
UCLA
UCLA Electronic Theses and Dissertations

Title
Rapidly Deployable Internet-of-Things Body Area Network Platform for Medical Devices

Permalink
https://escholarship.org/uc/item/4158z4p2

Author
Baek, In Hwan

Publication Date
2016

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4158z4p2
https://escholarship.org
http://www.cdlib.org/

University of California

Los Angeles

Rapidly Deployable

Internet-of-Things

Body Area Network Platform

for Medical Devices

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Electrical Engineering

by

In Hwan Baek

2016

c� Copyright by

In Hwan Baek

2016

Abstract of the Thesis

Rapidly Deployable

Internet-of-Things

Body Area Network Platform

for Medical Devices

by

In Hwan Baek

Master of Science in Electrical Engineering

University of California, Los Angeles, 2016

Professor William J. Kaiser, Chair

Biomedical devices in the past provided limited capability for the data acquisition and pre-

sented the data in the form of user interface for a care provider to observe. Now, what is

required for biomedical devices has fundamentally changed. Many devices must now support

secure networking and include a network of sensors to enable machine learning-based sensor

fusion for accurate inference of the subject’s state.

This thesis introduces an Internet-of-Things (IoT) body area network (BAN) platform

for medical devices that will provide rapid development capability with the assurance of

security, networking, and the ability to host computationally intensive processes that are now

required by medical devices. The BAN platform consists of seven wearable sensor nodes on

the chest, wrists, upper legs, and ankles. Each sensor node includes sixteen general-purpose

input/output (GPIO) pins, an analog-to-digital converter (ADC), two inter-integrated circuit

(I2C) controllers, a serial peripheral interface (SPI), two universal asynchronous receiver

transmitters (UART), and a universal serial bus (USB) on-the-go (OTG) to interface with

sensors. The platform base model includes 9 degree-of-freedom inertial measurement unit

ii

(9DOF IMU) motion sensors, an electrocardiogram (ECG) sensor, a microphone, and a heart

rate sensor. With its flexible interfaces, the platform is highly customizable and more sensors

can be easily added.

Each sensor node features an IoT computer-on-module called the Intel Edison. The

device can connect to expansion boards for rapid development. Although it has two o�cial

expansion options, the BAN platform uses boards from a third party manufacturer due to

their small size. Intel provides a library to access the external interfaces. The library is fully

compatible only if the Arduino breakout is used. A C library that abstracts /sys/class/gpio

interface was developed to access the GPIO. The ADC device used in the platform is an

I2C device. A C library was developed that abstracts the I2C communication between the

Intel Edison and the ADC to provide an intuitive application program interface (API). The

UART interface is accessible via /dev/ttyMFD2. A Python package called PySerial is used

to interface the serial port. These interfaces in addition to the Intel’s o�cial breakouts and

library enable many more applications.

One of the most powerful features of the Intel Edison is its integrated WiFi module,

enabling connection within the BAN and to the Internet. Since the BAN platform collects the

user’s private health and activity data, the connection is secured by transport layer security

(TLS). The networking among sensor nodes allows time synchronization with network time

protocol (NTP) to have accurate sensor fusion.

Powered by its Intel Atom dual-core processors, the BAN platform can host neural

network-based classifiers to monitor users’ states. From experiments, the performance of

the neural network hosted on the platform was found to be on par with that of neural

network implemented in Matlab.

The BAN platform was successfully distributed to freshman, senior, and graduate IoT

courses with exceptional assessment records. The IoT courses have shown that the students

were able to rapidly develop fully functioning biomedical devices on the BAN platform.

iii

The thesis of In Hwan Baek is approved.

Robert Candler

Gregory J. Pottie

William J. Kaiser, Committee Chair

University of California, Los Angeles

2016

iv

Table of Contents

1 Introduction . 1

2 System Overview . 3

2.1 Body Area Network Platform . 3

2.2 Intel Edison Overview . 6

2.3 Available Expansion Options . 8

3 Interfaces . 12

3.1 General Purpose Input Output (GPIO) . 13

3.1.1 Arduino Breakout and MRAA API 13

3.1.2 SparkFun GPIO breakout and Linux GPIO interface 14

3.2 Inter-Integrated Circuit (I2C) . 17

3.3 Serial Peripheral Interface . 20

3.4 Universal Asynchronous Receiver/Transmitter (UART) 21

3.5 Universal Serial Bus (USB) . 24

3.6 Analog-to-Digital Converter (ADC) . 25

4 Sensors . 28

4.1 9 Degree-of-Freedom Inertial Measurement Unit (9DOF IMU) 28

4.2 Electrocardiogram (ECG) . 30

4.3 Microphone . 32

4.4 Heart Rate Sensor . 33

5 Networking . 35

v

5.1 WiFi and Network Configuration . 36

5.2 Secure Communication . 38

5.3 Time Synchronization . 40

6 Supported Algorithms . 41

7 Education mission . 44

8 Conclusion and Future Work . 47

A Acronym List . 49

References . 52

vi

List of Figures

2.1 Body Area Network Platform . 4

2.2 Sensor Node . 5

2.3 Intel Edison . 6

2.4 Intel Edison CPU and MCU, adopted from [1] 7

2.5 Hirose DF40 Connector . 8

2.6 An Arduino breakout (top) and a mini breakout (bottom) 9

2.7 SparkFun boards . 10

2.8 Stacked SparkFun boards with Intel Edison Module 11

3.1 Intel Edison for Arduino Block Diagram, adopted from [2] 13

3.2 MRAA Library GPIO API Demo . 14

3.3 SparkFun GPIO Block for Intel Edison . 15

3.4 GPIO Library Demo . 16

3.5 I2C . 17

3.6 I2C Protocol, adopted from [3] . 17

3.7 SparkFun I2C Breakout . 19

3.8 MRAA I2C Demo . 19

3.9 SPI Between a Single Master and a Single Slave 20

3.10 MRAA UART Demo . 22

3.11 UART pins on GPIO Block . 23

3.12 PySerial Demo . 23

3.13 Arduino Breakout USB Ports . 24

3.14 SparkFun Base Block USB Port . 24

vii

3.15 lsusb Command Output . 25

3.16 MRAA Analog Input Demo . 26

3.17 SparkFun ADC Board . 26

3.18 ADC Library Demo . 27

4.1 SparkFun 9 Degrees of Freedom Block . 29

4.2 ECG Module . 30

4.3 Simulated ECG Trace . 31

4.4 Sensor Node with Microphone . 32

4.5 ALSA Configuration . 33

4.6 Heart Rate Sensor Setup for Testing . 34

4.7 Heart Rate Sensor Data Plot . 34

5.1 Network Diagram . 35

5.2 /etc/network/interfaces . 37

5.3 SSID and Password . 37

5.4 wpa supplicant.conf . 38

5.5 Server-to-Client Communication . 39

5.6 TShark Output . 39

5.7 ntpdate Output Example . 40

6.1 Plot from Matlab (left) and Plot from Python 42

6.2 Comparison of Performance of NeuPy’s Training Algorithms 42

6.3 Training Algorithm Performance Comparison between Matlab (left) and Ne-

uPy (right) on Data Set 1 . 43

viii

6.4 Training Algorithm Performance Comparison between Matlab (left) and Ne-

uPy (right) on Data Set 2 . 43

7.1 Vigilant Robot . 45

7.2 Smart Wearable for Workplace Performance Advancement 46

7.3 Athletic Performance Advancement System 9DOF Data from an Arm Curl . 46

ix

Acknowledgments

I would like to express my sincere gratitude to my advisor, Professor William Kaiser, who has

encouraged and inspired me during my master studies. Without his guidance and support,

this thesis would not have been possible.

I must also thank my committee members, Professor Gregory Pottie and Professor Robert

Candler for their insightful advices on my thesis.

I thank my colleagues at UCLA Wireless Health Institute. My special thanks go to

Pranshu Bansal for his help with his expertise in software development, Derrick Chang for

his guidance on motion sensing, and Peter Borgstrom for his introduction to artificial neural

network and classification.

