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Abstract 

An essential step in understanding visual processing is to characterize the neuronal 

receptive fields (RFs) at each stage of the visual pathway. However, RF characterization 

beyond V1 simple cells remains a major challenge. Recent application of spike-triggered 

covariance (STC) analysis has greatly facilitated characterization of complex cell RFs in 

anesthetized animals. Here we apply STC to RF characterization in awake monkey V1. 

We found up to 9 subunits for each cell, including one or two dominant excitatory 

subunits as described by the standard model, along with additional excitatory and 

suppressive subunits with weaker contributions. Compared to the dominant subunits, the 

non-dominant excitatory subunits prefer similar orientations and spatial frequencies but 

have larger spatial envelopes. They contribute to response invariance to small changes in 

stimulus orientation, position, and spatial frequency. In contrast, the suppressive subunits 

are tuned to orientations 45-90o different from the excitatory subunits, which may 

underlie cross-orientation suppression. Together, the excitatory and suppressive subunits 

form a compact description of RFs in awake monkey V1, allowing prediction of the 

responses to arbitrary visual stimuli. 
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Introduction 

The response properties of V1 neurons have been studied extensively over the 

past several decades. In the standard model, a simple cell RF consists of alternating ON 

and OFF subregions, which directly correspond to the orientation and spatial frequency 

tuning of the cell (1, 2). Complex cells exhibit orientation and spatial frequency tuning 

similar to simple cells, but they are insensitive to the contrast polarity and stimulus 

position within the RF. The energy model for complex cell RF consists of a pair of 

simple-cell-like subunits with the same orientation and spatial frequency tuning but 

different ON/OFF phases (3, 4). This model accounts for the phase invariance as well as 

stimulus selectivity of complex cells.  

To validate such RF models and to predict the neuronal responses to arbitrary 

visual stimuli, it is necessary to measure the RF structure quantitatively. For simple cells, 

spike-triggered average (STA) has been used effectively to estimate their RFs from the 

responses to sparse noise (5) or white noise (6). For complex cells, however, since the 

outputs of different RF subunits are combined nonlinearly, these subunits cannot be 

estimated by STA. In previous studies, complex cell RFs have been studied by measuring 

the nonlinear interaction between paired stimuli (3, 7, 8). Another method used in recent 

studies is spike-triggered covariance (STC) analysis (9, 10). Instead of averaging all the 

stimuli preceding spikes (as in STA), in STC analysis one computes the covariance 

matrix of the spike-triggered stimulus ensemble and identifies the eigenvectors with 

eigenvalues significantly different from those of the entire stimulus ensemble. This 

method can reveal stimulus features that drive the neuron in a contrast-dependent but 
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polarity invariant manner, and it has proved highly effective in characterizing complex 

cell RF subunits in both cat (11, 12) and monkey (13) V1.  

While the above studies have characterized the spatiotemporal structure of 

complex cell RFs in anesthetized animals, an ultimate challenge is to understand RF 

properties in the awake brain. Neuronal RFs in awake monkey V1 have been studied in 

phase-separated Fourier space (14). In the current study, we used STC to analyze the 

spatial structure of V1 RFs in awake monkeys. In addition to the dominant subunits that 

are consistent with the standard models for simple (1, 2) and complex (3, 4) cells, we 

found additional excitatory subunits that contribute to orientation, position, and spatial 

frequency invariance. For some cells, we also found suppressive subunits (13). These 

subunits are tuned to orientations up to 90o different from the excitatory subunits, which 

may contribute to cross-orientation suppression (15). Including the non-dominant 

excitatory and suppressive subunits in the model significantly improved the prediction of 

neuronal responses to arbitrary white noise stimuli. 
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Results 

We made single-unit recordings from 227 V1 neurons in three macaque monkeys 

performing a fixation task. Visual stimuli were binary white noise (10×10 – 12×12 pixels, 

25 frames/s) presented in an area slightly larger than the RF of each cell. During each 

stimulus epoch (7500 frames, 5 min), the eye position was monitored continuously. 

Recordings during periods when the eye position was outside of a fixation window were 

excluded from analyses (Fig. 1A).  

