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Abstract

The search for quantitative trait loci that explain complex traits such as yield and drought tolerance has been ongoing in all crops. Methods
such as biparental quantitative trait loci mapping and genome-wide association studies each have their own advantages and limitations.
Multiparent advanced generation intercross populations contain more recombination events and genetic diversity than biparental mapping
populations and are better able to estimate effect sizes of rare alleles than association mapping populations. Here, we discuss the results of
using a multiparent advanced generation intercross population of doubled haploid maize lines created from 16 diverse founders to per-
form quantitative trait loci mapping. We compare 3 models that assume bi-allelic, founder, and ancestral haplotype allelic states for quanti-
tative trait loci. The 3 methods have differing power to detect quantitative trait loci for a variety of agronomic traits. Although the founder
approach finds the most quantitative trait loci, all methods are able to find unique quantitative trait loci, suggesting that each model has
advantages for traits with different genetic architectures. A closer look at a well-characterized flowering time quantitative trait loci, qDTA8,
which contains vgt1, highlights the strengths and weaknesses of each method and suggests a potential epistatic interaction. Overall, our
results reinforce the importance of considering different approaches to analyzing genotypic datasets, and shows the limitations of binary
SNP data for identifying multiallelic quantitative trait loci.

Keywords: MAGIC; QTL; linkage mapping; association mapping; MPP; multiparental populations; multiparent advanced generation in-
tercross (MAGIC)

Introduction
The study of quantitative genetics requires the ability to link dif-
ferences in phenotype to genotypic variation. Natural and artifi-
cial selection act on phenotypes, but only heritable phenotypic
variation will result in changes in population means. Maize
presents an excellent model organism to study quantitative ge-
netics due to the combination of extensive genetic and pheno-
typic resources and the ability to create mapping populations. In
addition, maize is one of the most widely produced crops in the
world and is a major source of calories for millions of people.
Decades of research into maize genetics have resulted in the
identification of many quantitative trait loci (QTL) that explain
variation in phenotypes such as yield, flowering time (FT), and
plant height (PH) (Beavis et al. 1991; Wang et al. 2006; Buckler
et al. 2009; Steinhoff et al. 2012; Wallace et al. 2014). Such traits
are extremely agronomically important, and are also crucial in
terms of fitness and local adaptation. Researchers have discov-
ered large-effect QTL for a number of agronomic traits in maize
through the use of different types of mapping populations
(Huang et al. 2015).

The choice of mapping population comes with associated
advantages and limitations. In particular, different types of popu-
lations tend to vary in 2 main characteristics: (1) their ability to
capture genetic diversity and (2) their power to detect QTL of
small effect. Multiparent advanced generation intercross
(MAGIC) populations have been used in breeding to increase the
genetic diversity included in a mapping population compared to
biparental populations in multiple model organisms. In plants,
MAGIC populations have been created for maize (Dell’Acqua
et al. 2015; Anderson II et al. 2018; Jim�enez-Galindo et al. 2019;
Liu et al. 2020), wheat (Huang et al. 2012), tomato (Pascual et al.
2015), and Arabidopsis (Kover et al. 2009; Huang et al. 2011),
among others. For animal models, populations such as the
Collaborative Cross in mice (Churchill et al. 2004; Aylor et al.
2011) and the Drosophila Synthetic Population Resource (King
et al. 2012) have likewise been created. Compared to genome-
wide association panels, MAGIC populations have more power to
detect low frequency alleles and can better compare allelic
effects between founders because the crossing scheme increases
the frequency of all parental alleles to be approximately equal.
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Simulations of an 8-parent MAGIC population showed that sam-
ple sizes of 300 could detect QTL accounting for 12% of variance
with a power of 82% averaged across minor allele frequencies
(Dell’Acqua et al. 2015).

In this study, we used a MAGIC population of 344 doubled
haploid (DH) lines derived from 16 inbred maize parents devel-
oped by the company Biogemma to understand how genetic
models can impact the identification of QTL. Compared to previ-
ous populations in maize, this MAGIC population has a greater
number of founders, and should have comparable power to
larger nested mapping populations (Yu et al. 2008; Dell’Acqua
et al. 2015). In addition, using DHs instead of recombinant inbred
lines (RILs) removes any residual heterozygosity, ensuring that
replicates are genetically identical. For these reasons, the
Biogemma MAGIC population that we present here has great po-
tential to reveal new insights into the genetic control of quantita-
tive traits in maize.

In addition to the choice of mapping population, the choice of
how to model allelic variation can impact the power of a study to
detect and analyze QTL. A bi-allelic model for QTL, often used in
genome-wide association studies (GWAS), assumes that the un-
derlying causal variants for QTL are explained by 2 alleles, usu-
ally SNPs, that are segregating in the population. With this bi-
allelic model, hereafter referred to as GWASSNP, markers repre-
sent a small region of the chromosome that is in tight linkage dis-
equilibrium with the genotyped SNP.

An alternative model for the allelic state of QTL can be used
in multiparent populations, where we assume that each
founder contributes its own allele. In this model, comparable
to interval mapping, rather than looking at individual SNPs, an
allele becomes the founder identity of that region, or which
parent of the population that segment of chromosome was de-
rived from. As a result, QTL are multiallelic, with the number
of alleles equal to the number of founders used in the making
of the population. We will refer to this founder model hereaf-
ter as QTLF.

The 2 allelic models described above make the assumption
that for each genotyped SNP, there are either 2 distinct alleles
in the population (GWASSNP) or as many alleles as there are
founders (QTLF). The latter assumption, although very possible
for biparental mapping populations, becomes increasingly un-
likely as the number of founders increases. This is because the
founders used in the making of a population are related to one
another with varying degrees of distance, and therefore, most
likely share ancestral haplotypes through identity-by-descent
(IBD). A third allelic model takes into account shared ancestral
haplotypes between founders. This model, hereafter referred
to as QTLH, allows the number of alleles at each site to vary
anywhere from 2 to the total number of founders (here 16),
based off of the number of ancestral haplotypes at that site.
This has the potential to increase statistical power compared
to the QTLF model by reducing the number of parameters that
must be estimated by the model.

Here, we present a maize MAGIC population derived from
16 parents and discuss the performance of 3 different models
for representing allelic states: bi-allelic, founder, and ances-
tral haplotype allelic models for detecting QTL. Using vgt1, a
well-characterized FT QTL with a strong candidate causal vari-
ant that is variable in the population, we demonstrate differ-
ences between the 3 methods and explore potential
interactions between vgt1 and other genetic variation in the
population.

