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with (a) the Bézier curve and control points, (b) the Frenet–Serret
frame of cross section, and (c) the constructed surface mesh. . . . . . . . 38

vii



Figure 3.4. The pre-processing of soft octopus arm images, with (a) the observed
RGB image, (b) the reference binary mask with center-line and (c)
the predefined keypoints and the endpoint (yellow). . . . . . . . . . . . . . . . 42

Figure 3.5. Visualization of the distance map, with (a) the reference binary mask
and (b) the corresponding distance map. . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 3.6. Reconstruction results for the Octopus Arm dataset. . . . . . . . . . . . . . . 44

Figure 3.7. Ablation study of the loss functions for robot pose estimation. Notice
that the averaged error is large because of outliers, and 95% of the
estimates have less than 4 cm error as shown in Table 3.2. . . . . . . . . . 48

Figure 3.8. A snake-like robot, Arcsnake [105], is tracked on camera in the outdoor
environment by a hovering drone. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 3.9. Example of the bounding box prompt generated by mask-to-box
operation (top) and the corresponding robot mask generated using
SAM (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 3.10. Plots of estimated joint trajectory vs. sensor reading for the Snake-Lab
dataset in the moving robot scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 3.11. Qualitative results on Snake-Lab dataset. We derive the skeleton from
the estimated robot pose and joint angle, and visualize it by projecting
the skeleton on images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 3.12. Qualitative results on Snake-Outdoor dataset. We show the estimated
skeleton and predicted robot mask overlaid on images. . . . . . . . . . . . . 65

Figure 4.1. Comparison of speed and accuracy (based on AUC metric) for existing
image-based robot pose estimation methods. . . . . . . . . . . . . . . . . . . . . . 67

Figure 4.2. The overview of our proposed self-supervised training framework for
sim-to-real transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 4.3. The diagram of the camera-to-robot pose estimation network (CtRNet)
which describes the inference process of network. . . . . . . . . . . . . . . . . . 75

Figure 4.4. Qualitative results of CtRNet foreground segmentation and pose esti-
mation on (a) DREAM-real dataset and (b) Baxter dataset. . . . . . . . 79

Figure 4.5. The training loss vs. number of epochs for the self-supervised training
with different numbers of pretraining samples. . . . . . . . . . . . . . . . . . . 84

viii



Figure 4.6. Snapshots of PBVS. The goal is to move the end-effector to the target
pose (green). The figure on the right shows the robot configuration
upon the convergence of PBVS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 4.7. The plot of end-effector distance-to-goal over time on a selected PBVS
trail. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 5.1. In real-world robot manipulation scenarios, the camera does not always
capture all the robot links, and the visibility of robot links changes
from time to time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 5.2. Sample images are from DROID robot learning dataset [61]. Often,
only certain parts of the robot are visible in the camera view, and
sometimes none of them are visible. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 5.3. Model inference pipeline. CtRNet-X estimates camera-to-robot trans-
form given the images and the corresponding joint angles. . . . . . . . . . 94

Figure 5.4. Qualitative results on Panda manipulation dataset. The first row is
rendered robot masks using ground-truth extrinsic calibration (green)
and the second row is the rendered robot masks using the pose from
CtRNet-X (blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Figure 5.5. Qualitative results of our method on the real-world manipulation
dataset DROID [61]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

ix



LIST OF TABLES

Table 3.1. 2D and 3D Error (mean e and standard deviation σ) of Shape Recon-
struction on real Octopus Arm Dataset. . . . . . . . . . . . . . . . . . . . . . . . . . 45

Table 3.2. Comparison of our methods with the state-of-the-art methods on robot
pose estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Table 3.3. Average Position and State Estimation Error on Snake-Lab Dataset . 59

Table 3.4. Quantitative evaluation on Snake-Outdoor dataset. We compute the
IoU between the estimated robot mask and the ground-truth robot
mask. We also report the processing speed under different settings. . . 60

Table 4.1. Comparison of our methods with the state-of-the-art methods on
DREAM-real datasets using ADD metric. We report the mean and
AUC of the ADD on each dataset and the overall accuracy. . . . . . . . . . 81

Table 4.2. Comparison of our methods with the state-of-the-art methods on Baxter
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Table 4.3. Ablation study for the number of pretraining samples. . . . . . . . . . . . . . 83

Table 4.4. Mean and standard deviation of the translational error and rotational
error for the visual servoing experiment. . . . . . . . . . . . . . . . . . . . . . . . . . 84

Table 5.1. Comparsion of top-1 accuracy (%) and training time (s) of different
fine-tuning methods on robot parts detection with few-shot learning. 100

Table 5.2. Performance comparison of different methods on DREAM-real dataset.
We report the overall keypoint accuracy for the mean ADD and AUC
of ADD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Table 5.3. Qualitative results on Panda Manipulation Dataset. We report the
overall mean and AUC of ADD with both single-frame and batch
estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

x



ACKNOWLEDGEMENTS

I am deeply grateful to my advisor, Prof. Michael Yip, for his invaluable support

throughout my PhD journey. His insightful ideas and guidance shaped the direction of

my research, and his encouragement for collaboration enriched my work and opened new

avenues of exploration. I am also deeply thankful for the many connections he facilitated

with brilliant people, which had a profound impact on my research and future career. His

mentorship has been instrumental to my growth, both academically and professionally.

I would also like to thank my committee members Prof. Nikolay Atanasov, Prof.

Henrik Christensen, and Prof. Nuno Vasconcelos for their support, feedback, and the time

they have dedicated to my dissertation.

Additionally, I would like to thank Dr. Yang Li and Dr. Florian Richter for

introducing me to the ARClab and for mentoring me on my very first research project.

Their passion inspired me to pursue research, and their guidance has been crucial in my

academic journey.

Finally, I want to express my gratitude to my collaborators and the members of

ARClab: Dr. Shan Lin, Dr. Fei Liu, Dr. Jacob Johnson, Dr. Dimitri Schreiber, Dr.

Ahmed Qureshi, Dr. Ryan Orosco, Dr. Jonathan Katz, Dr. Sainan Liu, Dr. Cédric Girerd,

Ambareesh Jayakumari, Zihan Li, Yunhai Han, Entong Su, Mingen Li, Chong He, Albert

Miao, Albert Liao, Shunkai Yu, Shreya Saha, Zekai Liang, Kaiyuan Wang, Tristin Xie,

Aman Gupta, Jason Lim, Zih-Yun Chiu, Nikhil Shinde, Yuheng Zhi, Elizabeth Peiros,

Xiao Liang, Soofiyan Atar, Neelay Joglekar, Sharath Matada, Zhaowei Liu, Linjun Li,

Hanpeng Jiang, Soumyaraj Bose, Yutong Zhang. Their friendship, collaboration, and

insightful discussions have enriched my time in the lab. I am thankful for the opportunity

to work alongside such a talented group of individuals.

Chapter 1, in part, is a reprint of the material from J. Lu, F. Richter, M. C. Yip,

“Markerless Camera-to-Robot Pose Estimation via Self-supervised Sim-to-Real Transfer,”

in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

xi



2023. The dissertation author was the primary author of this paper.

Chapter 2, in part, is a reprint of the material from J. Lu, F. Richter and M. C. Yip,

“Pose Estimation for Robot Manipulators via Keypoint Optimization and Sim-to-Real

Transfer,” in IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 4622-4629, April

2022. The dissertation author was the primary author of this paper.

Chapter 3, in part, is a reprint of the material from J. Lu, F. Liu, C. Girerd and M. C.

Yip, “Image-based Pose Estimation and Shape Reconstruction for Robot Manipulators and

Soft, Continuum Robots via Differentiable Rendering,” in IEEE Conference on Robotics

and Automation, 2023. The dissertation author was one of the primary authors of this

paper. Chapter 3, in part, is also a reprint of the material from J. Lu, F. Richter, S. Lin

and M. C. Yip, “Tracking Snake-like Robots in the Wild using only a Single Camera,” in

IEEE Conference on Robotics and Automation, 2024. The dissertation author was the

primary author of this paper.

Chapter 4, in part, is a reprint of the material from J. Lu, F. Richter, M. C. Yip,

“Markerless Camera-to-Robot Pose Estimation via Self-supervised Sim-to-Real Transfer,”

in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2023. The dissertation author was the primary author of this paper.

Chapter 5, in part, has been submitted for publication of the material as it may

appear in J. Lu, Z. Liang, T. Xie, F. Ritcher, S. Lin, S. Liu, M. C. Yip, “CtRNet-X:

Camera-to-Robot Pose Estimation in Real-world Conditions Using a Single Camera” in

IEEE Conference on Robotics and Automation, 2025. The dissertation author was one of

the primary authors of this paper.

xii



VITA

2018 Bachelor of Science in Electrical Engineering, University of California San
Diego

2020 Master of Science in Electrical Engineering, University of California San Diego

2024 Doctor of Philosophy in Electrical Engineering, University of California San
Diego

PUBLICATIONS

J. Lu, F. Richter, S. Lin and M. C. Yip, “Tracking Snake-like Robots in the Wild using
only a Single Camera” in IEEE Conference on Robotics and Automation (ICRA), 2024.

S. Liu, S. Lin, J. Lu, A. Supikov, M. C. Yip, “BAA-NGP: Bundle-Adjusting Accelerated
Neural Graphics Primitives” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, 2024.

A. J. Miao, S. Lin, J. Lu, F. Richter, B. Ostrander, E. K. Funk, R. K. Orosco, M. C.
Yip, “HemoSet: The First Blood Segmentation Dataset for Automation of Hemostasis
Management” in IEEE International Symposium on Medical Robotics (ISMR), 2024.

S. Lin, A. J. Miao, A. Alabiad, F. Liu, K. Wang, J. Lu, F. Richter, M. C. Yip“SuPerPM:
A Large Deformation-Robust Surgical Perception Framework Based on Deep Point Match-
ing Learned from Physical Constrained Simulation Data” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2024.

J. E. Katz, J. Finnegan, J. Lu, S. Lin, M. C. Yip, R. Sur “3D Rendering of Cystoscopy
Video Footage: A Novel Method Utilizing Neural Radiance Field Processing” in Journal
of Urology, 211(5S), p.e552., 2024.

J. Lu, F. Richter, M. C. Yip, “Markerless Camera-to-Robot Pose Estimation via Self-
supervised Sim-to-Real Transfer,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2023.

J. Lu, F. Liu, C. Girerd and M. C. Yip, “Image-based Pose Estimation and Shape
Reconstruction for Robot Manipulators and Soft, Continuum Robots via Differentiable
Rendering,” in IEEE Conference on Robotics and Automation (ICRA), 2023.

S. Lin, A.J. Miao, J. Lu, S. Yu, Z.Y. Chiu, F. Richter, and M.C. Yip, “Semantic-SuPer:
A Semantic-aware Surgical Perception Framework for Endoscopic Tissue Classification,
Reconstruction, and Tracking,” in IEEE Conference on Robotics and Automation (ICRA),
2023.

F. Liu, E. Su, J. Lu, M. Li, M. C. Yip “Differentiable Robotic Manipulation of Deformable
Rope-like Object using Compliant Position-based Dynamics,” in IEEE Robotics and
Automation Letters (RA-L), vol. 8, no. 7, pp. 3964-3971, July 2023.

xiii



J. Lu, F. Richter and M. C. Yip, “Pose Estimation for Robot Manipulators via Keypoint
Optimization and Sim-to-Real Transfer.” in IEEE Robotics and Automation Letters (RA-L),
vol. 7, no. 2, pp. 4622-4629, April 2022.

F. Richter, J. Lu, R. K. Orosco, M.C. Yip, “Robotic Tool Tracking under Partially Visible
Kinematic Chain: A Unified Approach,” IEEE Transactions on Robotics (T-RO), vol. 38,
no. 3, pp. 1653-1670, June 2022.

F. Liu, Z. Li, Y. Han, J. Lu, F. Richter, M. C. Yip, “Real-to-Sim Registration of
Deformable Soft Tissue with Position-Based Dynamics for Surgical Robot Autonomy,” in
IEEE Conference on Robotics and Automation (ICRA), 2021.

J. Lu, A. Jayakumari, F. Richter, Y. Li and M. C. Yip, “SuPer Deep: A Surgical
Perception Framework for Robotic Tissue Manipulation using Deep Learning for Feature
Extraction,” in IEEE Conference on Robotics and Automation (ICRA), 2021.

Y. Li, F. Richter, J. Lu, E. K. Funk, R. K. Orosco, J. Zhu and M. C. Yip, “SuPer:
A Surgical Perception Framework for Endoscopic Tissue Manipulation with Surgical
Robotics,” in IEEE Robotics and Automation Letters (RA-L), vol. 5, no. 2, pp. 2294-2301,
April 2020.

xiv



ABSTRACT OF THE DISSERTATION

Image-based Robot Pose Estimation

by

Jingpei Lu

Doctor of Philosophy in Electrical Engineering (Intelligent Systems, Robotics and Control)

University of California San Diego, 2024

Professor Michael C. Yip, Chair

Modern robotic automation often relies on cameras for rich sensory input to infer

tasks and provide feedback for closed-loop control. Accurate robot pose estimation is

critical for linking visual feedback to the robot’s operational space. Traditional camera-

to-robot calibration methods are labor-intensive, typically requiring externally attached

fiducial markers, collecting images of several robot configurations, and solving for transfor-

mations—limitations that hinder their use in dynamic or unstructured environments. This

dissertation presents deep learning-based approaches for markerless robot pose estimation,

aimed at eliminating cumbersome physical setups while enhancing calibration flexibility

and accuracy. First, two methods are introduced: a keypoint-based approach and a
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rendering-based approach. The keypoint-based method employs a deep neural network for

detecting robot keypoints, followed by a Perspective-n-Points solver to estimate the robot

pose. In contrast, the rendering-based method uses binary robot masks as input, itera-

tively updating pose estimates through a differentiable rendering process that minimizes

differences between rendered and observed data. Both methods achieve state-of-the-art

performance in image-based robot pose estimation, and their capability for online pose

tracking is demonstrated on surgical robot and snake robot when integrated with proba-

bilistic filtering techniques. The dissertation further examines the strengths and limitations

of both approaches and proposes a self-supervised training framework to leverage their

complementary advantages. Finally, this work extends the pose estimation framework

to scenarios where the robot is only partially visible by integrating a vision-language

foundation model to evaluate the visibility of the robot’s components. Consequently, this

method enhances robot pose estimation across a broader range of real-world manipulation

scenarios.
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Chapter 1

Introduction

Robot manipulators are widely used in manufacturing, packaging, and processing

industries. Traditionally, these manipulators were programmed once and then operated

continuously, primarily in tasks like automobile assembly and object pick-and-place

applications. However, modern factories now incorporate robotics for tasks that require

human collaboration, as well as for autonomously executing intelligent tasks in unstructured

environments. The use of manipulators in autonomous operations for tasks such as bin

picking, welding, painting, and inspection relies heavily on concepts from robotics, including

visual servoing, perception, and motion planning [4]. Visual serving [44], which uses visual

feedback to control the movement of robots, is a crucial technique that enables manipulators

to perform complex tasks in dynamic and unpredictable environments.