The stimulus preceding each spike was collected to form the spike-triggered 

ensemble (Fig. 1B), and the covariance matrix of this ensemble was computed. 

Significant eigenvalues were identified as those that were significantly different from (1) 

the control eigenvalues calculated based on randomized spike trains (Fig. 2A) and (2) 

their neighboring eigenvalues (Fig. 2B) (16) (Materials and Methods). For 145 of the 227 

cells studied, we found at least one significant eigenvalue. The eigenvectors with 

significantly higher eigenvalues represent stimulus features that excite the cell (11, 16), 

whereas those with significantly lower eigenvalues reflect suppressive features that 

reduce neuronal firing (13). 

Grouping of significant eigenvectors 

The significant eigenvectors of each cell could be divided into three groups, based 

on their spatial structure and eigenvalues. The first group consisted of one or two 

eigenvectors, whose eigenvalues stood out most prominently above the rest. These 

excitatory eigenvectors, referred to as “dominant eigenvectors”, were almost always 
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Gabor-like. Most of the complex cell-like neurons, whose responses to drifting gratings 

were only weakly modulated at the stimulus temporal frequency (17), contained a pair of 

dominant eigenvectors (e.g., both cells in Fig. 2). These eigenvectors were similar to each 

other in size, orientation, and spatial frequency, but different in phase (Fig. 2C), 

consistent with the pair of subunits in the energy model (3, 4). On the other hand, cells 

with strong temporal modulations (simple cell-like) are likely to have a single dominant 

eigenvector (i.e., the largest jump is between the first and second eigenvalues). This 

eigenvector typically resembled STA (data not shown), which represents the linear RF of 

the simple cell. Note that we did not strictly distinguish between simple and complex 

cells because recent studies suggested that V1 neurons fall on a simple/complex 

continuum rather than two distinct classes (18, 19). 

Many simple- or complex-like neurons also exhibited additional excitatory 

eigenvectors, whose eigenvalues showed smaller but significant upward jumps (Fig. 2A, 

2B). This second group of eigenvectors, referred to as “non-dominant” excitatory 

eigenvectors, were oriented similarly to the dominant eigenvectors but showed more 

complex spatial structures and larger sizes (Fig. 2C, 3A). For 38 cells, we also found a 

third group of eigenvectors with significantly lower eigenvalues. Most of these 

suppressive eigenvectors (Fig. 2, second cell; Fig. 3A, third and fourth cells) are oriented 

differently from the excitatory eigenvectors. It is important to note that, although the 

significant eigenvectors provide a functional description of the RF that is indicative of the 

response properties of the presynaptic neurons, each significant eigenvector does not 

necessarily represent the RF of an individual presynaptic cell (i.e., an “anatomical 

subunit”). Instead, it is likely to represent a linear combination of multiple anatomical 
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subunits (11, 13). However, as a convenient functional description, we refer to these 

significant eigenvectors as the excitatory or suppressive RF subunits. 

Relationship between subunit groups 

To understand the relationship between the three groups of subunits, we first 

compared their locations and sizes by computing the pooled spatial envelope of each 

group (square root of the weighted sum of squares of all the subunits in each group, see 

Materials and Methods) (13). Compared to the dominant group, the non-dominant 

excitatory subunits showed a larger spatial envelope (Fig. 4A, 4C), similar to the finding 

in anesthetized monkey V1 (13). This could be explained if the non-dominant 

eigenvectors represent combinations of multiple anatomical subunits that are spatially 

displaced from each other. The suppressive subunits, on the other hand, largely 

overlapped with the dominant subunits in space. Quantitative comparison of the subunit 

sizes is summarized in Fig. 5A and 5B, based on the width-at-half-height of each pooled 

envelope along the preferred orientation (length) and the perpendicular axis (width).  