Materials and methods
Mapping population
The MAGIC population was derived from 16 inbred maize parents
representing the diversity of temperate maize (Supplementary
File 1). The parents were chosen to be a mix of members of Flint
and Dent heterotic groups, which are historically and genetically
diverged groups that, when crossed, produce F1 plants that dis-
play hybrid vigor. In addition, the founders were chosen to repre-
sent a phenotypically diverse set of FTs for temperate maize. The
16 founder lines were crossed in a funnel crossing scheme, and
then the resulting synthetic population was intercrossed for 3
generations with around 1,600 individuals per cycle (Fig. 1). The
founder pairs crossed in the initial F1 stage were chosen to cross
early and late flowering lines to one another, with the intention
of maintaining genetic and phenotypic diversity in FT, and this
process was continued throughout (Supplementary File 1).
Finally, 800 lines were selected from the synthetic population to
create DHs, resulting in 550 MAGIC DH lines at the end of the pro-
cess. The MAGIC DH lines were crossed to a tester MBS847 to pro-
duce 344 hybrids (Fig. 1).

Genotype data
The 16 founder lines and the MAGIC DH lines were all genotyped
with the Affymetrix 600K Axiom SNP array (Unterseer et al.
2014), resulting in genotype data for 517,769 SNPs. A total of
503,902 SNPs were used from the 600K after filtering out invari-
ant sites and sites that were not located on autosomal chromo-
somes according to the B73 AGPv4 reference genome (Jiao et al.
2017). Linkage disequilibrium was calculated as R2 of pairwise
SNPs using the software PLINK and the 600K SNP data
(Supplementary Fig. 1) (Purcell et al. 2007).

Phenotype data
The MAGIC F1 plants were phenotyped in 5 different field loca-
tions in 4 different years, resulting in 6 distinct environment-
years (Hudson et al. in prep). The environments included Blois,
France (2014 and 2017), Graneros, Chile (2015), Nerac, France
(2016), St. Paul, France (2017), and Szeged, Hungary (2017). The
environments represent a range of latitudes and water stress,
from vegetative and flowering water deficit (Nerac, 2016) to opti-
mum well-watered conditions (Graneros, 2015). In each environ-
ment, we grew a minimum of 292 and a maximum of 309 of the
DH lines. Each genotype was grown with 2 replicates in each envi-
ronment. In all environments, 6 traits were measured: grain
yield, PH, female flowering date (DTS), male flowering date [days
to anthesis (DTA)], thousand kernel weight (TKW), and harvest
grain moisture (HGM). By subtracting male flowering date from
female flowering date, we also obtained anthesis–silking interval.
For each of the lines, we calculated best linear unbiased predictor
(BLUP) scores for all 7 phenotypes, combining measurements
from all environments to get estimates of the genetic contribu-
tion to the phenotype for each MAGIC line (Aulchenko et al.
2007).

Calculation and validation of founder
probabilities
We used the package R/qtl2 (Broman et al. 2019) to determine
founder probabilities of the MAGIC DH lines using the 600K geno-
type data and the cross type “riself16”. We then filtered down the
founder probabilities from all 503,902 sites to represent founder
recombination blocks for interval mapping. Markers for the QTLF

approach were filtered based on linkage disequilibrium using an
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iterative approach where a marker was dropped if the R2 value of
the founder probabilities between it and the previous marker was
greater than 0.95. After filtering, a total of 4,578 sites were kept to
represent founder recombination blocks in the MAGIC DH lines.

Due to the fact that the actual crossing scheme and the cross
type input into R/qtl2 differed (DH lines rather than RILs), we
wanted to assess the accuracy of the founder probabilities. This
was done by simulating lines using the actual crossing scheme
and assessing the performance of the calc_genoprobs function of

R/qtl2 in correctly identifying the founder genotype (Fig. 2c). We
developed an R package (R Core Team 2017), magicsim (https://
github.com/sarahodell/magicsim) to simulate the lines using the
maize consensus genetic map from Ogut et al. (2015) to generate
approximate recombination rates across the chromosome. We
simulated 100 MAGIC populations constituting 325 lines and
assessed founder assignment accuracy as the average percentage
of SNPs where the predicted founder was the same as the actual
founder.

Fig. 1. The crossing scheme of the MAGIC population; 16 inbred maize lines were crossed in a funnel crossing scheme, and then the 8-way hybrids were
outcrossed for 3 generations. The outcrossed lines were then made into DHs, which where were crossed to an inbred tester, MBS847 to make MAGIC F1s.

Fig. 2. Founder representation of the MAGIC population. a) Coverage of each founder across the population on chromosome 10 as a percentage. Black
line represents expected number of lines per founder with equal distribution (6.25%). Each of the 16 founders are indicated by a color. b) Total coverage
of each founder across the population as a percentage. Black line shows expectation of equal distribution (6.25%). c) Founder probabilities for 10
individual MAGIC DH lines on chromosome 10 in genetic distance.
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Test for equal representation of alleles
The number of lines that had a probability of a particular founder
greater than 0.8 were used as an approximation of the number of
lines that had that founder at a site. This observed count was
compared to a null expectation of 1/16 for equal distribution
across lines (approximately 21 lines per founder) (Fig. 2, a and b).
We performed a v2 test for each site to determine if founder
counts significantly deviated from null expectation. We obtained
a 5% significance threshold using the v2 obtained from founder
counts in 100 simulated populations. The v2 tests from simulated
lines were done using reconstructed genotype data pulled from
the 600K genotype data of the 16 founders. We then used the
same methods of calculating founder probabilities with R/qtl2
used with the actual population. Due to the fact that we used the
inferred founder identities of the simulated lines, rather than the
known founder identities, the null distribution of P-values gener-
ated from v2 tests of the simulated populations incorporated un-
certainty of founder assignment.

Calculation of IBD and haplotype probabilities
The identification of regions of shared genetic sequence between
founder pairs allows collapsing of founders into haplotypes. IBD
was measured from the 600K SNP data of the founders using the
software RefinedIBD with a sliding window of 10 cM and a mini-
mum IBD segment length of 0.2 cM (Browning and Browning
2013). The resulting segments of pairwise IBD between each of
the 16 founders were used to identify distinct haplotype blocks.
We did this by moving along the chromosome, starting a new
haplotype block when a segment of pairwise IBD between found-
ers started or ended (Supplementary Fig. 2). Then, within blocks,
we grouped all founders that were in IBD with one another into a
haplotype. Within blocks, the founder probabilities for founders
that shared a haplotype were summed to obtain haplotype prob-
abilities.

In certain instances, the pairs of founders that were in IBD
with one another in a particular haplotype block formed an in-
complete graph, where not all founders were in IBD with all other
founders (Supplementary Fig. 2). For example, from the results of
RefinedIBD, founder A was in pairwise IBD with both founder B
and founder C, but founder B and C were not in pairwise IBD.

For the sake of simplicity, we continued with the assumption
that all founders in a haplotype were in IBD with one another (we
called B and C as in IBD). However, it is important to note that
cutoffs for IBD are inherently arbitrary, and haplotypes called
here do still possess genetic differences between founders, with
some founders more different than others.

