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Fry1, Matthew J. Saldana1, Kacey Vander Vorst1, Ashley Rowson-Hodel1, James M. 
Angelastro2, Colleen Sweeney1, and Kermit L. Carraway III1

1Department of Biochemistry and Molecular Medicine, and UC Davis Comprehensive Cancer 
Center, University of California Davis School of Medicine, Sacramento, CA, USA

2Department of Molecular Biosciences, University of California Davis School of Veterinary 
Medicine, Davis, CA, USA

Abstract

The lethality of the aggressive brain tumor glioblastoma multiforme (GBM) results in part from its 

strong propensity to invade surrounding normal brain tissue. While oncogenic drivers such as 

EGFR activation and PTEN loss are thought to promote the motility and invasiveness of GBM 

cells via PI3K activation, other unexplored mechanisms may also contribute to malignancy. Here 

we demonstrate that several components of the planar cell polarity (PCP) arm of non-canonical 

Wnt signaling including VANGL1, VANGL2, and FZD7 are transcriptionally upregulated in 

glioma and correlate with poorer patient outcome. Knockdown of the core PCP pathway protein 

Vangl1 suppresses the motility of GBM cell lines, pointing to an important mechanistic role for 

this pathway in glioblastoma malignancy. We further observe that restoration of Nrdp1, a RING 

finger type E3 ubiquitin ligase whose suppression in GBM also correlates with poor prognosis, 

reduces GBM cell migration and invasiveness by suppressing PCP signaling. Our observations 

indicate that Nrdp1 physically interacts with the Vangl1 and Vangl2 proteins to mediate the K63-

linked polyubiquitination of the DEP domain of the Wnt pathway protein Dishevelled (Dvl). 

Ubiquitination hinders Dvl binding to phosphatidic acid, an interaction necessary for efficient Dvl 

recruitment to the plasma membrane upon Wnt stimulation of Fzd receptor and for the propagation 

of downstream signals. We conclude that the PCP pathway contributes significantly to the motility 

and hence the invasiveness of glioblastoma cells, and that Nrdp1 acts as a negative regulator of 

PCP signaling in GBM cells by inhibiting Dvl through a novel polyubiquitination mechanism. We 

propose that the upregulation of core PCP components, together with the loss of the key negative 

regulator Nrdp1, act coordinately to promote GBM invasiveness and malignancy.
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Introduction

Glioblastoma multiforme (GBM) is the most lethal brain cancer, representing 45% of 

malignant primary CNS tumors1. Despite a standard of care involving surgical resection of 

the primary tumor followed by radiation and chemotherapy, median survival time is about 

one year, and only 5% of patients survive five years past diagnosis2. Tumors are 

heterogeneous, and subpopulations of cells often exhibit the highly invasive properties 

responsible for surgical evasion and recurrence. These cells, whose migratory ability is 

unhindered by radiation therapy, invade vital parts of the patient’s brain leading to inevitable 

death3,4.

While GBM is a heterogeneous disease, common molecular drivers include overexpression 

or mutation of EGFR, elevation of PDGF ligands and receptors, and loss of the tumor 

suppressor PTEN5. Downstream signaling through the phosphatidylinostitol 3-kinase 

(PI3K)/Akt pathway promotes migration, and disruption of PI3K/Akt signaling in GBM 

cells can partially suppress cellular invasion6. However, alterations in other molecular 

pathways such as Wnt signaling also promote invasive processes7, and it is likely that 

dysregulation of multiple signaling pathways contributes to GBM aggressiveness.

A common theme in tumorigenesis concerns the reactivation of embryonic developmental 

pathways to promote tumor growth and malignancy. Planar cell polarity (PCP) is a well 

characterized pathway in Drosophila development essential for generating epithelial cell 

polarity in the planar axis orthogonal to the apical-basal axis. Signaling via the tetraspanin-

like scaffolds Vangl1 and Vangl2 in mammals comprises a branch of non-canonical Wnt 

signaling associated with developmental PCP, and dysregulation of this pathway is 

associated with various disease states8,9. In Vangl-dependent non-canonical Wnt signaling, 

the Frizzled (Fzd) receptor is activated by Wnt ligand binding, followed by Dishevelled 

(Dvl) recruitment to the plasma membrane. These events give rise to downstream activation 

of c-Jun N-terminal kinase (JNK) and the small GTPases Rac1 and RhoA, resulting in AP1 

transcriptional activation and cytoskeletal rearrangements8. Signaling through this pathway 

can be localized to specific subcellular regions by the presence of Vangl to promote directed 

cell movements9,10.

While PCP signaling is essential for development, its role in maintenance of adult tissues is 

not well studied. Vangl proteins localize to the leading edge of lamellapodia and to the base 

and arms of actin protrusions of migrating breast cancer cells, and VANGL1 knockdown in 

these cells reduces motility10,11. Although the mechanism by which Vangl-dependent non-

canonical Wnt signaling regulates cell migration remains unknown, mounting evidence 

suggests that signaling mediated by Vangl proteins is hijacked by tumors to modulate cell 

invasiveness. Vangl1 and/or Vangl2 dysregulation has been reported in several cancer types, 

including GBM12,13. Higher Vangl1 transcript and protein is associated with increased 

tumor grade and reduced survival in glioma patients. Further, Vangl1 overexpression in a 
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murine glioma line increases cell migration and reduces survival in mice with orthotopic 

xenografts, while Vangl1 loss suppresses U251 cell motility and prolongs survival in a 

similar xenograft model12. These observations suggest that Vangl-dependent non-canonical 

Wnt signaling contributes to GBM progression.