There are two fundamental configurations for the robot end-effector and the camera

[16]: 1) Eye-in-hand, where the camera is attached to the moving hand, allowing it to

observe the relative position of the target. 2) Eye-to-hand, where the camera is fixed in

the environment, monitoring the target and the motion of the hand. Similarly, visual

servoing can be categorized into two main schemes based on the camera’s mounting

position: Image-based visual servoing (IBVS) and Position-based visual servoing (PBVS)

[15, 51]. These two schemes are distinguished by how they define the error formulation.

IBVS, proposed by Weiss and Sanderson [113], is a control law based on the error between
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current and desired features on the image plane, without requiring any estimation of the

target’s pose. The features used can include the coordinates of visual elements, lines, or

moments of specific regions. However, IBVS encounters challenges when dealing with

large rotations, a scenario often referred to as camera retreat [28, 14]. On the other hand,

PBVS is a model-based technique that utilizes a single camera. In this approach, the

position and orientation of the object of interest are estimated with respect to the camera,

with the control objective defined in 3D. While image features are also extracted in this

method, they are used to estimate 3D information, specifically the object and robot pose

in Cartesian space, for enabling 3D servoing.

This dissertation focuses on camera-to-robot pose estimation (also known as hand-

eye calibration), which is a fundamental component of position-based visual servoing in

an eye-to-hand configuration.

1.1 Position-based Visual Servoing

Position-based visual serving (PBVS) typically uses images captured by a camera

to determine the target pose, position and orientation, of the robot end-effector. For

example, based on the location of the object to be grasped seen in the image, the PBVS

generates the ideal grasp pose as the target pose and tries to move the robot toward it.

Examples of robotic automation using the PBVS range from bin sorting [82] to tissue

manipulation in surgery [73].

As illustrated in Figure 1.1, when a target pose is identified in the camera frame,

the PBVS system converts it to the robot base frame, where the robot’s geometry

(such as kinematics) is well-defined, using the camera-to-robot transform. Next, the

system calculates the desired joint configuration using the inverse kinematics of the

robot manipulator. A controller is then utilized to guide the robot to this target joint

configuration. The PBVS system continually uses vision feedback from the camera to
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update the robot’s current pose. The error term is defined as the Cartesian pose difference

between the target pose and the current pose. The PBVS system aims to minimize this

error by adjusting the robot’s configuration accordingly.

Figure 1.1. The overview of the PBVS system. The PBVS aims to minimize the error
between the target robot pose and the current robot pose estimated from vision feedback.

The PBVS uses robot inverse kinematics to convert Cartesian control instructions

into joint angle values for the robot, where the pose information is defined in the robot

base frame. Hence, the accurate conversion of information from the camera frame to the

robot frame, camera-to-robot transform, plays a crucial role in the process.

1.2 Camera-to-Robot Calibration

Camera-to-robot calibration, also known as hand-eye calibration, is a crucial process

in robotic systems that determines the spatial relationship between a camera and a robot

base or end-effector [124]. The core of camera-to-robot calibration is typically formulated

as solving the AX = XB matrix equation, where A and B are two systems, usually a

robot base and a camera, and X is the unknown camera-to-robot transform [119]. This

formulation has been the basis for numerous algorithms and variations developed over the

years.

In practice, the camera-to-robot transform is calibrated with a calibration object,

such as a checkerboard or fiducial markers [39, 90]. The calibration object has known
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geometry, allowing them to be detected from camera images, and their pose relative to

the camera, denoted as T cam
obj , can be estimated. Then, the calibration object is rigidly

mounted onto the robot end-effector, where the end-effector pose with respect to the

robot base frame, T rob
ee , can be computed using robot forward kinematics. To derive the

camera-to-robot transform, we close the pose loop using the following equation:

T cam
rob = T cam

obj (T rob
ee T ee

obj)
−1. (1.1)

In this context, the relative pose between the calibration object and robot end-effector,

T ee
obj, needs to be solved. Since T ee

obj remains constant during the robot’s motion, we can

move a robot to a set of different configurations. For each one, T ee
obj can be expressed as a

function of the other two variables, T cam
obj and T rob

ee . With this set of equations, the T ee
obj

can be solved using the optimization techniques, such as the Least Squares method, to

calculate the desired pose T cam
rob .

1.3 Image-based Robot Pose Estimation

The camera-to-robot calibration procedure usually requires multiple runs with

different robot configurations. Once calibrated, the robot base and the camera are

assumed static. The incapability of online calibration limits the potential applications

for vision-based robot control in the real world, where minor bumps or simply shifting

due to repetitive use will cause calibrations to be thrown off, not to mention real-world

environmental factors like vibration, humidity, and temperature, are non-constant. Having

flexibility on the camera and robot is more desirable so that the robot can interact with

an unstructured environment.

Deep learning, known as the current state-of-the-art approach for image feature

extraction, brings promising ways for image-based markerless camera-to-robot calibration.

Current approaches to robot pose estimation are mainly classified into two categories:
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keypoint-based methods and rendering-based methods. The keypoint-based method,

presented in Chapter 2, employs a deep neural network for detecting robot keypoints,

followed by a Perspective-n-Points solver to estimate the robot pose. In contrast, the

rendering-based method, presented in Chapter 3, uses binary robot masks as input, itera-

tively updating pose estimates through a differentiable rendering process that minimizes

differences between rendered and observed data. Both methods achieve state-of-the-art

performance in image-based robot pose estimation, and their capability for online pose

tracking is demonstrated on surgical robot and snake robot when integrated with proba-

bilistic filtering techniques. The dissertation further examines the strengths and limitations

of both approaches in Chapter 4 and proposes a self-supervised training framework to

leverage their complementary advantages. Finally, Chapter 5 extends the pose estima-

tion framework to scenarios where the robot is only partially visible by integrating a

vision-language foundation model to evaluate the visibility of the robot’s components.

Consequently, this method enhances robot pose estimation across a broader range of

real-world manipulation scenarios.

1.4 Acknowledgements

Chapter 1, in part, is a reprint of the material from J. Lu, F. Richter, M. C. Yip,

“Markerless Camera-to-Robot Pose Estimation via Self-supervised Sim-to-Real Transfer,”

in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2023. The dissertation author was the primary author of this paper.
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Chapter 2

Keypoint-based Robot Pose Estima-
tion

Visual feedback plays an integral role in robotics because of the rich information

images provide. Historically, there have been two popular approaches to incorporating

visual feedback. The first is through calibration and finding the transform between the

base of the robot and the camera [34]. This transform describes the geometric relationship

between objects in the camera frame and the robot, hence allowing image processing

and detection algorithms to provide the context necessary for a robot to perform in an

environment. The second approach is directly estimating the relationship between the

control, typically joint angles, and the end-effector position in the camera frame [98]. This

type of visual feedback also allows for end-effector control in the camera frame.

An important step to properly integrating visual feedback techniques is detecting

features and finding their correspondence on the robot. A common approach is placing

visual markers on the robot that are easy to detect and hence provide keypoints in the

image frame [39][90]. But where should one place the markers? There does not seem to be

any established approach that works the best. One must consider how these marker-based

methods require modification of the robot, and how the visibility of the markers will

frequently suffer from self-occlusions. Moreover, it is challenging to find the 3D location of

the marker relative to the robotic kinematic chain which can cause inaccuracies in visual
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feedback. Deep learning approaches for detecting keypoints have been proposed to remove

the need for modification of the robot [77]. The training of Deep Neural Networks (DNNs)

for keypoint detection has even been extended to use synthetically generated data for

accurate training with the correct corresponding 3D location relative to the kinematic

chain [69].

In spite of the fact that these proposed methods have presented promising ways of

keypoint detection, they have failed to address an important consideration which is where

to place the keypoints relative to the kinematic chain. Previous work relies on hand-picked

locations which may be sub-optimal and even limiting in performance for the detection

algorithm. An example of this challenge can be found on symmetric robotic tools where

the keypoint detection algorithm cannot solve the correspondence problem correctly [77].

Taking the advantages of the DNN as the learnable keypoint detector and robotic

simulation tools, we present the following contributions:

1. a general keypoint optimization algorithm which solves for the locations of the set of

keypoints to maximize their performance on localization tasks,

2. demonstrations showing that optimized keypoints can improve the performance on

real robot pose estimation via sim-to-real transfer, and

3. methodology for incorporating optimized keypoints with a particle filter to achieving

the state-of-the-art performance on surgical tool tracking.

We conducted live experiments on both a calibration and a tracking scenario to

show the effectiveness of the proposed methods: (i) a Rethink Robotics Baxter robot [108]

for calibrating the robot-to-camera transform and (ii) the da Vinci Research Kit (dVRK)

[60] for real-time surgical tool tracking. The datasets for our calibration and tracking

experiments are available online. The significant kinematic differences between these two

robots show the generality of our approach. We show that the DNN based keypoint detector
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is capable of consistently and accurately detecting the 2D image projections of optimized

keypoints even in cases of self-occlusion. The performance using optimized keypoints

in both tasks outperforms previous methods with keypoints were selected manually by

experienced roboticists, thereby highlighting the usefulness of keypoint optimization.

2.1 Related Works

Keypoint Optimization

Early works in robotics have explored how to select the optimal keypoints extracted

from SIFT [76] and SURF [3], for visual odometry [89] and localization [125]. In com-

puter vision, [10] and [88] select the salient keypoints by considering their detectability,

distinctiveness, and repeatability. Recently, there has been a shift to using DNNs for

detecting keypoints instead because of the improved performance. Works in the computer

vision community have learned and optimized keypoints for better face recognition and

human pose estimation [126][53][148]. However, those algorithms usually consume a large

number of real images for training. Recently, [123] proposed an end-to-end framework to

optimized the keypoints for object pose estimation in an unsupervised manner by utilizing

the synthetically generated data. Our work differs from those in the particular goal that

optimizing the 3D keypoints for 2D and 3D localization of robot manipulators. Instead of

optimizing the keypoints for specific downstream tasks, our algorithm is more general and

can be applied to various robotic tasks that use visual feedback, where the kinematic and

the 3D geometric information of keypoints are required.

Robot Pose Estimation

A common approach for robot pose estimation is rigidly attaching markers to

the robot (e.g. ArUco [39]), and directly estimate pose from visual data. The marker-

based approach may fail in the case of motion blur and self-occlusion, hence, marker-less

approaches are preferable in this scenario. [116] and [26] utilize depth images for tracking
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the pose of articulated objects. [77] and [106] employs DNN to extract point features from

RGB images for surgical tool tracking. Recent works also address the data labeling issue

and investigate using synthetic data to train DNNs for marker-less pose estimation [68, 69].

None of these previous approaches considered the specific problem of selecting the keypoint

locations on robotic manipulators. We directly compare against previous manually selected

keypoint locations for the Baxter robot [69] and the daVinci Surgical Robot Research

Kit (dVRK) [77] in our experiments and achieve state-of-the-art performance with our

optimized keypoints.

2.2 Methodology

We consider the problem of finding a set of keypoints P on the robot links that

maximize the performance of localizing the robot in both 2D and 3D. The formulation of

this problem is:

P∗ = argminPL2D(P ,Φ) + λL3D(P) (2.1)

where L2D is the error of 2D detection with the DNN parameterized by Φ, L3D is the error

of keypoints in the 3D space, and λ is a weighting factor. A set of keypoint is formally

defined as P := {pi|pi ∈ R3}Ki=1, where p is the 3D position of the keypoint with respect

to the robot link it belongs to, and K is the number of keypoints. To save the efforts

of collecting and manually annotating the data, the optimization process is done on the

synthetic dataset generated from a robot simulator. Finally, the keypoint detection in real

images is achieved by an effective sim-to-real transfer technique.

2.2.1 Keypoint Optimization for Robotic Manipulators

Finding the keypoints that maximizing the localization performance will improve

many robotic tasks that rely on keypoints as visual feedback. The DNN is trained end-to-

end to detect a set of keypoints, and the detection performance of one certain keypoint
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can be varied while trained together with other keypoints. This has a significant impact

on point-based pose estimation process (e.g. the family of Perspective-n-Point algorithms).

Therefore, the keypoint optimization algorithm’s main objective is to find the set of

keypoints that optimize the both detection performance of the DNN and the accuracy of

3D pose estimation as shown in (2.1).

The proposed algorithm assumes N candidate keypoints have existed with known

3D positions along the kinematic chain. The location of the keypoints can be flexible, as

they can randomly distributed to allow non-intuitive keypoint locations. The size of the

keypoint set, K, can be varied but should be less than the number of candidate keypoints

(N > K). Going through all possible sets of keypoints to solve (2.1) is intractable. Instead,

we solve for the optimal set by sampling K keypoints, denoted as P, and evaluate their

performance on 2D and 3D localization like the loss in (2.1). This process is done iteratively

where the evaluated performance of each sample set, P , guides future sampling iterations

such that the optimal set, P∗, is found without needing to go through all possible sets of

keypoints. The whole optimization process is shown in the Algorithm 1, and each iteration

can be broke into four steps: sample keypoints, train model, evaluate performance, and

update weights.

Sample Keypoints

Each candidate keypoint is associated with weight variable w ∈ R, which can be

interpreted as the confidence of being in the optimal set. The K keypoints are sampled

based on their weights in each iteration. The function sampleKeypoints(W, K) takes in

the weights of all the candidates W ∈ RN×1 and randomly selects K keypoints among the

candidates according to the probability:

P (pi) =
wi∑

n∈N
wn

. (2.2)
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Algorithm 1: Keypoint Optimization for Robot Manipulators

Input: N candidate keypoints
Output: The optimal set of K keypoints P∗

// Initialization

1 for i = 1 to N do

2 w
(0)
i = 1

N
;

3 Emin =∞;
// Optimize keypoints iteratively

4 for t = 1 to T do
5 P(t) ← sampleKeypoints(W(t−1), K);

6 Φ(t) ← trainModel(P(t));

7 Ltotal(P(t))← evaluatePerformance(P(t),Φ(t));

8 E (t) = 1
K

∑
pi∈P(t) Ltotal(pi);

9 if E (t) < Emin then
// Update optimal keypoint set

10 Emin = E (t);
11 P∗ = P(t);

12 W(t) ← updateWeights(Ltotal(P(t)),W(t−1));

13 return P∗

The weights, wi, are iteratively adjusted according to the keypoints 2D and 3D performance

hence guiding the search to solve (2.1). More advanced sampling can be applied by

introducing the constraints. For example, if we want to constraint the sampling so that

one keypoint is selected per link, the candidates can be divided into sub-groups for each

link.