I have been very fortunate to serve as a teaching assistant for E96 and EE180D. I thank

my students for validating the success of my system development. My special thanks go to

Susan Krkasharian, Elizabeth Abramyan, Tanya Al-Rehani, Karen Li, Sam Sirott, Nastassy

Zagorov, Ryan Romanas, Justin Lazarus, Richard Sun, Timothy Jo, Louis Truong, Yun

Zhang, Yuhuai Lin, and Manni Chen for allowing me to mention their projects.

x

CHAPTER 1

Introduction

In the past, biomedical devices provided limited capability for the acquisition of data from

instruments and presented the data in a form of user interface for a care provider to observe.

Now, the needs of healthcare have fundamentally changed what is required for biomedical

devices. Biomedical devices must support patient monitoring in three main scenarios: patient

monitoring in the clinic, that in the residence, and that at an emergency site [4]. Therefore,

biomedical devices must now support networking and must be inherently secure. Further,

the opportunities for diagnostics now require not just one or a few simple sensors, but a

network of sensors with its data being fused with machine learning algorithms to enable

accurate inference of the subject’s state.

For the last ten years, there has been a growth of wireless sensor networks (WSN),

enabled by the availability of sensors that are smaller and cheaper [4][5]. A WSN is a

network of computing devices that is mainly developed for surveillance and monitoring [6].

Although WSN was initially meant for large scale systems, it has been applied for human

body monitoring in recent years. As a result, the body area networks (BAN) have emerged

as a new generation of WSN that consists of wearable devices for health monitoring.

The IEEE 802.15 defines the BAN as the network of “low power devices operating on,

in or around the human body (but not limited to humans) to serve a variety of applications

including medical, consumer electronics / personal entertainment and other” [7]. The BAN

may consist of low-cost, low-power, and non-invasive wearable health or activity monitoring

sensors to enable inexpensive monitoring in any scenario. These sensors include electro-

cardiogram (ECG) sensors, peripheral capillary oxygen saturation (SpO2) sensors, motion

1

sensors, and acoustic sensors.

A major challenge of biomedical BAN system development is meeting the needs of the

healthcare provider. As such, numerous clinical trials are required. If an error is found in the

system during a clinical trial, the system needs to be reworked. This may involve redesigning

of software architecture or replacement of hardware components such as circuit boards and

sensors. Such system adjustment needs to be repeated until the clinical trials are successful

and the system’s performance is robust. The system adjustments increase the development

time and cost.

To address the system development challenge and the requirements, this thesis introduces

an IoT BAN platform for medical devices that will provide rapid development capability

with the assurance of security, networking, and the ability to host computationally intensive

processes that are now required by medical devices. The developed platform includes an

IoT computer-on-module device on each sensor node that includes GPIO, I2C, UART, and

SPI interfaces, integrated WiFi and Bluetooth Low Energy module, and a dual-core CPU

that runs embedded Linux, enabling intensive computation hosted on the system. This

thesis describes the interface development, sensors, networking, and security. Furthermore,

it discusses computation method for machine learning-based sensor fusion. The platform

is capable of both training a classifier based on an artificial neural network algorithm and

utilizing the trained classifier to monitor patients.

In addition to medical applications, the platform was distributed to freshman, senior,

and graduate courses for education missions. The platform was used in various projects

including IoT robot coordination system, smart wearables for workplace performance ad-

vancement, and athletic performance advancement system. These courses were successful

with exceptional assessment records.

2

CHAPTER 2

System Overview

This chapter provides a system design overview of the BAN platform. In addition, it in-

troduces the Intel Edison, an IoT computer-on-module device used for the BAN platform

development. The device is a small module with only one Hirose connector, which requires

expansion boards in order to have rapid development capability. This chapter describes the

selected expansion boards for the Intel Edison.

2.1 Body Area Network Platform

Figure 2.1 illustrates the proposed BAN platform base model. It consists of seven wearable

sensor nodes on the chest, wrists, upper legs, and ankles. WiFi is chosen for the network

connection within the system and to routers to access the Internet. The chest node is

the center node in the network. Each sensor node includes a WiFi module, enabling the

WiFi connection between the chest node and the other nodes. In addition to the node-to-

node connection, the chest node is capable of connecting to routers to communicate with

healthcare providers via the Internet.

As a sensor node, the chest node includes an electrocardiogram sensor to monitor the

heart activity, a microphone to monitor voice activity, and a 9DOF IMU to track the torso

motion. The wrist nodes include a 9DOF IMU to track the hand motion and a pulse sensor

to measure heartbeats. Only one of the wrist nodes may have a pulse sensor since having

one on each wrist node gives redundant data. The upper leg and the ankle nodes monitor

the legs’ motion with 9DOF IMUs. These sensors are described in chapter 4 in more detail.

3

Figure 2.1: Body Area Network Platform

The proposed BAN platform is best described by the following characteristics:

• Highly customizable and expandable

• Capable of on-board intensive computation and data processing

• Remotely accessible for software development even after deployment

4

As shown in Figure 2.2, each sensor node includes GPIO, ADC, I2C, SPI, UART, and

USB to interface with many sensors. These interfaces are described more in detail in chap-

ter 3. Due to the availability of the interfaces, it is very easy to add more sensors to the

system. As such, the platform is highly customizable and expandable. For instance, if an

SpO2 sensor with a UART interface is to be added to a wrist node, it can be easily integrated

into the system.

Figure 2.2: Sensor Node

Many other proposed BAN platforms [8][9][10][11] use a smartphone or a PDA as their

personal server and central processing device, which integrates and processes the sensor

data and then communicates with the healthcare providers through the Internet. The BAN

platform proposed in this thesis uses the chest sensor node instead as the personal server

and central processing device. It is important to note that every sensor node is also equally

capable of data processing. For instance, each node can compute the orientation based on

the 9DOF IMU sensor data and send the orientation data to the chest node rather than the

5

raw sensor data.

Each sensor node features a CPU that runs Linux. The Linux OS on each node hosts

a secure shell (SSH) server, which allows remote access. The developers can deploy the

platform even when the software is not complete. After deployment, the developers can still

access each node of the platform, collect and analyze data, and adjust the software.

2.2 Intel Edison Overview

The Intel Edison, shown in Figure 2.3, is a small compute module that is the size of a postage

stamp. The exact dimension is 35.5 mm ⇥ 25.0 mm ⇥ 3.9 mm (1.4 in ⇥ 1.0 in ⇥ 0.15 in)

Figure 2.3: Intel Edison

[12]. It features a 22nm Intel System-on-Chip (SoC), that includes a dual-core Intel Atom

processor (CPU) and a 32-bit Intel Quark microcontroller unit (MCU) [12]. The featured

CPU runs at a fixed clock frequency of 500 MHz and the MCU runs at 100 MHz. The o�cial

6

OS that runs on the CPU is Yocto Linux. It is also possible to substitute Yocto Linux with

Ubilinux, an embedded Linux distribution based on Debian [13]. The MCU runs Viper, a

Wind River RTOS [1]. The SoC architecture is shown in Figure 2.4.

Figure 2.4: Intel Edison CPU and MCU, adopted from [1]

In addition to the SoC, the Intel Edison features other major components. It includes 1

GB LPDDR3 RAM and 4GB eMMC flash storage [12]. One of the most powerful features

the Intel Edison provides is the integrated WiFi module, which supports 802.11a, 802.11b,

802.11g, and 802.11n [12]. Another powerful feature is the integrated Bluetooth Low-Energy

7

module.

The Intel Edison has forty multiplexed GPIO interfaces that can be configured as one SD

card controller, two UART controllers, two I2C controllers, one SPI controller, one inter-IC

sound (I2S) controller, pulse width modulation (PWM), and USB 2.0 [12].

