated in immune responses, we also checked RNA
data for potential enrichment or depletion of class I HLA type(s)
among COVID patients. Using arcasHLA24, we tallied fre-
quencies of first-field locus-specific haplogroups (serotype alleles,
in HLA parlance) called with default or greater confidence,
among SARS-CoV-2 qRT-PCR-positive versus -negative patients
who each had at least 100 class I HLA-mapped transcriptome
reads. First-pass single-locus Fisher exact tests suggested modest
depletion of HLA-B*08 and/or HLA-B*18, and/or enrichment of
HLA-B*35, HLA-B*39, and/or HLA-B*48, in COVID patients
(Supplementary Fig. 12), but no such disparity in HLA-A or HLA-
C (Supplementary Fig. 13). To more stringently buffer finite-
sample dependence among calls at each locus, and the risk of
spurious findings under multiple testing, we permuted qRT-PCR
positive and negative labels, preserving sample diplotype calls in
100 randomly seeded runs of 1000 permutations each. Such
permutation supported, by consistent extremity of original counts
to those under permutation, putative COVID patient-depletion
of HLA-B*08 and HLA-B*18 and COVID patient-enrichment of
HLA-B*39 and HLA-B*48, but not of HLA-B*35 (Supplementary

Fig. 12B). We caution that these findings, while nominally sig-
nificant, neglect plausible ancestry-differential COVID-19 infec-
tion incidence and/or ascertainment in our NYC cohort (which
may strongly confound HLA frequency comparison), as well as
intrinsic imprecision of diplotype inference from RNA data,
linkage among class I HLA genes (and other major histo-
compatibility complex loci), and/or other sequence variation
distinctive to specific subtypes of surveyed haplogroups.

Discussion
In summary, these data showed that total RNA-sequencing data
has great promise as a comprehensive and accurate host and
pathogen profiling method. The RNA-seq data enabled a
complete genetic map of the viruses, bacteria, host responses,
and even HLA subtypes from the sample data source. Of note, a
significant subset of our samples, including in nine qRT-PCR
negative cases, had sufficient reads to assemble the SARS-CoV-
2 genome de novo. Though these likely qRT-PCR false nega-
tives could not be attributed to specific sequence changes (e.g.,
primer site mutations), their high frequency underscores the
limitation of “gold standard” qRT-PCR approaches for SARS-
CoV-2 detection. These results also highlight the need for open-
source primer design, so these assays can be updated as a more
granular picture of strain diversity and evolution is obtained
through worldwide sequence efforts25. Nevertheless, the rate of
SARS-CoV-2 assemblies or reads among qRT-PCR negative
cases with ILI symptoms was low, despite a comprehensive
search for these sequences among shotgun transcriptomics

Table 1 ACEI/ARB characteristics.

Characteristic CUIMC WCMC

No ACEi/ARB ACEi/ARB No ACEi/ARB ACEi/ARB

N (total= 50,821) 19,299 3871 25,017 2634
Median age (IQR) 48 (34.1–63.2) 68.2 (58.9–77.2) 50 (35–67) 68 (58–76)
Male sex (%) 7479 (38.8) 2021 (52.2) 9357 (37.4) 1385 (52.6)
Race—Asian (%) 590 (3.1) 64 (1.7) 2852 (11.4) 225 (8.5)
Race—Black (%) 3294 (17.1) 802 (20.7) 4011 (16) 453 (17.2)
Race—White (%) 5942 (30.8) 1319 (34.1) 9365 (37.4) 1064 (40.4)
Ethnicity—Hispanic (%) 5020 (26) 1534 (39.6) 3915 (15.6) 464 (17.6)
Asthma (%) 1816 (9.4) 715 (18.5) 1152 (4.6) 345 (13.1)
Chronic kidney disease (%) 2980 (15.4) 2131 (55.1) 3580 (14.3) 1621 (61.5)
Chronic obstructive lung diseases (%) 846 (4.4) 545 (14.1) 609 (2.4) 283 (10.7)
Coronary artery disease (%) 1253 (6.5) 1243 (32.1) 842 (3.4) 627 (23.8)
Diabetes mellitus (%) 2300 (11.9) 1999 (51.6) 1928 (7.7) 1139 (43.2)
Diabetic nephropathy (%) 266 (1.4) 286 (7.4) 217 (0.9) 236 (9)
Diabetic neuropathy (%) 325 (1.7) 355 (9.2) 141 (0.6) 159 (6)
Diabetic retinopathy (%) 135 (0.7) 158 (4.1) 93 (0.4) 138 (5.2)
Diabetic vasculopathy (%) 123 (0.6) 193 (5) 48 (0.2) 70 (2.7)
Heart failure (%) 1176 (6.1) 1187 (30.7) 676 (2.7) 576 (21.9)
Hypertension (%) 3986 (20.7) 2928 (75.6) 3592 (14.4) 2227 (84.5)
Insulin use (%) 1839 (9.5) 1642 (42.4) 910 (3.6) 729 (27.7)
Myocardial infarction (%) 499 (2.6) 614 (15.9) 375 (1.5) 301 (11.4)
Obesity (%) 3659 (19) 1610 (41.6) 3529 (14.1) 1166 (44.3)
Proteinuria (%) 3063 (15.9) 1465 (37.8) 1327 (5.3) 617 (23.4)
HbA1c median (N) 5.9 (2315) 6.7 (1558) 6.1 (895) 6.7 (452)
Beta blocker (%) 2208 (11.4) 2198 (56.8) 1746 (7) 1406 (53.4)
Calcium channel blocker (%) 1854 (9.6) 1902 (49.1) 1305 (5.2) 1176 (44.6)
Thiazide/thiazide-like diuretic (%) 664 (3.4) 1345 (34.7) 476 (1.9) 816 (31)
Tested for SARS-CoV-2 infection (%) 17812 (92.3) 3500 (90.4) 23578 (94.2) 2464 (93.5)
Confirmed SARS-CoV-2 infection (%) 4697 (24.3) 1252 (32.3) 2878 (11.5) 479 (18.2)
SARS-CoV-2 infection/COVID-19 (%) 7128 (36.9) 1730 (44.7) 4343 (17.4) 652 (24.8)
Intubated/COV+ (% COV+) 437 (6.1) 242 (14) 254 (5.8) 74 (11.3)
Died/COV+ (% COV+) 504 (7.1) 261 (15.1) 226 (5.2) 69 (10.6)

Breakdown of investigated cohort by ACEI/ARB exposure and site. Listed are all indications and comorbidities considered in the clinical analysis.
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reads. These results indicate that existing standard detection
methods are reasonably adapted to patterns of SARS-CoV-2
strain variation.