Markers for the QTLH mapping approach were filtered for LD
using an iterative approach similar to QTLF: for all haplotype
blocks with the same number of distinct haplotypes, a marker
was dropped if the correlation of haplotype probabilities between
it and the previous marker was greater than 0.95. After filtering, a
total of 11,105 sites were kept to represent haplotype blocks in
the MAGIC DH lines.

Association and QTL mapping
The R package GridLMM (Runcie and Crawford 2019) was used to
run association mapping using the 3 different models of repre-
senting the QTL allelic state. The function GridLMM_ML was
used with the “ML” option. The following 3 models were approxi-
mated by fitting each locus independently. The 3 methods dif-
fered in the X matrix used in the mixed linear model. The bi-
allelic model (GWASSNP) is:

y ¼ lþ xSibSi þ Zuþ � (1)

where y is the response variable, l is the global mean, xSi is an n
� 1 genotype vector for SNP i with reference and alternate alleles
represented as 0 and 1, respectively, bSi is the effect size of the al-
ternate allele, Z is the design matrix, u � Nð0; r2

uKÞ is the random
effects of markers across the rest of the genome using the geno-
mic relationship matrix, K, and � is the error. The genomic rela-
tionship matrix, K was generated from the 600K SNP data using a
leave-one-chromosome-out method. The same K matrix was
used for all 3 models.

The founder model (QTLF) is:

y ¼ lþ XFibFi þ Zuþ � (2)

where XFi is a n � f – 1 matrix for marker i and xfni is the probabil-
ity that at site i, individual n was derived from founder f, and bFi is
the effect size of each founder allele.

The ancestral haplotype model (QTLH) is:

y ¼ lþ XHibHi þ Zuþ � (3)

where XHi is an n � h – 1 matrix for marker i and xhni is the proba-
bility that at site i, individual n has ancestral haplotype h and bHi

is the effect size of each haplotype allele. Significance cutoffs for
P-values were obtained using permutation testing, taking the 5%
cutoff from 1,000 permutations where genotypes were random-
ized relative to phenotypes for each method. For the 2 largest
QTL peaks, qDTA3-2 and qDTA8, we tested if the peaks contained
more than 1 QTL by including the most significant site as a covar-
iate and testing to see if any other sites within the support inter-
val remained significant.

Model comparison
The results of the 3 models were compared using 2 main criteria:
(1) presence or absence of identified QTL peaks and (2) the size of
QTL support intervals. QTL support intervals were determined by
identifying the most significant SNP for a QTL peak and demar-
cating the left and right bounds of the QTL as the left-most and
right-most SNPs within a 100-Mb window centered on the highest
SNP that have a –log10(P-value) that is 2 log10(P-values) below
that of the highest SNP. The detection of QTL was compared
across the 3 methods for each phenotype. A QTL was said to be
identified across models if the QTL support interval for that QTL
overlapped. The effect of the model used on the size of QTL sup-
port intervals was investigated using the QTL which were identi-
fied by all 3 methods at the 5% significance threshold (n¼ 26).
The support interval size response variable was represented both
in terms of physical distance (Mb) and genetic distance (cM).

Estimation of effect sizes
We used the R package lme4qtl to calculate standard errors of ef-
fect sizes relative to the population mean (Ziyatdinov et al. 2018).
For the QTLF model, effect sizes were dropped for individual
founders at some sites if there were fewer than 5 MAGIC lines
that had a probability greater than 0.8 for 1 of the founders. This
same filtering was done with QTLH effect sizes for sites with low
representation of particular haplotypes. This was to ensure that
effect sizes for individual founders and haplotypes could be effec-
tively estimated. We confirmed that effect sizes calculated by
GridLMM and lme4qtl matched one another, with the correla-
tions in effect sizes between the 2 methods greater than 0.99.
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Tests for epistasis
We ran a genome scan for epistatic interactions with vgt1. The
probability of the MAGIC lines having the MITE insertion at vgt1
was calculated by summing the founder probabilities for all
founders that have the MITEþ allele at the site closest to the loca-
tion of the MITE underlying vgt1 in the B73 APGv4 assembly
found on MaizeGDB (Portwood et al. 2019). Lines that had uncer-
tain allelic states at the MITE [0.05> Pr(MITEþ) < 0.95] were
dropped for the test. Applying a Bonferroni significance threshold
adjusted for the number of tests, we tested for epistasis using the
600K genotype data.

We also performed QTL mapping with QTLF using only the
MITEþ MAGIC lines. This was to see if there were any other loci
whose effect was only observed in the presence of the MITE. A
normal epistatic model could not be fit with founder alleles be-
cause there were not enough degrees of freedom to compare
each founder. We used the model from Equation (2) using DTA
BLUP scores and the 5% significance threshold for DTA.

FT enrichment tests
We used a list of FT genes assembled by Wang et al. (2017) to test
for enrichment of FT genes in (1) regions that had significantly
uneven representation of the founders and (2) regions with high
interchromosomal LD (R2 > 0.9). Of the 907 genes, we used 887
which were aligned to autosomal chromosomes in the B73 AGPv4
assembly (Jiao et al. 2017). To determine a null distribution, we
randomly sampled 887 non FT genes and counted the number of
genes that overlapped with these 2 sets of regions over 1,000 per-
mutations. We compared this distribution to the actual number
of FT genes that overlapped with the selected regions.

Results
MAGIC population
We developed a 16-parent MAGIC population using temperate in-
bred maize lines representative of the diversity of the Flint and
Dent heterotic groups of North America and Europe (Fig. 1). We
genotyped 344 MAGIC DH lines from the population with a 600K
SNP genotyping array and measured 7 phenotypes across 6 envi-
ronments from the MAGIC F1s. Using the phenotype data from
the 6 environments, we calculated BLUP scores for each of the
MAGIC lines. PCA analysis of the MAGIC lines and the 16 found-
ers and tester suggested that the MAGIC lines maintained much
of the genetic variation possessed by the founders, without over-
whelming bias toward any particular founders (Supplementary
Fig. 3). In addition, the minor allele frequencies of SNPs in the 16
founder compared to in the MAGIC lines suggested that lower fre-
quency SNPs in the founders were either maintained or brought
up in frequency in the MAGIC lines, which aids in the estimation
of SNP effect sizes (Supplementary Fig. 4).

Simulation and validation of founder
probabilities
We partitioned the genomes of individual MAGIC lines into seg-
ments of ancestry from the 16 founders. This allowed us to deter-
mine the predicted contribution of each founder to the
population (Fig. 2c). The founder probabilities determined using
R/qtl2 were able to assign founders to the actual MAGIC DH lines
with high confidence (> 0.80) for 96.7% of the 10 chromosomes of
maize. The median size of recombination blocks was 4.32 Mb and
the mean size was 15.76 Mb with a standard deviation of
29.52 Mb. The average number of crossover events per line was

123.7 with a standard deviation of 20.73. Our simulations suggest

a very high (l ¼ 99:8%; r ¼ 0:011) assignment accuracy (see

Materials and methods). This reinforced our confidence in the

founder probabilities obtained from the actual data.

