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Abstract 
 

This paper outlines the Mental Model Algorithm 
(MMA), a model of spatial reasoning that uses a 
coordinate based representation to specify the spatial 
relations between objects. Based on humans’ 
performance on undetermined spatial reasoning 
problems, the MMA predicted preferences in the 
resolutions of undetermined positions of shapes. 
Additionally, the MMA is proposed to be a simpler 
and more scalable algorithm than propositional 
calculus models in that only a small set of rules are 
required to generate spatial inferences.  

 
Introduction  

Spatial comprehension in discourse can be claimed to 
require a construction process: John is to the left of Mary, 
Mary is to the left of Steve, that generates inferences such as 
John is to the left of Steve (Graesser, Singer, & Trabasso, 
1994). In this construction process an important component 
consists of constructing mental models that arguably are 
generated from analog-based representations (Johnson-
Laird, 1983; Johnson-Laird & Byrne, 1991). This theory has 
traditionally been contrasted with context-free propositional 
calculus (PC) models. The PC models stipulate that humans 
construct mental propositions by context-free formal rules of 
inference that apply to explicit assertions and that derive 
conclusions that are not sensitive to an argument’s content 
(Hagert, 1985; Pylyshyn, 1981; Rips, 1986). PC models 
have  formally been applied to the generation of spatial 
inferences but fail to make predictions of human spatial 
reasoning that are compatible with mental models (for a 
review, see McNAmara, Miller, & Bransford, 1996). 
Nevertheless a formal algorithm for mental models needs to 
be specified to advance theory development and 
experimentation on mental models. In creating such an 
algorithm, it is assumed that mental models are neither 
proposition lists nor detailed images, but a hybrid of 
symbolic representations that get instantiated in a formalized 
coordinate space (Johnson-Laird, 1983), much like 

Barsalou’s (1999) perceptual symbol system. This 
distinction could be seen as a formalization of the “what” 
and “where” system of Landau and Jackendoff (1993). The 
“what” system handles object meaning and the “where” 
system handles the spatial orientations of objects in space. 
The purpose of this paper is to show how a simple 
coordinate system can generate inferences about where 
objects are located on a wide variety of spatial reasoning 
problems without extensive rules. 

 
Mental models and Propositional 

calculus  
Byrne and Johnson-Laird (1989) gave evidence that mental 
models predict difficulty for certain spatial reasoning 
problems.  Consider problem 1. 

  
A is to the left of B. 
C is to the left of B. 
D is below B. 
E is below C. 
What is the relationship between D and E? 
 

In this problem two mental models can be constructed: 
 
  (a)     A   C    B 
                 E     D 
 
  (b)     C    A    B 
            E           D 

 
Figure 1:  Two mental models for problem 1. 
 
The mental model theory predicted difficulty with this 
problem since there is indeterminacy with A and C. Since 
there then are two alternative models that can be 
constructed, humans have more difficulty with this type of 
problem. A PC model does not make this prediction since a 
conflict with A and C does not affect the inference question 
(Byrne & Johnson-Laird, 1989).  
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In the following sections we provide a computational 
framework for mental models that established further 
theoretical support for such models. In providing this 
theoretical support, mental models must be operationally 
defined under a representational system. Johnson-Laird & 
Byrne (1991) briefly describes how a coordinate based 
algorithm can be written that builds mental models for 
spatial reasoning. Additionally, Glenberg, Kruley, and 
Langston (1994), describe how mental models can be 
constructed in a three-dimensional spatial medium to 
account for increased activations of spatially close objects in 
sentence comprehension. The purpose of the present 
algorithm is to formally describe how a mental model can 
generate spatial inferences in discourse. 

 
        Mental Model Algorithm  

The Mental Model Algorithm (MMA) is proposed to 
formally model spatial reasoning by using a simple 
analogical representation in 3-D space to construct 
coordinate boundaries of linguistically described spatial 
relations. After spatial relations are plotted, an inference 
process translates the spatial array back into linguistic 
descriptions.  