We also compared the spatial frequency and orientation tuning of the three groups 

based on the pooled spatial spectrum of each group (Fig. 4B). The spectrum of the non-

dominant excitatory group largely overlapped with that of the dominant group (Fig. 4C), 

indicating similar orientation and frequency tuning. In contrast, the spectrum of the 

suppressive subunits showed little overlap with the excitatory groups. The separation 

between the excitatory and suppressive subunits in spatial spectrum was more 

pronounced along the angular than the radial axis, indicating major differences in 

orientation as opposed to frequency tuning. For the population of cells, the preferred 
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spatial frequency and orientation of the non-dominant excitatory subunits were closely 

correlated with those of the dominant subunits (Fig. 5C, 5D, upper panel), but the 

suppressive subunits showed larger deviations in frequency tuning and up to 90o 

difference in preferred orientation (lower panel).  

Response invariance 

The angular separation between the excitatory and suppressive subunits in the 

spectral domain suggests that the suppressive subunits contribute to cross-orientation 

suppression (15), which should enhance the selectivity of V1 neurons. What is the 

function of the non-dominant excitatory subunits? Since each excitatory eigenvector is 

likely to represent a combination of multiple anatomical subunits (11, 13), and conversely 

an anatomical subunit may be approximated as a combination of eigenvectors, we 

examined various linear combinations of the excitatory eigenvectors. The neuronal 

responses to combinations of eigenvectors can be characterized by joint contrast-response 

functions (11, 13). 

Figure 6A shows the joint contrast-response functions for four pair-wise 

combinations of the excitatory subunits of a neuron. The contrast of a given subunit in 

each stimulus is defined as the dot product of the eigenvector and the stimulus, and the 

neuronal firing rate is plotted against the contrasts of each pair of subunits. Consistent 

with previous findings in cat V1 (11), each combination of the dominant pair of subunits 

is also Gabor-like (Fig. 6A, top left), with the spatial phase shifting with the relative 

weights of the two subunits (angular coordinate of the 2-D function). The circularly 

symmetric joint contrast-response function is thus consistent with the known phase 
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invariance of complex cells (1, 3, 4). Interestingly, combinations between a dominant and 

a non-dominant excitatory subunit revealed other forms of invariance. For this cell, 

although the third (non-dominant) eigenvector contained fractured ON and OFF 

subregions, its combinations with the first (dominant) eigenvector resulted in Gabor-like 

patterns at different orientations (upper right plot, compare patterns in the 3 boxes). 

Furthermore, combinations between the second and third eigenvectors resulted in Gabor 

patterns at different positions (lower left plot), and those between the second and fifth 

exhibited different frequencies (lower right plot). Since the non-dominant subunits make 

weaker contributions to the response than the dominant ones, the joint contrast-response 

functions did not exhibit perfect circular symmetry. Nevertheless, the existence of these 

weaker excitatory subunits enhanced the response invariance with respect to small 

changes in stimulus orientation, position, and frequency (20). A plausible anatomical 

basis for such invariance is that the neuron receives inputs from a set of presynaptic 

neurons with slightly different preferred orientations, RF positions, and spatial 

frequencies.  

The above three types of invariance were also observed in other cells, with 

orientation invariance the most common. We thus further quantified the effect of non-

dominant excitatory subunits on orientation tuning. The tuning of each subunit was 

computed as its responses to sinusoidal gratings at a range of orientations at the optimal 

frequency. Since previous studies have shown that the excitatory subunits contribute 

additively to the responses (11, 13), the tuning of the cell was predicted as the weighted 

sum of the tuning of all excitatory subunits, with the weight of each subunit proportional 

to its contrast-response gain (Materials and Methods). As shown in Fig. 6B, including the 
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non-dominant excitatory subunits in the prediction indeed broadened the tuning for this 

example cell. For the population of cells with well-tuned excitatory subunits, including 

the non-dominant subunits significantly increased the width of tuning (Fig. 6C, p < 0.01, 

Wilcoxon signed rank test). Notably, the effects of the non-dominant excitatory subunits 

and the suppressive subunits on orientation tuning do not simply cancel each other. While 

the non-dominant excitatory subunits render the neuron less sensitive to small variations 

around the optimal orientation, the suppressive subunits reduce the responses near the 

orthogonal orientation without necessarily narrowing the tuning curve (Fig. 6B, inset). 