Nrdp1 is a RING finger E3 ubiquitin ligase that mediates the ubiquitination of several 

protein targets involved in cancer progression, including the inhibitor of apoptosis protein 

BRUCE14 and the growth factor receptors ErbB3 and ErbB415. Loss of Nrdp1 has been 

associated with breast cancer16,17, prostate cancer18, colon cancer19 and recently GBM. In 

glioma cell lines, re-expression of Nrdp1 has been reported to reduce BRUCE levels and 

increase apoptosis in response to temozolomide treatment20, and may reduce cell migration 

in a subset of gliomas via ErbB3 suppression21. However, while increased signaling through 

PI3K/Akt is a hallmark of glioma, ErbB3 is not commonly dysregulated in GBM22, 

suggesting that other Nrdp1-mediated pathways regulate migration in brain tumors.

Here we report that VANGL1 and VANGL2 are overexpressed and NRDP1 is suppressed in 

brain tumors relative to normal brain tissue, and that restoration of Nrdp1 to GBM cell lines 

reduces cellular motility and invasiveness. We further demonstrate that Nrdp1 interacts with 

Vangl1 and Vangl2 to mediate the ubiquitination of Dvl proteins, downregulating planar cell 

polarity signaling by suppressing Dvl recruitment to activated Fzd receptor. These 

observations point to a novel role for Nrdp1 in suppressing Vangl-dependent non-canonical 

Wnt signaling, and highlight an unappreciated role for this pathway in regulating the 

motility of GBM cells.

Results

Nrdp1 inhibits GBM cell invasiveness

Using publicly available microarray data, we observed that NRDP1 transcript is significantly 

lower in brain tumor samples than non-tumor brain samples in the REMBRANDT dataset 

(Figs. 1A and S1A), regardless of molecular subtype (Fig. S1B)23. Moreover, low NRDP1 
transcript levels are associated with decreased patient survival (Figs. 1B and S1C), raising 

the possibility that NRDP1 suppression contributes to disease progression and mortality.

To assess the impact of Nrdp1 protein on GBM biology, we restored its cDNA to PTEN-

mutated GBM cell lines A1207, T98G and U87-MG. We observed that Nrdp1 expression 

alters cellular morphology, favoring flatter cells with fewer protrusions (Fig. 2A), and 

suppresses motility as well as invasiveness in Matrigel-coated Boyden chambers (Figs. 2B 

and 2C). Conversely, shRNA-mediated suppression of the low endogenous levels of NRDP1 
in T98G (Figs. S2A and 2B) and U87-MG cells (Fig. S2D) augments their migration (Figs. 

S2C and S2E) and favors a more spindly U87-MG morphology (Fig. S2F). However, Nrdp1 

restoration does not alter the proliferation of GBM lines (Fig. S2G), suggesting that Nrdp1 is 

a specific negative regulator of GBM migration and invasiveness.

To assess the impact of Nrdp1 restoration on GBM invasiveness in brain tissue, we 

examined the dissemination of highly invasive GFP-labeled U251 cells into cultured slices 

of mouse brain. Like the other glioma lines, Nrdp1 restoration to U251 cells (Fig. S3A) 
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induces a more flattened morphology (Fig. S3B) and suppresses their migration (Fig. S3D), 

but does not impact their proliferation (Fig. S3C). We observed that when seeded on brain 

slices, U251 cells with restored Nrdp1 disseminated less efficiently than control cells, as 

determined histologically and by anti-GFP staining (Figs. 2D and 2E), providing strong 

evidence that Nrdp1 is a potent negative regulator of brain tumor invasiveness.

Although Nrdp1 is most well characterized as a negative regulator of the ErbB3 and ErbB4 

receptor tyrosine kinases15, previous studies indicate that neither receptor is significantly 

dysregulated in GBM22. Likewise, levels of EGFR and phosphorylation of signaling 

intermediates Akt and Erk are not altered upon Nrdp1 restoration (Fig. S4A), consistent with 

its inability to influence GBM cell proliferation. β-catenin phosphorylation is also not 

affected by Nrdp1 (Figs. S4B and S4C), suggesting that canonical Wnt signaling is not 

targeted. While we observed no reproducible alterations in the activation state of the 

motility-associated GTPase Rac1 (Figs. S4D and S4E), Nrdp1 restoration significantly 

decreases active RhoA (Figs. S4F and S4G) and phospho-JNK (Figs. S4H and S4I), 

suggesting that Nrdp1 might regulate non-canonical Wnt signaling8,24.

Nrdp1 interacts with Vangl1 and Vangl2

Wnt signaling is broadly separated into two categories. Canonical Wnt signaling results in 

stabilized β-catenin, most often driving proliferation and differentiation. Non-canonical Wnt 

signaling consists of several interconnected pathways defined by β-catenin independence, 

and activation of these pathways often results in AP1-dependent transcription through 

phospho-JNK and increased cell motility through Rac and/or Rho8,24. Nrdp1 may regulate 

non-canonical Wnt signaling and GBM migration by interacting with the non-canonical Wnt 

components Vangl1 and Vangl2, interactions first identified in a published Master’s thesis25. 