2.3 Available Expansion Options

The Intel Edison features a Hirose DF40 connector, shown in Figure 2.5, which allows con-

nection to an expansion board for rapid development. There are two o�cial expansion boards

and other boards supplied by third party manufacturers. The o�cial expansion boards are

the Arduino-compatible breakout board and the mini breakout board, shown in Figure 2.6.

Figure 2.5: Hirose DF40 Connector

The platform development presented on this thesis involves two expansion options: the

8

Figure 2.6: An Arduino breakout (top) and a mini breakout (bottom)

Arduino breakout and the SparkFun expansion blocks. The Arduino breakout board is

compatible with Arduino Uno boards and requires very little e↵orts on the hardware devel-

opment. Despite its rapid development capability, the Arduino breakout board is about the

size of a hand and hence not suitable for wearable devices. Although the Arduino breakout

is not used in the BAN platform, it was used for the prototype development due to its con-

venient ready-for-development interfaces. It includes twenty digital input/output pins, some

of which can be configured as TX/RX pins for the UART interface, SPI pins, and PWM

pins. It also features an on-board TI ADS7951ADC, which provides six analog input pins

9

on the board [2]. The board includes two micro USB ports and a USB 2.0 Type-A port.

The USB 2.0 port and one of the micro USB ports are connected to a USB OTG interface,

which allows USB peripherals. The other micro USB port is connected to an FTDI chip,

which enables debugging via serial console.

The Intel Edison’s small size enables wearable device development. SparkFun manufac-

tures very compact breakout boards, lithium polymer (LiPo) batteries, sensors, and actuators

for the Intel Edison. Figure 2.7 shows a few of these SparkFun boards. These boards are

Figure 2.7: SparkFun boards

only slightly larger than the Intel Edison module and stackable for easy expansion as shown

in Figure 2.8. The boards used in the BAN platform base model are the following:

• Base block

10

Figure 2.8: Stacked SparkFun boards with Intel Edison Module

– Features USB OTG and FTDI

• GPIO block

– Provides access to GPIO, PWM, and UART pins

– Includes TXB0108 voltage level shifters

• ADC block

– Features ADS1015 ADC

– Communicates with Intel Edison via I2C

• 9DOF block

– Features LSM9DS0 9DOF IMU

– Communicates with Intel Edison via I2C

• Battery block

– Features 400mAh LiPo battery and charger

11

CHAPTER 3

Interfaces

This chapter describes how to access the BAN platform’s external interfaces: GPIO, I2C,

SPI, UART, USB, and ADC. With the Arduino-compatible breakout board, these interfaces

are easily accessed by writing Arduino sketches. However, only one sketch can be uploaded

to an Edison and it is overwritten when a new sketch is uploaded. Instead, a program can

be written, saved in the Edison’s internal memory, and executed whenever it is needed. The

interface access on the Edison is made easier with a library called MRAA. MRAA is “a

C/C++ library with bindings to JavaScript and Python to interface with the IO on Galileo,

Edison, and other platforms, with a structured and sane API” for GPIO, I2C, ADC, PWM,

SPI, and UART [14]. This library allows developers to control low-level communication

protocol by high-level language. The Yocto Embedded Linux image includes MRAA library

by default. It is also possible to install the MRAA library on the Ubilinux.

Although the MRAA library provides a convenient API, it is fully compatible only when

the Intel Edison is connected to an Arduino breakout board. For instance, the ADC API

works for the Arduino breakout’s on-board ADC module. Another problem is that the

MRAA pin numbers directly map to the Arduino pin numbers rather than the GPIO num-

bers. Thus, direct access to the Intel Edison’s GPIO interfaces via MRAA’s API may not be

suggested. Instead, the Linux GPIO interface, /sys/class/gpio, can be utilized. If an ADC

module other than the Arduino breakout’s on-board ADC is used, the ADC module must

be accessed via I2C, SPI, or UART. Each section of this chapter describes di↵erent methods

to access the platform’s external interfaces.

12

3.1 General Purpose Input Output (GPIO)

The platform development involves the Arduino breakout for prototyping and the SparkFun

board for actual system implementation. Since the MRAA library’s API for the Intel Edison’s

GPIO access is not compatible without the Arduino breakout, another library to access the

GPIO is developed. The first part of this section describes the Arduino breakouts GPIO

interface and the MRAA’s GPIO API. The second part describes the Linux interface for

GPIO and the development of a C library that abstracts the Linux interface.

3.1.1 Arduino Breakout and MRAA API

The Intel Edison’s GPIOs are mapped to the digital pins on the Arduino breakout as shown

in Figure 3.1. The MRAA library includes functions to initialize the digital pins, set the

Figure 3.1: Intel Edison for Arduino Block Diagram, adopted from [2]

direction, and read from or write to the pins. An example scenario to demonstrate the

13

API is given as follows: Pin 5 is to be configured to send digital high signal. First, a

variable with mraa gpio context type must be declared. Then, mraa init gpio function must

be called with an integer 5 as its argument to initialize the digital pin 5 as a GPIO pin.

The initialization function returns a GPIO context if the initialization is successful and null

if it was unsuccessful. The returned GPIO context is then assigned to the variable created.

The pin direction is configured with mraa gpio dir function, which takes two arguments: a

GPIO context and a macro indicating the pin direction. In this scenario, the function is

called with the GPIO context variable and MRAA GPIO OUT as the arguments. Sending

a digital signal to the pin is done in a similar fashion. A function, mraa gpio write, takes

two arguments: a GPIO context and an integer with value 0 or 1. Finally, the GPIO pin is

closed with mraa gpio close function. Figure 3.2 shows this example in C code.

Figure 3.2: MRAA Library GPIO API Demo

3.1.2 SparkFun GPIO breakout and Linux GPIO interface

SparkFun GPIO breakout, shown in Figure 3.3, is a compact alternative to the Arduino

breakout for the GPIO access. It has sixteen GPIO pins that are connected to bidirectional

level shifters for the Intel Edison’s GPIO voltage of 1.8 V. The breakout also includes pins

for the Intel Edison’s internal power supply and ground. These power pins are useful when

14

powering on sensors or adding pull-up resistors for GPIO inputs.

Figure 3.3: SparkFun GPIO Block for Intel Edison

The embedded Linux provides a userspace interface for GPIO. On the Linux, the GPIOs

are accessed from /sys/class/gpio. The procedure to send digital signals with the Linux

GPIO interface is similar to MRAA’s. First, the GPIO must be made available before ac-

cessing it. This is done by writing the GPIO number to /sys/class/gpio/export. If the GPIO

number is 44, there now must be /sys/class/gpio/gpio44. Then, the GPIO’s direction is set

by writing “out” to /sys/class/gpio/gpio44/direction. Writing “1” to /sys/class/gpio/gpio44/

value sends digital high to the GPIO pin.

The Linux GPIO interface can be used directly to access the GPIO. However, direct use

of the interface is not intuitive. Thus, a C library that abstracts the Linux GPIO interface

is developed for more intuitive GPIO access. The library’s API is designed to be similar

to MRAA library’s in order to fast port the prototype developed on the Arduino breakout.

The C library provides useful functions: gpio init, gpio close, gpio direction, gpio write, and

gpio read. The gpio init function initializes a GPIO pin for a simple digital input or output

by writing the GPIO number to /sys/class/gpio/export. It takes one argument to specify

the GPIO number. Since the library is designed for the SparkFun block, the available pins

are limited to the listed values below:

15

• GPIO12, GPIO13, GPIO14, GPIO15, GPIO44, GPIO45, GPIO46, GPIO47, GPIO48,

GPIO49, GPIO182, and GPIO183.

The gpio close function closes a GPIO pin by writing the GPIO number to /sys/class/gpio/

unexport. It takes one argument to specify the GPIO number. The gpio direction function

sets the direction of the GPIO pin by writing “in” or “out” to /sys/class/gpio/gpioN/direction.

