
UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
A Bayesian Test for the Number of Modes in a Gaussian Mixture

Permalink
https://escholarship.org/uc/item/417768qs

Authors
Jammalamadaka, S
Jin, Qianyu

Publication Date
2022-12-23
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/417768qs
https://escholarship.org
http://www.cdlib.org/


A Bayesian Test for the Number of Modes in a Gaussian Mixture

Sreenivasa Rao Jammalamadakaa and Qianyu Jin b

a Department of Statistics and Applied Probability, University of California, Santa Barbara b

JPMorgan Chase & Co.

ARTICLE HISTORY

Compiled June 20, 2021

Rceived 20 March 2021; Accepted 13 June 2021

ABSTRACT
This paper provides a Bayesian framework for testing the number of modes in a
two-component Gaussian mixture. The test is done by first setting up conjugate
priors and computing the corresponding posteriors, which are then integrated over
the restricted subspace of unimodal parameter space for the mixture distribution,
thus obtaining the prior and posterior probabilities of unimodality. Monte Carlo and
Gibbs sampling methods are employed to numerically compute these probabilities
due to the difficulty in finding analytical solutions. A conclusion on unimodality for
the given data is arrived at based on the Bayes factor. Effectiveness of the proposed
Bayes test is demonstrated via simulations, and applied to a practical data set on
adult human heights in order to answer the question whether the combined height
data for men and women is bimodal.

KEYWORDS
Gaussian mixture and unimodal/bimodal distribution and Bayesian test and
Monte Carlo method and Gibbs sampling and Bayes factor and human heights

1. Introduction

In this paper we provide a test as to when a mixture of two Gaussian distributions
becomes unimodal or bimodal. Certain subspace of the parameter space leads to uni-
modality of the mixture, and using Bayesian arguments, we find the posterior proba-
bility as well as the Bayes Factor for unimodality for a given data set.

2. Mixture of Two Gaussian Distributions

Consider a two-component mixture of Gaussian distributions, say N(µ1, σ
2
1) and

N(µ2, σ
2
2) with the mixing parameter 0 < p < 1, of the form pN(µ1, σ

2
1) + (1 −

p)N(µ2, σ
2
2), with the probability density function (PDF)

f(x|µ1, µ2, σ
2
1, σ

2
2, p) = pf1(x|µ1, σ

2
1) + (1− p)f2(x|µ2, σ

2
2),
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where f1 and f2 represent the PDFs of N(µ1, σ
2
1) and N(µ2, σ

2
2) respectively. The 5-

dimensional parameter vector (µ1, µ2, σ
2
1, σ

2
2, p) lies in the parameter space, Ω = R ×

R×R+×R+×(0, 1). Depending on different parameter values, such a Gaussian mixture
can be either unimodal or bimodal, so that the parameter space can be partitioned
into two disjoint subsets: an Ω0 where the mixture distribution is unimodal, and an
Ω1 where it is bimodal.

Surprisingly, necessary and sufficient conditions for determining whether a certain
parameter vector gives unimodal or bimodal distribution for the general 2-component
Gaussian mixture with unequal variances has not yet been fully explored, except for
some incomplete discussions (see e.g. [1]). However, for the special case where σ2

1 =
σ2

2 = σ2, the conditions have been discussed in [3], which we state in the following

Theorem 2.1 (Behboodian (1970) [3]). The 2-component Gaussian mixture with
equal variances pN(µ1, σ

2) + (1− p)N(µ2, σ
2) is unimodal if and only if either of the

following conditions is satisfied:

(a) D2 ≤ 1,
(b) D2 > 1 and | log p

1−p | ≥ 2 log(D −
√
D2 − 1) + 2D

√
D2 − 1,

where D = |µ1−µ2|
2σ .

Let θ = (µ1, µ2, σ
2, p) denote the parameter vector, and Ω0 the subspace corre-

sponding to unimodality while its complement Ω1 where the mixture density becomes
bimodal. A visual illustration of the boundary between Ω0 and Ω1 is given in Figure
1. For any given σ value, Ω1 is the region on the right of the colored line (borderline)
while Ω0 is the region on the left.