Predictions of responses to white noise 

Finally, to assess the RF model based on the significant eigenvectors, we 

predicted the response of each cell to a short white-noise test sequence (30 s, repeated 4-

70 times) using (I) dominant subunits alone, (II) all excitatory subunits, and (III) all 

excitatory and suppressive subunits. The responses of the excitatory subunits and those of 

the suppressive subunits were first summed separately using weights proportional to their 

contrast-response gains. The excitatory and suppressive components were then combined 

with a nonlinear function that allows both subtractive and divisive interactions (13) 

(Materials and Methods). Figure 7A shows the measured response of an example cell 

(gray shading) and the predictions based on the dominant subunits alone (black line) and 

based on all excitatory and suppressive subunits (red line). Although the model based on 

the dominant subunits alone predicted the main temporal variations of the response, 

including the non-dominant excitatory and suppressive subunits improved the prediction 

by alleviating both under- and over-estimation of the peak amplitudes (Fig. 7A, arrow 

heads). 
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We measured the quality of prediction by each model using correlation coefficient 

between the predicted and measured responses. Compared to the model based on the 

dominant subunits alone, including the non-dominant excitatory subunits significantly 

improved the prediction for the population of cells (Fig. 7B, p < 10-5, Wilcoxon signed 

rank test, n = 83). Including the suppressive subunits led to a small further improvement 

(Fig. 7C), although the effect was not significant. Even with the full model, however, the 

correlation coefficient between the predicted and measured responses was lower than that 

between measured responses averaged from different repeats (Fig. 7D), indicating that 

the prediction error could not be entirely accounted for by noise in the measured 

responses. The incompleteness of the model may be due to additional subunits not 

identified by STC or to inaccuracy in the estimated RF subunits, both of which depend on 

the amount of data (21, 22) that is limited in recordings from awake monkeys. More 

importantly, the responses are likely to exhibit other forms of nonlinearity such as 

adaptation (23), which are not captured by the RF model used in this study. 

Discussion 

The current study, together with several other STC analyses (11-13, 16), suggests 

the following model for V1 classical RF. The dominant RF component is a Gabor-like 

subunit for simple cells and a pair of subunits for complex cells, consistent with the 

standard model (1-4). In both anesthetized and awake monkeys, however, STC analysis 

allowed identification of two additional groups of subunits: the non-dominant excitatory 

and suppressive subunits, whose contributions to V1 responses are weaker than the 

dominant subunits. The non-dominant excitatory subunits are more dispersed spatially 

but largely overlap with the dominant subunits in the frequency spectrum (Figs. 4, 5), and 
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they contribute to response invariance to small changes in stimulus orientation, position, 

and frequency (Fig. 6). In contrast, the suppressive subunits overlap with the dominant 

subunits spatially but are complementary in the frequency spectrum. They are likely to 

mediate suppression of the responses to “antagonistic” visual features such as those at the 

orthogonal orientation (Figs. 4, 5). Invariance and selectivity of neuronal responses are 

both important for visual processing. As shown in Fig. 7, incorporating the non-dominant 

subunits in the model improves the prediction of responses to arbitrary white noise 

stimuli.  

In previous studies in anesthetized cat V1 (11, 12, 16), we found that most 

complex cell RFs consist of two Gabor-like subunits, and non-dominant subunits were 

rarely observed. In this study, it is possible that small eye movements within the fixation 

window produced artifactual significant eigenvectors and contributed to the non-

dominant subunits. Although we cannot exclude this possibility completely, the finding 

that the non-dominant subunits significantly improved the response prediction (Fig. 7) 

indicates that they are integral components of the functional description of V1 responses. 