IBD and MAGIC haplotypes
In some cases, the model which inferred founder identity in the

MAGIC lines had high uncertainty, with probabilities split ap-

proximately equally between 2 founders. We hypothesized that

this uncertainty was due to the 2 founders having very similar ge-

netic sequence at those regions, such that the model struggled to

differentiate the 2. To assess the genetic similarity of the found-

ers, we calculated pairwise IBD between all founders using the

software RefinedIBD (Browning and Browning 2013). Areas of un-

certainty in founder probabilities of the DH lines were associated

with regions of IBD between 2 or more founder lines in that region

of the chromosome (Supplementary Fig. 5).
The results showed that a total of 1.81 Gb (86%) and 1,367.5

cM (92.7%) of the genome were in IBD between at least 2 differ-

ent founders. The average size of an IBD segment between 2

founders was 140 kb (0.51 cM) with a median of 122 kb (0.46 cM).

Pairwise IBD segment sizes ranged from 8 kb (0.3 cM) to 673 kb

(1.61 cM). For founder pairs that were found to be in IBD with

one another, the total percentage of IBD between founders

ranged from 0.0018% (F492 and VA85) to 4.39% (B73 and A632),

with an average of 0.061%. There were no IBD segments found

for 18 of 120 possible pairwise founder combinations. The

amount of IBD segments between the 16 founders and the tes-

ter, MBS847, was mostly low (ranging from 0.14% of the genome

for F2 to 3.7% for B73), with the notable exception of DK63,

which was in IBD with MBS847 for 36.5% of the genome. The

Neighbor-Joining Tree of the relatedness of the 16 founders and

MBS847 recapitulated the IBD results (Supplementary Fig. 6). For

a particular founder pair, B73 and A632, there were large seg-

ments where the lines shared haplotypes, and the tree placed

them very close together. This is consistent with the known ped-

igree of the lines, where A632 was derived from B14, a line from

the same heterotic group as B73 (Supplementary File 1) (Lorenz

and Hoegemeyer 2013).
Due to the widespread Pairwise IBD between the founders, it

appeared that many founders shared ancestral haplotypes.

Within individual blocks of ancestry, we collapsed founder alleles

that were identical by descent into a single haplotype (see

Materials and methods). The genome was broken up into a total of

6,929 haplotype blocks. Of those blocks, approximately 16% of

them (1,152) contained at least 1 haplotype whose pairwise IBD

between parents was incomplete, meaning that there was some

genetic variation between founders within those haplotypes that

was not captured by the haplotype designation (see Materials and

methods) (Supplementary Fig. 2). The number of unique haplo-

types within haplotype blocks varied across chromosomes, rang-

ing from 6 at the lowest to 16 at the highest (Fig. 3, a and b). The

average number of unique haplotypes per haplotype block was

13 (l ¼ 12:85; r ¼ 1:71) (Fig. 3b). There was a wide range of haplo-

type block sizes, with the average physical size of haplotype

blocks being 303.7 kb (r ¼ 1:71Mb) (Fig. 3c). The largest haplotype

block was 39.3 Mb long on chromosome 7, which had 16 unique

haplotypes. In genetic distance, haplotype block sizes range from

0 to 3.4 cM, with an average of 0.20 cM and a median of 0.11 cM

(Fig. 3d).
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Founder representation and linkage
disequilibrium
Analysis of the MAGIC population showed that the overall repre-
sentation of the 16 founders in the MAGIC DH lines was relatively
even, with the highest percentage founder, A654, representing
6.7% and the lowest percentage founder, EP1, representing 5.2%,
compared to the expectation of 6.25% for each founder (Fig. 2b).
However, multiple chromosome regions deviated significantly
from the expected equal distribution (Fig. 2a). Across individual
regions of each chromosome, 20.4% of the genome significantly
deviated from null expectations compared to 100 simulated pop-
ulations (5% significance threshold v2 test P-value < 1.5e�09)
(Supplementary Fig. 14). The fact that the v2 test performed on
100 simulated MAGIC populations of 344 individuals resulted in
far fewer sites with significant allelic imbalance shows that the
over- and underrepresentation of certain founder alleles was
greater than would be expected by chance. It also shows that
over- and underrepresentation of founder alleles in the popula-
tion was not due to potential inaccuracy of R/qtl2 in assigning
founders. These results suggests that a large amount of the over-
and underrepresentation of founder alleles in the MAGIC popula-
tion is biological, rather than a result of model error, and perhaps
evidence of selection for or against particular founder alleles.

We looked at patterns of linkage disequilibrium in the MAGIC
population. The intrachromosomal LD structure showed fast LD de-
cay consistent with many recombination events (Supplementary
Fig. 1). Unexpectedly, there was a large amount of high interchromo-
somal LD (Fig. 4a). Of a total of 9,796,630 SNP pairs with an R2 greater
than or equal to 0.9, 426,178 (4.3%) of those pairs came from differ-
ent chromosomes. The number of interchromosomal high LD
regions was more than would be expected by chance: in 100 simu-
lated populations, there were no SNP pairs with R2 greater than 0.9
detected between chromosomes. We detected large segments of
interchromosomal LD between chromosome 3 and chromosome 8,

but these regions did not overlap with the support intervals for
qDTA8 and qDTA3-2, corresponding to vgt1 and vgt3, respectively
(Fig. 4a).

Because individual DH lines were required to overlap in FT
with the tester, MBS847, in order to successfully make F1s for the
MAGIC population (Fig. 1), we hypothesized that the patterns ob-
served in founder representation and linkage disequilibrium
might be due to selection on FT. In particular, the tester, MBS847,
is a generally later flowering line and is MITE– at vgt1 (Chardon
et al. 2004), providing the opportunity for selection against early
flowering alleles. As one test of this hypothesis, we asked
whether genes involved in flowering were enriched in regions
with high interchromosomal LD, and found strong enrichment of
FT genes in those regions compared to 1,000 randomized permu-
tations (P-value < 0.001) (Fig. 4b). We found no significant enrich-
ment of FT genes within regions with significantly uneven
founder representation (Supplementary Fig. 15). The finding that
regions with high LD between chromosomes contain more FT
genes than would be expected by chance suggests that selection
for the combination of particular alleles affecting flowering may
have occurred.