The Vangl proteins are critical for PCP, and loss-of-function Vangl mutants lead to 

developmental defects in multiple tissues. Because Vangl1 and Vangl2 have nearly identical 

protein structures and biochemical properties, variation in their developmental roles26 may 

arise from differential tissue or temporal expression. Still, Vangl proteins have been linked to 

migration and invasion in several carcinomas13 and expression of both VANGL1 and 

VANGL2 is increased in GBM (Fig. 3A). Indeed, aberrant expression of core Vangl-

dependent non-canonical Wnt signaling components appears to be a common feature of 

glial-derived brain tumors across molecular subtypes, as transcripts of the Wnt ligand 

WNT5A and the transmembrane Wnt receptor FZD7 are also elevated compared to non-

tumor brain tissue (Figs. S5A and S5B). Dysregulation of this pathway is also associated 

with decreased patient survival times (Fig. S5C–S5F), underscoring the important role of 

PCP signaling in promoting dissemination.

We confirmed the interaction of Vangl1 and Vangl2 with Nrdp1 through co-

immunoprecipitation assays in HEK293T cells (Figs. S6A and S6B). Importantly, 

endogenous Vangl2 and Nrdp1 could be co-immunoprecipitated from mouse brain lysates, 

demonstrating the physiological relevance of this interaction (Fig. S6C). Vangl proteins 

contain an intracellular N-terminal region with multiple phosphorylation sites27, four 

transmembrane domains, and an intracellular C-terminal region with a coiled-coil domain 

and PDZ-binding motif28. To determine the Vangl2 region responsible for interacting with 
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Nrdp1, we employed deletion mutants (Fig. S6D). Only the Vangl2ΔC mutant fails to 

precipitate with Nrdp1 (Fig. S6E), indicating that Nrdp1 interacts with the Vangl2 C-

terminus. The Vangl2ΔCC mutant may have a diminished interaction with Nrdp1, of interest 

because Nrdp1 itself has a coiled-coil domain and these domains often self-associate29. 

Indeed, Nrdp1 lacking this domain (Nrdp1ΔCC in Fig. S6F) does not interact with Vangl2 

(Fig. S6G), suggesting that the Nrdp1 coiled-coil domain is necessary for the Nrdp1-Vangl2 

interaction while the Vangl2 coiled-coil domain supports but is dispensable for the 

interaction. We have demonstrated that the Nrdp1 coiled-coil domain mediates Nrdp1 

oligomerization29, and it is possible that Vangl2 interacts with Nrdp1 oligomers or disrupts 

Nrdp1 oligomerization. Surprisingly, neither augmented ubiquitination of Vangl1 or Vangl2 

(Figs. S7A and S7B) nor suppressed Vangl protein levels (Fig. S7C) is observed with Nrdp1 

expression, implying that Vangl1 and Vangl2 could as scaffolds for Nrdp1 as they do in 

previously characterized modes of PCP30,31.

Dvl is subject to Nrdp1-mediated ubiquitination

While the precise molecular complexes involved in each branch of non-canonical Wnt 

signaling are not clearly defined, most branches engage the scaffolding protein family Dvl24. 

Because Dvl proteins are regulated by ubiquitination32, we tested whether they are 

substrates for Nrdp1-mediated ubiquitination. Each of the three Dvl family members 

exhibits increased ubiquitination when co-expressed with Vangl2 and Nrdp1 (Figs. 3B and 

S7D). Interestingly, Nrdp1-mediated Dvl ubiquitination occurs only in the presence of 

Vangl2, demonstrating that Nrdp1 alone is insufficient to promote Dvl ubiquitination, and 

suggesting that Vangl2 acts as a scaffold to bring Nrdp1 and Dvl into proximity. Both 

Vangl1 and Vangl2 promote Nrdp1-mediated Dvl ubiquitination (Figs. 3B and S7D–F), 

providing another example of the biochemical interchangeability of these proteins. Vangl1 or 

Vangl2 expression alone is sufficient to promote Dvl ubiquitination, possibly due to 

endogenous Nrdp1 or other interacting E3 ubiquitin ligases. Dvl ubiquitination is suppressed 

by Nrdp1 knockdown (Fig. 3C), and a double point-mutant of the Nrdp1 RING domain 

(Nrdp1-CHSQ-FLAG) that cannot catalyze transfer of ubiquitin from the E2 to the 

substrate33 cannot promote ubiquitination of Dvl2 (Figs. S7E and S7F), indicating that the 

ubiquitin ligase activity of Nrdp1 is necessary for Dvl ubiquitination. Because Nrdp1 

promotes ubiquitination of endogenous Dvl2 in T98G cells (Fig. 3D) but does not alter 

expression of WNT5A or VANGL1 (Fig. S8), Nrdp1-mediated regulation of non-canonical 

Wnt signaling via Dvl ubiquitination may be responsible for the decreased motility in these 

cells. However, Nrdp1 does not promote Dvl2 degradation, as its expression in GBM cell 

lines does not decrease endogenous Dvl2 protein (Fig. S7G).

Polyubiquitination consists of ubiquitin monomers chained through any of seven lysines or 

the N-terminal amino group, most commonly utilizing K48, K63 or K11ref. 34. To determine 

the ubiquitin linkage on Dvl2 promoted by Nrdp1, we conducted ubiquitination assays using 

ubiquitin mutants where K48, K63, or K11 is mutated to arginine, thus preventing 

polyubiquitination through the mutated lysine. We observed that only the K63R mutant 

cannot form polyubiquitin chains on Dvl2 (Fig. 3E), indicating that Nrdp1 promotes K63-

linked polyubiquitination of Dvl2. This complements our observation that Nrdp1 does not 

promote endogenous Dvl2 degradation; unlike K48 and K11-linked ubiquitin chains, K63-
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linked poyubiquitination is not typically a degradation marker, but promotes context-

dependent regulation of protein activity and complexes34. These observations suggest that 

Nrdp1-mediated K63-linked polyubiquitination of Dvl proteins alters Dvl function to 

suppress GBM cell motility.