Train Model

For training a detection model to detect the sampled keypoint set P . We utilize the

backbone neural network from DeepLabCut [84] as our detection model and the dataset is

synthetically generated from a robot simulator (see Section 2.2.2 for data generation). We

split the dataset into training set and testing set. The function trainModel(P) trains the
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DNN on the training dataset to predict the image coordinates of the selected keypoints:

Φ∗ = argminΦLtrain(P ,Φ) (2.3)

where Φ denotes the parameters of the detection model and it is optimized using stochastic

gradient descent with training loss Ltrain defined as the cross-entropy loss (see [84] for

details). We generate the training and testing images with the ground-truth label for all

N candidate keypoints beforehand. By doing so, the labels for selected keypoints in each

iteration can be obtained without re-generating the datasets.

Evaluate Performance

After training, we evaluate the localization performance of the keypoints P with

the detection model Φ using the testing data on the loss shown in (2.1). We define the

2D detection error, L2D, as the pixel-wise L2 distance (Euclidean distance) between the

detection and the ground-truth keypoint:

L2D(pi,Φ) =
1

M

M∑
m=1

||f i(Im; Φ)− hi,m||2 (2.4)

where f i(Im; Φ) and hi,m are the DNN detected and ground-truth pixel location respectively

of i-th keypoint for the testing image, Im, and M is the number of images in the testing

dataset. The 3D keypoint error, L3D, is defined as the average L2 distance between the

estimated and ground-truth 3D keypoint position in the camera frame {C}. For a keypoint

with known position with respect to the j-th robot link pj
i , its position in camera frame

can be obtained through forward kinematics and robot-to-camera transformation:

pC
i = TC

B

j∏
n=1

Tn−1
n (qn)p

j
i (2.5)
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where Tn−1
n (qn) is the n-th homogeneous joint transform with joint angle qn. Note that

coordinate frame 0 is the base frame of the robot and · represents the homogeneous

representation of a point (e.g. p = [p, 1]T ). The robot-to-camera transformation, TC
B, is

computed through the Efficient Perspective-n-Point Pose Estimation Algorithm (EPnP)[70]

with the detected keypoints, f i(Im; Φ), and their corresponding position in the robot base

frame. Then, the 3D keypoint error is calculated as:

L3D(pi) =
1

M

M∑
m=1

||p̃C
i − pC

i ||2 (2.6)

where p̃C
i is the estimated keypoint position from (2.5) using the estimated TC

B from the

current keypiont set and pC
i is the ground-truth keypoint position in the camera frame.

Using the 2D and 3D losses in (2.4) and (2.6) respectively, a total loss similar to

(2.1) per keypoint in P can be defined. The function evaluatePerformance(P ,Φ) does

this by simply summing the two losses:

Ltotal(pi) = L2D(pi,Φ) + λL3D(pi) (2.7)

where Ltotal(pi) is the total loss for i-th keypoint. This loss is considered an evaluation

of the keypoint pi with respect to the optimization problem in (2.1) and used to guide

future sampling to find the optimal set P∗.

Update Weights

At the end of each iteration, the function updateWeights(Ltotal(P)) is used

to update the weight of the selected keypoints based on (2.7). At iteration t of the

optimization, the weight for the i-th keypoint in the sampled set P is updated to:

w
(t)
i =

(∑
k∈K

w
(t−1)
k

)
e−γLtotal(pi)∑

k∈K
e−γLtotal(pk)

(2.8)
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where γ is a tuned parameter to control the effect of the error on changing the weights. The

updated weight will increase or decrease according to the keypoints 2D and 3D performance

hence guiding the sampling in sampleKeyupoints(W, K) towards the optimal set, P∗

that solves (2.1).

2.2.2 Keypoint Detection via Domain Randomization

A simulated environment is used to generate the synthetic data for the proposed

keypoint optimization method. By using simulated data, ground-truth labels can be

directly generated. We set up the simulation environment using the robotic simulator

CoppeliaSim [109] and interfaced using PyRep [54] to generate the ground truth label and

render RGB images. Fig. 2.1 shows the simulator view and the rendered image for two

robots from the virtual cameras.

Figure 2.1. Simulation setup and rendered image of the Rethink Baxter (left) and the
da Vinci Surgical System (right).

Although the simulator is crucial for ground truth labels and hence ideal for our
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keypoint optimization method, a naively trained DNN on the labels will be limited to only

detecting keypoints on simulated images and may not generalize to the real world. To

bridge the reality gap, the simple but effective technique known as domain randomization

[128] is applied to transfer the keypoint detection DNN from the virtual domain to robots

in the physical world. During the data generation, the virtual cameras are placed in the

simulated scene that approximately matches the viewpoint of the real camera, and the

following randomization settings are applied to generate the training samples:

• The angle for the robot joints is randomized within the joint limits.

• The pose of virtual cameras are randomized by adding a zero-mean Gaussian noise

to the initial pose, such that

[qrand,brand]
⊤ ∼ N ([qinit,binit]

⊤,Σ) (2.9)

where q ∈ S3 is the quaternion, b ∈ R3 is the translational vector, and Σ is the

covariance matrix.

• The number of the scene lights is randomly chosen between 1 to 3, and are positioned

freely in the simulated scene with varying intensities.

• Distractor objects, like chairs and tables, are placed in the simulated environment

with random poses.

• The background of the rendered images are randomly selected from Indoor Scene

dataset [99] and Hamlyn Centre Endoscopic Video dataset [87].

• The color of the robot mesh is randomized by adding a zero-mean Gaussian noise

with a small variance to the default RGB value.

• The rendered images are augmented by adding the additive white Gaussian noise

using the image augmentation tool [56].
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These randomization techniques were applied when generating synthetic data for both

keypoint optimization and domain transfer hence ensuring the DNN optimized in (2.3)

will generalize its keypoint detection to the real world.

2.3 Experiments and Results

In this section, we describe efforts towards evaluating the robustness of the keypoints

optimization algorithm and the performance of using them in real robotics applications.

Specifically, we compare our approach with the state-of-art algorithm and marker-based

approach on a robot-to-camera pose estimation task and examine the differences between

using the optimized keypoints and hand-picked keypoints on a robot tool tracking experi-

ment. Moreover, we also study the impact of different neural network architectures on the

keypoint optimization algorithm.

2.3.1 Datasets and Evaluation Metrics

Baxter dataset

This dataset contains 100 image frames (resolution: 2048×1526) of the Baxter

robot with 20 different joint configurations collected using a Microsoft Azure Kinect. The

ground-truth end-effector positions in the camera frame are provided, which is obtained

by attaching an Aruco marker physically at the end-effector position. The performance of

the optimized keypionts is evaluated in both 2D and 3D by estimating the end-effector

position.

For 3D evaluation, we first estimate the robot-to-camera transformation using

the optimized keypoints (rotation R̃C
B and translation b̃C

B). Then, we transfer the end-

effector from robot base frame to camera frame and calculate the L2 distance between the

ground-truth and estimated end-effector position:

∥(R̃C
Bx

B
ee + b̃C

B)− xC
ee∥2 (2.10)
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where xB
ee is the end-effector position in robot base frame obtained by forward kinematics

of the robot, and xC
ee is the ground-truth end-effector position in camera frame measured

by Aruco marker.

For 2D evaluation, we propose the reprojection error (RE) for the end-effector. The

RE is the L2 distance between the estimated end-effector position and its ground-truth

position in image coordinates,

RE =

∥∥∥∥1zK(R̃C
Bx

B
ee + b̃C

B)− hee

∥∥∥∥
2

(2.11)

where hee is the ground-truth end-effector position in image coordinates, K ∈ R3×3 is the

intrinsic matrix, and z is the z-value of the projected point. The percentage of correct

keypoints (PCK), proposed in [141], is a metric for visualizing the keypoint detection

performance across the dataset. The PCK measures the percentage of keypoints that the

distance between the predicted and the ground-truth position is within a certain threshold.

In this experiment, the PCK for 2D end-effector localization is calculated in pixels and

the PCK for 3D end-effector localization is calculated in millimeters.

SuPer tool tracking dataset

The SuPer dataset1 is a recording of a repeated tissue manipulation experiment

using the da Vinci Research Kit (dVRK) surgical robotic system [60], where the stereo

endoscopic video stream and the encoder readings of the surgical robot are provided. We

extended the original surgical tool tracking dataset, which originally has 50 ground-truth

surgical tool masks, to 80 ground-truth masks by hand labeling. The extended dataset

covers a better variation of the tool poses, and the performance of the tool tracking is

1https://sites.google.com/ucsd.edu/super-framework/home
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evaluated using the Intersection-Over-Union (Jaccard Index) for the rendered tool masks,

IoU =
|G ∩P|
|G ∪P|

(2.12)

where G is the ground-truth tool mask area and P is the predicted tool mask area in the

image plane.

2.3.2 Keypoints Optimization

To demonstrate the keypoint optimization algorithm, we randomly placed 32

candidate keypoints (N = 32) on the da Vinci surgical tool with a uniform distribution in

3D Euclidean Space and 22 candidate keypoints on the Baxter left arm manually. The

Algorithm 1 is applied to optimize the set of 7 (K = 7) keypoints for robust detection.

The keypoint optimization algorithm was running for 15 iterations (T = 15) with γ = 1 on

the synthetic dataset, containing 2K samples for training and 500 samples for evaluations.

In the training step, the DNN is trained on the training dataset for 100,000 iterations,

with a learning rate of 0.2.

To examine the impact of different neural network architectures on the keypoint

optimization algorithm, we trained the DNNs with four different feature extractors:

ResNet 50, ResNet 101, MobileNet v2 1.0, and MobileNet v2 0.5 [114]. The last digit

indicates the number of layers and the width of the network for ResNets and MobilNets

respectively, which implies the number of parameters of the network. The average keypoint

errors from the evaluatePerformance step in each iteration are shown in Fig. 2.2,

demonstrating that our algorithm is agnostic to different DNN architectures. With

different feature extractors, the algorithm converges at a similar rate to the same set of

optimal keypoints. The number of iterations required to converge to an optimal keypoint

set is around 10 hence showing that our method is substantially faster than brute-force

searching through all possible keypoint sets.
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Figure 2.2. The plot of average error from the evaluatePerformance step for each
iteration of keypoint optimization algorithm, while optimizing the keypoints for da Vinci
surgical tool (top) and the Baxter arm (bottom). The algorithm behaves similarly with
various DNN architectures.

We also investigated the choice of K (number of optimized keypoints) for pose

estimation. We applied Algorithm 1 with various K and evaluated the pose estimation

performance with the optimized keypoints on the Baxter dataset. We found that the

estimation performance gets better in the beginning as the number of optimized keypoints

increases. The resulting optimized keypoints create a better coverage of the robot since

there are more keypoints. However, when there are too many (i.e. greater than 16

on the Baxter), the low-quality keypoint detections reduce the overall pose estimation

performance.
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Figure 2.3. The performance of pose estimation using different numbers of optimized
keypoints on Baxter dataset.

2.3.3 Robot-to-camera Pose Estimation from a Single Image

We explored robot-to-camera pose estimation performance from a single RGB

image by utilizing the optimized keypoints on Baxter robot. The keypoints optimization is

constrainted so that one keypoint is sampled for each robot link. The resulting 7 optimized

keypoints are detected on the Baxter dataset to estimate the robot-to-camera transform,

TC
B, on each frame in the same manner as the 3D loss, L3D, from the evaluatePerfor-

mance(P ,Φ) step of the proposed method. Note that the (R̃C
B, b̃

C
B) used to compute the

errors in (2.11) and (2.10) is simply the rotation matrix and translation from TC
B.

We randomly placed three candidate keypoints for each link on the left arm, and

the Algorithm 1 was applied to find one optimal keypoint per link, with T = 20, λ = 50,

and γ = 2. The ResNet 50 was utilized as the feature extractor and was initialized

with ImageNet-pretrained weights. The DNNs were trained for 500,000 iterations with a

decayed learning rate. The optimized keypoints for the Baxter’s left arm are shown in the

middle-left of Fig. 2.5.

To transfer the keypoint detection to the real robot, we applied the domain

randomization to bridge the reality gap, as described in Section 2.2.2. The experimental

results show that the DNN generalizes well to real-world images. Fig. 2.4 shows the

optimized keypoints’ detections on the Baxter dataset, demonstrating that the keypoints
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Figure 2.4. The examples of the optimized keypoints detection (top) and the skeletoniza-
tion (bottom) of the Baxter robot in real-world images. The skeleton of the arms is based
on the estimated base frame (RGB reference frame). Keypoints are estimated even with
self-occlusions, and the skeletons are perfectly aligned with the robot arm.

can be detected even with self-occlusions. Given the accurate keypoint detections, the

estimated skeletons are perfectly aligned with the robot arm.

For comparison, we also experimented the robot-to-camera pose estimation by

using all the candidate keypoints or placing the keypoints at the exact joint locations. The

state-of-the-art algorithm, DREAM [69], is also implemented for pose estimation which

uses robot joints as the keypoints. The 2D keypoints are detected using the DNN from

DREAM. We also compared the traditional camera-to-base pose estimation procedure by

placing the Aruco markers on the robot arm. The 2D and 3D PCK results are shown in

Fig. 2.6. Using the optimized keypoints, around 50 percent of the estimations have fewer

than 25 pixels error in the image plane (about 1 percent of the image size) and have an
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error of less than 100mm in 3D space, which is much better than other methods. The

area under the curve (AUC), indicating the mean of PCKs, also highlights the overall

better performance of using the optimized keypoints. Due to the self-occlusions and the

camera’s pose, limiting the visibility of visual markers, some image frames do not have

enough detected Aruco markers for EPnP (< 4), which hampers the performance.

2.4 Surgical Tool Tracking

Surgical tool tracking continuously estimates the 3D pose of the tool end-effector

with respect to the camera frame. This is necessary for augmented reality displays [103],

transferring of learning-based control policies [104], and other applications [144]. We

employed the tool tracker previously developed in [77], which combines a keypoint detector

and a particle filter for 3D pose estimation. The keypoint detector (e.g. the proposed

optimized keypoint detection method) detects keypoints, hi,t, on the input image at time t

to provide visual feedback. The corresponding 3D point pi is projected to image frame as:

mi(ω,b) =
1

z
KTC

B−T
B−
B (ω,b)

j∏
n=1

Tn−1
n (qn)p

j
i (2.13)

where mi is the re-projected keypoint location, TC
B− is the initial hand-eye transform

from calibration, and TB−
B (ω,b) ∈ SE(3) is the Lumped Error [106], parameterized by

an axis-angle vector ω ∈ R3 and a translational vector b ∈ R3. The Lumped Error

compensates for both errors in joint angles and hand-eye in real-time to precisely track

the tool in the camera frame. For more details, refer to our previous work [106]. Since the

Lumped Error is not constant and the application is real-time tracking (i.e only detections

up to time t is known), a tracking formulation with a Hidden Markov Model is proposed

where the posterior probability conditioned on all observations is estimated recursively:
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P (ωt,bt|h1:K,1:t) ∝

P (h1:K,t|ωt,bt)

∫
P (ωt,bt|ωt−1,bt−1)

P (ωt−1,bt−1|h1:K,1:t−1)d[ωt−1,bt−1]
T (2.14)

which is solved using a particle filter [106]. The motion and observation models are

respectively defined as:

[ωt,bt]
T ∼ N ([ωt−1,bt−1]

T ,Σω,b) (2.15)

where Σω,b is the covariance matrix and

P (h1:K,t|ωt,bt) ∝
K∑
i=1

ρi,te
−α||hi,t−mi(ωt,bt)||2 (2.16)

where ρi,t is the confidence score from the keypoint detector, and α is a tuning parameter.