Notably, our phylogenetic analysis shows that the 20C clade
comprises the majority of known NYC samples, including those
sequenced outside of this study3. Though remaining NYC cases
show a wide distribution across all identified clades, the pre-
dominance (>80% in NYC) of such a narrowly defined set of
sequences within NYC from a minority (≤20%) Western Eur-
opean suggests either a founder effect or differential strain fitness.
Though the Spike D614G mutation, which defines a superclade of
20C previously known as A2a3, has been proposed to increase
transmissibility (e.g., via higher viral load), and the low and stable
prevalence of 20C in Western Europe since March suggests
against differential fitness as an explanation for its dominance in
NYC. A more likely explanation involves the early introduction
and expansion of one or several 20C cases to NYC in late Feb-
ruary, e.g., via the New Rochelle cluster. The gradual increases of
20C in the remainder of the USA post March may similarly
reflect migration patterns of New Yorkers to the South and
Midwest.

Our results further demonstrate the value of RNA-seq data by
revealing distinct, host transcriptional programs that were acti-
vated during viral infection of the naso-/oropharynx with SARS-
CoV-2. This includes upregulation of specific interferon pathway
genes (SHFL, IFI6, IFI27, and IFIT1) that have been previously
associated with the innate antiviral host immune response against
other positive-strand RNA viruses (e.g., hepatitis C, Dengue
virus). These results also provide clinical relevance for recently
published results from animal and cellular models of SARS-CoV-
219. Our analyses also implicate expression perturbations of the
ACE pathway in SARS-CoV-2 host response, including ACE2,
and map these patterns from COVID-19 lung samples from
autopsies26. Patients presenting with COVID-19 frequently har-
bor comorbidities such as hypertension, diabetes mellitus, and
coronary heart diseases, all of which have been associated with
increased disease severity23,27. Since these comorbidities are fre-
quently treated with ACEIs and ARBs, one possibility is that these
medications may make patients more susceptible to SARS-CoV-2
infection, but this has been limited in prior studies.

Here, we examined the risk of medication use and comorbid-
ities in the context of ACEI or ARB in a large, retrospective

Fig. 5 Host risk to SARS-CoV-2. a Estimates for ACEI/ARB use effect on SARS-CoV-2 infection test result, intubation, and death. Upper panels show
estimates from all patients without propensity matching (unmatched, no condition (N.C.)). Lower panels show estimates from propensity-matched
patients with recent exposure to antihypertensive (AH) drugs (ACEI, ARB, BB, CCB, and THZ) (Supplementary Data 6). Center points show the estimated
coefficient and the error bars show 95% confidence interval. Coefficients represent effect size estimates from logistic regression (for infection test
outcome) or Cox proportional hazards regression (mechanical respiration and mortality), and can be interpreted as log odds ratios (former outcome) or log
hazard ratios (latter outcomes). Colors indicate the variables used for regression on the cohort (drug exposure alone (blue), drug exposure plus age, sex,
history of diabetes mellitus (DM), history of hypertension (HTN) (green), drug exposure plus all demographics and risk factors considered (red)). Left
panels show estimates from NYP-CUIMC data, right panels show estimates from NYP-WCMC. b Curves for 50,821 patients requiring mechanical
respiration (top panels) and survival (bottom panels), as a function of time since confirmed infection and recent ACEI/ARB exposure status. Cohorts
created using propensity matching. Left panels give data from NYP-CUIMC, right panels give data from NYP-WCMC. c Comparison of cohorts before and
after propensity matching. Each point represents a difference in the mean between exposed and unexposed cohorts, divided by the mean of exposed and
unexposed cohorts. Filled circles give these standardized differences after propensity matching, unfilled circles give values before matching.
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clinical analysis of 50,821 patient records. These data show that
patients with ACEI/ARB exposure had lower risk of severe
COVID-19 outcomes, after adjusting for demographics, indica-
tions, and other relevant comorbidities. A recent study reported a
protective effect of ACEI/ARB exposure on mortality28. The
associations we found support this finding, and we found similar
associations for mechanical respiration requirements among
infected patients. Further, our data did not show that other

antihypertensive drug classes had any association with mechan-
ical respiration requirements, though BB and CCB were asso-
ciated with lower risk of death as well. While our data suggest a
protective association between ACEI/ARB use and severe
COVID-19 from two large New York hospitals (Columbia and
Weill Cornell), our results are still preliminary, and caution
should be taken in interpreting them. Because of the risk of
residual confounding variables, prospective clinical trials would

Fig. 6 Spatial transcriptomic profiles of patient autopsies. a Imaging from RNAscope showing fluorescence of target genes and imaging from GeoMx DSP
defining regions of gene expression measurement for COVID Patient #4. b Close up of few selected regions of interest (ROI). c Cellular composition of 107
tissue regions. Each column shows the cell proportions within a single alveolar segment, as estimated from mixed cell deconvolution of GeoMx RNA data.
Controls are from excess lung material from healthy lung transplant donors.
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be necessary before clinical guidelines should be changed. For
example, if some patients are more susceptible because they
already express high levels of ACE2, this could help with targeting
the ACE pathway in these patients as a prophylactic method.
However, if the cells respond to infection with ACE2 expression,
and this leads to the cytokine storm seen in patients, then this
could be used as a downstream treatment (post-infection), for
when ACE2 interacts with TMPRSS2, such as the ongoing trials
with camostat mesylate16.