To assigned coordinate boundaries the bounding box 
model was used (Regier, & Carlson, 2001) to specify 6 
spatial relationships (i.e., above, below, left, right, behind, 
front right). In the bounding box model (see Figure 2), each 
preposition states a coordinate rule which specifies a three 
dimensional box relative to a landmark. A trajector is any 
object that falls in the two dimensional coordinates of the 
landmark.  
 

           
 

Figure 2: Bounding box model for above relative to a 
landmark (LM). 
 

The MMA constructs simple spatial relationships by 
linguistic propositions stating the relationship between two 
objects (e.g., (1a) A is on the left of B (1b) B is on the left of 
C). The MMA displays the spatial relations between the 
three shapes by using the box model to configure each pair 
of shapes in each proposition. On a n x n x n coordinate 
plane, the MMA constructs (1a) by representing B as a point 
at the origin (0,0) and A as a point at (-1,0); MMA always 
places the first landmark of a spatial problem at the origin. 
Where the landmark thereafter in each pair is always the 
object already set in the coordinate plane. Then in (1b) the 
MMA adds C to the plane at point (1,0) to display A B C. 

Spatial inferences are made between the points in 3-D 
space with a simple interpreter. This inference process takes 
nonlinguistic information and recodes it back into linguistic 

descriptions. In this space the MMA takes each point P and 
checks for other points that fall anywhere on the x, y, or z 
axis. Points on higher/lower y coordinates than P are 
considered above/below, points higher/lower than P on the x 
coordinate is considered right/left, and points higher/lower 
than P on the z coordinate is considered in front/behind (see 
figure 3). This process will yield all the linguistic spatial 
relations for each point. With simple process the model will 
report the inference that the A is in left of C without explicit 
rules.  

 

 
Figure 3:  Three dimensional plane for inferring spatial 
relations relative to P. In this figure, P is in front, and to the 
right of O. P is also to the right, and below, N. 
 

Model Complexity for 2-D problems  
One question that arises in the MMA and PC models are the 
number of rules required in solving spatial inference 
problems. Increasing rules suggest limitations in scalability 
towards varying applications. In the following example we 
will show how increasing complexity in spatial 
configurations poses increasing rules for PC models. 
Conversely, the MMA only has a small set of rules that need 
no modification for increasingly complex spatial 
configurations. Consider problem 2. 

 
A is to the left of B. 
B is to the left of C. 
D is below A. 
E is below C. 
What is the relationship between D and E? 

 
The depiction is shown below where object-pair relations are 
assumed to be adjacent (Byrne & Johnson-Laird, 1989).  
 

A    B    C 
D           E 
 

Figure 4:  Mental model for problem 2. 
 

In this case 6 rules (from Hagert, 1983) in the logic program 
Prolog are required to answer that D is to the left of E for 
any length between A and C, A and D, or C and E. Rules are 
written in non-variable form to better understand the rules 
for the problem.  
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(1) Left (A, C) If Left (A, B) & Left (B, C). 
       (2) Left (D, B) If Below (D, A) & Left (A, B). 

(3) Left (B, E) If Below (E, C) & Left (B, C). 
(4) Below (A, C) If Below (A, B) & Below (B, C). 
(5) Left (A, B) = Right (B, A). 
(6) Above (A, D) = Below (D, A). 

 
For the MMA 3 algorithms are needed to answer any 3-D 

spatial relation. Since the rules in the MMA are constrained 
by space, they pose a greater advantage for solving any 
spatial configuration. Algorithm 1 and 2 state the steps 
involved in plotting trajectors relative to landmarks in key-
value hash tables.   
 