It takes two arguments: one to specify the pin number and the other to specify the direc-

tion. The gpio write function writes a digital value (0 or 1) to the pin by writing “0” or

“1” to /sys/class/gpio/gpioN/value. It takes two arguments: one to specify the pin number

and the other to specify the digital value. This function is available only if the GPIO pin

is set as an output. The gpio read function reads the value from a GPIO pin by reading

/sys/class/gpio/gpioN/value and returns the value as an integer. It takes one argument to

specify the pin number. This function is available only if the GPIO pin is set as an input.

Figure 3.4 shows an example, which utilizes the C library to write a digital high value to

GPIO44.

Figure 3.4: GPIO Library Demo

16

3.2 Inter-Integrated Circuit (I2C)

I2C is developed by Philips in the 1980s to minimize the number of wires. It is a protocol

that allows a master integrated circuit (IC) device to communicate with multiple slave IC

devices. It uses two wires: serial clock line (SCL) and serial data line (SDA). Since I2C

devices are open-drain, they can only pull the signal low. Thus, there are pull-up resistors

for SCL and SDA. Figure 3.5 illustrates a common I2C bus.

Figure 3.5: I2C

Messages are broken up into two frame types: address frame and data frame. The address

frame lets the master device indicate which slave device it wants to communicate with. The

data frame contains an 8-bit message to be placed on the SDA. Figure 3.6 illustrates the

protocol. First, the start condition must be set up so that the master device pulls down the

Figure 3.6: I2C Protocol, adopted from [3]

SDA while keeping the clock high. Then, all slave devices are notified that a transmission

is about to begin. The 7-bit address is then transmitted from the most significant bit to

the least significant bit in seven clock pulses. What follows after the address bits is a read

or write bit. If the read or write bit is high, the master is requesting data. If it is low,

17

the master is sending data. The receiving slave device pulls down the SDA to indicate that

it has received the request. If the SDA remains high, the slave device did not receive the

request. Once the request is received, the slave device sends the data. The data transmission

is similar to the address transmission. Depending on whether the master device is reading

or sending data, the device that controls the SDA to send an 8-bit data is the slave device

or the master device. What follows after the data is an acknowledge bit, which is pulled

down by the receiving device to indicate that the data is received. Once it is received, the

transmission must stop. The SDA becomes high after the SCL becomes high to indicate the

transmission is finished.

The Intel Edison includes two I2C controllers for I2C-1 bus and I2C-6 bus. Four pins of

the Intel Edisons Hirose connector are dedicated for the I2C buses. Pin 41 and pin 43 are

respectively the SCL and the SDA of I2C-1 bus while Pin 45 and pin 47 are the SCL and

the SDA for I2C-6 bus [15]. The Arduino breakout maps these pins to A4, A5, SCL, and

SDA pins and port expanders as shown in Figure 3.1. Pull-up resistors need to be placed

between these pins and the VCC pin. As long as the signal voltage level matches the Arduino

breakout’s, slave devices’ SCLs and SDAs can be directly connected to these pins. A sensor

node in the BAN platform base model includes up to two I2C slave devices: the 9DOF IMU

and the ADC. These devices are connected directly to the sensor node’s Intel Edison module

via the Hirose connector pins. If an I2C device cannot be directly connected via the Hirose

connector to the Intel Edison modules, a SparkFun’s compact I2C breakout board can be

used. This breakout board is shown in Figure 3.7. Unlike the Arduino breakout, this board

includes on-board 10 K ohm pull-up resistors, enabling direct connection between the female

pin connector and slave devices with 3.3 V level.

The Intel Edison’s I2C module supports three modes: standard mode with data rates up

to 100 kbps, fast mode with data rates up to 400 kbps, and high-speed mode with data rates

up to 3.4 Mbps [15]. It is important to note that the Intel Edison can only be configured

as a master I2C device. Another limitation is that multiple master configuration is not

supported.

18

Figure 3.7: SparkFun I2C Breakout

In Linux, an I2C adapter can be used to access all I2C devices from userspace. The

MRAA library abstracts the Linux’s I2C dev interface to provide a more convenient API for

the Intel Edison’s I2C interface. The MRAA is used for both Arduino breakout and SparkFun

board options. The MRAA library functions initialize the Intel Edison as a master device,

configure the operation speed/mode, read data from a slave device, and send data to a slave

device. Figure 3.8 shows an example of the MRAA’s I2C API.

Figure 3.8: MRAA I2C Demo

19

3.3 Serial Peripheral Interface

SPI is a synchronous serial communication between one master device and one or more slave

devices for a short distance. Along with I2C, SPI is primarily used in embedded systems.

The motivation for the development of these buses is to reduce the number of wires. Another

common communication method is parallel communication. This method can result in a bus

having a lot of wires. Having many wires is not desirable for embedded systems due to their

limited board space. In comparison to parallel buses, SPI operates with only four wires.

Figure 3.9 illustrates a single master to a single slave SPI bus.

Figure 3.9: SPI Between a Single Master and a Single Slave

SCLK (serial clock) is the clock line, through which the master device sends the clock

signal to its slave devices to synchronize the data communication. MOSI (master out, slave

in) and MISO (master in, slave out) are the data lines. The reason why there are two

data lines in SPI is to have full duplex communication. In every clock cycle, the master

device sends a bit to the slave via MOSI and the slave device sends a bit to the master via

MISO. SS (slave select) is the line the master device uses to select the slave device for data

transmission/request by pulling down.

The Intel Edison’s Hirose connector pins 51, 53, 55, 57, and 59 are dedicated to the SPI

interface [15]. The Arduino breakout maps these pins to its digital pins for intuitive SPI

20

access. The BAN platform does not include a compact breakout for the SPI interface. Thus,

the interface must be accessed directly from the Hirose connector pins. The BAN platform

base model does not include any SPI devices. Nevertheless, the SPI interface is investigated

to allow the platform to expand with SPI devices.

MRAA library abstracts Linux’s userspace API for SPI to provide a more intuitive API.

The API includes functions to initialize an SPI context, select the SPI mode and the trans-

mission mode, set the operating clock frequency, write data to an SPI device, and de-initialize

an SPI context. The initialization will choose the default SPI mode and the transmission

mode. The default SPI mode is low clock phase and low clock polarity. This mode means the

idle clock state is low; data is captured on the rising edge; and data is output on the falling

edge. There are three other SPI modes: low clock phase and high clock polarity, high clock

phase and low clock polarity, and high clock phase and high clock polarity. These modes are

denoted by MRAA as MRAA SPI MODE1, MRAA SPI MODE2, and MRAA SPI MODE3.

The mraa spi mode function can be called with the SPI context and one of the SPI modes

as its arguments to change the SPI mode. The default transmission mode is “transfer most

significant bit first”. By calling the mraa spi lsbmode function, the least significant bit can

be transferred first. There are multiple functions to write data to an SPI device. These

functions give the user an option to choose the size of the data to write: one byte (uint8 t),

two bytes (uint16 t), a bu↵er of bytes (uint8 t), and a bu↵er of uint16 t.

3.4 Universal Asynchronous Receiver/Transmitter (UART)

The Intel Edison features two UART controllers for communication over serial ports. One

of the controllers has RTS, CTS, RX, and TX while the other controller has only RX and

TX. If the Arduino breakout is used, the controller with full flow control is connected to the

breakout’s on-board FTDI chip for USB debugging and the controller with only RX and TX

is connected to digital pins 0 and 1.

The MRAA library provides an API for the UART controller that is connected to digital

21

pins 0 and 1. The API includes functions to set the baud rate, the data bit size, the parity

bits, and the stop bit size. A baud rate is the speed of data transmission over a serial line.

Each transmitted data is sent in a frame, which includes a start bit, data bits, parity bits,

and one or two stop bits. The data bits are the data to be transmitted. The parity is a

simple error checking method for the data. Once these settings are done, MRAA functions

can be used to read from or write to the serial line. Figure 3.10 shows a C code example

that demonstrates the MRAA UART API.