Nrdp1-mediated ubiquitination prevents Dvl binding to phosphatidic acid

We next explored the mechanism whereby Nrdp1-mediated Dvl ubiquitination impairs PCP 

signaling. Dvl proteins have three domains: the DEP and PDZ domains, required for 

canonical and non-canonical Wnt signaling, and the DIX domain, required for canonical 

Wnt signaling24. Using Dvl1 mutants with the lysines in each domain mutated to arginines 

(Fig. 4A), we determined that the Dvl1-DEP-6KR mutant is resistant to Nrdp1-mediated 

ubiquitination (Figs. 4B and 4C), mapping the predominant Nrdp1 polyubiquitination sites 

to the DEP domain. Because the Dvl1-DEP-6KR mutant interacts normally with Vangl2 

(Fig. S9A), this decreased ubiquitination is likely not the result of impaired Dvl-DEP-6KR 

folding or function.

The Dvl DEP domain interacts with phosphatidic acid (PA) within plasma membrane inner 

leaflet through an electrostatic interaction between negatively charged PA and positively 

charged lysine and arginine residues on the DEP membrane-binding face. Recruitment to the 

plasma membrane by these residues is necessary for efficient formation of complexes 

between Dvl and the Wnt receptor Fzd35. Five mutated lysines in the Dvl1-DEP-6KR 

mutant are on this membrane-binding face (Fig. S9B), suggesting that ubiquitination of 

these residues could reduce the affinity of the DEP domain for PA by steric hindrance. To 

test this, we overlayed purified Dvl1 onto phospholipid strips to assess alterations in the 

avidity of Dvl1 for PA upon Nrdp1-mediated ubiquitination (Figs. 4D and 4E). Vangl2 

increases the amount of Dvl1 bound to PA, consistent with its pro-migratory role10,11. 

However, in the presence of Vangl2 and Nrdp1, Dvl1 binding to PA is significantly 

decreased, suggesting that Nrdp1-mediated ubiquitination inhibits Dvl function by 

preventing its association with the plasma membrane. To confirm that Nrdp1 abrogates the 

Dvl-PA interaction by promoting DEP ubiquitination, we overlaid Dvl1 wild-type (Dvl1-

WT) or Dvl1-DEP-6KR onto lipid strips (Fig. S9C). While Nrdp1 reduces the affinity of 

Dvl1-WT for PA, the Dvl1-DEP-6KR mutant resists the effects of Nrdp1 and retains PA-

binding potential. We conclude that Nrdp1 inhibits signaling through Dvl by mediating the 

ubiquitination of the DEP domain region necessary for interaction with the plasma 

membrane.

Nrdp1 promotes Dvl segregation into a Vangl complex

A recurring theme in Vangl-dependent non-canonical Wnt signaling is intracellular 

segregation of protein complexes to limit active signaling to specific subcellular areas to 

promote directed movement. Non-canonical Wnt ligand binds to Fzd receptors, which drives 

formation of active Fzd-Dvl complexes at the tips of migratory protrusions, while Vangl 

localizes to the arms of these protrusions9,10. Because Fzd and Vangl display mutually 

exclusive localization yet both interact with Dvl, we hypothesized that they compete for Dvl 

and that Nrdp1 influences this competition to suppress Dvl activation. In the presence of 

Wnt5a, increasing amounts of Fzd7 results in decreased amounts of Dvl1 co-
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immunoprecipitated with Vangl2 (Fig. 5A), consistent with a model where ligand-bound Fzd 

competes with Vangl2 for available Dvl1. Nrdp1 expression favors Dvl1-Vangl2 complex 

maintenance, decreasing the ability of Fzd7 to inhibit this interaction (Fig. 5A and 5B) and 

suppressing the accumulation of active, phosphorylated Dvl1ref. 36 (Fig. 5C and 5D), 

suggesting that polyubiquitinated Dvl cannot form the active Fzd-Dvl complexes necessary 

for directed migration. Likewise, restoration of Nrdp1 to T98G cells suppresses Wnt5a-

induced accumulation of phospho-Dvl2, implying that Nrdp1 interferes with Fzd-induced 

Dvl signaling in GBM cells (Fig. 5E and 5F).

To demonstrate that Nrdp1-mediated Vangl-dependent ubiquitination of Dvl is relevant in 

GBM cell lines, we sought to knockdown Vangl. A1207 and T98G cells do not express 

VANGL2 (Fig. S10A), and VANGL1 expression in these cell lines can be decreased with 

two independent shRNAs (Fig. S10B). In T98G cells, VANGL1 knockdown significantly 

decreases Nrdp1-mediated Dvl2 ubiquitination (Figs. 6A and 6B), again demonstrating that 

Vangl proteins are a critical link between Nrdp1 and its Dvl substrate. VANGL1 knockdown 

is sufficient to inhibit migration in A1207 and T98G cells (Fig. 6C), indicating that Vangl-

dependent non-canonical Wnt signaling promotes GBM migration, and mirroring results 

observed in breast cancer cells10,11. However, in the presence of Nrdp1, VANGL1 
knockdown has no additional effect on cell migration, implying that Nrdp1 and Vangl1 

regulate GBM migration through the same pathway.