The difference in the number of significant eigenvectors found in the current and 

previous studies may be partly due to differences in the number of spikes used in the 

analysis, the signal/noise ratio of the responses, or the number or strength of the non-

dominant subunits. Regardless of the underlying reason, the fact that non-dominant 

subunits are readily observed in V1 of both anesthetized (13) and awake monkeys 

suggests that there are significant inter-species differences in the number of RF subunits 

identifiable by the STC analysis. 
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The effect of the non-dominant subunits in improving response prediction found 

in this study (Fig. 7) is relatively small compared to that found in anesthetized monkey 

V1 (13). This discrepancy may be partly due to the difference in the stimuli used for 

testing the models. While we used arbitrary white noise stimuli, the test stimuli used 

previously were matched to the non-dominant subunits in spatiotemporal patterns and are 

thus likely to emphasize their contributions to the responses. It is also possible that, 

compared to the 2-D white noise stimuli used in this study, the relative contribution of the 

non-dominant subunits is stronger in response to bar stimuli at the preferred orientation 

(13). Nevertheless, it is interesting to note that both null-direction and cross-orientation 

suppression can be modeled by suppressive RF subunits, even though they are likely to 

be mediated by distinct neural circuits. 

Most of the previous quantitative studies of neuronal RFs were performed under 

anesthesia, which may significantly affect the response properties of sensory neurons. 

Our study shows that STC analysis is highly effective for mapping RF subunit structure 

in awake monkey V1. While this study is performed with white noise stimuli, a similar 

technique can be used to analyze cortical responses to naturalistic stimuli (12, 14, 16, 24). 

The findings reported here not only provide a compact RF model for understanding V1 

responses to arbitrary stimuli (Fig. 7), but also set the stage for studying nonlinear visual 

processing in higher-level cortical areas. 
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Materials/Methods 

Recording 

Single-unit recordings were made in V1 of 3 adult monkeys (Macaca mulatta, 2 male, 1 

female) using glass-coated tungsten electrodes (25). Unit isolation was based on cluster 

analysis of waveforms and the presence of a refractory period in autocorrelograms. Each 

recording epoch was 5 min. All single units lasting for ≥3 epochs were included 

(maximum 25 epochs, n = 227). The RFs of these cells were 2-9o from the fixation point. 

During each epoch, the monkey performed a continuous fixation task for juice reward. 

Eye position was monitored with a remote, infrared eye tracker (EYELINK II, resolution 

0.01º, sampling rate 500 Hz). An elliptical window was set for eye position; vertical and 

horizontal axes were selected so that the kurtosis of data points in the window was 3 

(mean vertical axis, 1.2o; horizontal axis, 0.5o). Data recorded while the eye position was 

outside of the window were discarded (Fig. 1). In practice, however, our results were 

quite insensitive to the window size or shape; results were similar even when it was set to 

infinity. Surgery was conducted under aseptic conditions under deep pentobarbital 

anesthesia. All procedures were in accordance with the NIH guidelines. 

Visual stimulation 

Stimuli were generated with a PC, presented with a Sony Multiscan G520 monitor 

(30×40 cm, refresh rate 100 Hz, maximum luminance 80cdm−2). Binary white noise 

(10×10 – 12×12 pixels, 0.8×0.8o – 4.2×4.2o, 100% contrast) was presented at an effective 

frame rate of 25 Hz (updated every 4 frames). Each epoch consisted of 7500 frames; 

stimuli in different epochs were different. To test prediction of the model based on 
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significant eigenvectors, a white noise sequence (750 frames, 30s) was repeated 4-70 

times for each cell. 

Spike-triggered covariance analysis 

Details of the STC analysis have been described previously (11, 13, 16). Briefly, the STC 

matrix [Cm,n] was computed as 

∑
=

=
N

i
nmnm iSiS

N
C

1
, )()(1

 

Sm(i) and Sn(i) are luminance of the mth and nth pixels in the stimulus preceding the ith 

spike, N is the total number of spikes. Eigenvalues and eigenvectors of this matrix were 

computed. To identify significant eigenvectors, we first determined which eigenvalues 

are significantly different from the control (Fig. 2A), defined as the eigenvalues of spike-

triggered ensembles based on random spike trains (with the same spike number as the 

recorded response but random spike time; the results are very similar if the controls are 

generated by shifting the recorded spike train randomly in time). The confidence intervals 

for the control were computed using 500 random spike trains (mean ± 4.4 SD, 

corresponding to p<10-4 for Gaussian distribution; we found that the distribution of 