Figure 3.10: MRAA UART Demo

When the SparkFun boards are used, the UART controllers are used in the opposite

way. The UART controller with only RX and TX are used for the SparkFun base block’s

FTDI chip for USB debugging. The same GPIO block introduced in 3.1.2 is used for the

UART. The GPIO block is connected to the UART controller with full flow control as shown

in Figure 3.11. For this reason, the MRAA library cannot be used since it is designed

to interact with the other controller. These UART controllers can be accessed via Linux

serial ports. /dev/ttyMFD2 is connected to the UART controller with full flow control and

/dev/ttyMFD1 is connected to the controller with only RX and TX. Instead of MRAA,

a Python package called PySerial is used for the BAN platform’s UART interface. Using

PySerial API, /dev/ttyMFD2 serial port is opened and data framing setting is done. Then,

22

Figure 3.11: UART pins on GPIO Block

the API’s read function is used to read from /dev/ttyMFD2 or the write function is used

to write data to the serial port. Figure 3.12 shows a Python example that demonstrates

PySerial.

Figure 3.12: PySerial Demo

23

3.5 Universal Serial Bus (USB)

The Intel Edison features a USB 2.0 OTG interface. The Hirose connector pins 3, 16, 18,

and 20 are USB OTG ID pin, USB D+, USB D-, and USB VBUS respectively [15]. The

Arduino breakout connects these pins to a micro USB port and a USB type-A port. There

is a switch that selects which port to use. These are shown in Figure 3.13. SparkFun base

block has only the micro USB port option. However, an adapter can be used, as shown in

Figure 3.14, to connect devices with USB type-A connectors.

Figure 3.13: Arduino Breakout USB Ports

Figure 3.14: SparkFun Base Block USB Port

The USB interface accepts USB peripherals that are Linux-compatible. These include

24

sound cards, mice, keyboards, and webcams. The Linux command, lsusb, can be used to

display the accepted USB devices. Figure 3.15 shows an output of lsusb command entered

while a USB mouse is connected. If the connected device is not listed, it may not be

Figure 3.15: lsusb Command Output

supported by Linux. Thus, it is important to ensure that the USB devices to use for the

BAN platform are Linux-compatible. Not all device have drivers for Linux. Even if they

have Linux drivers, they may not support some Linux distribution. For instance, a USB

data acquisition device from National Instrument called USB-6009 has a Linux driver with

dependencies that are RPM packages. Therefore, only the Linux distributions with RPM

support, such as RedHat, SUSE, CentOS, and Fedora, can properly use the driver installer.

Engineers may even need to write their own drivers if there is no supported driver.

3.6 Analog-to-Digital Converter (ADC)

An ADC is a device that converts a quantity given as voltage to a digital number. In order to

read analog signals, digital systems require ADCs. The Intel Edison module does not include

an integrated ADC to accept analog signals. Instead, an ADC device must be connected to

the Intel Edison via another interface. The Arduino breakout features an on-board ADS7951

ADC from Texas Instrument. The on-board ADC communicates with the Intel Edison via

the Linux Industrial I/O subsystem. The MRAA library provides an API for analog inputs

that abstracts the communication between the Intel Edison module and the on-board ADC.

Similar to other MRAA APIs, the analog input API provides functions to initialize an analog

input context, read values from the input, and de-initialize the context. Figure 3.16 shows

a C code example that demonstrates the API.

25

Figure 3.16: MRAA Analog Input Demo

The BAN platform uses a compact alternative. SparkFun manufactures an ADC board,

shown in Figure 3.17, for the Intel Edison. It features an ADS1015 ADC. Since the MRAA

Figure 3.17: SparkFun ADC Board

library is built for ADS7951, the analog input API does not work with the SparkFun ADC

board. In order to enable rapid development capability on the ADC, a C library is developed.

The C library is based on SparkFun’s C++ library and includes functions that abstracts the

I2C communication between the ADC and the Intel Edison. The library still depends on

26

the MRAA library for its I2C API. An MRAA I2C context must be declared and initialized.

Then, the C library’s functions make the Intel Edison to communicate with the ADC via an

I2C bus to set the ADC’s voltage range and to read data from the ADC. Figure 3.18 shows

a C example that demonstrates the C library.

Figure 3.18: ADC Library Demo

27

CHAPTER 4

Sensors

The BAN platform base model includes 9DOF IMU motion sensors, an ECG sensor, a

microphone, and a heart rate sensor. This chapter describes the sensors and their interfaces

to the BAN platform.

4.1 9 Degree-of-Freedom Inertial Measurement Unit (9DOF IMU)

The BAN platform provides capability to develop systems including motion tracking and

posture monitoring. Such capability is enabled by the 9DOF IMUs at the sensor nodes. A

9DOF IMU is an electronic device that measures the acceleration in three axes, the angular

rotation in three axes, and the magnetic field in three axes. Each measurement type is

in three degrees of freedom because it includes data in three di↵erent axes. Thus, it has

nine degrees of freedom in total. The 9DOF IMUs have accelerometers, gyroscopes, and

magnetometers.

The device used in the platform is the SparkFun 9 Degrees-of-Freedom block, shown in

Figure 4.1. The board includes a Hirose connector, which enables simple solderless con-

nection to an Intel Edison module. The device has an on-board LSM9DS0 chip, which

communicates with the Intel Edison through the I2C bus [16]. Each sensor on the LSM9DS0

chip is configurable to a wide range of sensitivity values and sample rates. The sensitivity

describes the gain of the sensor [17]. The accelerometer’s sensitivity value can be set to

±2, ±4, ±6, ±8, or ±16 g. The sensitivity value is explained as follows. The sensor values

are measured when its axis of interest is pointing to the center of the Earth and when it

28

Figure 4.1: SparkFun 9 Degrees of Freedom Block

is pointing to the opposite direction. The di↵erence between these values is divided by 2.

The resulting value is the sensitivity value. The accelerometer’s supported sample rates

range from 3.125 Hz to 1600 Hz. The gyroscope’s sensitivity value can be set to 245, 500,

or 2000 degrees per second. It supports sample rates ranging from 95 Hz to 760 Hz. The

magnetometer’s sensitivity value can be set to 2, 4, 8, or 12 gauss. It supports sample rates

ranging from 3.125 Hz to 100 Hz.

Direct interaction with the sensor may not be intuitive. In order to enable the sensors,

set up the sensitivities and the sample rates, and read the sensor data, the Intel Edison

needs to write to or read from the LSM9DS0 chip’s registers. For instance, setting up the

sample rate for the accelerometer is done via writing values to the four most significant bits

of the LSM9DS0 chip’s CTRL REG1 XM register. In order to enable fast development with

the 9DOF IMU device, a C library is developed. The library is based on SparkFun’s C++

library for the device. The C library utilizes the MRAA library to interact with the sensor

via MRAA’s I2C API. It includes functions that abstracts the low-level I2C communication

to configure sensors and read data. With these functions, the library provides a very simple

and intuitive API. A programming guide document is created to describe the API and guide

users.

29

4.2 Electrocardiogram (ECG)

The BAN platform is capable of monitoring the patient’s heart activity, enabled by a compact

3-lead ECG module. An ECG is the heart’s electrical activity data collected with electrodes

placed on the surface of skin [18]. An ECG delivers a lot of information about the heartbeat,

size of the heart chambers, the heart rate, muscle tissue damage, drug e↵ects, and many

others.

The BAN platform uses a compact 3-lead ECG module that is about the size of a credit

card. The ECG module is EG01000 from Medlab shown in Figure 4.2. The module connects

Figure 4.2: ECG Module

to the Intel Edison using the UART interface at 9600 baud rate with 8-bit data, one stop bit,

30

and no parity. The serial connection is bidirectional because the ECG module continuously

streams data and receives commands. The data stream includes wave sample points, pulse

values, “lead o↵” notification, and data type markers, which separate the di↵erent types of

data.