QTL mapping and association mapping
We performed association mapping using 3 models of the allelic
state of QTL. The first method, GWASSNP, used SNP genotypes
obtained from the 600K array, assuming that QTL are bi-allelic.
The second method, QTLF, used probabilities of founder identity
in chromosome intervals, assuming that a QTL had as many
alleles as founders. The third method, QTLH, used probabilities of
haplotype identity in chromosome intervals, assuming that a
QTL had as many alleles as ancestral haplotypes. We performed
QTL mapping separately in each of the 42 environment: pheno-
type combinations, plus the across-environment averages of the
7 traits, for a total of 49 separate analyses. The 3 methods varied
in their ability to identify QTL. The majority of QTL were

Fig. 3. Diversity and size of haplotype blocks. a) The number of unique haplotypes per haplotype block and size of haplotype blocks along chromosome
4 in physical distance. b) Distribution of unique haplotypes per haplotype block across the genome. c) Distribution of haplotype block size in physical
distance, represented as log10(bp). The vertical solid line represents the average size of 303.7 kb. d) Distribution of haplotype block size in genetic
distance, represented as cM. The vertical solid line represents the average size of 0.2 cM.
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identified by all 3 models using a 5% significance threshold (26 or
57%), with 6 QTL found in both QTLF and QTLH and 1 QTL found in
both GWASSNP and QTLF (Supplementary Table 1 and
Supplementary File 4). In addition, each model found unique
QTL, with 7, 3, and 3 QTL found in only GWASSNP, QTLF, and QTLH,
respectively (Supplementary Fig. 7 and Supplementary File 5).

Next we merged QTL of the same phenotype from different
environments based on overlapping support intervals. There
were 20 unique across-environment QTL identified from all
methods at a 5% significance threshold, and 10 of these were

found in more than 1 environment. We found 12 across-
environment QTL using BLUPs and 2 of these were not identified
in any individual environment. There were also multiple across-
environment QTL that were only found in 1 environment; for ex-
ample, there were 3 QTL that were only found at a 5% signifi-
cance threshold in Graneros, Chile, (qHGM2, qDTA7, and qTKW7-
2) (Supplementary Table 2).

Figure 5, a–c shows the Manhattan plots from the 3 methods
for BLUP DTA using a 5% significance threshold. Analysis with in-
dividual environments identified fewer QTL, but displayed simi-
lar patterns (Supplementary File 2). For DTA, all 3 methods easily
identify 2 large QTL, qDTA3-2 on chromosome 3 and qDTA8 on
chromosome 8. These QTL correspond to 3 previously identified
QTL, vgt3 for qDTA3-2 and vgt1 and vgt2 for qDTA8. A second QTL
on chromosome 3 for DTA, qDTA3-1, was only found at 5% signif-
icance with the QTLH method. A DTA QTL on chromosome 9,
qDTA9 was only found at 5% significance using QTLF. For the
other phenotypes, a harvest grain moisture QTL on chromosome
3, qHGM3-1 was only found at 5% significance using QTLF and
QTL for DTS with overlapping support intervals to qDTA9 was
found in both QTLF and QTLH. The GWASSNP method was able to
identify 1 QTL at 5% significance on chromosome 5 for thousand-
kernel weight, qTKW-5, that was not found in either QTLF or QTLH

(Supplementary Table 1).
We detected a strong overlap between a harvest grain mois-

ture QTL, qHGM3-2, with a large FT peak on chromsomes 3
(qDTA3-2 and qDTS3-2). To test if these 3 QTL could be explained
by the same causal variants, we looked to see if the estimated ef-
fect sizes of the most significant hits from the GWASSNP and QTLF

methods were correlated between individuals in the population.
It is expected that DTA and DTS will share most of their QTL, as
the 2 traits are strongly correlated. As expected, the effect sizes
for qDTS3-2 and qDTA3-2 were highly correlated using QTLF

(r¼ 0.974) and less so using GWASSNP (r¼ 0.492). For qDTS3-2 and
qHGM3-2, the effect sizes were moderately correlated, with r-val-
ues of 0.443 and 0.403 for QTLF and GWASSNP, respectively. The
correlations for qDTA3-2 and qHGM3-2 were slightly higher
(r¼ 0.560) for both QTLF and GWASSNP. Although there is positive
correlation between effect sizes at these FT and HGM QTL, there
is not enough evidence to definitely say that they share the same
causal variant.

Despite differences in the models, the power to identify and
refine the location of QTL was similar across the 3 methods. QTLF

was able to identify the most QTL, regardless of changes in the
significance threshold (Supplementary Fig. 8). There were 8
environment-QTL (7 unique) for which the QTL that were found
in 1 method at the 5% significance threshold became significant
in other methods when the 10% threshold was used, indicating
that the differences in the ability to detect these QTL between
methods was mostly due to differences in power (Fig. 5, d–f and
Supplementary File 5). Nonetheless, there were multiple QTL
that were identified in only 1 method. There were 8 environment-
QTL (all unique) that were significant at the 5% threshold in only
1 method, and did not break significance at the 10% threshold in
the other methods. For these QTL, the success of a particular
model is most likely due its ability to better fit the allelic variation
underlying the QTL; 6 of these 8 QTL were identified by the
GWASSNP model, suggesting that truly bi-allelic causal variants
explain the phenotypic variation at these sites. Similarly, there
were 7 environment-QTL (5 unique) that broke significance in all
but 1 method, and 6 of these 8 were never identified in GWASSNP.
This further emphasizes that the success of a bi-allelic model is

Fig. 4. Interchromosomal linkage disequilibrium and flowering time
genes in the MAGIC population. a) Ribbons represent regions of R2 > 0.9
between consecutive SNPs on different chromosomes. The 2 red bands
outlined in black are regions >5 Mb on at least 1 of the chromosomes.
Blue bands are regions between 1 and 5 Mb one both chromosomes. Gray
lines are regions between 100 kb and 1 Mb. The yellow regions represent
the support intervals for the flowering time QTL, qDTA3-2 and qDTA8. b)
The null distribution of the number of genes overlapping with regions of
high interchromosomal LD (R2 > 0.9) from 887 randomly selected genes
from 1,000 permutations. Observed number of flowering time genes
overlapping with regions of high interchromosomal LD are shown in red
(n¼593).
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dependent on the genetic architecture of the QTL, and that apply-
ing only this model has the potential to miss true signals.