control eigenvalues was close to Gaussian). We then identified “outstanding” eigenvalues 

by calculating the difference between neighboring eigenvalues (Fig. 2B). The confidence 

interval was set at mean + 4.4 SD of the differences, after excluding the first and last five 

eigenvalues (which are likely to be significant eigenvalues with large differences from 

their neighbors). If a point is found beyond the confidence interval, all the eigenvalues 

preceding (for excitatory eigenvectors) or following (for suppressive eigenvectors) this 
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point are considered significant by this criterion (Fig. 2B). Eigenvalues that satisfy both 

criteria (Fig. 2A, 2B) are considered significant. Note that with Gaussian noise as stimuli, 

only the first criterion (Fig. 2A) is necessary. With binary stimuli, however, incorporating 

the second criterion (Fig. 2B) helps to reduce artifacts in identifying the suppressive 

subunits (see below). The 4.4 SD used for both criteria is of course somewhat arbitrary. 

Although we did not select cells based on spike number (all cells with ≥ 3 epochs were 

included), we found that the number of spikes significantly affected the probability of 

finding significant eigenvectors. Among the 18 cells with <3,000 spikes, only 2 (11%) 

had significant eigenvectors, but for the 186 cells with > 5,000 spikes, 128 (69%) had 

significant eigenvectors. 

In most analyses (Figs. 2-6) we focused on the spatial RF structure by performing 

STC at the optimal frame (1 or 2 frames before each spike) to improve signal-to-noise 

ratio of the estimate. For predicting the responses to white noise stimuli (Fig. 7), both 

frames were included to estimate the spatiotemporal RF subunits. Although in principle 

including both frames should improve the prediction, in practice this improvement was 

very small, probably because including the second frame also reduced the accuracy of the 

estimated eigenvectors.  

Note that to compute the standard covariance matrix, the average of the spike-

triggered ensemble (STA) should be subtracted from the stimuli. In some 

implementations of STC, STA is weighted before subtracted to ensure that the 

eigenvectors are orthogonal to STA (13). We believe that the treatment of STA is largely 

a matter of individual preference, as long as the specific choice is taken into 

consideration when interpreting the result. As in our previous implementations (11, 16), 
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STA was not subtracted in this study. As a result, the first eigenvector (with largest 

eigenvalue) of simple-cell-like neurons is often similar to STA.  

 As pointed out in previous studies (13, 22), the use of binary white noise may 

result in artifacts in the identification of suppressive eigenvectors, due to tapering of the 

stimulus distribution (reduction of variance) as one moves away from the origin along 

particular directions. The resulting spurious suppressive eigenvectors are related to the 

excitatory eigenvectors that lie close to these directions rather than the suppressive 

features of the neuron. To reduce such artifacts, we used the method developed in a 

previous study (13). Briefly, we computed the pooled response of the excitatory 

eigenvectors to each stimulus, divided these stimuli into 10 equal-sized subsets according 

to the pooled responses, and whitened each subset by multiplying it by 

T
o

T
nnno

T
ee EEDEEEE 2/1−+ . The matrix Ee contains the excitatory eigenvectors, Eo contains 

all other eigenvectors, and En and Dn are eigenvectors and eigenvalues of the covariance 

matrix of the nth subset. The whitened stimuli were then used to estimate the suppressive 

eigenvectors (13). The combination of this whitening step and the use of the second 

criterion (Fig. 2B) effectively eliminated the spurious suppressive eigenvectors. 

Relative weights of subunits 

The contribution of each significant eigenvector (V) to neuronal response depends 

on the gain of the contrast-response function. The gain was estimated by fitting the left 

and right sides of the function separately by bVSar +•= 2)( , where r is the firing rate, 

S is the stimulus, a and b are free parameters (11, 16). The relative weight of each 

eigenvector is defined as a , used to compute the pooled spatial envelope and Fourier 
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spectrum (Fig. 4) and the pooled responses for predicting orientation tuning (Fig. 6) and 

white noise responses (Fig. 7). 