Figure 1. The borderline separating Ω0 and Ω1, the unimodal and bimodal parameter space for pN(µ1, σ2)+

(1− p)N(µ2, σ2).

3. A Bayesian Test Procedure

For a sample from a two-component Gaussian mixture with equal variances with un-
known parameters, suppose we want to test for the unimodality of the underlying
distribution. A parametric likelihood ratio test was proposed and studied in [4]. We
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propose here an alternative procedure based on Bayesian arguments, along the lines
of [2] who discuss testing unimodality of a two-component von Mises mixture.

Let X = (X1, X2, ..., Xn) be i.i.d. random variables from the Gaussian mixture with
PDF

f(x|θ) = pf1(x|µ1, σ
2) + (1− p)f2(x|µ2, σ

2), (1)

where f1, f2 are the PDFs of N(µ1, σ
2), N(µ1, σ

2), and x = (x1, x2, ..., xn) is a random
sample for X. We wish to consider a Bayesian test for testing

H0 : θ ∈ Ω0 versus H1 : θ ∈ Ω1.

Let π(θ) denote the joint prior on the vector parameter θ. We compute the joint
posterior of θ as π(θ|x) and proceed with the following steps.

(1) Set up a prior π(θ) for the parameter vector θ = (µ1, µ2, σ, p), and compute the
posterior π(θ|x)

(2) Calculate prior probability of unimodality

P(H0) =

∫
Ω0

π(θ)dθ

using Monte Carlo methods
(3) Calculate posterior probability of unimodality

P(H0|x) =

∫
Ω0

π(θ|x)dθ

using Gibbs sampling and Monte Carlo methods
(4) Then the “Bayes factor” is computed as

B10 =
P(H1|x)P(H0)

P(H0|x)P(H1)
.

A justifiable conclusion may be reached by comparing this Bayes Factor with
what is suggested for instance, in [5].

4. Monte Carlo Method for Sampling from Prior and Posterior
Distributions

4.1. Computation of the Prior and Posterior Distributions

To perform a Bayes test, we need to start with a prior for the parameter vector and
compute the needed conditional posteriors. It would be convenient to use conjugate
priors so that the conditional posteriors are in the same family as the priors and
have nice analytical forms, as we demonstrate below. This task is made possible by
considering the following framework called indicator Gaussian mixture model.

Suppose x = (x1, ..., xn) is an i.i.d random sample of size n from the Gaussian mix-
ture (1). Each observation can be interpreted as being drawn from f1 with probability

11
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p and being drawn from f2 with probability 1− p. Define the indicators

zi = I{xi is drawn from f1},

for i = 1, ..., n, then there are

1− zi = I{xi is drawn from f2},

In general, z = (z1, ..., zn) is not observable. However, conditionally given z, the con-
ditional distribution of x on z is

f(x|z, θ) =

n∏
i=1

[f1(xi)]
zi · [f2(xi)]

1−zi .

Using the fact that the mixture parameter is p, zi|θ ∼ Bernoulli(p) for i = 1, ..., n,
and the joint distribution of x, z is

f(x, z|θ) =

n∏
i=1

[pf1(xi)]
zi · [(1− p)f2(xi)]

1−zi . (2)

This setup expresses the joint distribution as a product, and we chose appropriate
conjugate priors as follows:

σ2 ∼ InverseGamma(
ν

2
,
s2

2
), (3)

µ1|σ2 ∼ N(ξ1,
σ2

m1
), (4)

µ2|σ2 ∼ N(ξ2,
σ2

m2
), (5)

p ∼ Uniform(0, 1), (6)

where p is independent of µ1, µ2, or σ2; and m1,m2, ξ1, ξ2, ν, s
2 are pre-selected hyper-

parameters.