Support intervals for QTL were determined using a cutoff of a
2log10 drop from the P-value the most significant site (see
Materials and methods). The size of GWASSNP support intervals was
significantly larger than QTLH support intervals in genetic dis-
tance (1.55 cM, SE¼ 0.56, t-ratio¼ 2.77, P-value¼ 0.021), but the

difference in physical distance was not significant (t-ratio¼ 1.97,
P-value¼ 0.13) (Supplementary Table 2). There was no significant
difference in the size of QTL support intervals between QTLF and
QTLH in either physical and genetic distance. Although on aver-
age, the physical and genetic size of GWASSNP support intervals
were larger than those of QTLF support intervals, the difference
was not significant, perhaps because of a single outlier QTL in

Fig. 5. Results of 3 methods of QTL identification. a–c) Manhattan plots for DTA BLUPs. Colored points represent significant QTL above the 5%
significance threshold from 1,000 random permutations, located between log10(P-value) ¼ 5 and log10(P-value) ¼ 6 (dashed line). a) GWAS results using
the GWASSNP method. b) Results from QTL mapping using the QTLF method. c) Results from QTL mapping using the QTLH method. d–f) Identification of
individual QTL with varying permutation significance thresholds of 1%, 5%, and 10% across the 3 methods. Different colors indicate the phenotype of
the QTL and lighter colors indicate that a QTL was significant at that threshold for a particular method for GWASSNP d), QTLF e), and QTLH f).
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QTLF with a very large support interval (Supplementary Figs. 9
and 10). When the outlier was dropped from the model, the dif-
ference between GWASSNP and both QTLF and QTLH support inter-
vals were significant in both genetic (t-ratio¼ 2.87, P-
value¼ 0.017; t-ratio¼ 3.17, P-value¼ 7.4e�3) and physical dis-
tance (t-ratio¼ 2.91, P-value¼ 0.015; t-ratio¼ 2.68, P-val-
ue¼ 0.027).

Variation around vgt1
One notable QTL that was identified by all 3 models using BLUPs
(Fig. 5) and nearly all individual environments was qDTA8, a large
QTL on chromosome 8 that was strongly correlated with varia-
tion in days to anthesis as well as days to silking. The support in-
terval for this QTL overlapped with 2 previously characterized FT
QTL, vgt1 and vgt2. As a well-studied, large effect QTL, vgt1 pro-
vides a useful benchmark for comparison of the 3 allelic models.

At vgt1, the 16 founders are segregating (MITEþ/MITE–) for the
putative causal variant, a MITE insertion in a conserved non cod-
ing sequence upstream of ZmRap2.7, a FT regulatory gene (Salvi
et al. 2007; Castelletti et al. 2014). Four founders, B73, OH43,
VA85, and B96, lack the MITE insertion, while the other 12 are
MITEþ. Looking at the most significant SNP for qDTA8 from
GWASSNP, the alternate allele correlated imperfectly with the
presence of the MITE in the founders (r¼ 0.65). We expected to
see QTLF effect sizes at this locus that match the allelic state of
the founders, with MITEþ founders having earlier effect sizes and
MITE– founders having later effect sizes. However, for some
founders, the QTLF effect sizes at vgt1 deviated from those expect-
ations (Fig. 6). Four MITEþ founders, A632, F252, C103, and F492,
had DTA BLUP effect size estimates later than the population av-
erage. While only F252 had a 95% confidence interval not over-
lapping zero, all had effect sizes significantly later than the other
MITEþ founders (t-ratio¼ 7.67, P-value <1e�4). This pattern was
also seen in the effect sizes estimated in individual environments

(Supplementary File 3). Finally, at the most significant hit from
QTLH, founders are grouped into haplotypes consistent with their
allele at the MITE, but there are still far more than 2 distinct hap-
lotypes (14). Analysis of the haplotype structure in the region
around vgt1 in the 16 founders showed clear differences between
those that do and do not have the MITE insertion, but did not dif-
ferentiate MITEþ late founders from MITEþ early founders
(Supplementary Fig. 11).

One possible explanation for this observation is an epistatic
interaction between vgt1 and other loci in the genome. However,
a genome scan for epistasis between vgt1 and other loci did not
yield any significant interactions (Supplementary Fig. 12). QTLF

using only MAGIC lines predicted to have the MITE had 2 signifi-
cant DTA BLUP QTL in the region of vgt1 (Supplementary Fig. 13).
One of these significant sites is located in close proximity to the
causal gene for vgt2, ZCN8, and may be explained by this linked
QTL (Guo et al. 2018). The second significant site is located 15 Mb
downstream of vgt1, suggesting that some local variation around
the region of vgt1 impacts the effect of the QTL on FT. This site
may have an epistatic interaction with vgt1 that did not pass the
stringent genome-wide significance threshold. Alternatively, the
relationship between the loci could be entirely additive, but the
causal allele may only occur on the MITEþ background.

Discussion
We used 3 models of QTL allelic states to identify QTL in the
MAGIC population, a bi-allelic model (GWASSNP), a founder multi-
allelic model (QTLF), and an ancestral haplotype multiallelic
model (QTLH). The GWASSNP method should be most powerful at
identifying QTL for which the causal variant is bi-allelic and the
tagged SNP is in tight LD with the causal variant. However, for
multiallelic QTL or QTL for which LD is low between tagged SNPs,
this method should have lower power. QTLF, which assumes that

Fig. 6. Estimated founder effect sizes for vgt1. Estimates of founder effect sizes relative to the population mean for DTA BLUP phenotypes using QTLF.
Letters A–N and groupings of shaded blocks along the x-axis indicate founders that have shared haplotypes at the most significant QTLF SNP. Color
indicates reference (0) and alternate (1) alleles at the most significant QTLF SNP. Positive effect sizes indicate later flowering and negative effect sizes
indicate earlier flowering. Founders on the right (D–N) within the bracket are lines that possess the MITE insertion (MITEþ), while founders on the left (A–
C) lack the MITE insertion (MITE–).
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all founders possess distinct alleles, increases the odds of detect-
ing both QTL that are multiallelic and QTL whose causal variant
is not in tight LD with any 1 tagged SNP. While the higher number
of parameters that must be fit by this model may also reduce
power, because the regions tested are much larger than 1 SNP, it
also reduces the multiple testing burden. Finally, QTLH poten-
tially improves on the power of QTLF to detect QTL that meet the
above criteria by reducing the number of parameters that must
be estimated. There is, however, the potential for QTLH to obscure
the signal of some QTL if founders are called as having the same
ancestral haplotype when they actually differ for a causal vari-
ant. Due to the fact that QTLH and QTLF only take into account re-
cent recombination events, whereas GWASSNP uses historical
recombination, we predicted that GWASSNP would result in higher
resolution of QTL support intervals. Higher resolution QTL are
ideal in that they make it easier to narrow down candidate genes
and potential causal variants.

The results of using these 3 models of genetic architecture to
identify QTL suggest that each has its own advantages and disad-
vantages in terms of how many and which QTL they can identify.
Overall, the QTLF model performed the best in terms of the num-
ber of QTL identified, although there were multiple QTL identified
uniquely in all models. In addition, most of the QTL identified by
QTLF at a 5% significance threshold became significant in either
one or both of the other methods at a 10% threshold (Fig. 5, d–f).
These differences in power may be related to differences in the
number of tests performed by each model, or to varying abilities
of the models to detect QTL with differing numbers of alleles.