Discussion

Collectively, our observations underscore the importance of the PCP pathway in glioma 

malignancy, and establish Nrdp1 as a central regulator of PCP signaling. Although 

dysregulation of NRDP1, VANGL1 and WNT5A12,20,37 in GBM has been reported in small 

sample sizes, our study finds that in large, publicly available microarray datasets the 

collective dysregulation of Vangl-dependent non-canonical Wnt signaling components 

NRDP1, VANGL1, VANGL2, WNT5A and FZD7 is a nearly ubiquitous event in GBMs of 

all molecular subtypes and lower grade astrocytomas and oligodendrogliomas. The 

correlation of aberrant expression of these components with decreased patient survival is 

strong evidence that aberrant PCP activation promotes glioma cell invasiveness, the primary 

causes of relapse in GBM patients.

We hypothesize that Nrdp1 promotes K63-linked polyubiquitination of Dvl to suppress 

Vangl-dependent non-canonical Wnt signaling (Fig. 7). Upon pathway activation, Dvl binds 

to the negatively charged plasma membrane phospholipid PA via positively charged residues 

(K409, K456, R461, R464, K465, K472, K482) in the DEP domain38; mutation of these 

lysine residues to glutamate reduces the PA binding ability of Dvl and Fzd-dependent 

membrane recruitment35. We demonstrate that Nrdp1-mediated ubiquitination modifies the 

DEP domain of Dvl and abrogates its ability to bind PA using the Dvl1-DEP-6KR mutant. 

While Nrdp1 suppresses the interaction between Dvl1-WT and PA, Dvl1-DEP-6KR largely 

lacks polyubiquitination and retains PA binding in the presence of Nrdp1. These results 

imply that the critical Nrdp1-mediated polyubiquitination sites are on this polybasic face of 

the DEP domain, where ubiquitination disrupts membrane binding by sterically hindering 

the interaction. The mutated lysine in the Dvl1-DEP-6KR mutant not in the polybasic face, 
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K434, participates in canonical Wnt/β-catenin signaling and likely does not contribute to 

Nrdp1-mediated negative regulation of Dvl39. We also found that Nrdp1 inhibits Dvl 

phosphorylation and promotes maintenance of Dvl-Vangl complexes in the presence of Fzd 

and Wnt5a. In this model, Nrdp1 favors the Dvl-Vangl complex by decreasing the affinity of 

Dvl for PA, which is necessary for formation of the Dvl-Fzd complex and downstream 

signaling.

Ubiquitination is a common mechanism of Dvl regulation in both arms of Wnt signaling. 

Several E3 ubiquitin ligases promote Dvl turnover through proteasomal degradation32, and 

several E3 ubiquitin ligases have been shown to promote K63-linked polyubiquitination of 

Dvl. The HECT E3 ligase Huwe1 inhibits canonical Wnt signaling by preventing formation 

of Dvl oligomers via K63-linked polyubiquitination of Dvl40, while the RING E3 ligase 

PDZRN3 promotes non-canonical Wnt signaling by K63-linked polyubiquitination of the 

DIX domain to regulate Dvl3-Fzd4 complex endocytosis41. Nrdp1-mediated Dvl 

ubiquitination inhibits Dvl membrane binding, a mechanism distinct from Huwe1 or 

PDZRN3, demonstrating the context-dependent versatility of K63-linked polyubiquitination 

of a single protein.

Nrdp1 has been previously linked to cell polarity through its interaction with the Ser/Thr 

kinase MARK2 (Par-1b) in breast epithelial cells, where disrupting MARK2-dependent 

phosphorylation of Nrdp1 prevents proper apical-basal polarity42. As Vangl-dependent non-

canonical Wnt signaling is required for PCP establishment in development, Nrdp1 may 

regulate polarity in two axes. There is precedent for interplay between these polarity 

pathways; Scribble, a Drosophila PCP effector that interacts with Vang/Vangl in Drosophila 
and mammalian cells11, is a well-characterized component of the basolateral complex that 

maintains apical-basal polarity43. This suggests that the two polarity modes may be more 

closely linked than previously appreciated, and future studies are needed to establish the 

extent to which Nrdp1 regulates polarity both in development and disease.

Although Nrdp1 levels are decreased in many cancer types, the role and regulation of Nrdp1 

seem to vary dramatically. In breast cancer, aberrant ErbB3 signaling is associated with loss 

of Nrdp1 protein despite unchanged mRNA levels17. However, NRDP1 transcript is 

decreased in GBM tumors, implying that different regulatory mechanisms govern NRDP1 
expression in these tumors. To date, the only known transcriptional regulator of NRDP1 is 

the androgen receptor in prostate cancer18, which is not known to have a significant role in 

GBM. Just as signaling through the ErbB3-Akt axis stabilizes Nrdp1 protein in a negative 

feedback loop44, it is possible that non-canonical Wnt signaling regulates NRDP1 transcript. 

However, VANGL1 knockdown does not change NRDP1 transcript levels in GMB cell lines 

(Fig. S10C), suggesting that a feedback loop between Vangl-dependent non-canonical Wnt 

signaling and NRDP1 gene regulation does not exist. The mechanism governing NRDP1 
transcript loss in GBM should be the subject of further study, as its restoration may decrease 

GBM invasiveness.