Algorithm 1: subdirection 
Input: Two objects, the landmark, the trajector, and a 
spatial relationship relation between the landmark and 
trajector.  
Preconditions: The landmark should already have its co-
ordinates mapped in the hashtables. 
Postconditions: The hashtables, x_map and y_map, 
maintaining the co-ordinates of each object in the X and Y 
directions respectively will be updated. 
 
subdirection(trajector, landmark, relation) 
{ 

if(relation == “LEFT”) 
 { 
  x_map(trajector) = x_map(landmark) - 1; 

y_map(trajector) = y_map(landmark); 
 } 
 else if(relation == “RIGHT”) 
 { 
  x_map(trajector) = x_map(landmark) + 1; 

y_map(trajector) = y_map(landmark); 
 } 
 else if(relation == “BELOW”) 
 { 
  x_map(trajector) = x_map(landmark); 

y_map(trajector) = y_map(landmark) - 1; 
 } 
 else if(relation == “ABOVE”) 
 { 
  x_map(trajector) = x_map(landmark); 

y_map(trajector) = y_map(landmark) + 1; 
 } 
} 
 
Algorithm 2: construction 
Input:    A set of propositions in an array P. For clarity but 
not necessity, the landmark is always assumed to be the third 
position, the landmark is assumed to be in the first position 
and the relation is in the middle position.  
Preconditions: None 
Postconditions: Two global Hashtables, x_map and 
y_map, maintaining the co-ordinates of each object in the X 
and Y directions respectively will be created.  
 

construction(P) 
{ 
 foreach proposition p in P 
 { 
  landmark = parse(p, 0); 

relation = parse(p, 1); 
  trajector = parse(p, 2); 
 
  if (empty(x_map) && empty(y_map) 
  { 
   x_map(landmark) = 0; 
   y_map(landmark) = 0; 
  } 
  if(exists(x_map,landmark)&& exists(y_map,landmark)) 
   subdirection(trajector, landmark, relation); 
  else 
   print_error(“undefined landmark”); 
 } 
} 
Figure 5:  Algorithm 1 and 2 for the x and y axis.  

Algorithm 2 takes each proposition and parses the pair into 
the landmark and the trajector. The landmark is always the 
object that already has been plotted in the plane. Then 
algorithm 1 assigns coordinates to each trajector relative to 
the landmark.  

After all objects have been plotted in the plane, Algorithm 3  
generates spatial relations between all objects on the x and y 
axis. 

Algorithm 3: spatial relations 
Input: None 
Preconditions:  Coordinates for each object should be 
mapped to the hashtables x_map and y_map. 
Postconditions: Spatial relations between all objects are 
listed. 
 
relations() 
{ 
 foreach landmark in x_map 
 { 
  foreach trajector in y_map 
  { 
   if(landmark != trajector) 
   { 
    if(x_map(landmark) < x_map(trajector)) 
     print(landmark “LEFT” trajector) 

else if(x_map(landmark) > x_map(trajector)) 
     print(landmark “RIGHT” trajector) 

else if(y_map(landmark) < y_map(trajector)) 
     print(landmark “BELOW” trajector) 

else if(x_map(landmark) > x_map(trajector)) 
     print(landmark “ABOVE” trajector) 
   } 
  } 
 } 
} 
Figure 6:  Algorithm3 for the x and y axis. This assigns 
spatial orientations between every object on the x and y axis. 
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Currently it may appear that the MMA is more complex than 
the PC models. But as we will see the MMA does not 
change for any 2-D problems. While PC models can solve 
any symmetrical variations of problem 2, difficulties arise 
under simple spatial augmentations. Consider problem 3 
with E placed directly left of D: 
 

A is to the left of B. 
B is the left of C. 
D is below A. 
D is to the left of E.  
What is the relationship between E and B? 

 
A depiction is shown in Figure 7. 

 
     A   B   C 
     D   E                   

 
Figure 7:  Mental model for problem 3. 
 
The inference that E is below B can not be solved by the 
current rule set using Prolog.  By adding the following rule: 
 

(7) Below (E,B) If Left (D,E) & Left (A,B) & Below 
(D,A).  
 
Now consider problem 4 with E placed on the left of D. In 
this situation the PC model would not be able to infer that E 
is to the left of A. The following rule would be needed: 
 
 (8) Left (E,A) If Left (E,D) & Below (D,A). 
 