Differing from [73] and [77], we are using the optimized keypoints instead of the

hand-picked keypoints. Then, domain randomization technique is used to bridge the reality

gap between the synthetic and real-world images. The resulting keypoint detections are

shown in Fig. 2.7. Note that the optimized keypoints are inside of the tool body, and

the DNN can accurately predict their projections onto the image plane in different tool

configurations.

For comparison, we evaluated the tool tracking performance with three different

setups described as follows.

Hand-labelled SuPer Deep Keypoints : This setup is identical to the tool tracking

approach in [77]. The seven hand-picked keypoints were used for tracking, which is on

the surface of the tool. The DNN was then trained on the 100 real-world images with the
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hand-labeled ground-truth position.

Synthetically-labelled SuPer Deep Keypoints : The second setup used the same set

of hand-picked keypoints from SuPer Deep, but the DNN was trained on the around 20K

synthetic images with domain randomization, where the keypoint labels are provided even

with occlusions.

Optimized Keypoints: The third setup was using the 7 optimized keypoints, as

shown in Fig. 2.5, and the DNN was also trained on the synthetic images with domain

randomization.

The tool tracking performance is computed by rendering a re-projected tool mask

on the image frame from the estimation based on the keypoints, and the IoU is computed

with the ground-truth mask for evaluation. Quantitative and qualitative results are shown

in Fig. 2.8 and Fig. 2.9 respectively. The setup with Hand-labelled SuPer Deep Keypoints

fails to track the tool when the tool was turning, as those hand-picked keypoints on

the tool surface are occluded and humans fail to provide the label. However, using the

optimized keypoints, the DNN makes accurate predictions for non-visible keypoints, as

shown in Fig. 2.7, since the synthetically generated training data can provide labels for

those scenarios. Although both Synthetically-labelled SuPer Deep Keypoints and optimized

keypoints setups are utilizing the synthetic dataset, the optimized keypoints achieves higher

accuracy because the keypoints are optimizing the detection performance of the DNN.

Another advantage of the optimized keypoints is to reduce the ambiguity in detection. As

stated in [77], the detection of some keypoints is challenging due to the tool’s symmetry,

which causes false detections. The optimized keypoints are instead distributed in an

asymmetric pattern as shown in Fig. 2.5.
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2.5 Discussion and Conclusion

We proposed a general keypoint optimization algorithm to maximize the perfor-

mance of 2D and 3D localization on robotic manipulators. Our algorithm utilized a

DNN for keypoint detections and can handle self-occlusions by optimizing the keypoint

locations and training on synthetically generated data. The results show that the optimized

keypoints yield higher accuracy compared to manually or randomly selected keypoints,

hence resulting in better performance for the wide breadth of robotic applications that

rely on keypoints for visual feedback. To show this, we presented both quantitative and

qualitative results from two robotic applications: camera-to-base pose estimation and

surgical tool tracking. The experimental results of detecting optimized keypoints in cases

of self-occlusion further motivate the importance of this work as previously manually

selected keypoints were unable to produce this type of result. For future work, we will

incorporate the optimized keypoints for visual servoing and explore optimizing keypoints

for other robot applications (e.g. motion planing [30]).
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Figure 2.5. A visualization of the keypoints on the Baxter robot arm (left) and the da
Vinci surgical robot tool (right). The candidate keypoints are shown in blue, and the
optimized keypoints are shown in red. The bottom row shows these detections being used
for pose estimation by utilizing the optimized keypoints.
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Figure 2.6. The PCK results on the Baxter dataset for end-effector localization in
2D (top) and 3D (bottom). The thresholds are the L2 distances and the numbers in
parentheses indicate the area under the curve (AUC). Around 50 percent of the estimations
have an error of less than 1 percent of the image size (2048×1526) using the optimized
keypoints.
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Figure 2.7. Detection of the optimized keypoints for the surgical tool on synthetic (top)
and real (bottom) images. The 3D position of the optimized keypoints relative to the tool
is shown in the middle-right of Fig. 2.5, and the DNN accurately predicts their projections
on the image plane.
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Figure 2.8. The box plot of the IoUs of the rendered tool mask using three different tool
tracking setups (circles are outliers). The Optimized Keypoints has less variance with high
accuracy.
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Figure 2.9. Qualitative results of the tool tracking for three different setups. From
top to bottom, each row shows the results of Hand-labelled SuPer Deep Keypoints, the
Synthetically-labelled SuPer Deep Keypoints, and the Optimized Keypoints. The green
area shows the intersection of the rendered mask and ground-truth mask (G ∩P), and
the red area shows the difference between the rendered mask and ground-truth mask
(G ∪P−G ∩P).
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Chapter 3

Rendering-based Robot Pose Estima-
tion

3.1 Pose Estimation and Shape Reconstruction via

Differentiable Rendering

Sensory feedback of state parameters, such as the position and body configuration

of a robot in its environment, is a fundamental requirement for operating autonomous

systems in real-world, unknown spaces. In-place sensing may exist with motor encoders

for robot manipulators, or Fiber Braggs for soft robots [120], all providing an estimate

of their relative pose and body configurations in relation to the real world environment;

however, the limitation is they all exhibit cumulative position errors due to long kinematic

chains. In addition, for both soft and rigid robots, the procedure for mounting internal

sensors can be tricky and wiring and communication lines can constrain the mechanics

and articulation of the robot. That is why measuring the body configuration of a soft

robot is notoriously challenging.

If the goal is to observe and track the motion of robots in the wild, e.g., for behavior

cloning or offline reinforcement learning, the robot’s state information may not be readily

available or even accessible. A good example is in minimally invasive surgery (MIS),

where over 1 million procedures are performed yearly on a daVinci Surgical Robot, many

researchers are interested in automating aspects of the surgical procedures [144]. Video of
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surgeons all over the world using the same robot to perform tasks like suturing, where

properly grasping suture needles is an expert skill for which data could be useful for

learning control policies as shown in [25]. However, these datasets only have video data

and lack kinematic data from the robot due to proprietary access.

Figure 3.1. Robot shape reconstruction and pose estimation via differentiable rendering.
The top row shows the real images. The bottom row shows the estimated robot shape
(left) and pose (right).

Ultimately, in the above MIS and many other in-the-wild robot scenarios, tracking

the robot pose and body configurations directly from a camera offers the greatest flexibility.

They are easy to set up or are already recording, do not require access to internal robot
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Figure 3.2. Visualization of the optimization process. We show the rendered silhouettes
at different iterations to demonstrate the convergence of our algorithm.

sensors, are affordable and widely ubiquitous. Traditionally, fiducial markers, like ArUco

marker [39] and AprilTag [90], are widely used for robot pose estimation. These markers

are attached to the specific locations of the robot and the robot state parameters can be

estimated by knowing the kinematics model. However in most unstructured environments,

it is unrealistic to have these markers attached; furthermore, in dirty environments like

MIS or constrained environments, these markers can be permanently obscured or occluded.

For soft robot applications, their body deformations and their tendency for full-body

contact with environments and objects make it frequently impractical for securing fiducials

or template markers.

The most flexible way to estimate pose from a camera is to do marker-less tracking.

With recent advancements in Computer Vision, Convolutional Neural Networks (CNN)

present a promising way for marker-less feature detection [69][79] which no longer requires

physical modification on the robot. In spite of the success of the CNN, training a neural

network requires significant amounts of labeled datasets which is usually infeasible for soft

robots and other robot prototypes, or where labeling of data is costly (e.g., MIS). Recently,

in computer graphics, differentiable rendering has proved to be effective in image-based

reconstruction by computing the derivative of images with respect to scene parameters

such as camera pose and object geometry [59][58][75]. This could be translated to the task

of marker-less pose tracking.

In this work, we demonstrate the capability of estimating robot pose and configura-
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tion directly from a camera, as shown in Fig. 3.1. The method works via the technique

of differentiable rendering, and can be effective both in rigid-link robot manipulators as

well as soft continuum robots. This is uniquely challenging, as soft continuum robots

have an infinite number of configurations, while some rigid robot manipulators may not

come with predefined CAD models for their users (these are typically proprietary). Under

these constraints, we are still able to estimate a robot’s state without knowledge of a

high-resolution CAD by introducing a flexible method involving shape primitives that

work across a wide range of robots. Our contributions are:

1. We propose a general framework for parameter estimation by utilizing differentiable

rendering with geometrical shape primitives.

2. The framework generalizes to both rigid and soft continuum robots for parameter

estimation

3. We investigate the novel loss functions to overcome the local minima when applying

differentiable rendering to the objective of robot pose estimation.

To examine the effectiveness of our framework, we collect a synthetic and a real dataset for

a soft continuum robot and reconstruct the robot shape by estimating the curve parameters.

We also evaluate our method on robot pose estimation where the 6 Degree-of-Freedom

(DOF) camera-to-robot pose for a Baxter robot is estimated with provided RGB images

and joint encoder readings. The experimental results show that our method outperforms

the state-of-the-art pose estimation algorithms.

3.1.1 Related Works

A few techniques in image-based estimation of robot poses and shapes have been

previously explored.
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Image-based Shape Reconstruction for Soft Continuum Robots

Image-based measurements of soft continuum robots are very task-specific and

only work in certain environments. Techniques include using fluoroscopy [92, 47] and

ultrasound [133, 24]. These image-based techniques require specific imaging sources which

might not always be available. [2, 11, 102] consider using endoscopic images for shape

reconstruction while the markers are required for identifying predefined feature points.

Moreover, [29, 140] also introduce the shape reconstruction methods of using stereo images

and depth data. In contrast, we will be focusing on markerless shape reconstruction from

a single RGB camera.

Image-based Robot Pose Estimation

The common approach for image-based robot pose estimation is to attach the

fiducial markers [39, 90] to known locations along the robot kinematic chain. Given the

joint angles, the position of the marker in the robot base frame can be calculated and the

robot pose can be derived by solving an optimization problem [73, 52, 106]. More recently,

deep learning brings a promising way of marker-less pose estimation, where a CNN is

trained to extract predefined feature points and the robot pose is estimated by solving the

Perspective-n-Point problem [68, 69, 77, 79]. Meanwhile, rendering-based methods also

demonstrate their advantages in robot pose estimation by using the high-resolution robot

CAD model for more precise estimation [42, 66]. Our work utilizes differentiable rendering

which requires no robot CAD model or large dataset for model training.

3.1.2 Methodology

We consider the problem of estimating the robot state parameters Θ from a single

RGB image. Specifically, we estimate the robot pose and configurations by minimizing

differences between the observed RGB image and a rendered reconstruction image. This is
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Algorithm 2: Robot State Parameter Estimation via Differentiable Ren-
dering

Input : Image frame I, initialization Θ
(0)
state,Θ

(0)
verts

Output :Estimated robot state parameters Θ∗
state

// Generate robot masks

1 Mref ← fmask(I)
// Optimization loop

2 Lmin =∞
3 for i = 0 to No do

// Section III-B

4 M(i) ← reconstructMesh(Θ
(i)
state,Θ

(i)
verts)

// Section III-C

5 S(i) ← silhouetteRendering(M(i))

6 L(i) ← computeLoss(S(i),Mref )

7 if L(i) < Lmin then
8 Lmin = L(i)

9 Θ∗
state = Θ

(i)
state

10 Θ
(i+1)
verts = Θ

(i)
verts − λverts

∂L(i)

∂Θ
(i+1)
verts

11 Θ
(i+1)
state = Θ

(i)
state − λstate

∂L(i)

∂Θ
(i+1)
state

12 return Θ∗
state

formulated as follows:

Θ∗ = argminΘL(fmask(I), frender(Θ)) (3.1)

where fmask processed the given RGB image I into a binarized mask image for the robot.

The function frender takes in the estimated parameters, reconstructs the robot mesh, and

renders the reconstruction. We aim to estimate the state parameters by minimizing the

objective loss function L. A visual of the final optimization process are shown in Fig. 3.2.

The process to get to this stage is described below.
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The State Parameter Estimation Framework

The overall framework for state parameter estimation is described in the Algorithm 2.

We first process the observed RGB image I into a binary mask Mref , which segments

the robot pixel from the background. The binary mask contains value 1 for the pixels

that belong to the robot and 0 otherwise. In our implementation, the segmentation is

achieved by color segmentation for the soft continuum robot and a CNN-based semantic

segmentation for the robot manipulator. We also initialize a robot mesh in a renderer as a

set of geometrical primitive shapes with predefined vertices, edges, and faces.

During the iterative optimization process, we estimate the deformation of mesh

vertices parameterized by Θverts and reconstruct the robot mesh with state parameters

Θstate (Section 12). We render a silhouette image S from the reconstruction and compare

it with the reference masked image Mref . A loss L is computed based on the curated

objective functions (Section 12). Since the full reconstruction and rendering pipeline is

differentiable, a gradient on the loss may be taken with respect to the parameters and

the objectives can be optimized (lines 11-12 in Algorithm 2). We iterate the optimization

process for No times and output the state parameters that minimize the objective loss.

Reconstruct Robot Mesh with Geometric Primitives

In this section, we describe the methods of reconstructing the robot mesh using

geometric primitives for the soft and rigid robot, respectively. Note that state parameters

Θstate and mesh vertex parameters Θverts are defined differently according to their body

types.

Mesh Reconstruction for Soft Continuum Robot. The shape of a soft

continuum robot can be described in several ways, most easily using a constant curvature

model [107]. However, since this is a limiting approximation, instead a better model chosen

is a Bézier curve model, which expresses a smooth and continuous curve with arbitrary

curvature in 3D space. A Given a set of N control points {ci|ci ∈ R3}Ni=0, the shape of
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Figure 3.3. Illustration of surface mesh construction for soft continuum robot, with (a)
the Bézier curve and control points, (b) the Frenet–Serret frame of cross section, and (c)
the constructed surface mesh.

the curve is defined as:

p(s) =
N∑
i=0

N !

i!(N − i)!
(1− s)N−isici , 0 ≤ s ≤ 1, (3.2)

For simplicity, we use a quadratic Bézier curve (N = 2) and estimate the state of the

control points Θstate (see Fig. 3.3).

In general, the surface mesh for a continuum robot can be approximated as the

tubular structure [72]. A tubular surface is defined as a union of cross sections, and each

cross-section is centered at the axis along the 3D curve, as shown in Figure 3.3(a). To

describe 3D coordinate frames along a quadratic Bézier curve, we compute the Frenet–Serret

frame which is defined by a unit vector T tangent to the curve, a unit vector N normal

to the curve, and a unit vector B perpendicular to the tangent and normal vectors
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(Figure 3.3(b)). The Frenet–Serret coordinates, parameterized by s, are defined as:

T(s) =
p′(s)

∥p′(s)∥

N(s) =
T′(s)

∥T′(s)∥
=

p′(s)× (p′′(s)× p′(s))

∥p′(s)∥ ∥p′′(s)× p′(s)∥

B(s) = T(s)×N(s) =
p′(s)× p′′(s)

∥p′(s)× p′′(s)∥

(3.3)

where p′(s),p′′(s) are the first and second derivatives of the quadratic Bézier curve model:

p(s) = (1− s)2c0 + 2(1− s)sc1 + s2c2

p′(s) = 2(1− s)(c1 − c0) + 2s(c2 − c1)

p′′(s) = 2(c2 − 2c1 + c0).