Mitigating a fast-spreading pandemic, such as COVID-19,
requires scalable diagnostic and screening methods29,30. Such a
situation calls for fast, scalable tests readily implemented at home
or point-of-care. This one-tube, dual-primer colorimetric SARS-
CoV-2 assay has been clinically-validated with qRT-PCR, capture,
and total RNA-seq, and thus can help increase testing options;
moreover it has recently become available in several commercial
forms. Our preliminary results here and elsewhere demonstrate
SARS-CoV-2 detection from oral specimens is feasible and even
optimal31,32. As such, a LAMP-based approach on such sample
types could allow facilities to increase testing capabilities by
orders of magnitude. Viral pandemics can have significant, long-
lasting detrimental impacts for affected countries, and thus it is
crucial to deploy methods that can track and profile cases (e.g.,
RNA-seq, LAMP, qRT-PCR, capture) and provide a compre-
hensive view of host and viral biology33. These methods can help
mitigate the medical and socioeconomic harm from viral out-
breaks, as well as establish protective surveillance networks that
can help defend against future pandemics.

Methods
Sample collection and processing. Patient specimens were collected with
patients’ consent at New York-Presbyterian Hospital-Weill Cornell Medical Center
(NYPH-WCMC) and then processed for qRT-PCR. Nasopharyngeal (NP) swab
specimens were collected using the BD Universal Viral Transport Media system
(Becton, Dickinson and Company, Franklin Lakes, NJ) from symptomatic
patients. Samples were collected and processed through the Weill Cornell Medicine
Institutional Review Board (IRB) Protocol 19-11021069. All relevant ethical reg-
ulations for work with human participants were complied with. Observational
cohort analysis (ACEI/ARB) was done through the Columbia University IRB
Protocol AAAL0601. Oropharyngeal samples data from University Hospital of
Tuebingen were collected under IRB 243/2020A.

Extraction of Viral RNA and qRT-PCR detection. Total viral RNA was extracted
from deactivated samples using automated nucleic acid extraction on the QIA-
symphony and the DSP Virus/Pathogen Mini Kit (QIAGEN). One step reverse
transcription to cDNA and real-time PCR (RT-PCR) amplification of viral targets,
E (envelope) and S (spike) genes and internal control, was performed using the
Rotor-Gene Q thermocycler (QIAGEN).

Twist synthetic RNAs. We used two fully synthetic RNAs made by in vitro
transcription from Twist Biosciences, which were synthesized in 5 kb pieces with
full viral genome coverage of SARS-CoV-2. They were sequence verified to ensure
>99.9% viral genome coverage, and come as 1,000,000 copies per μL, 100 μL per
tube. The two controls are from Wuhan, China (MN908947.3) and Melbourne,
Australia (MT007544.1). Reference sequence designs came from NCBI: https://
www.ncbi.nlm.nih.gov/nuccore/MT007544 and https://www.ncbi.nlm.nih.gov/
nuccore/MN908947.3.

Reverse transcriptase, quantitative real-time PCR (RT-PCR). Clinical samples
were extracted as described above and then tested with qRT-PCR using primers for
the E (envelope) gene, which detects all members of the lineage B of the beta-CoVs,
including all SARS, SARS-like, and SARS-related viruses, and a second primer set
for the S (spike) gene, which specifically detects the SARS-CoV-2 virus. The
reaction also contains an internal control serving as an extraction control and a
control for PCR inhibition.

Samples were annotated using qRT-PCR cycle threshold (Ct) value for SARS-
CoV-2 primers. Subjects with Ct less than or equal to 18 were assigned “high-viral
load” label, Ct between 18 and 24 were assigned “medium viral load” and Ct
between 24 and 40 were assigned “low viral load” classes, with anything above Ct of
40 was classified as negative. We also predicted a combined viral load score using
Ct, GloMax QuantiFluor read-out from LAMP experiments and fraction of SARS-
CoV-2 matching NGS reads in a sample. For this score (40-Ct), (LAMP read-out)

and (log10(SARS-CoV-2 fraction+ 1e− 6)) were all normalized between zero and
one individually, and summed together using a combination weight of 5 for Ct, 3
for LAMP and 2 for NGS.

LAMP primer sequences. Primers (Supplementary Table 7) were designed using
PrimerExplorer (v4.0), as per guidelines in28 to find LAMP-compatible primers for
the SARS-CoV-2 reference genome (NCBI). LAMP’s inherent specificity (using
4–6 primers vs. 2 for PCR amplification), in combination with this in silico ana-
lysis, suggested little risk of cross-reactivity that might hinder specificity of N-gene
primers sensitive for SARS-CoV-2 (Supplementary Data 5). Overall, chosen pri-
mers had less than 80% homology with the vast majority of tested pathogen
sequences. For any organisms where a primer hit >80% homology, only one of the
six primers had significant homology making an amplified product extremely
unlikely. Overall, the results of this analysis predict no significant cross-reactivity
or microbial interference. We also assessed the potential impact of sequence var-
iation in circulating strains that might lead to poor amplification. In the thousands
of sequences deposited in GISAID (Shu and McCauley, 2017), only one site in the
priming region was observed to be polymorphic. The polymorphism (T30359C)
was only observed in 106 of 6753 (<2%) sequences with coverage of this region.
This variant overlaps the priming site of the LB primer but is not near a 3-prime
end and is not anticipated to cause amplification failure. The data from Fig. 1 show
the use of a single-tube, dual-primer protocol, wherein both the N2 gene and E-
gene primers are present.