The data can be transmitted in three di↵erent rates: 300 Hz, 100 Hz, and 50 Hz. The

transmission rate is selected by sending a command to the ECG module. “S0” command

chooses 300 Hz. “S1” command chooses 100 Hz. “S2” command chooses 50 Hz. There are

other available commands. “5” and “6” commands turn on a 50 Hz notch filter and a 60

Hz notch filter respectively. “M” command switches to simulation mode. “N” command

switches back to the normal mode, in which real data is collected from three ECG leads. In

order to test the communication between the ECG module and the Intel Edison, the “M”

command is sent in order to generate simulated wave sample data, which is recorded in a

csv file on the Intel Edison. The data in the csv file is plotted as shown in Figure 4.3.

Figure 4.3: Simulated ECG Trace

31

4.3 Microphone

The BAN platform includes a microphone that is connected via the platform’s USB sound

card. With a microphone, the BAN platform is capable of hosting features like voice activity

detection, speech recognition, and speaker recognition. In a capstone design course, a group

of students were provided with the BAN platform and have developed a behavioral monitor-

ing system that uses a microphone to monitor the user’s interaction with others. Another

group has been working on a mental wellness IoT system, which detects the user’s sighs to

determine the user’s stress level.

The sensor node with the microphone is shown in Figure 4.4. The BAN platform features

a clip-on omnidirectional condenser microphone. The users can simply clip it on their clothes

near their mouths. The microphone initially features a 3.5 mm TRRS (tip, ring, ring, sleeve)

connector, which is not compatible with the USB sound card used in the BAN platform.

Therefore, the connector is replaced with a TRS (tip, ring, sleeve) connector as shown in

Figure 4.4.

Figure 4.4: Sensor Node with Microphone

A SparkFun base block is required in order to have a microphone set up. The base block

32

features a USB OTG via a micro USB port. A micro USB-to-USB adapter is used, as the

sound card has a USB male connector. The sound card used is Linux-compatible so that it

is recognized by the Linux system. Once the sound card is connected, the compatibility can

be verified by entering lsusb command, which displays all USB devices. The output should

include a device named “C-Media Electronics, Inc.”.

In order to interact with the USB sound card, the Intel Edison uses the Advanced Linux

Sound Architecture (ALSA), which provides audio functionality to the Linux operating sys-

tem [19]. In most cases, Linux systems should be able to record and play audio without any

configuration. However, the USB sound card on the Intel Edison will not work without a con-

figuration file because it is not the default device. The .asoundrc file and /etc/asound.conf

are the configuration files for ALSA drivers. The BAN platform includes a .asoundrc file,

shown in Figure 4.5, to set up the USB sound card as the audio device for playback and

recording.

Figure 4.5: ALSA Configuration

4.4 Heart Rate Sensor

In addition to the ECG module, the BAN platform includes a very compact plug-and-play

heart rate sensor at one of the wrist sensor nodes. The sensor is an open source device called

pulse sensor, which is shown in Figure 4.6. The sensor can be powered by a 3.3V pin of the

SparkFun ADC board and the sensor output pin can be connected to an analog input pin of

the ADC board. The sensor outputs pulse waveforms rather than digital signals indicating

heartbeats. The data collected on the Intel Edison is shown as a plot in Figure 4.7.

The peaks indicate heartbeats. The peaks are detected as follows. A flag is set to 0 if

33

Figure 4.6: Heart Rate Sensor Setup for Testing

Figure 4.7: Heart Rate Sensor Data Plot

the ADC reading is below a certain threshold and is set to 1 otherwise. When the signal

crosses the threshold from below, the flag changes from 0 to 1. This change is understood

by the software as a heartbeat. Every time a heartbeat is detected, the software timestamps

it. One minute divided by the di↵erence between the timestamps of two adjacent peaks is

the heart rate at the moment.

34

CHAPTER 5

Networking

With its integrated WiFi and Bluetooth Low-Energy, Intel Edisons can connect to each

other. The sensor nodes in the BAN platform are connected as shown in Figure 5.1. The

BAN platform features on-board data processing and is self-contained. The connection to a

router is optional and the Internet access is only needed when the data is to be transmitted

to clinics or the system is accessed remotely for debugging.

Figure 5.1: Network Diagram

35

Although Bluetooth Low-Energy may be more energy e�cient, WiFi is chosen for sensor

node networking because experiments found the Intel Edison’s WiFi interface to be more

robust than its Bluetooth Low-Energy interface. The communication between sensor nodes

is based on Linux sockets. Similar to a telephone, a Linux “socket represents endpoints in a

line of communication” [20]. Transmission control protocol (TCP) is used at the transport

layer. The communication is secured by TLS, which is a cryptographic protocol used at the

application layer. The secure communication with TLS is described in section 5.2.

Some data collected by sensors at each sensor node is fused with the data collected at

other sensor nodes. In order to have precise sensor fusion, time synchronization is necessary

since the data must be timestamped with clocks set to the same time. Time synchronization

is performed using the network time protocol (NTP). Section 5.3 will describe the time

synchronization in more detail.

5.1 WiFi and Network Configuration

The method to connect to a network di↵ers depending which Linux image is used. The

chest node uses the Ubilinux while other nodes use Intel’s o�cial Yocto embedded Linux.

The network configuration on the Ubilinux is identical to Debian and Ubuntu. On the

Ubilinux, /etc/network/interfaces file contains the network configuration information and

this can be modified to choose how the system is connected to a network. First, the system

chooses whether it connects with static Internet protocol (IP) addressing or dynamic host

configuration protocol (DHCP) addressing based on the configuration specified in the file.

Figure 5.2 shows an example of the file’s content. Lines 5 to 8 is an example of static IP

addressing. The USB interface is given a static IP address of 192.168.2.15 and netmask of

255.255.255.0. On the other hand, the wireless local area network (WLAN) interface is given

an IP address based on DHCP, as shown in lines 7 and 8.

The chest node connects to a router, thus manual addressing needs to be done carefully

to avoid address overlaps. However, having a static IP address make it easier to remotely

36

Figure 5.2: /etc/network/interfaces

access the node because the address is already known. DHCP takes care of the address

overlap issue, but the IP address must be discovered in order to remotely access the node.

Connecting to a network is done as follows. In the portion of /etc/network/interfaces

where WLAN interface configuration is specified, the service set identifier (SSID) and the

password of a network can be specified as shown in Figure 5.3. For security purposes, it may

not be desirable to enter the password directly. A utility called wpa passphrase generates

a WPA PSK from an ASCII password for a given SSID. Entering “wpa passphrase SSID

password ” will print the PSK. The PSK can substitute for password in Figure 5.3. After

the network configuration is done, the WLAN driver must restart. This can be done by a

simple command, “ifup wlan0”.

Figure 5.3: SSID and Password

The Intel’s o�cial Yocto embedded Linux includes a simple utility to set up WiFi con-

37

nection. The utility is called “configure edison” and it allows user to change the device name

and password, upgrade the firmware, and change the network settings. When entered with

“--wifi” option, configure edison begins scanning and then prints all available networks after

the scan is done. Users can simply choose the network and enter the password. Then, the

utility modifies /etc/wpa supplicant/wpa supplicant.conf file to add the network informa-

tion. The file is then used by wpa supplicant for network configuration. Figure 5.4 shows

the file content after a user joined Eduroam network using configure edison utility. The

password is replaced with *’s in the figure.

Figure 5.4: wpa supplicant.conf

5.2 Secure Communication

The BAN platform collects the user’s health and activity data. Thus, the collected data

are private information and hence must be transmitted securely. However, Linux sockets do

not ensure security. It does not provide data encryption or authentication. The following

experiment is performed to demonstrate the security vulnerability. A user datagram protocol

(UDP) server is set up on the Linux machine whose address is 164.67.194.240. A UDP client

is running on another machine sending messages to the server, which echoes the received

38

messages back to the client. This is shown in Figure 5.5. A network protocol analyzer called

TShark is used to capture packets and display their contents. As shown in Figure 5.6, the

messages transmitted between the server and the client are clearly visible by TShark.