Theorem 4.1. Given the sample joint distribution 2 and the priors defined in (3)–(6),
the conditional posterior distributions are given by

σ2|x, z ∼InvGamma
(
n+ ν

2
,
s2 +

∑n
i=1 x

2
i +m1ξ

2
1 +m2ξ

2
2 − C1 − C2

2

)
, (7)

µ1|σ2,x, z ∼ N
(∑n

i=1 zixi +m1ξ1∑n
i=1 zi +m1

,
σ2∑n

i=1 zi +m1

)
, (8)

µ2|σ2,x, z ∼ N
(∑n

i=1(1− zi)xi +m2ξ2

n−
∑n

i=1 zi +m2
,

σ2

n−
∑n

i=1 zi +m2

)
, (9)

p|x, z ∼ Beta

(
n∑
i=1

zi + 1, n−
n∑
i=1

zi + 1

)
. (10)
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where

C1 =
(
∑n

i=1 zixi +m1ξ1)2

m1 +
∑n

i=1 zi
,

C2 =
(
∑n

i=1(1− zi)xi +m2ξ2)2

m2 + n−
∑n

i=1 zi
.

Proof. Using the notation π(·) to denote the joint prior and π(·|x, z) to denote the
joint posterior. The joint posterior is given by

π(θ|x, z) =
f(x, z|θ)π(θ)∫

Ω f(x, z|θ)π(θ)dθ
(11)

where π(θ) is the joint prior. Further decomposition of the joint prior and joint pos-
terior distributions are given by

π(θ) = π(µ1|σ2) · π(µ2|σ2) · π(σ2) · π(p),

π(θ|x, z) = π(µ1|σ2,x, z) · π(µ2|σ2,x, z) · π(σ2|x, z) · π(p|x, z).

Therefore, the conditional posterior of a single parameter can be obtained by integrat-
ing the joint posterior with respect to other parameters over the appropriate regions.
For example, ∫ +∞

−∞

∫ +∞

−∞

∫ +∞

0
π(θ|x, z)dµ1dµ2d(σ2)

=

∫ +∞

−∞
π(µ1|σ2,x, z)dµ1 ·

∫ +∞

−∞
π(µ2|σ2,x, z)dµ2

·
∫ +∞

0
π(σ2|x, z)d(σ2) · π(p|x, z)

=π(p|x, z)

Since the denominator of (11) serves only as a normalizing constant, we have

π(µ1|σ2,x, z) · π(µ2|σ2,x, z) · π(σ2|x, z) · π(p|x, z) ∝ f(x, z|θ)π(θ),

meaning that the conditional posterior distributions can be found by decomposing
f(x, z|θ)π(θ) into a product of kernels for µ1, µ2, σ

2, p, each kernel corresponding to a

13
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family of distributions. The details of this operation are shown below:

f(x, z|θ)π(θ) = f(x, z|θ) · π(µ1|σ2) · π(µ2|σ2) · π(σ2) · π(p)

= p
∑n
i=1 zi

(
1√
2πσ

)∑n
i=1 zi

exp

{
− 1

2σ2

n∑
i=1

zi(xi − µ1)2

}

· (1− p)
∑n
i=1(1−zi)

(
1√
2πσ

)∑n
i=1(1−zi)

· exp

{
− 1

2σ2

n∑
i=1

(1− zi)(xi − µ2)2

}

·
√
m1√
2πσ

exp
{
−m1

2σ2
(µ1 − ξ1)2

}
·
√
m2√
2πσ

exp
{
−m2

2σ2
(µ2 − ξ2)2

}
· (s2/2)ν/2

Γ(ν/2)
(σ2)−ν/2−1 exp

{
− s2

2σ2

}
· 1

∝ T1(µ1, σ
2) · T2(µ2, σ

2) · T3(σ2) · T4(p),

where T1 through T4 are the kernels for each parameter and have the following forms:

T1(µ1, σ
2) =

1

σ
exp

{
− 1

2σ2

[
n∑
i=1

zi(xi − µ1)2 +m1(µ1 − ξ1)2

]}

∝ 1

σ
exp

{
− 1

2σ2

[(
n∑
i=1

zi +m1

)
µ2

1 − 2

(
n∑
i=1

zixi +m1ξ1

)
µ1 + C1

]}

∝ N
(∑n

i=1 zixi +m1ξ1∑n
i=1 zi +m1

,
σ2∑n

i=1 zi +m1

)
,

T2(µ2, σ
2) =

1

σ
exp

{
− 1

2σ2

[
n∑
i=1

(1− zi)(xi − µ2)2 +m2(µ2 − ξ2)2

]}

∝ 1

σ
exp

{
− 1

2σ2

[(
n−

n∑
i=1

zi +m2

)
µ2

2

−2

(
n∑
i=1

(1− zi)xi +m2ξ2

)
µ2 + C2

]}

∝ N
(∑n

i=1(1− zi)xi +m2ξ2

n−
∑n

i=1 zi +m2
,

σ2

n−
∑n

i=1 zi +m2

)
,

T3(σ2) = (σ2)−
n+ν

2
−1 exp

{
−
s2 +

∑n
i=1 x

2
i +m1ξ

2
1 +m2ξ

2
2 − C1 − C2

2σ2

}
∝ InvGamma

(
n+ ν

2
,
s2 +

∑n
i=1 x

2
i +m1ξ

2
1 +m2ξ

2
2 − C1 − C2

2

)
,

T4(p) = p
∑n
i=1 zi(1− p)

∑n
i=1(1−zi)

∝ Beta

(
n∑
i=1

zi + 1, n−
n∑
i=1

zi + 1

)
.
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where

C1 =
(
∑n

i=1 zixi +m1ξ1)2

m1 +
∑n

i=1 zi
,

C2 =
(
∑n

i=1(1− zi)xi +m2ξ2)2

m2 + n−
∑n

i=1 zi
.

The distributions that correspond to the 4 kernels are the conditional posterior distri-
butions for each parameter, which correspond to Eqns. (7)–(10), as stated.

4.2. Computation of the Prior Probabilities of Unimodality and
Bimodality

After setting up the priors and finding the conditional posteriors, the next step is to
calculate the prior probability of unimodality and bimodality. To calculate the prior
probability of unimodality, viz.

P(H0) =

∫
Ω0

π(θ)dθ,

one needs to integrate the joint priors over the unimodal parameter subspace, Ω0.
Since the criterion that determines the boundary of Ω0 is complex as can be seen from
Figure 1, it is difficult to find an analytical expression for the needed integral. Instead,
a Monte Carlo method is employed to get its value numerically.

Algorithm 1 (Monte Carlo method for priors). To numerically compute the prior
probability of unimodality and bimodality, denoted by P(H0) and P(H1), these steps
are followed.

(1) Determine the values for prior hyperparameters m1,m2, ξ1, ξ2, ν, s
2.

(2) Generate N parameter vectors θ(1), ..., θ(N) from prior distributions (3) through
(6). The order of parameter generation is σ2 → µ1 → µ2 → p.

(3) For each θ(i), i = 1, ..., N , check if it belongs in Ω0 using the conditions in The-
orem 2.1 and obtain the values of indicators I

{
θ(i) ∈ Ω0

}
.

(4) Compute P(H0) = 1
N

∑N
i=1 I

{
θ(i) ∈ Ω0

}
and P(H1) = 1− P(H0).

4.3. Computation of the Posterior Probabilities of Unimodality and
Bimodality

Similar to the computation of P(H0), the posterior probability of unimodality

P(H0|x) =

∫
Ω0

π(θ|x)dθ

also needs to be computed numerically using a Monte Carlo approach. The conditional
posteriors given in Theorem 4.1 are conditional on latent variables z that are not
observable from the sample. To mitigate this problem, we would like to treat z as
unknown parameters and use Gibbs sampling method to generate samples from θ and
z simultaneously.

15
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Algorithm 2 (Gibbs sampling). To generate θ and z from conditional distributions,
these steps are followed.