In summary, this study is the first to demonstrate that Nrdp1 regulates Wnt signaling, and we 

propose that loss of Nrdp1 in aggressive GBM tumors contributes to aberrant activation of a 

Vangl-dependent non-canonical Wnt pathway to promote tumor invasion. Our findings 

Wald et al. Page 8

Oncogene. Author manuscript; available in PMC 2017 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



contribute significantly to the understanding of Dvl regulation, highlighting another avenue 

through which non-canonical Wnt signaling is disrupted in tumor biology. Moreover, our 

findings underscore the role of PCP signaling in GBM motility and invasiveness, suggesting 

that targeting the PI3K pathway may not be sufficient to suppress malignancy.

Materials and Methods

Cell culture and reagents

HEK293T cells were from ATCC, and T98G, U87-MG, A1207, and U251 cells were gifts 

from Dr. Paul Knoepfler. T98G, U87-MG and U251 cells were authenticated by Arizona 

Research Labs (http://uagc.arl.arizona.edu/). Antibodies employed were anti-Vangl2 N-13, 

anti-Muc4 P-20, anti-Rac1, anti-EGFR (1005) from Santa Cruz, anti-FLAG M2, anti-

tubulin, anti-actin AC-15 from Sigma, anti-HA 12CA5 for Ub-HA from Roche, anti-Myc 

9E10 from Calbiochem, anti-V5 from Invitrogen, anti-RhoA from BD Biosciences, anti-

FLRF/RNF41/Nrdp1 from Bethyl Laboratories, anti-HA C29F4 for Fzd7-HA western blots, 

anti-Dvl2, anti-phospho-JNK (T183/Y185), anti-phospho-Erk (T202/Y204), anti-phospho-

Akt (S473), anti-phospho-β-catenin (Ser33/37/Thr41), anti-phospho-β-catenin (Ser552), and 

anti-β-catenin from Cell Signaling.

Transfection and transduction

HEK293T cells were transfected using 4μg polyethylenimine (Sigma) per μg DNA, and 

T98G cells were transfected with Lipofectamine 3000 (Life Technologies). HA-tagged 

ubiquitin (#17608), HA-tagged K48R and K63R ubiquitin mutants (#17604 and #17606), 

Wnt5a (#35911), and mouse Fzd7 (#42259) were from Addgene. K11 in HA-tagged 

ubiquitin was replaced with arginine using site-directed mutagenesis to generate the K11R 

mutant. Fzd7 was subcloned into pcDNA3.1(+) with a C-terminal HA-tag. Vangl1 and 

Vangl2 plasmids were from the Harvard PlasmID repository (HsCD00339551 and 

HsCD00294893) and subcloned into pcDNA3.1(+) with N-terminal FLAG and V5 epitope 

tags, respectively. Nrdp1-CHSQ-FLAG, Nrdp1-ΔCC (FLAG-tag removed by site-directed 

mutagenesis), and wild-type Nrdp1-V5 and Nrdp1-FLAG were described15,29,33. Plasmids 

encoding human Myc-Dvl2 and Myc-Dvl3 were gifts from Dr. Hiroaki Miki45. Wild-type 

mouse FLAG-Dvl1, FLAG-Dvl1-DIX-7KR and FLAG-Dvl1-PDZ-3KR were gifts from Dr. 

Madelon Maurice46. K409, K434, K458, K465, K472, and K482 in FLAG-Dvl1 were 

replaced with arginines using site-directed mutagenesis to generate FLAG-Dvl1-DEP-6KR.

The pMXpie-Nrdp1-FLAG, pMXpie-Nrdp1 (FLAG-tag removed by site-directed 

mutagenesis), pMXpie control, pSuper-shNrdp1-KD1 and -KD4 knockdown plasmids, and 

pSuper-scramble control have been described16,47. Plasmids were transfected into HEK-293-

GPG cells to produce VSVG-pseudotyped retrovirus as described16. Stable cell lines were 

transduced with 12μg/mL protamine sulfate (MP Biomedicals), followed by drug selection 

with 1μg/mL puromycin (Sigma) for pMXpie or 200μg/mL neomycin (G418, VWR) for 

pSuper.

Human Nrdp1 shRNA pLKO.1 (#51, ID:TRCN0000034251; #53, ID:TRCN0000034253) 

and human Vangl1 shRNA pLKO.1 (#90, ID: TRCN0000062090; #92, ID: 
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TRCN0000062092) lentiviral constructs were from Open Biosystems, and scramble control 

pLKO.1 was from Addgene (#1864). VSVG-pseudotyped lentivirus was generated by 

transfecting HEK293T cells with psPax2 packaging vector. Cells were transduced with 

10μg/mL polybrene (Millipore), followed by drug selection with 1μg/mL puromycin.

Gene expression and outcome analyses

Expression analysis was conducted using the REMBRANDT dataset (https://

gdoc.georgetown.edu/gdoc/, access date: 07-06-2016) (X201962_s_at NRDP1, X229997_at 

VANGL1, X226029_at VANGL2, X213425_at WNT5A and X203706_s_at FZD7)48. 

Analysis of tumors of known molecular subtype was carried out using the TCGA subset 

included in Verhaak et al23. P-values were determined by Mann-Whitney-Wilcoxon test and 

box-plots were created using GraphPad Prism. Kaplan-Meier analysis was conducted using 

the REMBRANDT dataset and P-values were determined by logrank test using Prism.