Figure 5.5: Server-to-Client Communication

Figure 5.6: TShark Output

In order to secure the communication, TLS is used at the application layer. If the

connection is secured by TLS, transmitted data between the server and the client is private

because it is encrypted using symmetric cryptography. The server and the client negotiate

and generate the encryption key, which is unknown to others. In addition to data encryption,

TLS uses public-key cryptography for identity authentication.

39

5.3 Time Synchronization

The time synchronization of the sensor nodes is done with NTP. NTP is widely used for time

synchronization among computers that are connected to the Internet and it is “scalable, self-

configuring over multiple hops, and robust to failures” [21]. The NTP client and the server

exchange packets, which are pairs of a request and a reply. The requests and replies are

timestamped by the client and the server when they are sent and received. These timestamps

are used to compute the round-trip delay and time o↵set. One packet exchange may not be

enough to obtain accurate time. Several exchanges are made and then the computed delays

and time o↵sets are put into a filter for statistical purpose.

The sensor nodes do not need to have an accurate clock. The need for time synchro-

nization comes from the need for synchronized data timestamps within the BAN. Thus, the

sensor nodes do not need to synchronize their clocks with time servers such as time1.ucla.edu.

Instead, the sensor nodes can synchronize their clocks to the chest node’s clock. This is done

by using ntpdate utility with the chest node’s IP address specified. Neither the Ubilinux

nor the Yocto embedded Linux includes pre-installed ntpdate. On the Ubilinux, ntpdate

can be downloaded and installed with an apt-get command. On the other hand, the Yocto

embedded Linux must be provided with a package repository that contains ntpdate so that

ntpdate can be downloaded and installed using OPKG, the package management for Yocto

embedded Linux. The ntpdate also outputs the time o↵set once time synchronization is

complete. Figure 5.7 is an example output, in which the server’s address is 192.168.42.1

and the time o↵set is 86401.795008 seconds, which is one day and 1.795008 seconds. In this

experiment, the client clock was intentionally changed approximately one day earlier than

the server clock prior to time synchronization.

Figure 5.7: ntpdate Output Example

40

CHAPTER 6

Supported Algorithms

Enabled by its Intel Atom dual-core processor, the BAN platform sensor node can host

computationally intensive algorithms. These include signal processing and machine learning

algorithms, which can be utilized for sensor fusion. A neural network package called NeuPy is

installed on the chest node, enabling machine learning-based classification to monitor users’

states such as motion and voice activity.

For the motion monitoring scenario, 9DOF IMU sensor data is collected on each sensor

node and transmitted securely to the chest node. From the sensor data, features such as

root mean square and zero-crossings are extracted. The extracted features are used to train

a classifier. Once the classifier is trained, it can classify motion with features extracted from

future data. The highlight of this is that all of these steps are performed on-board at the

chest sensor node, without needing a separate processing device.

NumPy and SciPy packages are installed on the chest node to enable rapid development of

systems such as the motion monitoring. NumPy and SciPy are Python packages that enable

intuitive coding for numerical computation, signal processing, statistics, and optimization.

These packages implement many of the commonly used Matlab functions, thus a developer

can create a prototype in Matlab and port the Matlab code to Python using these packages.

To demonstrate this, a Butterworth filter is used in Matlab to filter a signal and then the

code is ported to Python. Figure 6.1 compares plots from the Matlab code and the Python

code. The green lines in both plots are the unfiltered signal and the red lines are the filtered

signals.

Experiments are performed to evaluate Neupy’s performance which is then compared

41

Figure 6.1: Plot from Matlab (left) and Plot from Python

to that of Matlab. First, the best performing algorithm was found for NeuPy. Example

data sets were used to train neural networks with four di↵erent training algorithms. Each

neural network was trained and its performance in terms of mean squared error (MSE) was

evaluated. This was performed fifty times for each training algorithm. The MSE values were

plotted as boxplots to visualize the algorithms’ performance. Figure 6.2 shows the results

of the experiments performed with two di↵erent data sets. As clearly shown, the conjugate

gradient algorithm outperforms others. This is verified with more example data.

Figure 6.2: Comparison of Performance of NeuPy’s Training Algorithms

42

Three example data sets from Matlab’s Neural Network toolbox were used to compare the

performance of training algorithms in Matalb’s Neural Network toolbox and the conjugate

gradient algorithm in NeuPy. As shown in Figure 6.3 and Figure 6.4, the performance of

NeuPy’s conjugate gradient is on par with those of Matlab’s training algorithms.

Figure 6.3: Training Algorithm Performance Comparison between Matlab (left) and NeuPy

(right) on Data Set 1

Figure 6.4: Training Algorithm Performance Comparison between Matlab (left) and NeuPy

(right) on Data Set 2

43

CHAPTER 7

Education mission

The BAN platform development helped initiate an IoT curriculum at UCLA. A general-

purpose Intel Edison-based IoT platform is also developed along with the BAN platform.

These platforms were distributed to a freshman course, a senior capstone design course,

and a graduate course. Tutorials on Intel Edison assembly, Yocto embedded Linux, net-

working, and external interfaces were developed to help students in these courses become

familiarized with the Intel Edison and sensor/actuator interface development. In addition,

tutorials on cloud-based data analytics, robotics, audio interface, and more in-depth BAN

platform tutorials were developed and provided to specific groups of students depending

on their project topics. The student projects include an IoT robot coordination system,

vigilant robotics, smart wearables for workplace performance advancement, and an athletic

performance advancement system. This chapter will introduce some of the projects.

The freshman course was o↵ered in fall 2015. Due to the fact that these incoming fresh-

men came straight out of high school, most students had minimal background in engineering

and programming. The IoT platform provided more motivating opportunities to learn about

embedded systems and programming. A group of freshmen students built an IoT robot coor-

dination system, in which robots securely exchange C code over SSH. The C code files include

robot operations. The robots continuously check for the C code files’ arrivals. Once the files

are arrived, the robots compile and execute the code. The project involved robot assembly,

circuit implementation, and software architecture design. This project was completed in ten

weeks despite not having any prior programming or soldering experience.

Another robotics project was done by a group in the senior capstone design course. This

44

group of three seniors designed a vigilant robot, which detects and follows suspicious or

malfunctioning robots. The vigilant robot is shown in Figure 7.1. The robot includes the

SparkFun ADC board and GPIO board. The same ADC and GPIO libraries developed for

the BAN platform are used in this project to interface with the boards.

Figure 7.1: Vigilant Robot

Some of the other senior design projects are the smart wearables for workplace perfor-

mance advancement (workplace performance in short), and the athletic performance ad-

vancement system (athletic performance in short). Both of these projects utilize the BAN

platform. The workplace performance system includes posture and motion monitoring based

on a neural network classifier trained with the 9DOF IMU data at the sensor nodes. With

NTP, the sensor nodes have synchronized time to ensure precise relative data timestamps. It

also includes neural network-based voice activity detection to monitor the user’s interaction

with others. Also, IR beacons and detectors are implemented to locate the user. Figure 7.2

shows a group member wearing the sensor nodes for system testing. The athletic perfor-

mance system also includes motion monitoring based on a neural network classifier trained

with data collected by the 9DOF IMUs worn by the user. Figure 7.3 shows the 9DOF

IMU data collected from an arm curl. The sensor nodes in the system communicate with

sockets and have TLS for secure connection. NTP is also utilized in this project for time

synchronization.

45

Figure 7.2: Smart Wearable for Workplace Performance Advancement

Figure 7.3: Athletic Performance Advancement System 9DOF Data from an Arm Curl

The IoT curriculum was very motivating for the undergraduate students and it was

challenging enough for the graduate students. The students in the graduate course built

autonomous delivery robots, drones, Bluetooth RSSI-based patient localization, and IR bea-

cons. All of these projects in addition to freshmen projects and senior projects were very

successful.