Response prediction 

 To predict the responses to arbitrary stimuli, we fitted the following function to 

recorded responses:  

)1/()( ++−+= SESEr εγδβα  

E and S are pooled responses of the excitatory and suppressive eigenvectors, respectively, 

and α, β, δ, γ, and ε are free parameters. This is similar to the model in a previous study 

(13), allowing both subtractive and divisive contributions of the suppressive eigenvectors. 

Values for the free parameters were fit to minimize the mean-squared error for the 

“training data”, which are the responses used to compute the eigenvectors. 

Acknowledgments 

We thank Dr. Yu-Xi Fu for technical support. This work was supported by Outstanding 

Overseas Chinese Scholars Fund (2005-1-6), project KSCX2-YW-R-29 of Chinese 

Academy of Sciences, and a NEI grant. 



 19

References 

1. Hubel, D. H. & Wiesel, T. N. (1962) J Physiol (Lond) 160, 106-54. 

2. Movshon, J. A., Thompson, I. D. & Tolhurst, D. J. (1978) J Physiol 283, 53-77. 

3. Movshon, J. A., Thompson, I. D. & Tolhurst, D. J. (1978) J Physiol (Lond) 283, 

79-99. 

4. Adelson, E. H. & Bergen, J. R. (1985) J Opt Soc Am A 2, 284-99. 

5. Jones, J. P. & Palmer, L. A. (1987) J Neurophysiol 58, 1187-1211. 

6. Reid, R. C., Victor, J. D. & Shapley, R. M. (1997) Vis Neurosci 14, 1015-1027. 

7. Emerson, R. C., Citron, M. C., Vaughn, W. J. & Klein, S. A. (1987) J 

Neurophysiol 58, 33-65. 

8. Livingstone, M. S. & Conway, B. R. (2003) J Neurophysiol 89, 2743-59. 

9. De Ruyter Van Steveninck, R. & Bialek, W. (1988) Proceedings of the Royal 

Society of London Series B Biological Sciences 234, 379-414. 

10. Brenner, N., Bialek, W. & de Ruyter van Steveninck, R. (2000) Neuron 26, 695-

702. 

11. Touryan, J., Lau, B. & Dan, Y. (2002) J Neurosci 22, 10811-8. 

12. Felsen, G., Touryan, J., Han, F. & Dan, Y. (2005) PLoS Biol 3, e342. 

13. Rust, N. C., Schwartz, O., Movshon, J. A. & Simoncelli, E. P. (2005) Neuron 46, 

945-56. 

14. David, S. V., Vinje, W. E. & Gallant, J. L. (2004) J Neurosci 24, 6991-7006. 

15. Bonds, A. B. (1989) Vis Neurosci 2, 41-55. 

16. Touryan, J., Felsen, G. & Dan, Y. (2005) Neuron 45, 781-91. 



 20

17. Skottun, B. C., De Valois, R. L., Grosof, D. H., Movshon, J. A., Albrecht, D. G. 

& Bonds, A. B. (1991) Vision Res 31, 1079-86. 

18. Chance, F. S., Nelson, S. B. & Abbott, L. F. (1999) Nat Neurosci 2, 277-82. 

19. Mechler, F. & Ringach, D. L. (2002) Vision Res 42, 1017-33. 

20. Berkes, P. & Wiskott, L. (2006) Neural Comput 18, 1868-95. 

21. Aguera y Arcas, B. & Fairhall, A. L. (2003) Neural Comput 15, 1789-807. 

22. Paninski, L. (2003) Network 14, 437-64. 

23. Maffei, L., Fiorentini, A. & Bisti, S. (1973) Science 182, 1036-8. 

24. Sharpee, T. O., Sugihara, H., Kurgansky, A. V., Rebrik, S. P., Stryker, M. P. & 

Miller, K. D. (2006) Nature 439, 936-42. 

25. Li, C. Y., Xu, X. Z. & Tigwell, D. (1995) J Neurosci Methods 57, 217-20. 



 21

Figure Legends 

Figure 1. Illustration of experimental and analysis procedures. (A) Example eye position 

traces recorded by the eye tracker. Scales: 1s, 1o. Shading: periods with eye position 

outside of fixation window. Corresponding segments of the spike train (bottom) were 

excluded from analysis. Gray: excluded spikes. (B) White noise stimuli. Gray box: 

stimulus preceding each spike. 