(3.4)

Each cross-section is approximated as a circle with the radius r(s), and the corresponding

tubular surface is defined as:

S(s, ϕ) = p(s) + r(s) [−N(s) cosϕ+B(s) sinϕ] (3.5)

with ϕ ∈ [0, 2π]. Since a point on the tubular surface can be specified by s and ϕ, we

compute the mesh vertices by discretizing the tubular surface. The mesh vertices are then

defined by a set of points on the tubular surface with two additional points at both ends

of the curve,

V = {S(si, ϕi),p(0),p(1) | i = 1, ..., Nd} (3.6)

where si, ϕi are discrete points for surface vertices. The example of reconstructed surface

mesh is shown in Figure 3.3(c). During the optimization process, we adjust the mesh

vertices by optimizing the radius of the cross sections Θverts := r(s), and the robot mesh

is formed with adjusted vertices.

Mesh Reconstruction for Robot Manipulator. A robot manipulator can
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generally be described as a chain of rigid links, and the 3D robot mesh is separated into a

set of individual meshes of primitive shape. The number of individual meshes equals the

number of rigid links and the meshes are connected by the rigid body transformations

which indicate the position and rotation with respect to the robot base frame {b}. The

transformation matrices Tb
n(q1, ..., qn) ∈ SE(3) are parameterized by joint angles and can

be computed from forward kinematics.

We initialize the set of individual meshes as primitive shapes (e.g. boxes or cylinders)

with predefined edges, faces, and vertices Vprimitive. Note that anything can be a primitive

shape as long as there are only a few tunable parameters defining it, so a link shape

template could be used. Regardless, during the optimization process, we adjust the robot

mesh by estimating the offsets of each vertex:

v = vprimitive + voffset (3.7)

where vprimitive ∈ Vprimitive is the vertex initialized with the primitive shape mesh and

voffset is the corresponding offset vector. The set of offset vectors has the same number

of elements as Vprimitive, and is optimized at each iteration through gradient descent

(Θverts := Voffset).

To compose the robot meshM for pose estimation, each individual mesh needs

to be connected by the forward kinematics and transformed to the camera frame. Let

vn ∈ R3 be a vertex of the n-th link mesh, we transform the vertex to the camera frame

as:

vc = Tc
bT

b
n(q1, ..., qn)v

n (3.8)

where · represents the homogeneous representation of a point (e.g. v = [v, 1]T ). Tb
n

obtained from forward kinematics transforms mesh vertices to the robot base frame

and Tc
b is the robot-to-camera transformation which is estimated using the Algorithm 2
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(Θstate := Tc
b).

Differentiable Rendering and Loss Functions

To render the image for robot mesh M, we use the PyTorch3D differentiable

render [101] for silhouette rendering. We set up the silhouette renderer with a perspective

camera and a SoftSilhouetteShader which does not apply any lighting and shading. The

differentiable renderer applies the rasterization algorithm which finds the mesh triangles

that intersect each pixel and weights the influence according to the distance along the

z-axis. Finally, the SoftSilhouetteShader computes pixel values of the rendered silhouette

image using the sigmoid blending method [75].

Objective Loss Functions for Shape Reconstruction. To minimize the

difference between the reconstructed silhouette image and the observed binary mask, the

commonly used mask loss is applied. The mask loss computes the sum of the mean square

error for every pixel,

Lmask =
H−1∑
i=0

W−1∑
j=0

(
S(i, j)−Mref (i, j)

)2
. (3.9)

H and W is the image height and width, S is the rendered silhouette image and Mref is

the reference binary mask.

The mask loss will have non-informative gradients when there is no overlap (e.g.

S(i, j) = 0 but Mref (i, j) = 1). Therefore we use an additional keypoint loss to guide the

optimization from local minima when the silhouettes do not overlap. The keypoints loss is

defined as:

Lkeypoint =
K∑
i=1

∥π(pi)− x̂i∥2 (3.10)

where K is the number of keypoints, x̂i is the i-th 2D keypoint extracted from center
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line of the reference mask Mref as shown in Fig. 3.4, and pi is the corresponding 3D

keypoint on the Bézier curve. π(·) is the camera projection operator. Finally, the shape

reconstruction loss is defined as:

Lshape = λmaskLmask + λkeypointLkeypoint (3.11)

with λmask, λkeypoint as loss weights.

Figure 3.4. The pre-processing of soft octopus arm images, with (a) the observed RGB
image, (b) the reference binary mask with center-line and (c) the predefined keypoints
and the endpoint (yellow).

Objective Loss Functions for Pose Estimation. For robot pose estimation,

poor initialization would hamper the performance of the optimization algorithm by

converging to local minima. In addition to the commonly used mask loss (Eq. 3.9), we

propose distance loss and appearance loss to aid the optimization. The distance loss

utilizes the distance map to propagate the gradient information to the entire image. The

distance map Dref is defined as:

Dref (i, j) =


0, if Mref (i, j) = 1

dist(i,j)
γ

, otherwise

(3.12)

where dist(i, j) is the distance from the pixel (i, j) to the closest pixel that has positive
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value 1, and γ is a discount factor (Fig. 3.5). We use the scikit-fmm package1 which

implements the fast marching method [118] for computing the distance map. The distance

loss is then calculated as:

Ldist =
H−1∑
i=0

W−1∑
j=0

S(i, j) ∗ Dref (i, j) (3.13)

Figure 3.5. Visualization of the distance map, with (a) the reference binary mask and
(b) the corresponding distance map.

Since the reconstructed mask should have the same appearance as the observed

mask, we introduce the appearance loss to force them to have the same number of positive

pixels:

Lapp =

∥∥∥∥∥
H−1∑
i=0

W−1∑
j=0

S(i, j)−
H−1∑
i=0

W−1∑
j=0

Mref (i, j)

∥∥∥∥∥ (3.14)

The appearance loss is effective for preventing the robot pose from being too far or too close

to the camera, through regulating the size of the rendered mask. Finally, the objective

loss for pose estimation is defined as:

Lpose = λmaskLmask + λdistLdist + λappLapp (3.15)

1https://pythonhosted.org/scikit-fmm
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where λmask, λdist, λapp are weights for the loss functions.

3.1.3 Experiments and Results

Datasets and Evaluation Metrics

Tendon-driven Octopus Arm dataset. Our experimental evaluations are

conducted on a physical prototype of tendon-driven octopus arm, visible in Fig. 3.1. It

consists of a tapered cylinder of Ecoflex 00-30 (Smooth-On, Inc., Macungie, PA, USA)

of length 200 mm, base and tip radius of 10 and 6 mm, respectively. It contains four

channels for tendon actuation. The tendons are rigidly attached at the tip, and connected

to spools actuated by harmonic drive motors at the base. The motors displace the tendons,

leading to motions of the octopus arm. We collected the images using the ZED camera

and the ground-truth robot shape is obtained with stereo reconstruction. For evaluation,

we compare the center line of the reconstructed robot shape with the ground truth shape.

The 2D and 3D errors of the center line are computed using the Euclidean distance of

discrete points.

Figure 3.6. Reconstruction results for the Octopus Arm dataset. (a) The reference RGB
images and shape reconstruction results for different losses are shown for 4 example frames
that cover a large range of motion and (b) the reconstructed 3D robot shape of the picked
frames and the entire robot trajectory.
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Table 3.1. 2D and 3D Error (mean e and standard deviation σ) of Shape Reconstruction
on real Octopus Arm Dataset.

Losses e2D (pixel) σ2D e3D σ3D

Mask 12.462 8.690 8.720 2.534
Mask + endpoint 3.898 2.216 7.299 3.900
Mask + 4 keypoints 3.276 0.785 6.915 2.096

Baxter dataset. The Baxter dataset from [79] provides 100 image frames of 20

different robot poses. The ground-truth end-effector position in 2D and 3D are provided.

This dataset includes the challenging scenarios where the robot manipulator is self-occluded.

The Percentage of Correct Keypoints (PCK) metric of the end-effector will be calculated

according to [79], where the end-effector position in the camera frame is calculated based

on the estimated robot pose.

Shape Reconstruction for Soft Continuum Robot

Implementation details. The RGB images are pre-processed to binary masks

and the 2D center-line are extracted from the reference binary mask using the scikit-image

(https://scikit-image.org) package, which implements the fast skeletonization method [147].

We arbitrarily predefined 4 keypoints along the center-line for loss computation, as shown

in Fig. 3.4. For computing the mesh vertices, s is discretized to 100 and θ is discretized

to 40 number of evenly spaced points. For the loss function, we set λmask = 1 and

λkeypoint = 100. We initialize the control points randomly but make sure the initialized

mesh is within the camera frustum. The optimization loop is run for 200 iterations with a

learning rate of 0.2.

Evaluation on the Octopus Arm Dataset. We evaluate our shape reconstruc-

tion method with different loss functions described in Section 12. For the keypoint loss,

we experimented with only using the endpoint and using all 4 keypoints. We report the

averaged 2D and 3D center-line error and the results are shown in Table 3.1. We can see
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that the error is dropped significantly by combining the mask loss and keypoint loss with

only the endpoint. Considering more keypoints further improves our performance of shape

reconstruction as they provide more guidance for optimization. The qualitative results are

shown in the Fig. 3.6, where we show the rendered silhouette images of the reconstructed

robot mesh (left) and, the reconstructed 3D robot shape, and the robot trajectory (right).

Pose Estimation for Robot Manipulator

Implementation details. To segment the robot from the background, we trained

the DeepLabV3 [20] with 10K synthetic image data generated using the CoppeliaSim [110].

We applied Domain Randomization [128] so that the trained network can generalize to

the real images. We initialize the primitive shape meshes for each link with the length,

width, and height that are described in the robot description file. The deformed vertices

vdeformed are initialized to zeros and the robot poses are initialized randomly but within the

camera frustum. For loss function, we set the weights as λmask = 1, λdist = 1, λapp = 1 and

γ = 100 when computing the distance map. We optimize parameters for 500 iterations

with a learning rate of 1e-2 for camera pose parameters and 1e-4 for the deformed vertices.

Evaluation on Baxter Dataset. We evaluate our method of robot pose estimation

on the Baxter dataset and compare it against the state-of-the-art methods [69, 79], as

shown in Table 3.2. We applied our method with two different shape primitive meshes,

the box and cylinder. We also report the performance of using the robot CAD model with

differentiable rendering. The Percentage of Correct Keypoints (PCK, higher is better)

results are reported for both 2D and 3D at different thresholds. The experimental results

show that our method of using primitive shapes outperforms the state-of-the-art methods

and achieves comparable performance with using the high-resolution robot CAD model.
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Figure 3.7. Ablation study of the loss functions for robot pose estimation. Notice that
the averaged error is large because of outliers, and 95% of the estimates have less than 4
cm error as shown in Table 3.2.

Ablation Study on Loss Functions. Here, we study the effectiveness of the

loss functions proposed in Section 12 using the Baxter dataset. We experiment with our

robot pose estimation method (cylinder) with different loss combinations and calculate

3D end-effector error using the Euclidean Distance. We plot the average 3D end-effector

error at each iteration in Fig. 3.7. With only the mask loss, the algorithm suffers from

bad initialization and cannot converge robustly. The distance loss helps the convergence

by propagating the gradient information to every image pixel. Finally, by combining all

three losses, we achieve a more robust convergence for robot pose estimation.

3.1.4 Conclusion

In this work, we demonstrate the capability of measuring robot pose and con-

figuration state parameters directly from a camera, as shown in Fig. 3.1. The method

works via the technique of differentiable rendering, and can be effective both in rigid-link

robot manipulators as well as soft continuum robots. we show that several definitions for

optimization losses are useful to overcome the local minima when applying differentiable

rendering to the objective of robot pose estimation. We evaluated our method on relatively
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unstructured environments of continuum and rigid robots showing its efficacy in pose

estimation. Ultimately, this work helps to enable robot state estimation and tracking in

the wild, with greater opportunities in useful dataset curation, behavioral cloning and

visual learning.

3.2 Tracking Snake-Like Robots

Unlike their stationary counterparts, mobile robots are designed to navigate through

the physical world in environments that are often too treacherous for humans such as the

deep sea [65] and even other planets [121]. With mobile robots acting as surrogates for

humans, exploration for research and search and rescue missions in extreme environments

are conducted without risking human lives [135]. A growing class of mobile robots involves

ambulatory systems. These ambulatory mobile robots (AMRs) have specialized articulated

robotic designs for enhanced mobility and stability on uneven ground techniques in order

to navigate broader terrains. AMRs include but are not limited to quadruped robots [5],

flying drones [1], and snake-like and serpentine robots [138, 105].

To ensure the safe operation of AMRs in complex environments, various sensors are

integrated into their systems. These sensors aid in localizing the robot and understanding

its surroundings, though this can introduce increased complexity in real-world deployments.

A more streamlined approach involves tracking AMRs using cameras. Cameras, given

their ease of installation and portability, are better for navigating challenging terrains. For

example, in the Mars 2020 NASA mission, where the Mars Helicopter utilized onboard

cameras to scout the landscape and guide the Perseverance rover’s exploration. As we

look to the future, exploratory and search-and-rescue missions likely involve collaborative

efforts between multiple robots, and the ability to track one robot using a camera mounted

on another will be crucial.

In this work, we address the problem of tracking snake-like robots from a single
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Figure 3.8. A snake-like robot, Arcsnake [105], is tracked on camera in the outdoor
environment by a hovering drone.

camera. Along the lines of the Mars Helicopter’s mission, we aim to bring robot state

estimation from camera data to snake-like robots, and by extension, other AMRs, to aid

in future exploratory missions. By estimating the pose and state of an AMR, drones can

provide more detailed guidance when providing mapping of the environment [132]. Our

focus is on snake robots that draw inspiration from biological snakes [97] and are currently

funded by NASA for exploration on extraterrestrial planetary bodies [12]. Toward this end,

we recognize a fundamental need for being able to track AMRs using only a monocular

camera. These techniques will also become foundational in the future to deploying robots

in search-and-rescue missions or leveraging autonomous robot teams for work in the remote
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wilderness.

The overall tracking approach involves first a method for automatic robot mask

generation. Leveraging this mask, we present a tracking technique that seamlessly integrates

differentiable rendering with the Kalman filter, ensuring precise online state estimation.

We conduct experiments in both laboratory and outdoor environments (Fig. 3.8). Through

both qualitative and quantitative evaluations, we demonstrate the effectiveness of our

method in different scenarios. Our contributions are threefold:

• We present the first work on marker-less state estimation for a snake robot from a

single monocular camera.