46

CHAPTER 8

Conclusion and Future Work

This thesis presented an IoT BAN platform that provides rapid development capability and

scalability. The computer-on-module and expansion boards are selected to enable flexible

interfacing with sensors via GPIO, I2C, SPI, UART, USB, or ADC. For each interface, a

software API is developed or thoroughly studied if it is already available. A base model of

the BAN platform includes 9DOF IMUs, an ECG sensor, a microphone, and a heart rate

sensor. The sensor interfaces were developed and tested.

The platform has room for improvement. The current version includes a few types of

sensors. In the future, the base model can include more sensors such as an SpO2 sensor,

a temperature sensor, and electromyography (EMG) sensors. Each sensor interface can be

modular so that the developer can choose to include only the needed sensors. This will involve

the development of consistent and modular APIs for the sensor interfaces. The availability

of more sensor interfaces will make the BAN platform more general-purpose. Due to the

modularity of the sensor interfaces, the developers will be able to create a stripped-down

version that is specific to their need.

The platform’s power consumption can be improved as well. The Intel Edison features a

CPU and a microcontroller. A power management system can be designed for the platform

based on that the microcontroller consumes a lot less power than the CPU. A possible power

management is as follows. The CPU is in a sleep state while the microcontroller collects

data. When the data needs to be processed by the CPU, the microcontroller wakes up the

CPU and sends the data via UART connection between the CPU and the microcontroller.

The data is available at /dev/ttymcu0 on the CPU.

47

The current version of the BAN platform uses a SparkFun battery block to supply power

to each sensor node. It includes a micro USB LiPo charger. Users need to connect the sensor

nodes to micro USB cables, which then need to be plugged into 5V USB ports in order to

charge the batteries. Such inconvenience can be solved by replacing the USB chargers with

Qi wireless chargers. The wireless charging capability will allow users to simply place the

sensor nodes on wireless charging pads when they are not in use.

The BAN platform and the general-purpose IoT platform were successfully distributed to

freshman, senior, and graduate courses with exceptional assessment records. These courses

covered a wide range of topics and o↵ered hands-on experience on the topics since the BAN

platform development involved hardware, software, embedded systems, sensors, networking,

security, Linux, machine learning, and biomedical system design.

The platform’s ability to host intensive computation and successful neural network so-

lution allowed students to build classifiers to monitor motion, posture, and voice activity

without developing any external processing devices. The performance of neural networks

trained on the platform was on par with that of neural networks trained on Matlab.

With its flexible interfaces, intuitive APIs, simple secure networking solution, and ability

to host a high performance neural network, the BAN platform provides a rapid develop-

ment capability. The IoT courses have shown that the students were able to develop fully

functioning biomedical devices based on the BAN platform in a short amount of time.

48

APPENDIX A

Acronym List

9DOF IMU 9 Degree-of-Freedom Inertial Measurement Unit

ADC Analog-to-Digital Converter

ALSA Advanced Linux Sound Architecture

API Application Program Interface

BAN Body Area Network

CPU Central Processing Unit

DHCP Dynamic Host Configuration Protocol

ECG Electrocardiogram

EMG Electromyography

FTDI Future Technology Devices International

GPIO General Purpose Input Output

I2C Inter-Integrated Circuit

I2S Inter-IC Sound

IC Integrated Circuit

IoT Internet of Things

IP Internet Protocol

IR Infrared

LiPo Lithium Polymer

MCU Microcontroller Unit

MISO Master In Slave Out

MOSI Master Out Slave In

49

MSE Mean Squared Error

NTP Network Time Protocol

OS Operating System

OTG On-The-Go

PDA Personal Digital Assistant

PSK Pre-shared Key

PWM Pulse Width Modulation

RSSI Received Signal Strength Indication

RTOS Real-Time Operating System

SCL Serial Clock Line

SCLK Serial Clock

SDA Serial Data Line

SoC System on Chip

SPI Serial Peripheral Interface

SpO2 Peripheral Capillary Oxygen Saturation

SS Slave Select

SSH Secure Shell

SSID Service Set Identifier

TCP Transmission Control Protocol

TLS Transport Layer Security

TRRS Tip Ring Ring Sleeve

TRS Tip Ring Sleeve

UART Universal Asynchronous Receiver Transmitter

UDP User Datagram Protocol

USB Universal Serial Bus

WLAN Wireless Local Area Network

WPA Wi-Fi Protected Access

WSN Wireless Sensor Network

50

51

References

[1] Intel. Creating applications with the mcu sdk for the intel edison board. Available at
https://software.intel.com/en-us/node/545142.

[2] Intel. Intel Edison Kit for Arduino Hardware Guide, February 2015.

[3] SparkFun. I2c. Available at https://learn.sparkfun.com/tutorials/i2c.

[4] Bandar Alghamdi and Hacne Fouchal. A mobile wireless body area network platform.
computational science, 5(4):664–674, July 2014.

[5] Jennifer Yick, Biswanath Mukherjee, and Dipak Ghosal. Wireless sensor network sur-
vey. computer networks, 52(12):2292–2330, August 2008.

[6] Paul Honeine, Farah Mourad, Maya Kallas, Hichem Snoussi, Hassan Amoud, and Clovis
Francis. Wireless sensor networks in biomedical: Body area networks. In Systems,
Signal Processing and their Applications (WOSSPA), 2011 7th International Workshop
on, pages 388–391, May 2011.

[7] IEEE. Ieee 802.15 wpan task group 6 (tg6) body area networks. Available at
http://www.ieee802.org/15/pub/TG6.html.

[8] Emil Jovanov, Aleksandar Milenkovic, Chris Otto, and Piet C. de Groen. A wireless
body area network of intelligent motion sensors for computer assisted physical rehabil-
itation. Journal of NeuroEngineering and Rehabilitation, 2(1):1–10, 2005.

[9] Joonyoung Jung, Kiryong Ha, Jeonwoo Lee, Youngsung Kim, and Daeyoung Kim.
Wireless body area network in a ubiquitous healthcare system for physiological signal
monitoring and health consulting. International Journal of Signal Processing, Image
Processing and Pattern Recognition, 1(1):47–54, 2008.

[10] Chris Otto, Aleksandar Milenkovic, Corey Sanders, and Emil Jovanov. System architec-
ture of a wireless body area sensor network for ubiquitous health monitoring. Journal
of mobile multimedia, 1(4):307–326, 2006.

[11] E Monton, José F Hernandez, José Manuel Blasco, Thierry Hervé, Joseph Micallef,
Ivan Grech, Andrea Brincat, and V Traver. Body area network for wireless patient
monitoring. Communications, IET, 2(2):215–222, 2008.

[12] Intel. Intel Edison Product Brief.

[13] EmutexLabs. Ubilinux, July 2014. Available at http://www.emutexlabs.com/ubilinux.

[14] Intel. MRAA: Low Level Skeleton Library for Communication on GNU/Linux plat-
forms. Available at http://iotdk.intel.com/docs/master/mraa/index.html.

[15] Intel. Intel Edison Compute Module Hardware Guide, January 2015.

52

[16] SparkFun. Sparkfun block for intel edison - 9 degrees of freedom. Available at
https://www.sparkfun.com/products/13033.

[17] STMicroelectronics. iNEMO inertial module: 3D accelerometer, 3D gyroscope, 3D mag-
netometer, August 2013.

[18] MG Naazneen, Sumaya Fathima, Syeda Husna Mohammadi, Sarah Iram L Indikar,
Abdul Saleem, and Mohamed Jebran. Design and implementation of ecg monitoring
and heart rate measurement system. International Journal of Engineering Science and
Innovative Technology (IJESIT), 2(3):456–465, May 2013.

[19] ALSA Project. Advanced linux sound architecture (alsa) project homepage. Available
at http://www.alsa-project.org/main/index.php/MainPage.

[20] Warren Gay. Linux Socket Programming By Example. Que, Indianapolis, Indiana, 2000.

[21] G.J. Pottie and W.J. Kaiser. Principles of Embedded Networked Systems Design. Cam-
bridge University Press, 2009.

53