The larger size of GWASSNP support intervals was unexpected,
as this method is often used to fine map QTL regions identified by
linkage mapping. We suspect that this finding is either the result
of the somewhat naive method used to determine QTL support
intervals, or residual long-distance LD caused by the funnel cross-
ing scheme. Using a 2log10 drop from the most significant P-value
heavily penalizes QTL that just pass significance. In addition, the
100 Mb window used is blind to QTL peaks that contain multiple
QTL, although the 2 largest QTL peaks identified, qDTA3-2 and
qDTA8, each appeared to only contain one QTL. Overall, our
method of defining QTL support intervals, though useful for pro-
viding a means of comparison across the 3 methods, is arbitrarily
defined. It is unclear how these support intervals compared to a
standard 95% confidence interval. As a result, it is difficult to deter-
mine a reason for the difference in support interval size between
the models.

Previous studies have used variations of these methods to
identify QTL, and some have directly compared them. The use of
combined linkage and association analyses, sometimes referred
to as linkage disequilibrium–linkage association (LDLA), was first
proposed by Meuwissen and Goddard (2001), who used predicted
IBD probabilities between parents using an evolutionary model
and applied them to linkage mapping. LDLA has been used in
multiple studies to enhance QTL detection in multiparent popu-
lations in maize (Yu et al. 2008; McMullen et al. 2009; Giraud
et al. 2017) and other organisms such as pigs (H�erault et al. 2018),
rice (Stadlmeier et al. 2019; Zaw et al. 2019), barley (Sannemann
et al. 2015), and winter wheat (Stadlmeier et al. 2019). Jansen
et al. (2003) used a haplotype-based method for QTL mapping
and showed through simulation that this strategy could reduce
the number of estimated parameters and, therefore, increase
power. Yalcin et al. (2005) compared a bi-allelic model to an an-
cestral haplotype model in a multiparent mouse population, as
well as a “merge analysis” to attempt to identify candidate causal
variants underlying QTL. A similar analysis in the outbred NIH-

HS rat population used merge analysis and found that many QTL
could not be explained by a single causal variant, suggesting a
multiallelic basis for these QTL (Baud et al. 2013).

Different means of determining ancestral haplotype blocks
from parental sequences have been used, with clusthaplo
(Leroux et al. 2014), an extension of the software MCQTL (Jourjon
et al. 2005), being a commonly used algorithm in recent studies.
Bayesian frameworks have also been implemented in real (P�erez-
Enciso 2003) and simulated (Bink et al. 2012) multiparent popula-
tions. Giraud et al. (2014) used both a haplotype- and founder-
based approach in 2 nested association mapping populations of
Northern European flint and dent maize lines created by Bauer
et al. (2013) and genotyped with a 50K SNP array (Ganal et al.
2011). Giraud et al. (2014) used clusthaplo to determine haplotype
blocks based on IBD between parents and used discrete founder
and haplotype values in their models.

Interestingly, the performance of bi-allelic, founder, and an-
cestral haplotype models differs across studies. Giraud et al.
(2014) found that their haplotype model outperformed the
founder and SNP models in terms of the number of QTL identified
using EU-NAM Flint and Dent maize populations. In contrast,
Garin et al. (2020) found that in the EU-NAM Flint population, the
bi-allelic model detected a larger number of unique QTL, com-
pared to parental or ancestral haplotype models. Bardol et al.
(2013) found that in 2 multiparent dent populations, their bi-
allelic model and ancestral haplotype model generally outper-
formed the parental linkage model, although benefits of these
models varied by dataset. The performance of the 3 models
seems to depend heavily on the diversity of the parents used to
generate the population. For populations with more diverse
founders, it would be expected that there would be fewer shared
haplotypes between founders, reducing the efficacy of a haplo-
type model (Giraud et al. 2014). The fact that the QTLF model out-
performed the QTLH and GWASSNP in our population suggests
that the MAGIC population contains a relatively more diverse
representation of temperate maize than populations used in pre-
vious studies. It is also possible that the structure of multiparent
populations has an effect on the performance of the 3 models,
compared to previous studies which used nested association
mapping (Giraud et al. 2014; Garin et al. 2020) and factorial popu-
lations (Bardol et al. 2013).

Differences in the estimated effect sizes across models offer
suggestions as to the reason for their differences in QTL detec-
tion. QTL that were only found in the GWASSNP method most
likely have a bi-allelic causal variant. It is likely that the in-
creased number of parameters in the QTLF and QTLH models re-
duce statistical power when the true number of functional alleles
is low. Similarly, we predict multiallelic QTL were more likely to
be identified by the QTLF or QTLH models and not the GWASSNP

method unless the effect size was large. For QTL that were identi-
fied in the QTLH method and not the QTLF method, there tended
to be a lower number of unique ancestral haplotypes, suggesting
that QTLH was more successful in finding these QTL due to im-
proved power when there were fewer functional alleles than
founders. For QTL that were not identified by the QTLH method,
particularly for QTL that were successfully identified by QTLF,
there are 2 possible explanations. Because there were more
regions tested for QTLH than for QTLF, if the true number of ances-
tral haplotypes at the QTL is large, the QTLH method may actually
have lower power than QTLF because the number of tests is
higher. Alternatively, it may be the result of a failure of QTLH to
accurately represent the true haplotype structure of the QTL re-
gion. Our algorithm for defining haplotype blocks relies on a
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threshold for IBD that is, by nature, somewhat arbitrary. A more
lenient cutoff would provide a larger reduction in model parame-
ters by grouping more founders into haplotypes, but runs the risk
of washing out the signal of true causal differences between
founders. Alternatively, a more stringent threshold would sepa-
rate the founders into more haplotype groups. This may reduce
the efficacy of the QTLH method because the improvement in sta-
tistical power only occurs when the number of haplotype groups
is low.

On the whole, most QTL were found by all 3 methods, so there
was limited ability to draw reliable conclusions about underlying
mechanisms that caused the methods to perform better or worse.
Generally, the comparison of QTL detection and effect size esti-
mates suggested that the methods failed and succeeded on a
QTL-by-QTL basis. This is to be expected, as each QTL is the re-
sult of a distinct set of 2 or more causal alleles with a unique evo-
lutionary history and pattern of linkage disequilibrium within the
population.