PCR

Total RNA was isolated using the RNeasy Mini Kit (Qiagen) and DNaseI treated (Roche) 

according to manufacturer’s protocol. The High-Capacity cDNA reverse transcription kit 

(Applied Biosystems) was used to make cDNA, and PCR analysis was performed using the 

following primer sets: Vangl1 (5′-GGACTCAAGCCACAACGAGTTGTAT-3′) and (5′-

ACTACGAGGCTGAAGTCCAAGC-3′), and Vangl2 (5′-

ATGAGCGGGATGACAACTGG-3′ and 5′-ACCTTGAGCGTGAACTGAGG-3′). 

Quantitative real time PCR was performed in a Bio-Rad iCycler CFX-96 real-time PCR 

machine using SsoAdvanced Universal Probes Supermix (BioRad) and TaqMan gene-

specific primer/probe sets (Applied Biosystems). Levels for VANGL1 (Hs01572998_m1), 

WNT5A (Hs00998537_m1), and NRDP1/RNF41 (Hs00195064_m1) were normalized to 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH, 4352934E) levels for each sample.

Motility and invasion assays

Cells were plated on chambers with 8μm-pore polycarbonate membranes (Corning) and 

seeded in DMEM with 0.01% FCS, migrating overnight toward the lower chamber 

containing DMEM with 10% FCS. Migrated cells were fixed and stained with Diff-Quick 

staining solution (Dade Behring). For cell invasion assays, chambers were pre-coated with 

Matrigel (BD Bioscience). Cells that migrated or invaded were imaged and counted in five 

microscopic fields per filter on an Olympus IX81 microscope with cellSens Entry software. 

Results were normalized to proliferation rates and averaged among at least three 

independent experiments.

Organotypic brain slice invasion assays

Animal studies were conducted according to protocols approved by the IACUC of the 

University of California, Davis. Fresh brain tissue sections from wild-type FvB mice 12–15 

weeks of age were prepared under sterile conditions immediately after sacrifice using a 

precision brain slicer (Braintree Scientific, Inc). High quality 1mm coronal tissue slices were 

cut in half (sagittal plane) in dissection media (minimum essential medium with glutamine, 

1% penicillin/streptomycin, 50μg/mL gentamycin (Thermo), and 4.5mg/mL D-glucose 
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(Sigma)). The matching left and right hemisphere sections were then placed on sterile 

porous (0.4μm) membranes in a 12-well Transwell plate (Corning) and co-cultured with 

250,000 U251 cells either expressing control pMX-GFP or pMX-Nrdp1-FLAG-IRES-GFP 

in brain culture media (50% dissection media, 25% Hanks’ balanced salt solution, 25% 

horse serum, 1% penicillin/streptomycin, 50μg/mL gentamycin, 1x non-essential amino 

acids (Thermo)). Media was replaced in both the upper and lower chambers of the transwell 

plate after 2–3 days. At 5 days, the tissue was gently washed with PBS, fixed in 10% neutral 

buffered formalin, and embedded in 1% agarose for stability during histological processing 

and paraffin-embedding. Representative 5μm thick sections about 50, 100, and 200μm deep 

were processed for both H&E and anti-GFP (Clontech) IHC.

Co-immunoprecipitation, ubiquitination and blotting

Cells were lysed in RIPA buffer for ubiquitination and lipid strip assays or in co-

immunoprecipitation buffer, and immunoprecipitations and immunoblotting were conducted 

as previously described29.

Rho/Rac pulldowns

Active Rac and Rho were measured as described49. Briefly, cleared GBM cell lysates were 

incubated with glutathione beads bound with GST-Rhotekin-RBD or GST-PAK-PBD. Beads 

were washed with GTPase wash buffer, resuspended in SDS-DTT lysis buffer, and boiled 

supernatants immunoblotted.

Lipid strips

Cleared RIPA lysates from transfected HEK293T cells were incubated with anti-FLAG M2 

affinity gel beads (Sigma) for 4hrs at 4°C. Beads were washed in RIPA buffer 5 times, then 

PBS, and FLAG-Dvl1 was eluted with 100μL FLAG-peptide (Sigma) solution (0.5mg/mL 

peptide, PBS, protease and phosphatase inhibitors) for 30 minutes at 4°C. Beads were 

removed and a fraction of eluate was saved. Purified protein was re-suspended in 2mL 

blocking buffer (1x PBS-T (0.1% Tween-20), 3% BSA) with inhibitors, and added to 

blocked membrane lipid strips (Echelon) for 1hr at room temperature. Membranes were 

washed in PBS-T, treated with primary and secondary antibody, and developed. The amount 

of FLAG-Dvl1 bound to lipid was normalized to the amount eluted.

Wnt5a stimulation

Conditioned media was produced by transfecting HEK293T cells with vector or Wnt5a-

containing plasmid. After 72hrs, conditioned media was collected, cleared of debris, and 

stored at −80°C. T98G cells were serum-starved in 0.01% FCS overnight, then treated with 

conditioned media for 1hr to stimulate Wnt signaling.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Nrdp1 expression is decreased in GBM
(A) Microarray analysis of NRDP1 transcript levels in non-tumor brain and GBM tissues 

from REMBRANDT (n = 28 non-tumor and 188 GBM samples; P < 10−4 by Mann-Whitney 

test). Boxes represent the 2nd and 3rd quartiles, while whiskers extend to the maximum and 

minimum values. Low numbers of normal patient samples are likely related to difficulties in 

obtaining healthy human brain tissue. (B) Kaplan-Meier plot of GBM patient survival in the 

upper and lower quartiles of NRDP1 expression from REMBRANDT (n = 155 GBM 

samples, P < 0.05 by logrank test). Median survival times were 20.7 months and 13.3 

months, respectively, for upper and lower quartile patients.
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Figure 2. Nrdp1 restoration inhibits GBM cell migration
(A) A1207 and U87-MG cells transduced with either vector or Nrdp1 stained with Diff-