The LAMP reaction setup. For each well or Eppendorf tube, we used a set of six
primers (above) for Gene N, the M1800 Colorimetric LAMP Master Mix (NEB),
water, and 11.5 μL of the sample. The protocol is as follows:

1. Reagents added:

a. 12.5 µL M1800 LAMP mix (NEB).
b. 1–5 µL LAMP primers (Gene N or N2/E mix)
c. 1–11.5 μL of sample.
d. Remaining volume (to 25 µl) H2O.

2. Vortex, spin down.
3. Place on Thermocycler at 65 °C for 30 min with lid at 105 °C.
4. Remove tubes, place on ice for 5 s.
5. Visualize over lab bench/ice/paper.

Oropharyngeal lysate LAMP run. Nasopharyngeal and/or oropharyngeal swab
samples from 201 patients were collected (IRB 243/2020A Tuebingen) using a dry
cotton swab (cliniswab DS, Aptaca Spa (Italy), #2170/SG/CS). Crude extraction was
performed according to pending unpublished European patent [No. 20168 593.0].
In summary, the dry swab was transferred to a 15 ml falcon (Greiner Bio-one,
#188.271), filled with 0.5 ml saline solution, and shaken vigorously for 30 min.
Afterwards the liquid is transferred to a screw-cap (Sarstedt, #72.692.005). 10µl of
the crude extract was added to 12.5 µl 2× NEB LAMP master mix (#M1800L), 2.5
µl of water, 1 µl 25× primer master mix Gen N, and was incubated at 65 °C for
30–40 min. A sample of a patient who tested positive using an approved qRT-PCR
test (sample #1123) was used as an internal control. The read-out was performed
visually by color change from pink to yellow or orange.

The RNA isolation was performed with 50 µl of the crude extract on the
QIAsymphony with the DSP Virus/Pathogen Kit (Qiagen, #937055). The RT-PCR
was performed using 5 µl of 85 µl eluate with TIB MolBiol Lightmix® MODULAR
SARS AND WUHAN CoV E-Gene Kit. Analysis was done with the LightCycler(R)
480 II software and calculated CP values were used for statics and graphical
analysis. The Standard curve with a synthetic RNA control (Twist Bioscience,
#MT007544.1) was generated using the LAMP assay and in parallel with the qRT-
PCR. The control RNA was diluted serially tenfold with water and the absolute
copy number, ranging from 105 to 10−5 was analyzed. Gel electrophoresis after
visual read-out of the LAMP assay was done by loading 5 µl of the LAMP reaction
with 5 µl 2× loading dye on a 1.5% agarose (Seakem LE Agarose, Lonza #50004)
together with 5 µl of a 1 kB DNA Ladder (Roche). The electrophoresis was
performed at 90 V constant.

The photometric read-out of the standard curve was performed in a plate
reader. To this end the LAMP reaction was transferred into a 96-well V-shaped
cell-culture plate (Greiner Bio-One, #651180). After measuring the absorbances at
432 and 560 nm, the relative absorbance abs (432)/abs (560) was calculated by
subtraction of the negative (water) control from all samples (including the negative
control). All values above a threshold of 0.1 are considered as a positive assay read-
out and are marked with “+”, all other values are negative and are marked “−”.
Statistical and graphical analysis were performed with GraphPad Prism 8.0.4.

Light intensity and data processing. Completed reactions were analyzed with the
Promega GloMax Explorer (Promega GM3500) fluorometer using the QuantiFluor
ONE dsDNA system (Promega E4871). This system recorded fluorometric read-
out from each well using an emission filter of 500-550nm, an excitation filter set at
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blue 475 nm, and a high sensitivity setting on the Glomax software. Values were
then tabulated and compared with controls (positive and negative). The intensity
threshold of 2.5× negative control was used as the threshold for positive detection.

DNAse treatment, rRNA depletion, and RNAseq library construction. For
library preparation, all samples’ total nucleic acid (TNA) were treated with DNAse
1(Zymo Research, Catalog # E1010), which cuts both double-stranded and single-
stranded DNA. Post-DNAse digested samples were then put into the NEBNext
rRNA depletion v2 (Human/Mouse/Rat), Ultra II Directional RNA (10 ng), and
Unique Dual Index Primer Pairs were used following the vendor protocols from
New England Biolabs (except for the first flowcell, see Supplementary Figures). Kits
were supplied from a single manufacturer lot. Completed libraries were quantified
by Qubit or equivalent and run on a Bioanalyzer or equivalent for size determi-
nation. Libraries were pooled and sent to the WCM Genomics Core or Hudso-
nAlpha for final quantification by Qubit fluorometer (ThermoFisher Scientific),
TapeStation 2200 (Agilent), and qRT-PCR using the Kapa Biosystems Illumina
library quantification kit.

Taxonomic classification of sequence data. All complete genome or chromosome
level assemblies from RefSeq database for archaea, bacteria, protozoa, fungi, human
and viruses including SARS-CoV and SARS-CoV-2 genomes were downloaded and
used for building a classification database for Kraken2 (k= 35, ℓ= 31)34,35.

To get an approximation for the positive and negative classification rate, the
BBMap random-reads script was used to simulate 10 million 150 bp paired-end
Illumina reads from the database sequences36. For the negative test all sequences in
the database excluding SARS-CoV and SARS-CoV-2 genome were removed from
the sequences and the simulated reads were mapped with the Kraken2 database
(Supplementary Data 1).

For the positive test, the same process was repeated using only SARS-CoV-2
genome (Supplementary Data 2). Positive results show >99% of SARS-CoV-2 reads
uniquely map to either SARS-CoV or SARS-CoV-2, with the remaining 1% are
ambiguous, potentially matching multiple taxa (Supplementary Data 1, 2). All
sequences were classified using the Kraken2 database. To remove the potential
contamination of reads that are homologous across multiple species we used
Kraken2 outputs to filter sequences to either human (uniquely matching Homo
sapiens and no other taxon in our database), SARS-CoV-2 (either matching SARS-
CoV or SARS-CoV-2 due to homology between these two viruses), and remaining
reads that may be coming from unclassified, archaeal, bacterial, viral, fungal,
protozoan or ambiguously mapping reads to human or SARS-CoV37.