(1) Set up initial values θ(0). Then, at the k-th iteration,
(2) Generate z(k) from f(z(k)|θ(i−1),x).
(3) Generate θ(k) from π(θ(k)|x, z(k)).
(4) Repeat Step 2 and 3 for a total of N times until convergence.

To find the conditional distribution of step 2 in Algorithm 2, we have the following
results.

Lemma 4.2. The conditional distribution of each zi in z is given by

zi|θ, xi ∼ Bernoulli
(

pf1(xi|µ1, σ
2)

pf1(xi|µ1, σ2) + (1− p)f2(xi|µ2, σ2)

)
.

Proof. From (1) and (2) and since xi’s are i.i.d.,

f(z|θ,x) =
f(x, z|θ)
f(x|θ)

=

∏n
i=1 [pf1(xi|µ1, σ

2)]zi · [(1− p)f2(xi|µ1, σ
2)]1−zi∏n

i=1 [pf1(xi|µ1, σ2) + (1− p)f2(xi|µ2, σ2)]

=

n∏
i=1

P zii (1− Pi)1−zi

where each

Pi =
pf1(xi|µ1, σ

2)

pf1(xi|µ1, σ2) + (1− p)f2(xi|µ2, σ2)
.

Since each zi is only dependent on the xi, and the xi’s are independent, zi’s are
independent of each other as well. It is easy to see

f(zi|θ, xi) = P zii (1− Pi)1−zi

for zi ∈ {0, 1}, i = 1, ..., n. This is the PMF of Bernoulli(Pi).

Given the Gibbs sampling procedure, the Monte Carlo calculation is outlined below.

Algorithm 3 (Monte Carlo method for posteriors). To numerically
compute the posterior probability of unimodality and bimodality, denoted by
P(H0|x) and P(H1|x), these steps are followed.

(1) Generate N parameter vectors θ(1), ..., θ(N) for conditional posterior distributions
(7) - (10) by utilizing Gibbs sampling procedure in Algorithm 2. The order of
parameter generation is σ2 → µ1 → µ2 → p.

(2) Make sure the Markov chain generated in Step 1 is convergent after a burn-in
period of length K.

(3) For each θ(i), i = K + 1, ..., N , check if it belongs in Ω0 using the conditions in
Theorem 2.1 and obtain the values of indicators I

{
θ(i) ∈ Ω0

}
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(4) Compute

P(H0|x) =
1

N −K

N∑
i=K+1

I
{
θ(i) ∈ Ω0

}
and

P(H1|x) = 1− P(H0|x).

Remark: A mixture distribution has two equivalent parameter representations,
namely (µ1, µ2, σ

2, p) and (µ2, µ1, σ
2, 1 − p). To differentiate between these two pa-

rameterizations and uniquely define the mixture, we restrict p ∈ (0, 0.5], so that the
prior of p becomes

p ∼ Uniform(0, 0.5] (12)

and the conditional posterior of p becomes

p|x, z ∼ Beta

(
n∑
i=1

zi + 1, n−
n∑
i=1

zi + 1

)
restricted on (0, 0.5]. (13)

Note that when p = 0.5 the two parameterizations become the same.

4.4. Judging the Bayes Factor

[5] discuss the Bayes factor for testing H1 against H0 which is defined as

B10 =
posterior odds

prior odds
=

P(H1|x)P(H0)

P(H0|x)P(H1)
. (14)

It is used as a summary of the evidence provided by data in favor of H1 and against
H0. In general, larger values of Bayes factor indicate a stronger evidence in favor of
H1. [5] suggest using Table 1 as a reasonable scale for interpreting B10 and log10(B10)
values. Although not shown in the Table, it should be noted that 0 < B10 < 1 (or
equivalently log10B10 < 0) indicates almost no evidence against H0.