Quick and visualized microscopically (scale bar = 100 μm). (B) Representative images of 

migrated (top) or invaded (bottom) vector- or Nrdp1-transduced T98G cells stained with 

Diff-Quick in Boyden chambers. (C) Relative migration in Boyden chamber assays (top) 

and invasion in Matrigel-coated Boyden chamber assays (bottom) is quantified over three or 

four independent experiments for vector- or Nrdp1-transduced cells. (D) Dissemination of 

U251 cells transduced with vector or Nrdp1 through cultured mouse brain slices, analyzed 

histologically (upper) and by immunohistochemical staining for GFP (lower). (E) 
Quantification of U251 tumor cell invasion by blinded scoring of the anti-GFP sections, 

analyzed by paired Mann-Whitney test.* P < 0.05, ** P < 0.005 by student’s t-test.
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Figure 3. Nrdp1 promotes Vangl-dependent K63-linked polyubiquitination of Dvl proteins
(A) Microarray analyses of VANGL1 (left panel) and VANGL2 (right panel) transcript 

levels in REMBRANDT (n = 28 non-tumor and 188 GBM samples). P < 10−4 by Mann-

Whitney test, boxes represent the 2nd and 3rd quartiles and whiskers extend to the maximum 

and minimum values. (B) HEK293T cells were transfected as indicated, and anti-Myc 

precipitates were blotted for ubiquitinated Myc-Dvl2. (C) Anti-FLAG precipitates from 

HEK293T cells transfected as indicated were blotted for ubiquitinated FLAG-Dvl1. (D) 
T98G cells were transfected with Ub-HA along with either vector (V) or Nrdp1 (N), and 

anti-Dvl2 precipitates were blotted for ubiquitinated Dvl2. (E) Anti-Myc precipitates from 

transfected HEK293T cells were blotted for ubiquitinated Myc-Dvl2.
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Figure 4. Nrdp1-mediated ubiquitination of the Dvl1 DEP domain inhibits its binding to 
phosphatidic acid
(A) The domain structure of Dvl proteins, highlighting the mutated Dvl1 lysine residues 

employed in experiments. (B) Anti-FLAG precipitates from HEK293T cells transfected as 

indicated were blotted for ubiquitinated Dvl1. (C) Results from six independent experiments 

such as that in (B) were quantified. (D) FLAG-Dvl1 affinity purified from HEK293T cells 

transfected as indicated was overlaid onto lipid strips and blotted with anti-FLAG to reveal 

lipid binding. Dashed lines separate images from a single exposure. (E) Three independent 

experiments such as that in (D) were quantified. Relative binding refers to the quantity of 

PA-bound FLAG immunoreactivity relative to the amount of FLAG-Dvl1 in the eluate. Error 

bars represent SEM. *, P < 0.05; **, P < 0.005 by student’s t-test.
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Figure 5. Nrdp1 suppresses Wnt5a/Fzd7-mediated Dvl1 activation by promoting Dvl1/Vangl2 
complex formation
(A) Anti-V5 precipitates from HEK293T cells transfected with increasing levels of Fzd7-

HA were blotted as indicated. (B) The amount of FLAG-Dvl1 associated with V5-Vangl2 

under the conditions marked by arrows (A) was quantified over four independent 

experiments. (C) Lysates from HEK293Ts transfected as indicated. The band marked with 

the arrow represents active phosphorylated FLAG-Dvl1. (D) Phosphorylated FLAG-Dvl1 

was quantified over five independent experiments such as that in (D). (E) Lysates from 

vector- or Nrdp1-transduced T98G cells treated with Wnt5a conditioned media. The arrow 

indicates phosphorylated Dvl2. (F) Phosphorylated Dvl2 from four independent experiments 

such as that in (E) was quantified. Error bars represent SEM. *, P < 0.05; **, P < 0.01; ***, 

P < 0.005 by student’s t-test.
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Figure 6. Nrdp1-mediated Dvl ubiquitination and inhibition of GBM migration are Vangl-
dependent
(A) T98G cells transduced with scrambled (Scr) or two VANGL1-targeting shRNAs (90, 92) 

were transfected as indicated. Anti-Dvl2 precipitates were blotted for ubiquitinated 

endogenous Dvl2. (B) Dvl2 ubiquitination in the presence of Nrdp1 was quantified across 

four (90) or six (92) independent experiments such as that in (A). (C) The migration of 

glioma cells was assessed with and without restored Nrdp1, as well as the presence and 

absence of VANGL1-targeting shRNAs, and quantified over three to five independent 

determinations. Error bars represent SEM. **, P < 0.01; ***, P < 0.005, by student’s t-test.
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Figure 7. Model of Vangl-dependent ubiquitination of Dvl by Nrdp1
Wnt5a ligand engagement of Fzd receptor causes the recruitment, phosphorylation and 

activation of Dvl to initiate cytoskeletal rearrangements via Rho GTPase, and transcriptional 

regulation through phospho-JNK and AP1. The presence of Nrdp1 leads to the Vangl-

dependent K63-polyubiquitination of Dvl, inhibiting Dvl recruitment to Fzd and the plasma 

membrane, suppressing downstream signaling.
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