Using kraken2 classifications common respiratory pathogens were identified in
clinical samples. Any SARS-CoV-2 negative sample with >0.01% relative
abundance (normalized after the exclusion of any human, SARS-CoV-2 and
uncharacterized reads) for presence of viral pathogens were classified as potential
unrelated viral infection (Supplementary Fig. 9). These samples were used as
controls during specific differential expression comparisons to compare the
common effects of viral infections on host cells from SARS-CoV-2 infection.

Viral genome assembly. Reads unambiguously mapping to SARS-CoV or SARS-
CoV-2 were aligned to the Wuhan-Hu-1 (Genbank accession MN908947.3) refer-
ence using bwa mem38. Variants were called using iVar, and pileups and consensus
sequences were generated using samtools39–41. Any sample with >99% coverage
above 10× depth for SARS-CoV-2 genome were taken as reliable samples, which
resulted in 155 samples (146 positive, 9 negative). 155 clinical samples were com-
pared to 46,581 SARS-CoV-2 sequences from GISAID (as of June 16, 2020)42,43. All
sequence filtering, alignments, phylogenetic inference, temporal ordering of
sequences, and geographic reconstruction of likely transmission events were done
using Nextstrain7,44,45. Nextstrain was configured to generate a New York State-
focused build. Sequence identity and coverage metrics were calculated using
Mview46. Phylogenetic trees were created using Nextstrain’s augur as described
above, and visualized using the ggtree package in R47.

Viral variant calling and allelic fraction estimation. Full-length viral consensus
sequences were aligned to the Wuhan-Hu-1 reference using bwa mem38 with
default settings. Variants were identified by enumerating the coordinates and
query/reference subsequences associated with mismatches (SNV) and gaps in the
query (deletion) and reference (insertions) using R/Bioconductor (GenomicRanges,
Rsamtools, Biostrings packages) and gChain (https://github.com/mskilab/gChain)
packages. Exhaustive variant calling on read alignments was additionally per-
formed using bcftools mpileup and call, with variant read support (VAF, alternate
allele count) enumerated with the R/Bioconductor Rsamtools package.

For each variant, a posterior distribution of VAF was computed using a beta
distribution with shape parameters θ comprising reference and alternate allele
counts and pseudo count of 0.5. Variants were classified as het (heterogenous) if
PðVAF > 0:05 ^ VAF < 0:95jθÞ> 0:95. For a given specimen, posterior VAF
distributions of k heterogenous variants were then integrated using a histogram
density estimator by summing the posterior VAF density across all variants at each
point of a grid of 100 points evenly spaced in the ð0; 1Þ line. This (unnormalized)
mixture density was visualized alongside the individual VAF densities as an
estimate of the probability density of a putative viral subclone.

Cell deconvolution analysis. Bulk RNAseq data were deconvolved into cell
composition matrices by MUSIC algorithm48, via reference single-cell RNAseq
data from upper respiratory epithelium obtained from nasal brushes and upper
airway and lung cells49.

Human transcriptome analysis. The reads that mapped unambiguously to the
human reference genome via Kraken2 were used to detect the host transcriptional
response to the virus. Reads matching Homo sapiens were trimmed with Trim-
Galore, aligned with STAR (v2.6.1d) to the human reference build GRCh38 and the
GENCODE v33 transcriptome reference, gene expression was quantified using
feature Counts, stringTie and salmon using the nf-core RNAseq pipeline50–55.
Sample QC was reported using fastqc, RSeQC, qualimap, dupradar, Preseq, and
MultiQC56–60. Samples that had more than 10 million human mapped reads were
used for differential expression analysis. Reads, as reported by feature Counts, were
normalized using variance-stabilizing transform (vst) in DESeq2 package in R for
visualization purposes in log-scale61. Limma voom and DESeq2 were used to call
differential expression with either Positive cases vs. Negative, or viral load (High/
Medium/Low/None excluding any samples with evidence of other viral infections)
as reported by either qRT-PCR cycle threshold (Ct) values, or using the inverted
normalized Ct value as continuous response for viral levels, where Ct of 15 is 1.0
and Ct of >40 is taken as 062. Genes with BH-adjusted p value < 0.01 and absolute
log2 fold-change greater than 0.58 (at least 50% change in either direction) were
taken as significantly differentially regulated19. The same approaches were repeated
correcting for potential confounders in our data in two ways. In the first correction
ciliated cell fraction (as predicted by MUSIC) was added as another covariate to
our model. For the second correction SVA was run on the data and the resulting
two surrogate variables were included in a multivariate model63. The complete gene
list for all comparisons are given in Supp Data 3. Resulting gene sets were ranked
using log2 fold-change values within each comparison and put into GSEA (Sup-
plementary Data 4) to calculate gene set enrichment for molecular signatures
database (MSigDB), MGI Mammalian Phenotypes database and ENCODE tran-
scription factor binding sets64–68. Any signature with adjusted p value < 0.01 and
absolute normalized enrichment score (NES) ≥ 1.5 were reported (Supplementary
Data 3).

Cross-reactivity analysis. Primers were compared with a list of sequences from
organism from the same genetic family as SARS-CoV-2 and other high-priority
organisms listed in the United States Food and Drug Administration’s Emergency
Use Authorization Template (https://www.fda.gov/media/135900/download).
Using the sequence names in the EUA template, the NCBI taxonomy database was
queried to find the highest quality representative sequences for more detailed
analysis. Primers were compared to this database using Blast 2.8.1 and the fol-
lowing parameters (word size: 7, match score: 2, mismatch score: −3, gap open
cost: 5, gap extend cost: 2). Up to 1000 hits with e value > 10 were reported.