A final variation worth mentioning is to consider problem 4 
with F added below E. In this case F is also below D. The 
PC model would not be able to infer this relationship with 
the current rule set.  

Thus it appears that PC models are not scalable to 
variations of spatial reasoning problems. There are other 
spatial relations not mentioned in problem 2 that would need 
additional rules (e.g., D is below B and C, E is below A and 
B, etc…). This is contrasted with 4 inference rules needed in 
the MMA to calculate all possible 2-D spatial relations. The 
following section will illustrate further complexity in PC 
models for 3-D spatial relations. 
 

Model Complexity for 3-D problems  
Adding a third dimension in spatial reasoning creates three 
spatial relations for every object. Consider problem 5. 
 

A is behind B. 
B is behind C. 
D is below A. 
D is to the left of E.  
What is the relationship between E and B? 

 

Where a depiction would look like the following: 
 
     A/B/C 
     D E                   

 
Figure 8:  Mental model for problem 5. Where x/y indicates 
x is behind y.  
 
The MMA will have to incorporate 2 plotting rules and 2 
more inference rules (front/behind) to detect the relations 
between E and B (i.e., behind, below, and to the right). PC 
models need rules to account for relations between the z to y 
and z to x axis. Here is a sample of a few. 
 

(9) Behind (A,B) = Front (B,A). 
(10) Behind (D,B) If Below (D,A) & Behind (A,B). 
(11) Behind (D,B) If Left (D,A) & Behind (A,B). 
(12) Behind (A,C) If Behind (A,B) & Behind (B,C). 
(13) Behind (E,B) If Left (E,D) & Behind (D,B). 
(14) Behind (E,B) If Left (D,E) & Behind (D,B). 
(15) Left (B,E) If Behind (D,A) & Left (D,E). 
(16) Left (E,B) If Behind (D,A) & Left (E,D). 
(17) Below (E,B) If Left (E,D) & Below (D,A). 
(18) Below (E,B) If Left (D,E) & Below (D,A). 

 
 Thus for any 3-D spatial problem the MMA has 6 
inference rules while a PC model has at least 18. In addition 
to the MMA advantages computationally, the following 
experiment will investigate further theoretical predictions of 
the MMA and PC models.  
 
Experiment: spatial inferences in undetermined 

spatial reasoning  
This construction of a mental model assumes an incremental 
updating of the representation on the basis of the present and 
past input. So the resultant representation in any given 
moment guides the interpretation of subsequent input. A 
question arises as to the integration of previous information 
with the interpretation of each new sentence (see Sanford & 
Garrod, 1989). One issue in this integration process is how 
to resolve conflict in indeterminate spatial problems. In this 
process the MMA assumes comprehension proceeds in a 
linear fashion and can not have objects share the same space 
in the coordinate plane. One key prediction of the MMA is 
to prefer certain resolutions over others for simple 
indeterminate problems such as A left of B, B right of C. 
Where resolutions are assumed to be depicted on one 
dimension as either A C B or C A B (see Hayward and Tarr, 
1995; Regier, & Carlson, 2001). Givon’s iconicity 
assumption (1992), would predict C A B, which states 
humans assume an event t stated in discourse gets 
constructed and remains unchanged when integrated with 
new information q. To build this depiction, the MMA 
constructs the first premise and displays A B. Since C can 
not occupy the same space as A, C is placed on the left of 
the A to make C A B (see Figure 9 for the added subroutine 
for this process). PC models would not predict any 
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preference for a resolution since there are no constraints of 
space for PC, thus it does not matter that A and C occupy the 
same space.  
 
subundetermined(trajector) 
 {               

if(exists(x_map, trajector) 
    { 

  if(relation == “LEFT”) 
    { 

x_map(trajector) = min(x_map) – 1; 
y_map(trajector) = y_map(landmark);   

} 
if(relation == “RIGHT”) 

          { 
  x_map(trajector) = max(x_map) +1; 
  y_map(trajector) = y_map(landmark);  
} 