Table 1. Suggested scale for interpreting B10 and log10(B10)

values
log10B10 B10 Evidence against H0

0 to 1/2 1 to 3.2 Not worth more than a bare mention
1/2 to 1 3.2 to 10 Substantial
1 to 2 10 to 100 Strong
>2 >100 Decisive

5. A Simulation Study

To examine the proposed Bayesian test via simulation studies, we first select 2 sets
of Gaussian mixture distributions to generate the data. Each set of mixtures consists
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of 7 mixture combinations, among which µ1, σ
2 and p are fixed while µ2 are different,

resulting in parameter combinations from both the unimodal and bimodal parameter
space. The actual parameter values and their corresponding modality are presented
in Table 2. The mixing probabilities are even (p = 0.5) for distributions from the first
set and uneven for distributions from the second set. Figure 2 shows the density plots
for mixture distribution within each set. It is clear that as µ2 moves away from µ1,
the mixture density curve gradually changes from being unimodal to being bimodal.

Table 2. Choice of parameters for simulated data.
µ1 σ2 p µ2 modality

Mixture Set 1 1.0 4 0.5
4.0, 4.5, 5.0 unimodal
5.5, 6.0, 6.5, 7.0 bimodal

Mixture Set 2 1.0 4 0.2
5.0, 5.5, 6.0, 6.5 unimodal
7.0, 7.5, 8.0 bimodal

(a) Mixture Set 1 (b) Mixture Set 2

Figure 2. Density plots for Gaussian mixtures in Mixture Set 1 and 2 .

For each distribution in the two Mixture sets, we generate 50 samples of size n = 25
and 50 samples of size n = 50, then conduct Bayesian test for each sample assuming the
same prior hyper-parameter values, namely (ν = 4, ξ1 = 0, ξ2 = 10, s2 = 30,m1 = 10
andm2 = 10). The Bayes factors are obtained by running Algorithms 1 and 3 withN =
100, 000 and burn-in period of 20, 000 and plugging their results into (14). Restricted
prior (12) and conditional posterior (13) for p are used to avoid identifiability issues
in the simulation of θ. The initial values of the parameters are µ1 = 0, µ2 = 10, σ2 =
100, p = 0.5 in posterior simulation for all samples.

Figure 3 displays the Bayes factors in boxplots for each of the µ2 values. The plots
in the same row correspond to the same sample sizes and the plots in the same column
correspond to the same distribution set. Table 3 and 4 show the proportion of times
that the Bayes factor exceeds 3.2. From these figures and tables, we see that (i) within
each distribution set, the Bayes factor is more likely to have larger values when µ2

is larger; (ii) given a certain bimodal distribution, the Bayes factor is more likely to
have larger values when n is larger. Both these observations (i) and (ii) show that the
Bayes factor is more likely to have larger values when there is a stronger evidence that
the sample came from a bimodal distribution, showing that our procedure works well
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in detecting unimodality.

Table 3. Proportion of times that Bayes factors > 3.2 for Mixture Set 1.
µ2 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Mixture Set 1, n = 25 0.00 0.00 0.00 0.00 0.06 0.12 0.18
Mixture Set 1, n = 50 0.00 0.02 0.00 0.00 0.06 0.20 0.46

Table 4. Proportion of times that Bayes factors > 3.2 for Mixture Set 2.
µ2 5.0 5.5 6.0 6.5 7.0 7.5 8.0
Mixture Set 2, n = 25 0.00 0.00 0.00 0.02 0.02 0.14 0.20
Mixture Set 2, n = 50 0.00 0.00 0.00 0.00 0.06 0.16 0.44

(a) Bayes factor for Mixture Set 1, n = 25 (b) Bayes factor for Mixture Set 2, n = 50

(c) Bayes factor for Mixture Set 1, n = 25 (d) Bayes factor for Mixture Set 2, n = 50

Figure 3. Boxplots of Bayes factors for Mixture Set 1 and 2 and sample size n = 25, 50.