Inclusivity analysis. Unique, full-length, human-sample sequences were down-
loaded from the GISAID web interface. These sequences were aligned to
NC_045512.2 (Wuhan SARS-CoV-2) using minimap2 -x asm5 and visually
inspected using IGV 2.8.0 with allele frequency threshold set to 0.01.

ACE inhibitor/angiotensin receptor blocker clinical cohort analysis. We esti-
mated the effects of ACEI/ARB exposure on COVID-19 using an observational
case-control analysis of electronic health record data from two NYC hospitals
(CUIMC and WCMC). Due to legal and institutional restrictions on data sharing,
we performed the analysis at each site separately. We used data from clinical
encounters occurring between March 10 and June 15, 2020. Our study included all
individuals who received a valid SARS-CoV-2 swab test. We used two cohorts for
comparison22: all individuals who received a positive SARS-CoV-2 swab test result
and21 all individuals from the first cohort who were exposed to any of four anti-
hypertensive drug classes (ACEI/ARB, BB, CCB, and THZ). A patient was con-
sidered exposed to one of these drug classes if they received and filled a
prescription for a drug in that class at any time in 2020.

We considered two severe COVID-19 outcomes: intubation and death
following confirmed infection. Individuals with a single positive test result were
considered to have been infected and were included in our analysis. Intubation or
death following confirmed infection was considered related to COVID-19. As we
cannot determine from our data the date of infection, an individual became at risk
of intubation and death due to COVID-19 7 days before their first positive test
result or their first COVID-19 diagnosis. We determined mortality from a death
note filed by a resident or primary provider that records the date and time of death.
Intubation was used as an intermediary endpoint and is a proxy for a patient
requiring mechanical respiration. We used note types that were developed for
patients with SARS-CoV-2 infection to record that this procedure was completed.
In addition, we validated outcome data derived from notes against the patient’s
medical record using manual review. As a comparison, we also performed a logistic
regression using the same approach for the outcome of the infection test result
itself using the full cohort of tested individuals.

We gathered data on the following 19 covariates, which were used both for
propensity matching and for covariate adjustment: age, sex, race, ethnicity,
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hypertension, obesity, chronic kidney disease, coronary artery disease, heart failure,
myocardial infarction, diabetes mellitus, diabetic nephropathy, diabetic
neuropathy, diabetic retinopathy, diabetic vasculopathy, asthma, chronic
obstructive lung diseases, proteinuria, and insulin use. Individuals without
demographic information (first four covariates) were excluded from the analysis.
The final 15 variables represent disease history and are defined in detail in the
supplement.

Experimental statistical methods. Using a combination of two cohorts and two
severe outcomes, we made four propensity-matched, adjusted estimates of effect for
ACEI/ARB. For comparison, we performed the same analysis using three other
antihypertensive classes (BB, CCB, THZ). To inspect the degree of confounding
due to covariates, we also estimated each effect with and without propensity
matching and three levels of covariate adjustment. We used a Cox proportional
hazards model for both outcomes. Propensity matching used logistic regression
with the above 19 covariates using a 3:1 ratio of controls to cases in each of 100
propensity score bins, selecting none when the bin did not contain both cases and
controls.

Statistical and visualization software. All electronic health data analyses were
performed in Python 3.7 and all models were fit using R 3.6.3. Survival analyses
(Cox regressions and survival curves) were performed with the survival package for
R, version 3.1-12. Additional statistical analyses, processing, transformation, and
visualization of genomic data were completed in R/Bioconductor (“Rsamtools”,
“GenomicRanges”, and “Biostrings”) and additional Imielinski Lab R packages
(“gTrack”, “gChain”, “gUtils”, and “RSeqLib”) available at https://github.com/
mskilab. Visualization of phylogenies was completed using Auspice and the ‘ggtree’
and ‘ape’ libraries for R.

The sequential organ failure assessment (SOFA). The SOFA score is a severity
of illness score that sums six separate organ dysfunction subscores, was used to
characterize the burden of organ dysfunction. For the central nervous system,
kidney, liver, and coagulation organ dysfunction subscores, traditional SOFA
methodology69 was used, based on patient status in the first 24 h following
admission to the hospital (can be whatever time frame that you used). The
respiratory SOFA subscore requires the selection of the lowest PaO2/FiO2 of the
24 h period and associates a lower ratio with a more severe dysfunction score,
in situations outside of an ICU setting a PaO2 is often not available. We used a
commonly accepted imputation technique to impute a PaO2 from a SpO270. The
cardiovascular SOFA subscore was updated with additional vasopressors according
to a norepinephrine equivalency table from a clinical trial71. Specifically, pheny-
lephrine and vasopressin were converted to a norepinephrine equivalency. Missing
data for each subscore was treated as normal.

Spatial gene expression. RNA from FFPE lung sections was extracted with the
RNeasy FFPE Kit (Qiagen). Only the samples with A260/A280 ratios of ≥1.6 were
used. At least 100 nanograms of RNA was loaded for hybridization with the
nCounter® PanCancer IO360™ Gene Expression Panel spiked with the COVID-19
panel, according to the manufacturer’s instructions and quantified by the
nCounter® MAX Analysis System (NanoString Technologies, Seattle, WA, USA).
Transcript counts were normalized to ERCC positive controls and housekeeper
reference gene expression prior to analysis.