     } 
        if(exists(y_map, trajector) 
       { 
      if(relation == “BELOW”) 
             { 

       y_map(trajector) = min(y_map) -1; 
      x_map(trajector) = x_map(landmark); 
} 

             if(relation == “ABOVE”) 
             { 

     y_map(trajector) = max(y_map) +1; 
     x_map(trajector) = x_map(landmark); 
 
} 

 
       } 
} 
 
Figure 9:  Undetermined coordinate assignment for the x 
and y axis. This rule says that if the assigned coordinate 
already exists in the hash table, replace its x or y axis with 
the (the min) -1 or  (the max) + 1 of the values in the hash 
table. 
 
Data Collection   
Twenty college students were presented with 6 
undetermined spatial problems consisting of left and right, 
(e.g., (1a) circle is on the  right of the square, (1b) square is 
on the  left of the  triangle). Instructions were to list all 
possible shape spatial relations that were not already stated 
in the 2 propositions. Subjects were not explicitly instructed 
to draw, but were told they could use any means necessary 
to generate the spatial relations between the shapes. The 
dependent measure was the subjects’ first spatial inference 
given for each problem. 
 
Results and Discussion  
For undetermined spatial inference problems, 54% of the 
observations preferred the MMA prediction, 38% supported 

other correct alternatives, and 8% were incorrect. A 
comparison of the correct alternatives yielded a significant 
one-tailed difference x2 = 3.25, p < .05. Additionally, all 
subjects drew the spatial depictions to generate inferences. 
In these drawings 94% were drawn on one dimension, 
supporting theories of spatial prototypically (Hayward & 
Tarr, 1995; Regier, & Carlson, 2001).  
 

                  Discussion  
Our data suggest that a simple coordinate based construction 
system is sufficient to model many characteristics of spatial 
reasoning in discourse. This is consistent with intuitions of 
proponents of Mental Models (Johnson-Laird & Byrne, 
1991). By using simple Euclidian based rules for spatial 
relations between object pairs, inferences can be made as to 
spatial relationships between complex spatial arrays. 
Additionally, the MMA requires a small set of rules that can 
be generalized to spatial reasoning problems that pose 
complexity for PC.  By testing formally PC models and the 
MMA it is apparent that mental models of MMA have 
advantages theoretically as well as computationally.  

Arguments have been made that humans may not process 
mental models in a Euclidian like space (Langston, Kramer, 
& Glenberg, 1998), these experiments looked at implicit 
spatial relations in text comprehension. Spatial reasoning 
mainly involves explicit instructions to look for spatial 
relations between objects. This process can be argued to be 
Euclidian based since it is a simple strategy to use for 
generating spatial inferences. Further research should be 
conducted to determine the validity of Euclidian based 
representations. 
 Additionally, the MMA can be easily applied to 3 
dimensional problems since the subroutine for assigning 
coordinates and scanning directions is not qualitatively 
different for a third dimension. Including a third dimension 
also would allow for an “in/out” relation. This relation 
would have to incorporate notions of space for objects 
beyond points, since the notion of containment has 
assumptions of size for landmarks and trajectors.  
 
MMA in Language Comprehension  
In the domain of language comprehension, spatial reasoning 
plays an important role. Landau and Jackendoff (1993) 
describe language comprehension as a combination of “what 
and “where” process. This “where” process can be seen as a 
formalization in the MMA to establish situation models of 
objects or agents in discourse. A major theoretical question 
arises as to how humans combine the “what” with the 
“where” in situation models.  One option possibility is that 
semantic “what” information is bound to “where” 
information through pointers in long-term memory (Sanford 
& Garrod, 1981). The details of this possibility pose a 
challenge for further research. 
 

                   Conclusion  
This paper represents a scalable computational approach to 
Mental Models using simple coordinates in 3-D space. 
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While PC models can also generate spatial relationships, the 
nature of its representation causes challenges both 
theoretically and computationally.  
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