Figure 2. Identification of significant eigenvectors, illustrated with two V1 cells (left and 

right columns). (A) Eigenvalues of STC matrix. Dashed lines: control confidence 

intervals (p<10-4). (B) Difference between neighboring eigenvalues. Dashed line: 

confidence interval for the difference (p<10-4). Large circles: significant eigenvalues 

satisfying criteria in both (A) and (B). (C) Significant eigenvectors. Contrast of each 

eigenvector is scaled by its relative weight (see Materials and Methods). Excitatory and 

suppressive eigenvectors were scaled separately. Scale: 0.5°. 

Figure 3. Number of significant eigenvectors per cell. (A) Significant eigenvectors for 4 

example cells. E, excitatory, S, suppressive. Scale: 0.5°. (B) Distribution of the number 

of significant eigenvectors per cell. 

Figure 4. Spatial and spectral relationships among subunit groups. (A) Top panel: 

Dominant and non-dominant excitatory (Ed and End) and suppressive (S) subunits of a 

cell. Scale: 0.5o. Bottom panel: pooled spatial envelope of each group of subunits. Red, 

E; green, S. In E&S (all groups superimposed), yellow indicates overlap between E and 

S. (B) Top panel: Spatial frequency spectrum of each subunit in (A). Bottom panel: 
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Pooled frequency spectrum of each group. (C) Pooled spatial envelopes (upper row) and 

frequency spectra (lower row) of the three subunit groups for five cells.  

Figure 5. Quantitative comparison between non-dominant and dominant subunits. (A, B), 

Length and width of pooled spatial envelope, measured by width at half height. Each 

point represents one cell (n=79). (C) Optimal spatial frequency (peak of frequency 

spectrum) for the same cells in (A) and (B). (D) Difference in preferred orientation. 

White bars, cells with clear tuning (circular variance of tuning for each group of subunits 

<0.7); gray bars, poorly tuned cells (circular variance >0.7). Circular variance is defined 

as ∑∑−
k kk

i
k ReR k /1 2θ  (Rk: response at orientation θk, 0<θk<180o). 

Figure 6. Phase, orientation, position, and frequency invariance. (A) Joint contrast-

response functions of a complex cell (second cell in Fig. 3A) for different pair-wise 

combinations of its 6 excitatory subunits. Firing rate is luminance coded. Black lines: 

contours of constant firing rate (at 0.5× and 1× mean of each function); circular contour 

indicates perfect invariance. Small outer plots: stimulus patterns corresponding to 

selected points (arrows) in the function. (B) Orientation tuning of the cell predicted by 

the dominant subunits alone (dashed) and by all excitatory subunits (solid). Arrows 

indicate width at half height. Inset, predicted tuning of another cell, based on only the 

excitatory subunits (dashed) and on both excitatory and suppressive subunits. (C) 

Predicted tuning width based on all excitatory subunits vs. that based on dominant 

subunits alone. Each point represents one cell; only cells with clear tuning (circular 

variance <0.6) were included (n=56). 
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Figure 7. Prediction of responses to white noise stimuli. (A) Comparison of predicted 

and measured firing rates of a cell. Gray shading: measured response averaged from 24 

repeats of the test stimulus. Black line: Prediction based on dominant subunits. Red line: 

Prediction based on all subunits (6 excitatory, 1 suppressive). Red arrow heads, peaks 

better predicted by the model with all subunits. (B) Improvement of prediction by non-

dominant excitatory subunits. Correlation coefficient (CC) between measured and 

predicted responses based on all excitatory subunits vs. CC with only dominant subunits. 

Each symbol represents one cell. (C) Improvement of prediction by suppressive subunits. 

CC based on both excitatory and suppressive subunits vs. CC with only excitatory 

subunits. (D) CC between measured responses (averaged from two non-overlapping sets 

of repeats) vs. CC between predicted (based on all subunits) and measured responses 

(n=123). 
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