RNA/NGS Slide Preparation for GeoMx DSP. For GeoMx DSP slide preparation, we
followed GeoMx DSP slide prep user manual (MAN-10087-04). Briefly, tissue
slides were baked in a drying oven at 60 °C for 1 h and then loaded to Leica
Biosystems BOND RX FFPE for deparaffinization and rehydration. After the target
retrieval step, tissues werewere treated with Proteinase K solution to expose RNA
targets followed by fixation with 10% NBF. After all tissue pre-treatments were
done, tissue slides were unloaded from the Leica Biosystems BOND RX and
incubated with RNA probe mix (CTA and COVID-19 spike-in panel) overnight.
The next day, tissues were washed and stained with tissue visualization markers;
CD68-647 at 1:400 (Novus Bio, NBP2-34736AF647), CD3-594 at 1:400 (Abcam,
ab196147), CD45-594 at 1:10 (NanoString Technologies), PanCK-532 at 1:20
(NanoString Technologies) and/or SYTO 13 at 1:10 (Thermo Scientific S7575).

GeoMx DSP sample collections. For GeoMx DSP sample collections, we followed
GeoMx DSP instrument user manual (MAN-10088-03). Briefly, tissue slides were
loaded to GeoMx DSP instrument and then scanned to visualize whole tissue
images. For scanning tissues, we used 100 ms for imaging DNA and 400 ms for all
the other visualization markers. After whole tissue images stitched, we applied
customized render setting to each tissue since tissue background and target protein
expressions are highly sample-dependent. Roughly, the min and max of the render
setting is from 20 to 200 and 1000 to 15,000, respectively. For each tissue sample,
we collected four types of functional tissue regions; vascular zone, large airway,
alveoli zone, and macrophages. Each tissue region was carefully selected by a
board- certified pathology and then segmented with corresponding fluorescent
tissue markers. Twenty-four to twenty-three GeoMx DSP samples were selected per
tissue.

RNAscope assay and imaging. To visualize viral loads, we performed RNAscope
assays using V-nCoV2019-S (Opal 570), Hs-ACE2 (Opal 620) and Hs-TMPRSS2
(Cy5) probes. We used serial tissue sections of the ones used for GeoMx DSP for
sample preparations and followed the standard manufacture’s protocol. We used
GeoMx DSP to scan tissues using 100msec for imaging DNA (Syto13) and 200msec
for all the other channels. We applied the following min and mas to the stitched
images; DNA: 20 and 8,000, V-nCoV2019-S (Opal 570) and ACE2 (Opal 620): 200
and 800 and Hs-TMPRSS2 (Cy5): 500 and 3,000.

GeoMx DSP NGS library preparation and sequencing. Each GeoMx DSP sample
was uniquely indexed using Illumina’s i5 × i7 dual-indexing system. Four uL of a
GeoMx DSP sample was used in a PCR reaction with 1 μM of i5 primer, 1 μM i7
primer, and 1X NSTG PCR Master Mix. Thermocycler conditions were 37 °C for
30 min, 50 °C for 10 min, 95 °C for 3 min, 18 cycles of 95 °C for 15 s, 65 °C for 60 s,
68 °C for 30 s, and final extension of 68 °C for 5 min. PCR reactions were purified
with two rounds of AMPure XP beads (Beckman Coulter) at 1.2× bead-to-sample
ratio. Libraries were paired-end sequenced (2 × 75) on a NextSeq 550 up to 400M
total aligned reads.

Normalization and removal of gene outliers. For each sample, both a CTA-
specific and a Covid-19 spike-in-specific negative probe normalization factor was
generated based on the geometric mean of negative probes in each pool. Probes for
each gene were screen for outliers and their raw counts collapsed to a single
estimate of counts using their geometric mean. These gene count estimates were
then divided by their respective negative normalization factor to normalize the
data. For the Differential expression analysis, focus was given to the 207 Alveolar
AOIs because they contained the bulk of the data. Of the 1837 genes, 1796 passed
our criterion of limit of quantification (LOQ > 2).

Dimensional reduction. Dimensional reduction was performed to visualize large
trends and clusters across the genes. To do this, the FactoMineR R package72 was used
for principal component analysis and the package Rtsne73 was used to generate t-
Distributed Stochastic Neighbor Embedding (tSNE) clustering (perplexity set to 30).

Deconvolution of cell proportions. Cell mixing proportions were estimated using
the InSituSort R library, which performs mixture deconvolution using constrained
log-normal regression. The algorithm was run using a cell profile matrix derived
from the Human Cell Atlas adult lung 10X dataset and appended with a neutrophil
profile derived from snRNA-seq of lung tumors74.

Differential expression analysis. Differential expression analysis was performed
by fitting each gene’s normalized log2 expression level using a Linear Mixed Effect
model with the R package lmerTest29. Different DE contrasts were made with
Covid-19 samples as “baseline” to compare genes that are upregulated or down-
regulated compared to Flu, non-viral ARDS, or normal alveolar lung. Because one
Covid-19 sample appeared to have higher viral load compared to others (see
results), we ran DE analysis with and without this individual (15 Alveolar AOIs in
total). In all cases, we treated “Disease” status (Covid-19 vs. normal) as a level-2
fixed effect and accounted for within patient multiple sampling by treating patient
ID as a random effect. Disease was allowed to have varying intercepts and slopes.
Satterthwaite’s approximation for degrees of freedom for P value calculation was
used29. The estimate of “Disease” from the Mixed Effect model is the log2 fold
change. Hierarchical clustering of the top 30 DE genes was performed with the R
package pheatmap.

Gene set enrichment analysis. Following differential expression on all normalized
features, we used Gene Set Enrichment Analysis (GSEA) on the ranked expression
values using the GSEA and Molecular Signature Database (MSigDB68).

Differential expression validation from UCSF data. Following sequencing of
sample libraries, quality control was performed on the fastq files to ensure the
sequencing reads met pre-established cutoffs for number of reads and quality using
FastQC (version 0.11.8)75 and MultiQC (version 1.8)57. Quality filtering and
adapter trimming were performed using BBduk tools (version 38.76, https://
sourceforce.net/projects/bbmap). Remaining reads were aligned to the ENSEMBL
GRCh38 human reference genome assembly (Release 33) using STAR (version
2.7.0f)76 and gene frequencies were counted using feature Counts (version 2.0.0)
within the Subread package77. Comparative analysis of DEGs was performed using
a generalized linear model (GLM) implemented in the edgeR Bioconductor
package (version 3.30.3)54, using a Benjamini–Hochberg corrected p value of <0.01
(Supplementary Data 3).