• Our method combines differentiable rendering with a Kalman filter, and simultane-

ously estimates the joint angle and the pose of a snake robot.

• Validation of the effectiveness of the algorithm on a snake robot in both structured

and unstructured environments, achieving a localization accuracy of 0.05 m for the

robot base position and 0.11 rad on the robot’s joint states.

3.2.1 Related Works

For a broader category of mobile robots, the primary focus of state estimation

has been on localizing the robot within its surroundings. For instance, Milella et al. [86]

utilizes visually distinctive features on stereo images for localization. Several other works

[40, 152, 27] have proposed methods that take into account the environment dynamics

and potential measurement errors to enhance localization accuracy.

However, in the realm of snake robots, state estimation becomes even more intricate

due to the need to consider joint angles for accurate 3D space modeling. Historically, state

estimation for snake robots has relied on the robot’s internal proprioceptive sensors, as

highlighted by works like Rollinson et al. [111, 112]. Then, the filtering methods, like the
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Unscented Kalman Filter and Extended Kalman Filter [57, 131], have been employed to

account for the measurement error for real-time estimation.

In this work, we seek to estimate both the position and joint angle of the snake

robot using only images. This approach not only simplifies the estimation process but also

enhances the robot’s adaptability in outdoor scenarios.

3.2.2 Methodology

Algorithm 3: Online State Estimation

Input : Initialized robot state x0|0,Σ0|0
Output :Estimated robot state xt|t,Σt|t

1 while receive new image It do
// Motion Model

2 xt|t−1,Σt|t−1 ← motionModel(xt−1|t−1,vt−1,Σt−1|t−1)
// Observation from Image

3 Mref
t ← fseg(It)

4 mt ← computeMoments(Mref
t )

// Observation Model

5 Mt|t−1 ← reconstructMesh(xt|t−1)

6 Mpred
t|t−1 ← renderPrediction(xt|t−1,Mt|t−1)

7 m̂t ← computeMoments(Mpred
t|t−1)

8 Ht =
∂m̂t

∂xt|t−1

// Compute the Residual

9 yt = mt − m̂t

// Update Belief

10 Kt = Σt|t−1H
⊤
t (HtΣt|t−1H

⊤
t )

−1

11 xt|t = xt|t−1 +Ktyt

12 Σt|t = (I −KtHt)Σt|t−1

// Refine with Image Loss

13 for number of refinement steps do
14 Mt|t ← reconstructMesh(xt|t)

15 Mpred
t|t ← renderPrediction(xt|t,Mt|t)

16 Lt ← computeLoss(Mpred
t|t ,Mref

t )

17 xt|t = xt|t − λ ∂Lt

∂xt|t

// Update Velocity

18 vt ← computeV elocity(xt|t,xt−1|t−1)
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The overall proposed approach follows an online state estimation method combining

differentiable rendering of a robot mask, with image moment prediction, a robot motion

model, and a Kalman filter to estimate the joint angle and the pose of a mobile robot from

a single camera. The method includes, additionally, refinement steps and velocity update

steps to enhance the accuracy of the estimation, as well as model transfer techniques to

reduce computation and memory costs so that the method can run on modest hardware.

The details follow in the next section, and Algorithm 3 outlines the main steps of the

method.

Motion Model with Belief Propagation

For AMR navigation, the robot state, denoted by xt, can encapsulate various

attributes such as joint angles, camera-to-robot transformations, and other necessary

parameters at time t. In this work, we define the robot state as x := [θ,q,b], where

θ ∈ RN is the robot joint angle (N is the number of joints), q is the quaternion, and b is

the translational vector for the first link of the robot. The quaternion and the translational

vector are parametrizations of the Tc
b ∈ SE(3), which is the robot pose in the camera

frame.

The next state of the robot is predicted with a motion model, based on its previous

state and velocity. This prediction phase provides a rough direction for belief propagation.

We will model the robot’s motion using a simple linear relationship:

bt|t−1 = bt−1|t−1 + vt−1∆t (3.16)

where we try to predict the position of the robot bt|t−1 at time t by considering the

previous robot position bt−1|t−1, the velocity vt−1, and the time step ∆t. We will make

the assumption that there is negligible process noise (i.e., imperfections in the system’s

motion model are negligible as compared to observation noise), leading to the following
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expression for the propagation of the covariance matrix:

Σt|t−1 = FtΣt−1|t−1F
⊤
t (3.17)

In this case, Ft is the identity matrix, reflecting our assumption that the motion model

follows a linear relationship without any non-linear or stochastic effects.

Automatic Mask Generation for Segmentation

The proposed state estimation algorithm requires segmenting the robot from images,

but manually labeling the robot masks can be highly time-consuming. Recently, the zero-

shot generalizable segmentation model, Segment Anything Model (SAM) [63], allows

automatic robot mask generation with simple bounding box prompts.

Given the binary robot mask of the previous frame, Mt−1 ∈ RH×W , the bounding

box prompt for the current frame, Bt := (umin, vmin, umax, vmax), is estimated by a mask-

to-box operation,

(umin, vmin) = min{(u, v) |Mt−1[u, v] ̸= 0} (3.18)

(umax, vmax) = max{(u, v) |Mt−1[u, v] ̸= 0} (3.19)

Then, the SAM is utilized to generate the robot mask of the current frame, given the

bounding box prompt Bt, as shown in Fig. 3.9. To ensure the robustness of the bounding

box prompt, the robot mask is dilated before performing the mask-to-box operation.

Using SAM for robot mask generation can, however, be slow as SAM is not optimized

for real-time application (around 0.5 seconds per frame using a single Nvidia GeForce

RTX 4090 GPU). To achieve real-time performance, we utilize the robot masks generated

from SAM to train a lightweight neural network for segmentation. Specifically, we employ

DeepLabV3+ [21], a popular semantic segmentation architecture, to segment the robot
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Figure 3.9. Example of the bounding box prompt generated by mask-to-box operation
(top) and the corresponding robot mask generated using SAM (bottom).

from RGB images during the online estimation process. By training DeepLabV3+ with

the generated masks, we ensure that our system can segment the robot in real-time with

modest memory and computation requirements, effectively enabling realistic deployment

in the wild.
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Observation Model for Belief Propagation

In this section, we introduce the mapping from the predicted robot states xt|t−1 to

the observation of image moment [13] m̂t in the proposed algorithm 3.

Given the predicted robot states xt|t−1, which includes joint angle and robot pose,

we first reconstruct the robot mesh by interconnecting individual robot body parts through

forward kinematics. For a snake-like (serpentine) robot, we approximate each individual

robot body part as a cylinder with the dimension mentioned in [117, 105]. Given a mesh

vertex rn ∈ R3 on the n-th robot link, this vertex undergoes a transformation into the

robot base frame considering the joint angle:

rb = Tb
n(θ)r

n (3.20)

where · represents the homogeneous representation of a point (i.e. r = [r, 1]T ), and Tb
n(θ)

is the coordinate frame transformation obtained from the forward kinematics [31].

Having the reconstructed robot mesh and the predicted robot base-to-camera

transformation, Tc
b, the PyTorch3D differentiable renderer [101] comes into play to produce

a virtual-model-derived, or rendered robot mask. By referencing techniques similar to those

in [78], a differentiable silhouette renderer paired with a perspective camera is employed.

The SoftSilhouetteShader is specifically leveraged to compute pixel values that form the

robot mask.

With the rendered robot mask, M, the image moments become computable as:

Mij =
∑
u

∑
v

uivjM(u, v) (3.21)

Then, we derive the centroid, which is our observation for belief propagation, by:

m̂ =

[
M10

M00

M01

M00

]⊤
(3.22)
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We employ pytorch autograd [95] to track the gradient of each step and compute the

observation matrix H by collecting the derivatives of the image moment m̂ with respect

to the robot states xt|t−1.

Finally, an Extended Kalman Filter (EKF) [57] is employed to update the belief of

the robot states (lines 9-12 in Algorithm 3), which ensures that our belief about the robot

states is continually refined as more observations come in.

Image Loss Refinement and Velocity Estimation

While image moments have historically proven useful in object tracking [13, 142],

their efficacy diminishes in the complex arena of robot state estimation. This is because

they encapsulate only limited details of the robot mask. Consequently, a direct method

that compares the estimated and reference robot masks provides an enhancement to state

estimation accuracy.

We predict the robot mask from estimated robot states using the same differentiable

rendering pipeline as described in Section 18. To measure the difference between this

prediction and the reference mask, we employ an image loss function, which sums the

squared differences between the predicted mask Mpred and the reference mask Mref across

the image dimensions:

L =
H−1∑
i=0

W−1∑
j=0

(
Mpred(i, j)−Mref (i, j)

)2
. (3.23)

We refine the mean of the robot states by applying back-propagation on this image loss

(line 17 in Algorithm 3), bringing the estimation closer to the true state.

As a final step, in service of the next belief propagation timestep, we derive the

velocity from the updated position:

vt =
bt|t − bt−1|t−1

∆t
(3.24)
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This velocity is used for the motion model in forthcoming iterations, as it feeds into

predictions for the robot’s future states.

3.2.3 Experiments and Results

To comprehensively assess the efficacy of our proposed state estimation algorithm,

we collected datasets of a snake robot operating in both structured and unstructured

environments. These datasets facilitated both qualitative and quantitative evaluations of

the state estimation method.

The snake robot hardware is described in [117, 105] and is the evolutionary precursor

to the NASA Extant Exobiology Life Surveyor (EELS) robot [12] that is anticipated to

serve a science research vehicle for both earth science missions as well as extraterrestrial

planetary exploration on Saturn’s moon, Enceladus, or Jupiter’s moon, Europa.

Snake-Lab Dataset: We introduced the Snake-Lab Dataset for evaluating the

accuracy of the joint angle estimation and robot pose estimation. This dataset was acquired

in a lab setting using an Intel® Realsense™ camera at a resolution of (1280, 720). The

robot’s joint angles were recorded using electromagnetic sensors and were synchronized

with the captured images. Additionally, the robot’s spatial position was determined using

the depth capabilities of the camera. For evaluation metrics, we employed the Euclidean

distance for position estimation and the L1 norm for joint angle estimation.

Snake-Outdoor Dataset: To examine the robustness of our algorithm in less

structured environments, we collected the Snake-Outdoor dataset. This dataset comprises

three videos: the first two were recorded using a hand-held camera at a resolution of (1280,

720), while the third was captured via a drone camera, which has no direct connection to

the snake robot system. Given the absence of ground truth for the robot’s state in this

setting, we adopted the Intersection-over-Union metric (IoU):

IoU =
|Mref ∩Mpred|
|Mref ∪Mpred|

(3.25)
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to compare the ground-truth robot mask Mref with our algorithm’s estimated mask Mpred.

Implementation Details

To train DeepLabV3+, we collected around 1500 images, captured at a resolution

of (1280, 720) and the ground truth segmentation masks were generated using Segment

Anything Model [63]. We used the Adam optimizer [62] for gradient descent with 20

epochs and 8 batch size. The initial learning rate was set to 0.0001 and was decayed by a

factor of 0.1 at the 10th epoch.

During the online estimation, we resize the raw image to a resolution of (640, 360).

Both the observed robot mask and the rendered robot mask are processed at this resolution.

For the refinement step, we set the learning rate to 0.005 and also used the Adam optimizer

for gradient descent. All computational experiments were executed on a system equipped

with an Intel® Core™ i9-11900F Processor and NVIDIA GeForce RTX 4090. To strike a

balance between accuracy and processing speed, we perform 10 refinement iterations for

each incoming image, ensuring optimal performance while sustaining an estimation speed

of 1 FPS.

Experiment on Snake-Lab dataset

We present the qualitative results on the Snake-Lab dataset in Fig. 3.11, and the

quantitative evaluation of our state estimation algorithm is presented in Table 3.3. We

also plot the estimated joint trajectory with sensor readings in Fig. 3.10.

The results are segmented based on different scenarios: static conditions, moving

Table 3.3. Average Position and State Estimation Error on Snake-Lab Dataset

Position error (m) Joint state error (rad)

Static 0.0278 0.0605
Moving camera 0.0647 0.0849
Moving robot 0.0587 0.1352

Overall 0.0540 0.1125

59



camera, and moving robot. Under static conditions, where both the camera and the robot

remain stationary, both the joint angle error and position error are the lowest, indicating

that the algorithm performs exceptionally well in stable environments. Moving the camera

or robot slightly affects the algorithm’s accuracy. This could be attributed to the dynamic

nature of the camera and the robot’s movements, which might introduce complexities

in state estimation. The overall average position error and joint angle error across all

scenarios are 0.0540 m and 0.1125 rad, respectively. These results affirm the robustness

of our state estimation algorithm, even in varying conditions. However, it’s evident that

dynamic factors, such as camera or robot movement, introduce some challenges, leading

to increased errors.

Experiment on Snake-Outdoor dataset

Table 3.4 presents the quantitative evaluation of our state estimation algorithm on

the Snake-Outdoor dataset. The results are organized based on the number of refinement

steps taken, which are 1, 5, and 10. The performance metric used is the Intersection-over-

Union (IoU) for each video, and the speed of the algorithm in frames per second (FPS) is

also provided. From the Table 3.4, we can see a clear trade-off between accuracy and speed.

As the number of refinement steps increases, there is a noticeable improvement in the

Mean IoU, but the speed decreases. With 10 refinement steps, the algorithm operates at 1

Table 3.4. Quantitative evaluation on Snake-Outdoor dataset. We compute the IoU
between the estimated robot mask and the ground-truth robot mask. We also report the
processing speed under different settings.

Number of refinement steps

1 5 10

Video 1 (Mean IoU) 0.4659 0.7632 0.8665
Video 2 (Mean IoU) 0.2456 0.3584 0.7690
Video 3 (Mean IoU) 0.3088 0.4394 0.8210

Speed (FPS) 3.5 1.5 1
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FPS, which might be a limiting factor for real-time applications. However, the significant

boost in accuracy might justify this trade-off in scenarios where precision is critical.

We also present qualitative results in Fig 3.12, showing the estimated skeleton and

the predicted robot mask overlaid on the images. We can observe the estimated skeleton

aligns with the robot’s actual structure, providing a clear and intuitive understanding of

the algorithm’s performance in real-world, outdoor settings.

3.2.4 Conclusion

In this work, we present a novel method for state estimation of snake robots

using a single camera. The proposed approach combines differentiable rendering with

the Kalman filter, fusing temporal information with a rendering-based optimization

technique to improve the estimation process, which enhances the method’s adaptability in

outdoor scenarios. The results demonstrate the efficacy of our approach on a snake robot,

validating its performance in both structured and unstructured environments. We believe

this technique opens up possibilities for expanded capabilities for ambulatory mobile robot

deployment and navigation in complex environments, making it a promising solution for

future mobile robot applications.