To verify the properties of the Markov chain generated in the simulation of the
posterior distributions, an example Markov chain that corresponds to a sample from
Mixture Set 1, µ2 = 8, n = 50 is selected, and its path plot and ACF plot for each
parameter are shown in Figure 4. Note that only the last 10, 000 iterations are plotted
in the path plot and only the iterations after the burn-in period (> 20, 000) are used
to compute the ACFs. It can be seen that the paths of p and σ2 are able to traverse
a wide range within their parameter space and there is no sign of identifiability issue
between µ1 and µ2. The number of lags required for ACFs to diminish is pretty large
(≈ 30) for all parameters.

6. Real Data Application—Adult Height Data

This section presents an application of the modality test on adult human heights.
There have been several discussions on whether the combined data on heights of men
and women will give a unimodal or bimodal distribution; see e.g. [6]. To revisit this
problem, we consider data from 2013–2014 National Health and Nutrition Examination
Survey (NHANES)1. This is a program of studies to assess the health and nutritional

1https://www.cdc.gov/nchs/nhanes/
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(a) Path plots (simulated values) (b) ACF plots

Figure 4. Path plots and ACF plots for each parameter in a Markov chain in posterior simulation. The

sample is from Mixture Set 1, µ2 = 8, n = 50.
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status of adults and children in the United States, and it is conducted by National
Center for Health Statistics (NCHS), which is a part of the Centers for Disease Control
and Prevention (CDC). In selecting and screening the data for our test, we took
the variables of gender and age from the demographic variable,s and sample heights
dataset on the measurement of standing height in centimeters from the Body Measures
dataset, matched the records on the unique identifier (respondent sequence number),
and filtered out the records when the age is less than 18 or have any other missing
values. An overview of the filtered dataset is given in Table 5 and the histogram is
shown in Figure 5. Although male and female adult heights seem to have slightly
different standard deviations, we will assume they are the same when applying our
Bayesian test.

Table 5. Overview of NHANE 2013–2014 adult standing height data
# of records % of records Average height (cm) SD of height (cm)

Overall 5857 100% 167.09 7.508 (pooled)
Male 2795 48.07% 173.13 7.834
Female 3062 51.9% 159.67 7.194

Table 6. Prior parameters and Bayes factor results for NHANE 2013–2014 adult
height data

Prior hyperparameters
Prior
bimodal
prob.

Bayes factor Conclusion
ξ1 ξ2 σ2 m1 m2 ν

150 180 400 10 10

8 0.1663 2.24× 10−5 Unimodal
5 0.4175 1.79× 10−5 Unimodal
3 0.6129 7.71× 10−5 Unimodal

1.5 0.8710 2.53× 10−4 Unimodal

Figure 5. Histogram of NHANE 2013–2014 adult standing height data. The dashed line represents kernel

density estimation of the histogram

The data indicates that the sample distribution of adult heights is unimodal when
modeled by a Gaussian mixture model p̂N(µ̂1, σ̂

2)+(1− p̂)N(µ̂2, σ̂
2) where the mixing

components are estimated from male and female heights data. The histogram also
supports this claim. However, are we going to reach the same conclusion without the
information about respondents’ gender? To check this, we performed the Bayesian
test with N = 100, 000 Markov chain iterations and a burn-in period of 20, 000 under
several different choices of prior distribution parameters. Table 6 shows that the Bayes
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factor is close to 0 in all cases, strongly suggesting the underlying distribution is
unimodal.

7. Concluding Remarks

This paper introduces a Bayesian framework for testing the number of modes in a two-
component Gaussian mixture. The first step involves setting up an appropriate prior
distribution for the parameters involved and calculating the corresponding posterior.
Then, the prior and posterior probabilities are obtained for unimodality by integrat-
ing these over the restricted subspace of unimodal parameter space for the mixture
distribution. Given the complex structure of this subspace, these are numerically com-
puted by using Monte Carlo and Gibbs Sampling methods. Finally, the conclusion on
modality is made based on the Bayes factor. The testing framework is shown to work
successfully in a simulation study, and is eventually applied to a data set on adult hu-
man heights to investigate whether the combined data on heights for men and women
is bimodal. The R-code for performing the Bayesian test is available by requesting the
authors.
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