Hierarchical clustering of DEGs was performed in R (version 4.0.0) using the
ComplexHeatmap and pheatmap package, and figures were produced using the
ggplot2 package. For NP and WB, the top 100 DEGs sorted by p value with a
Bonferroni corrected p value of <0.001and <0.01 respectively were included. For the
comparison between hospitalized and outpatients, all the DEGs with a Bonferroni
corrected p value of <0.01 were included. Clustering was performed based on
Euclidean distance with complete linkage, after exclusion of noncoding genes.
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Signaling pathway analyses and heatmaps were generated using Ingenuity Pathway
Analysis (IPA) software (Qiagen)78. The molecule activity predictor tool of IPA was
used to predict gene upregulation or downregulation and pathway activation or
inhibition. The enrichment score p value was used to evaluate the significance of the
overlap between predicted and observed genes, while the z-score was used to assess
the match between observed and predicted regulation or downregulation.

Classifiers were developed using scikit-learn (version 1.2.2)79 in Python. Several
different classifier models were evaluated in parallel and the one with optimal
performance on the training data was selected. These candidate classifier models
included a Linear Support Vector Machine, Linear Discriminant Analysis, and a
Deep Neural Network, all within the scikit-learn package. Reduced gene panels
were selected using Lasso80 and a customized reverse search across the resulting
feature set. This search iteratively removed the remaining gene with the lowest
significance as measured by its Lasso coefficient, performed classifier training, and
reported sensitivity, specificity, and accuracy across the training set. These results
were then manually reviewed to balance each of them with a priority placed on
specificity and number of genes. Receiver operating characteristic (ROC) curves
were generated using pROC package in R81.

HLA analysis. We mapped RNA reads to human reference genome GRCh38 using
STAR v2.7.3a, and called likely HLA diplotypes for each sample by arcasHLA
(Docker image quay.io/chai/arcas_hla:0.0.1, as pulled from master branch of
https://github.com/RabadanLab/arcasHLA on 8 June 2020).

Hybrid capture-base next-generation sequencing. Five positive and one negative
clinical samples were used to compare LAMP results with RT-qPCR and a hybrid
capture-based NGS assay. RNA was isolated and purified in duplicates (250 μl
input) using the Direct-zol DNA/RNA MiniPrep kit (Zymo). Viral transport media
was used as negative extraction control. Extracted and purified RNA samples were
converted to cDNA through random priming using Random Primer 6, ProtoScript
II First Strand cDNA Synthesis Kit, and NEBNext Ultra II Non-Directional RNA
Second Strand Synthesis kit (New England BioLabs).

The cDNA samples were converted to Illumina TruSeq-compatible libraries
with Twist’s Library Preparation Kit with Unique Dual Indices (Twist Bioscience).
After cDNA library generation, samples were pooled in 8-plex reactions using
187.5 ng of each barcoded library. Hybridization reactions were performed for 2 h
using Twist Fast Hybridization reagents and SARS-CoV-2 Research Panel, a biotin-
bound panel that targets libraries containing the SARS-CoV-2 virus. Hybrid
capture libraries were spiked with 1% PhiX and sequenced on an Illumina NextSeq
550 platform using a NextSeq500/550 High Output kit (Illumina) set to 150bp
single end reads.

Extracted RNA was also tested using RT-qPCR (GenArraytion COVID-19
duplex RT-qPCR) to get CT values, and LAMP. Hybrid capture NGS data were
analyzed using the COVID-DX Software (Biotia Inc.), optimized for the SARS-
CoV-2 NGS Assay. The software includes removal of low-quality reads, alignment
to the SARS-CoV-2 genome (NC_045512.2), and elimination of off-target reads by
alignment to other genomes including human (GrC38) and 26 additional microbial
genomes. Presence or absence of SARS-CoV-2 was determined by calculating
coverage of NC_045512.2 at 1× depth using a sliding window analysis (window size
1000 and step size 100) and determining the integral under the curve. After log
transformation, we used a cutoff of 8.6 (for samples with <10,000 bases on target),
and 9.6 (for samples with >10,000 bases on target) to call presence or absence. The
pipeline also calls germline variants that differ from the reference genome
(NC_045512.2) and estimates viral titer using a multivariate model of coverage and
evenness across the viral genome82–108.

Ethical approval. Tissue samples were provided by the Weill Cornell Medicine
Department of Pathology. The Tissue Procurement Facility operates under IRB
approved protocol and follows guidelines set by Health Insurance Portability
and Accountability Act (HIPAA). Experiments using samples from human
subjects were conducted in accordance with local regulations and with the
approval of the IRB at the Weill Cornell Medicine. The autopsy samples were
collected under IRB protocols 20-04021814 and 19-11021069. Autopsy consent
is provided on all cases by the next of kin. This consent includes use of tissue for
research. Observational cohort analysis (ACEI/ARB) was done through the
Columbia University IRB Protocol AAAL0601 and the Weill Cornell Medicine
IRB protocol 20-04021820. Oropharyngeal samples data from University Hos-
pital of Tuebingen were collected under IRB 243/2020A.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All raw sequence files (FASTQs) and metadata for specimens, including per-run metrics
and QC data, have been submitted to the database of Genotypes and Phenotypes dbGAP
(accession #38851 and ID phs002258.v1.p1). A total of 155 complete viral sequences were
assembled from these data. The GenBank accession IDs for the viral genomes are
MW493710-MW493863. Source data are provided with this paper.
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