For future works, an exciting avenue is the exploration of how our method can be

adapted for collaborative robotics, where multiple robots work in tandem. This could

involve state estimation in scenarios where robots share sensory data to navigate or perform

tasks (e.g. drone-assisted routing in different landscapes).
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Figure 3.10. Plots of estimated joint trajectory vs. sensor reading for the Snake-Lab
dataset in the moving robot scenario. For each joint, we plot the pitch and yaw angle
separately. Note that the snake robot uses magnetic encoders for sensor readings and are
slightly noisy due misalignment between the encoder and magnet from vibrations during
the experiment.
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Figure 3.11. Qualitative results on Snake-Lab dataset. We derive the skeleton from the
estimated robot pose and joint angle, and visualize it by projecting the skeleton on images.
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Figure 3.12. Qualitative results on Snake-Outdoor dataset. We show the estimated
skeleton and predicted robot mask overlaid on images. Rows 1-2 correspond to video 1,
rows 3-4 correspond to video 2, and rows 5-6 correspond to video 3. Notably, there’s a
precise alignment of the skeleton and mask with the robot as shown in the images.
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Chapter 4

Combining Keypoint and Rendering
for Pose Estimation

The majority of modern robotic automation utilizes cameras for rich sensory

information about the environment to infer tasks to be completed and provide feedback

for closed-loop control. The leading paradigm for converting the valuable environment

information to the robot’s frame of reference for manipulation is position-based visual

servoing (PBVS) [17]. At a high level, PBVS converts 3D environmental information

inferred from the visual data (e.g. the pose of an object to be grasped) and transforms it

to the robot coordinate frame where all the robot geometry is known (e.g. kinematics)

using the camera-to-robot pose. Examples of robotic automation using the PBVS range

from bin sorting [82] to tissue manipulation in surgery [73].

Calibrating camera-to-robot pose typically requires a significant amount of care

and effort. Traditionally, the camera-to-robot pose is calibrated with externally attached

fiducial markers (e.g. Aruco Marker [39], AprilTag [90]). The 2D location of the marker

can be extracted from the image and the corresponding 3D location on the robot can be

calculated with forward kinematics. Given a set 2D-3D correspondence, the camera-to-

robot pose can be solved using Perspective-n-Point (PnP) methods [70, 38]. The procedure

usually requires multiple runs with different robot configurations and once calibrated, the

robot base and the camera are assumed static. The incapability of online calibration limits
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Figure 4.1. Comparison of speed and accuracy (based on AUC metric) for existing
image-based robot pose estimation methods.

the potential applications for vision-based robot control in the real world, where minor

bumps or simply shifting due to repetitive use will cause calibrations to be thrown off, not

to mention real-world environmental factors like vibration, humidity, and temperature,

are non-constant. Having flexibility on the camera and robot is more desirable so that the

robot can interact with an unstructured environment.

Deep learning, known as the current state-of-the-art approach for image feature

extraction, brings promising ways for markerless camera-to-robot calibration. Current

approaches to robot pose estimation are mainly classified into two categories: keypoint-

based methods [69, 79, 106, 68, 67] and rendering-based methods [66, 42]. Keypoint-based

methods are the most popular approach for pose estimation because of the fast inference
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speed. However, the performance is limited to the accuracy of the keypoint detector which

is often trained in simulation such that the proposed methods can generalize across different

robotic designs. Therefore, the performance is ultimately hampered by the sim-to-real

gap, which is a long-standing challenge in computer vision and robotics [149].

Rendering-based methods can achieve better performance by using the shape of the

entire robot as observation, which provides dense correspondence for pose estimation. The

approaches in this category usually employ an iterative refinement process and require a

reasonable initialization for the optimization loop to converge [74]. Due to the nature that

iteratively render and compare is time- and energy-consuming, rendering-based methods

are more suitable for offline estimation where the robot and camera are held stationary.

In more dynamic scenarios, such as a mobile robot, the slow computation time make the

rendering-based methods impracticable to use.

In this work, we propose CtRNet, an end-to-end framework for robot pose estimation

which, at inference, uses keypoints for the fast inference speed and leverages the high

performance of rendering-based methods for training to overcome the sim-to-real gap

previous keypoint-based methods faced. Our framework contains a segmentation module

to generate a binary mask of the robot and keypoint detection module which extracts

point features for pose estimation. Since segmenting the robot from the background is a

simpler task than estimating the robot pose and localizing point features on robot body

parts, we leverage foreground segmentation to provide supervision for the pose estimation.

Toward this direction, we first pretrained the network on synthetic data, which should

have acquired essential knowledge about segmenting the robot. Then, a self-supervised

training pipeline is proposed to transfer our model to the real world without manual

labels. We connect the pose estimation to foreground segmentation with a differentiable

renderer [59, 75]. The renderer generates a robot silhouette image of the estimated pose and

directly compares it to the segmentation result. Since the entire framework is differentiable,

the parameters of the neural network can be optimized by back-propagating the image
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loss.

Contributions. Our main contribution is the novel framework for image-based

robot pose estimation together with a scalable self-training pipeline that utilizes unlimited

real-world data to further improve the performance without any manual annotations. Since

the keypoint detector is trained with image-level supervision, we effectively encompass the

benefits from both keypoint-based and rendering-based methods, where previous methods

were divided. As illustrated in the 4.1, our method maintains high inference speed while

matching the performance of the rendering-based methods. Moreover, we integrate the

CtRNet into a robotic system for PBVS and demonstrate the effectiveness on real-time

robot pose estimation.

4.1 Related Works

4.1.1 Camera-to-Robot Pose Estimation

The classical way to calibrate the camera-to-robot pose is to attach the fiducial

markers [39, 90] to known locations along the robot kinematic chain. The marker is detected

in the image frame and their 3D position in the robot base frame can be calculated with

forward kinematics. With the geometrical constraints, the robot pose can be then derived

by solving an optimization problem [93, 34, 52, 48].

Early works on markerless articulated pose tracking utilize a depth camera for 3D

observation [116, 96, 85, 33]. For a high degree-of-freedom articulated robot, Bohg et

al. [6] proposed a pose estimation method by first classifying the pixels in depth image to

robot parts, and then a voting scheme is applied to estimate the robot pose relative to the

camera. This method is further improved in [136] by directly training a Random Forest to

regress joint angles instead of part label. However, these methods are not suitable for our

scenario where only single RGB image is available.

More recently, as deep learning becomes popular in feature extraction, many
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works have been employing deep neural networks for robot pose estimation. Instead of

using markers, a neural network is utilized for keypoint detection, and the robot pose is

estimated through an optimizer (eg. PnP solver) [68, 69, 79, 153]. To further improve the

performance, the segmentation mask and edges are utilized to refine the robot pose [67, 42].

Labbé et al. [66] also introduces the render&compare method to estimate the robot pose by

matching the robot shape. These methods mainly rely on synthetically generated data for

training and hope the network can generalize to the real world by increasing the variance

in data generation. Our method explicitly deals with the sim-to-real transfer by directly

training on real-world data with self-supervision.

4.1.2 Domain Adaptation for Sim-to-Real Transfer

In computer vision and robotics, Domain Randomization (DR) [128] is the most

widely used method for sim-to-real transfer due to its simplicity and effectiveness. The idea

is to randomize some simulation parameters (e.g. camera position, lighting, background,

etc.) and hope that the randomization captures the distribution of the real-world data.

This technique has been applied to object detection and grasping [129, 7, 45, 127, 49],

and pose estimation [122, 83, 130, 68, 69, 79, 153, 66]. The randomization is usually tuned

empirically hence it is not efficient.

Another popular technique for domain transfer is Domain Adaptation (DA), which

is to find the feature spaces that share a similar distribution between the source and target

domains [134]. This technique has shown recent success in computer vision [46, 23, 115]

and robotic applications [8, 55, 41]. In this work, instead of finding the latent space

and modeling the distribution between the simulation and the real world, we perform

sim-to-real transfer by directly training on the real-world data via a self-training pipeline.
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4.2 Methodology

In this paper, we introduce an end-to-end framework for robot pose estimation

and a scalable training pipeline to improve pose estimation accuracy on real-world data

without the need for any manual annotation. We first explain the self-supervised training

pipeline for sim-to-real transfer in 4.2.1 given a pretrained CtRNet on synthetic data

which both segments the robot and estimates its pose from images. Then, we detail the

camera-to-robot pose estimation network in 4.2.2 which utilizes a keypoint detector and a

PnP solver to estimate the pose of the robot from image data in real-time.

4.2.1 Self-supervised Training for Sim-to-Real Transfer

The most effective way to adapt the neural network to the real world is directly

training the network on real sensor data. We propose a self-supervised training pipeline

for sim-to-real transfer to facilitate the training without 3D annotations. To conduct the

self-supervised training, we employ foreground segmentation to generate a mask of the

robot, fseg, alongside the pose estimation, fpose. Given an input RGB image from the

physical world, I, and the robot joint angles, q, fpose estimates the robot pose which is then

transformed to a silhouette image through a differentiable renderer. Our self-supervised

objective is to optimize neural network parameters by minimizing the difference between

the rendered silhouette image and the mask image. We formulate the optimization problem

as:

θbb, θkp, θseg = argminθbb,θkp,θsegL[fseg(I|θbb, θseg),R(fpose(I|q, θbb, θkp)|K)] (4.1)

where θbb, θkp, θseg denote the parameters of the backbone, keypoint, and segmentation

layers of the neural network. R is the differentiable renderer with camera parameters K,

and L(.) is the objective loss function capturing the image difference.

We pretrained CtRNet’s parameters which makes up fseg and fpose, with synthetic

data where the keypoint and segmentation labels are obtained freely (details in Supple-
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mentary Materials). During the self-training phase, where CtRNet learns with real data,

the objective loss in (4.1) captures the difference between the segmentation result and the

rendered image. The loss is iteratively back-propagated to, Θ, where each iteration fseg

and fpose take turns learning from each other to overcome the sim-to-real gap.

Figure 4.2. The overview of our proposed self-supervised training framework for sim-
to-real transfer. The CtRNet contains a foreground segmentation module and a pose
estimation module, which output a robot mask and a camera-to-robot pose respectively.
The output pose is transformed into a silhouette image through a differentiable renderer.
The image loss is back-propagated to train the keypoint detector and fine-tune the
segmentation.

Overview. The overview of the self-supervised training pipeline is shown in the

4.2. The segmentation module, fseg, simply takes in a robot image and outputs its mask.

The pose estimation module, fpose, consists of a keypoint detector and a PnP solver to

estimate the robot pose using the 2D-3D point correspondence, as shown in 4.3. Given the

input robot image and joint angles, our camera-to-robot pose estimation network outputs

a robot mask and the robot pose with respect to the camera frame. Mathematically, these

functions are denoted as

M = fseg(I|θbb, θseg) Tc
b = fpose(I|q, θbb, θkp) (4.2)

where M is the robot mask and Tc
b ∈ SE(3) is the 6-DOF robot pose. Finally, the
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self-supervised objective loss in (4.1) is realized through a differentiable renderer, R, which

generates a silhouette image of the robot given its pose, Tc
b.

Differentiable Rendering. To render the robot silhouette image, we utilize the

PyTorch3D differentiable render [101]. We initialize a perspective camera with intrinsic

parameters K and a silhouette renderer, which does not apply any lighting nor shading, is

constructed with a rasterizer and a shader. The rasterizer applies the fast rasterization

method [101] which selects the k nearest mesh triangles that effects each pixel and weights

their influence according to the distance along the z-axis. Finally, the SoftSilhouetteShader

is applied to compute pixel values of the rendered image using the sigmoid blending

method [75].

We construct the ready-to-render robot mesh by connecting the CAD model for

each robot body part using its forward kinematics and transforming them to the camera

frame with the estimated robot pose Tc
b from fpose. Let v

n ∈ R3 be a mesh vertex on the

n-th robot link. Each vertex is transformed to the camera frame, hence ready-to-render,

by

vc = Tc
bT

b
n(q)v

n (4.3)

where · represents the homogeneous representation of a point (e.g. v = [v, 1]T ), and Tb
n(q)

is the coordinate frame transformation obtained from the forward kinematics [31].

Objective loss function. The objective loss in (4.1) is iteratively minimized where

fseg and fpose take turns supervising each other on real data to overcome the sim-to-real

gap faced by keypoint detection networks. To optimize fpose, the L2 image loss is used since

the segmentation network’s accuracy, within the context of estimating robot poses, has

been shown to effectively transfer from simulation to the real world [66]. Mathematically

the loss is expressed as

Lmask =
H∑
i=1

W∑
j=1

(S(i, j)−M(i, j))2 (4.4)
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where H and W is the height and width of the image, and S is the rendered silhouette

image.

Although the pretrained robot segmentation, fseg, already performs well on real-

world datasets, it is still desirable to refine it through self-supervised training to better

extract fine details of corners and boundaries. To prevent the foreground segmentation

layers from receiving noisy training signals, we apply the weighted Binary Cross Entropy

Loss so that the high-quality rendering image can be used to further refine the foreground

segmentation:

Lseg = −
w

H ∗W

H∑
i=1

W∑
j=1

[M(i, j) log S(i, j) + (1−M(i, j)) log(1− S(i, j))]. (4.5)

where w is the weight for the given training sample. For PnP solvers, the optimal solution

should minimize the point reprojection error. Therefore, we assign the weight for each

training sample according to the reprojection error:

w = exp (−sO(o,p,K,Tc
b)) (4.6)

where s is a scaling constant, O is the reprojection loss in the PnP solver (explained in

4.2.2), {oi|oi ∈ R2}ni=1 and {pi|pi ∈ R3}ni=1 are the 2D-3D keypoints inputted into the

PnP solver. The exponential function is applied to the weight such that training samples

with poor PnP convergence are weighted exponentially lower than good PnP convergence

thereby stabilizing the training.

4.2.2 Camera-to-Robot Pose Estimation Network

The overview of the proposed Camera-to-Robot Pose Estimation Network, CtRNet,

is shown in Fig. 4.3. Given an input RGB image, we employ ResNet50 [43] as the

backbone network to extract the latent features. The latent features are then passed
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Figure 4.3. The diagram of the camera-to-robot pose estimation network (CtRNet)
which describes the inference process of network. Given an input RGB image, the neural
network generates a robot mask and a set of keypoint. Given the associated robot joint
angles, a set of corresponding 3D keypoints are computed with forward kinematics. The
camera-to-robot pose is estimated by a PnP solver with provided 2D-3D keypoint pairs.

through the Atrous Spatial Pyramid Pooling layers [20] to form the segmentation mask of

input resolution. The keypoint detector, sharing the backbone network with the foreground

segmentation, upsamples the feature maps through transposed convolutional layers and

forms the heatmaps with n channels. Then, we apply the spatial softmax operator [36]

on the heatmaps, which computes the expected 2D location of the points of maximal

activation for each channel and results in a set of keypoints [o1, ...,on] for all n channels.

For simplicity, we define the set of keypoints at each joint location of the robot. Given

the joint angles, the corresponding 3D keypoint location pi can be calculated with robot
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forward kinematics:

pi = Tb
i(q)t, for i = 1, ..., n (4.7)

where t = [0, 0, 0]. With the 2D and 3D corresponding keypoints, we can then apply a

PnP solver [70] to estimate the robot pose with respect to the camera frame.