Whether QTL that appeared in only 1 method are due to false
positives or true differences in the methods’ abilities to identify
QTL with different genetic architectures cannot be determined,
but many of the QTL identified in the MAGIC population have un-
derlying candidate genes or have been found in previous studies,
providing support to their biological reality. Multiple FT QTL sup-
port intervals overlap or are close to previously identified FT
genes and QTL. qDTA9 is nearby the previously identified maize
FT gene ZmCCT9 (Huang et al. 2018). qDTA3-2 overlaps with vgt3,
whose underlying gene was identified as ZmMADS69 (Liang et al.
2019). qDTA3-1 is nearby a recently identified FT QTL also associ-
ated with phosphatidylcholine levels (Rodr�ıguez-Zapata et al.
2021). The support interval for qDTA8 overlaps with 2 FT QTL,
vgt1, which we discuss in length, and another, vgt2. The causal
gene for vgt2 is ZCN8, which is the maize ortholog of FT in
Arabidopsis (Lazakis et al. 2011). Variation in the promoter region
of ZCN8 between temperate maize and teosinte suggests that ear-
lier flowering alleles were under selection during the process of
maize domestication (Bouchet et al. 2013; Guo et al. 2018). It is in-
teresting to note that there is strong overlap in the support inter-
vals of QTL found on chromosome 3 between FT and harvest
grain moisture (Supplementary Table 1), perhaps due to develop-
mental pleiotropy linking FT and the moisture of kernels at har-
vest, although we cannot say with certainty that these QTL are
explained by the same causal variant. Three GxE QTL were
detected in this population (Hudson et al. in prep) using the QTLF

model, but none overlapped with the main effect QTL we
detected in this study. One of these, QTL appeared to be a false-
positive resulting from low representation of one of the founders
in the region, indicating the potential for low founder sample size
to confound QTL results.

Due to the fact that the MAGIC population is segregating for
vgt1, it provides an opportunity to further study the mechanism
behind the QTL’s affect on FT. One benefit of using founder and
haplotype approaches lies in the potential to dissect the effects of
individual founders and haplotypes within QTL. This allowed us
to look more closely at vgt1 and observe an interesting pattern of
effect sizes that deviated from our expectations based on previ-
ous research. Previous research has shown that variation in FT at
this site is strongly correlated with a MITE insertion about 70 kb
upstream of the FT regulator, ZmRAP2.7, an APETALA-like tran-
scription factor, with the presence of the MITE associated with an
earlier FT (Castelletti et al. 2014). Within maize heterotic groups,
Flint maize lines tend to possess the early-flowering allele of vgt1
(MITEþ), while dents (such as B73) tend to carry the late-

flowering allele (MITE–) (Salvi et al. 2007). In addition to being a
crucial agronomic trait, FT contributes to local adaptation for an-
nual plants such as maize, ensuring that individuals can repro-
duce within the growing season of their environments. The
frequency of the MITE in maize populations follows a latitudinal
gradient, suggesting that the early MITEþ allele was selected for
during the process of maize adaptation to temperate climates
(Navarro et al. 2017). It has also been shown that there are differ-
entially methylated regions around vgt1 between B73, landrace
maize, and its wild relative, teosinte (Xu et al. 2020). The hypoth-
esized mechanism of action is that the MITE represses expression
of the negative FT regulator, ZmRAP2.7, possibly due to changes
in methylation around the insertion, resulting in earlier induction
of flowering (Castelletti et al. 2014). However, the MITE has not
yet been experimentally shown to result in earlier flowering. A re-
cent study using multiple multiparent populations suggested
that variation in the effect of vgt1 in different genetic back-
grounds was due to local genetic variation surrounding vgt1,
rather than epistasis with distant loci (Rio et al. 2020). The ob-
served lack of significant epistasis with vgt1 in this study
(Supplementary Fig. 14), combined with our results of MITEþ QTLF

(Supplementary Fig. 12), appear consistent with this idea. This
finding suggests 2 possibilities: either (1) that the causal variant
underlying vgt1 is some as-yet unidentified variant that is in
tight, but imperfect linkage disequilibrium with the MITE inser-
tion, or (2) that the MITE insertion directly impacts FT, and that
another variant nearby has a modifying effect on the MITE. This
opens up new areas of inquiry for future studies. Mathew et al.
(2018) used a barley population (Sannemann et al. 2015) to detect
epistatic interactions in FT using a Bayesian framework, and a
similar method could perhaps be applied here.

The population displayed relatively high levels of interchro-
mosomal LD (Fig. 4a), which deviated significantly from those
obtained from simulations. A potential consequence of interchro-
mosomal LD is the chance for confounding of association analy-
ses, namely resulting in the detection of “ghost” QTL. For the
discussed QTL that were somewhat near high interchromosomal
LD regions, qDTA8 and qDTA3-2, their effects on FT were indepen-
dent (Fig. 4a). Nonetheless, the chance for false-positives and in-
accurate support intervals due to LD structure is still worth
noting. Interchromosomal LD has been detected in multiple pop-
ulations of domesticated organisms, where breeding has resulted
in the preservation of certain combinations of favorable alleles
between chromosomes (Malysheva-Otto et al. 2006; Robbins et al.
2011). Strong selection and positive or negative epistasis in natu-
ral populations have also been shown to create a pattern of inter-
chromosomal LD (Petkov et al. 2005; Kulminski 2011; Hench et al.
2019; Gupta et al. 2021). Both of these observations suggest that
forces other than those of random segregation have operated on
the MAGIC population, further supported by the fact that genes
affecting FT were strongly enriched in regions of high interchro-
mosomal LD (Fig. 4b). These observations raise the possibility
that the complex crossing schemes of MAGIC populations have
the potential to introduce the influence of selection, which may
restrict the very genetic variation that we are attempting to
study.

Conclusion
The MAGIC population presented here provides a useful resource
for investigating quantitative trait variation in temperate maize.
As a multiparent population, it has the advantages of increased
genetic diversity and higher power to detect QTL with lower allele
frequencies. Simulations of the MAGIC population provide an
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opportunity to validate assignment of founder identities, as well

as generate null expectations for various aspects of the popula-

tion. Overall, we find that a founder multiallelic model identifies

the most QTL, although all 3 models of allelic state are effective

at identifying QTL. The benefits of increasing statistical power by

reducing model parameters in bi-allelic and ancestral haplotype

models seem to be tempered by the true allelic complexity of the

multiparent population being studied. We conclude that if the

goal of a study is to find as many QTL as possible, then it would

be most useful to consider the genetic diversity contained within

the population when choosing a model in order to maximize QTL

identification.

Data availability
Genotypic data will be made available through FigShare.

Phenotypic and environmental data will be made available at

FigShare associated with our companion paper (Hudson et al. in

prep) (tracking number G3-2021-402688) (https://figshare.com/s/

5ee8337defdef63b04ce). Supplementary files are available at

FigShare. Supplementary File 1 contains a detailed description of

the 16 founders and the crossing scheme used to develop the

MAGIC population. Supplementary File 2 shows Manhattan plots

similar to Fig. 5, a–c for individual phenotypes and environments.

Supplementary File 3 shows founder effect size plots for vgt1 sim-

ilar to Fig. 6 for individual environments. Supplementary File 4

contains tables of all QTL identified in the study, their locations,

and their effect sizes estimated from the 3 models.

Supplementary File 5 shows colored heatmaps similar to Fig. 5,

d–f for individual phenotypes and environments. Code used to

run analyses and to generate simulated data can be found at

https://github.com/sarahodell
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