Back-propagation for PnP Solver. A PnP solver is usually self-contained and

not differentiable as the gradient with respect to the input cannot be derived explicitly.

Inspired by [18], the implicit function theorem [64] is applied to obtain the gradient

through implicit differentiation. Let the PnP solver be denoted as followed in the form of

a non-linear function g:

Tc∗
b = g(o,p,K) (4.8)

where Tc∗
b is output pose from the PnP solver. In order to back-propagate through the

PnP solver for training the keypoint detector, we are interested in finding the gradient of

the output pose Tc∗
b with respect to the input 2D points o. Note that, the objective of the

PnP solver is to minimize the reprojection error, such that:

Tc∗
b = argminTc

b
O(o,p,K,Tc

b) (4.9)

with

O(oi,p,K,Tc
b) =

n∑
i=1

||oi − π(pi|Tc
b,K)||22 (4.10)

=
n∑

i=1

||ri||22 (4.11)

where π(.) is the projection operator. Since the optimal solution Tc∗
b is a local minimum for

the objective function O(o,p,Tc
b,K), a stationary constraint of the optimization process

can be constructed by taking the first order derivative of the objective function with
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respect to Tc
b:

∂O

∂Tc
b

(o,p,K,Tc
b)|Tc

b=Tc∗
b
= 0. (4.12)

Following [18], we construct a constrain function F to employ the implicit function theorem:

F (o,p,K,Tc
b) =

∂O

∂Tc
b

(o,p,K,Tc∗
b ) = 0. (4.13)

Substituting the 4.10 and 4.11 to 4.13, we can derive the constraint function as:

F (o,p,K,Tc
b) =

n∑
i=1

∂||ri||22
∂Tc

b

(4.14)

= −2
n∑

i=1

rTi
∂π

∂Tc
b

(pi|Tc∗
b ,K). (4.15)

Finally, we back-propagate through the PnP solver with the implicit differentiation. The

gradient of the output pose with respect to the input 2D points is the Jacobian matrix:

∂g

∂o
(o,p,K) = −

(
∂F

∂Tc
b

(o,p,K,Tc
b)

)−1(
∂F

∂o
(o,p,K,Tc

b)

)
. (4.16)

4.3 Experiments

We first evaluate our method on two public real-world datasets for robot pose esti-

mation and compare it against several state-of-the-art image-based robot pose estimation

algorithms. We then conduct an ablation study on the pretraining procedure and explore

how the number of pretraining samples could affect the performance of the self-supervised

training. Finally, we integrate the camera-to-robot pose estimation framework into a visual

servoing system to demonstrate the effectiveness of our method on real robot applications.
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4.3.1 Datasets and Evaluation Metrics

DREAM-real Dataset. The DREAM-real dataset [69] is a real-world robot

dataset collected with 3 different cameras: Azure Kinect (AK), XBOX 360 Kinect (XK),

and RealSense (RS). This dataset contains around 50K RGB images of Franka Emika

Panda arm and is recorded at (640× 480) resolution. The ground-truth camera-to-robot

pose is provided for every image frame. The accuracy is evaluated with average distance

(ADD) metric [139],

ADD =
1

n

n∑
i=1

||T̃c
bpi −Tc

bpi||2 (4.17)

where T̃c
b indicates the ground-truth camera-to-robot pose. We also report the area-under-

the-curve (AUC) value, which integrates the percentage of ADD over different thresholds.

A higher AUC value indicates more predictions with less error.

Baxter Dataset. The Baxter dataset [79] contains 100 RGB images of the left

arm of Rethink Baxter collected with Azure Kinect camera at (2048× 1526) resolution.

The 2D and 3D ground-truth end-effector position with respect to the camera frame is

provided. We evaluate the performance with the ADD metric for the end-effector. We

also evaluate the end-effector reprojection error using the percentage of correct keypoints

(PCK) metric [79].

4.3.2 Implementation details

The entire pipeline is implemented in PyTorch [95]. We initialize the backbone

network with ImageNet [32] pretrained weights, and we train separate networks for different

robots. The number of keypoints n is set to the number of robot links and the keypoints

are defined at the robot joint locations. The neural network is pretrained on synthetic data

for foreground segmentation and keypoint detection for 1000 epochs with 1e-5 learning

rate. We reduce the learning rate by a factor of 10 once learning stagnates for 5 epochs.

The Adam optimizer is applied to optimize the network parameters with the momentum
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Figure 4.4. Qualitative results of CtRNet foreground segmentation and pose estimation
on (a) DREAM-real dataset and (b) Baxter dataset. The first row shows the input RGB
image, the second row shows the foreground segmentation, and the third row shows the
projected robot skeleton based on the estimated robot pose.

set to 0.9. For self-supervised training on real-world data, we run the training for 500

epochs with 1e-6 learning rate. The same learning rate decay strategy and Adam optimizer

is applied here similar to the pretraining. To make the training more stable, we clip

the gradient of the network parameters at 10. The scaling factor in 4.6 is set to 0.1 for

DREAM-real dataset and 0.01 for Baxter dataset, mainly accounting for the difference in

resolution.

4.3.3 Robot Pose Estimation on Real-world Datasets

Evaluation on DREAM-real Dataset. The proposed CtRNet is trained at

(320× 240) resolution and evaluated at the original resolution by scaling up the keypoints

by a factor of 2. Some qualitative results for foreground segmentation and pose estimation

are shown in Figure 4.4. We compared our method with the state-of-the-art keypoint-based

method DREAM [69] and the rendering-based method RoboPose [66]. The results for

DREAM and RoboPose are compiled from the implementation provided by [66]. In Table
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4.1, we report the AUC and mean ADD results on DREAM-real dataset with 3 different

camera settings and the overall results combining all the test samples. Our method has a

significantly better performance compared to the method in the same category and achieves

comparable performance with the rendering-based method. We outperform DREAM on all

settings and outperform RoboPose on the majority of the dataset. Overall on DREAM-real

dataset, we achieve higher AUC (+17.378 compared to DREAM, +5.868 compared to

RoboPose), and lower error compared to DREAM (-17.457).

Evaluation on Baxter Dataset. For the Baxter dataset, we trained the CtRNet

at (640×480) resolution and evaluate at the original resolution, and Figure 4.4 shows some

of the qualitative results. We compared our method with several keypoint-based methods

(Aruco Marker [39], DREAM [69], Optimized Keypoints [79]). We also implemented

Differentiable Rendering for robot pose estimation, where the robot masks are generated

with the pretrained foreground segmentation. The 2D PCK results and 3D ADD results

are reported in Table 4.2. Our method outperforms all other methods on both 2D and

3D evaluations. For 2D evaluation, we achieve 93.94 AUC for PCK with an average

reprojection error of 11.62 pixels. For 3D evaluation, we achieve 83.93 AUC for ADD with

an average ADD of 63.81mm. Notably, 99 percent of our estimation has less than 50 pixel

reprojection error, which is less than 2 percent of the image resolution, and 88 percent of

our estimation has less than 100mm distance error when localizing the end-effector.
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Table 4.3. Ablation study for the number of pretraining samples.

Npretrain Mean ADD (mm) ↓ AUC ADD ↑

500 2167.30 47.62
1000 92.91 76.65
2000 67.51 82.98
4000 63.00 84.12
8000 63.81 83.93

4.3.4 Ablation Study

We study how the number of pretraining samples affects the convergence and

performance of the self-supervised training empirically on the Baxter dataset. We pre-

train the neural network with different numbers of synthetic data samples Npretrain =

{500, 1000, 2000, 4000, 8000}, and examine the convergence of the self-supervised training

process. Figure 4.5 shows the plot of self-training loss (Lmask + Lseg) vs. the number

of epochs for networks pretrianed with different number of synthetic data. We observe

that doubling the size of pretraining dataset significantly improves the convergence of

the self-training process at the beginning. However, the improvement gets smaller as the

pretrainig size increase. For the Baxter dataset, the improvement saturates after having

more than 2000 pretraining samples. Continuing double the training size results in very

marginal improvement. Noted that the Baxter dataset captures 20 different robot poses

from a fixed camera position. The required number of pretraining samples might vary

according to the complexity of the environment.

We further evaluate the resulting neural networks with the ground-truth labels on

the Baxter dataset. We report the mean ADD and AUC ADD for the pose estimation in

Table 4.3. The result verifies our observation on the convergence analysis. Having more

pretraining samples improves the performance of pose estimation at the beginning, but

the improvement stagnates after having more than 2000 pretraining samples.
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Figure 4.5. The training loss vs. number of epochs for the self-supervised training
with different numbers of pretraining samples. More pretraining samples results in better
convergence. The improvement saturates after having more than 2000 pretraining samples
as only marginal improvement by adding more samples.

4.3.5 Visual Servoing Experiment

We integrate the proposed CtRNet into a robotic system for position-based visual

servoing (PBVS) with eye-to-hand configuration. We conduct the experiment on a Baxter

robot and the details of the PBVS are described in the Supplementary Materials. The

PBVS is purely based on RGB images from a single camera and the goal is to control the

robot end-effector reaching a target pose defined in the camera frame. Specifically, we first

set a target pose with respect to the camera frame. The target pose is then transformed

Table 4.4. Mean and standard deviation of the translational error and rotational error
for the visual servoing experiment.

Method Loop Rate Trans. Err. (m) Rot. Err. (rad)

DREAM [69] 30Hz 0.235 ± 0.313 0.300 ± 0.544
Diff. Rendering 1Hz 0.046 ± 0.062 0.036 ± 0.066
CtRNet 30Hz 0.002 ± 0.001 0.002 ± 0.001
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into the robot base frame through the estimated camera-to-robot transformation. The

robot controller calculates the desired robot configuration with inverse kinematics and a

control law is applied to move the robot end-effector toward the target pose.

For comparison, we also implemented DREAM [69] and a Differentiable Renderer

for PBVS. For DREAM, the pretrained model for Baxter is applied. For Differentiable

Renderer, we use the foreground segmentation of CtRNet to generate a robot mask. The

optimizing loop for the renderer takes the last estimation as initialization and performs

10 updates at each callback to ensure convergence and maintain 1Hz loop rate. In the

experiment, we randomly set the target pose and the position of the camera, and the

robotic system applies PBVS to reach the target pose from an arbitrary initialization,

as shown in Figure 4.6. We ran the experiment for 10 trails with different robot pose

estimation methods, and the translational (Euclidean distance) and rotational errors

(Euler angles) of the end-effector are reported in Table 4.4. The experimental results

show that our proposed method significantly improves the stability and accuracy of the

PBVS, achieving 0.002m averaged translational error and 0.002rad rotational error on the

end-effector.

We also plot the end-effector distance-to-goal over time for a selected trail in Figure

4.7. In this selected trial, the system could not converge with DREAM because the poor

robot pose estimation confuses the controller by giving the wrong target pose in the robot

base frame, which is unreachable. With the differentiable renderer, the servoing system

takes more than 10 seconds to converge and oscillate due to the low loop rate. With

our proposed CtRNet, the servoing system converges much faster (≤ 5 seconds), thanks

to the fast and robust robot pose estimation. We show more qualitative results in the

Supplementary Materials.
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Figure 4.6. Snapshots of PBVS. The goal is to move the end-effector to the target pose
(green). The figure on the right shows the robot configuration upon the convergence of
PBVS.

4.4 Conclusion

We present the CtRNet, an end-to-end image-based robot pose estimation frame-

work, and a self-supervised training pipeline that utilizes unlabelled real-world data for

sim-to-real transfer. The CtRNet, using a keypoint detector for pose estimation while

employing a rendering method for training, achieves state-of-the-art performance on robot

pose estimation while maintaining high-speed inference. The Figure 4.1 illustrates the

advantages of CtRNet over existing methods, where the AUC values are normalized

across two evaluation datasets by taking DREAM and CtRNet as references. We further

experiment with different robot pose estimation methods by applying them to PBVS,

which demonstrates CtRNet’s fast and accurate robot pose estimation enabling stability

when using single-frame robot pose estimation for feedback. Therefore, CtRNet supports

real-time markerless camera-to-robot pose estimation which has been utilized for surgical

robotic manipulation [106] and mobile robot manipulators [137]. For future work, we

would like to extend our method to more robots and explore vision-based control in an

unstructured environment.
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Figure 4.7. The plot of end-effector distance-to-goal over time on a selected PBVS trail.
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Chapter 5

Robot Pose Estimation in the Wild

Estimating the Camera-to-Robot transform is crucial for manipulation, as it links

the visual feedback from the camera to the space where the robot is operating, enabling

accurate model-based robot arm manipulation with visual observations. Calibrating the

Camera-to-Robot transform requires a significant amount of effort. Traditional calibration

methods, such as [39, 90, 35], usually place fixed fiducial markers on the end-effector, collect

images of several robot joint angles, and compute the transformation. These techniques

have proved their advantage in generalizability and availability for different environments

and robots. However, such a procedure requires modification to the robotic system, which

is not always possible, such as in instances where a dataset has already been collected

[91, 61]. Furthermore, the accuracy of the fiducial marker calibration approach is limited

to the accuracy of the fiducial location relative to the robot.

The recent development of deep learning methods makes the markerless robot

pose estimation possible, which can generally be divided into keypoint-based methods

[79, 80, 69] and rendering-based methods [78, 42, 66]. Contrary to classical approaches

that need fiducial markers, deep learning-based pose estimation methods don’t require

cumbersome physical setups for calibration. Instead, they utilize deep neural networks for

feature extraction or segmentation. The robot pose is then estimated using the keypoint

features or the segmented robot masks.
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!	"#

Camera-to-robot transfer

CtRNet-X

Figure 5.1. In real-world robot manipulation scenarios, the camera does not always
capture all the robot links, and the visibility of robot links changes from time to time.
Our method leverages the limited available visual features within the camera view and
achieves state-of-the-art performance on robot pose estimation.

Despite considerable efforts to improve camera-to-robot pose estimation’s flexibility,

existing works have made a strong assumption that the entire robot arm is fully visible

from the camera view. However, in real-world manipulation scenarios, the operating space

is often limited, thus setting spatial constraints on camera placement [71, 106, 91, 61].

Additionally, the shape and size of target objects further complicate the trade-off between

the capturing robot body and the manipulation targets. In such scenarios, the camera

placement is typically driven more by the demands of the manipulation tasks instead of

the need to observe all robot joints motion, as shown in Fig. 5.1. Consequently, video

sequences with partially visible robot arm make up the majority of robotics manipulation

datasets, such as Open X-Embodiment [91] and DROID [61], as shown in Fig. 5.2. Existing
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methods often fail in situations where robots are only partially visible due to these real

world constraints. Therefore, being able to estimate the robot pose with partial views is

important from the practical aspect of robot manipulation scenarios where the camera

can only capture a portion of the robot.

In this work, we introduce a novel framework for Camera-to-Robot Pose Estimation

that extends the markerless robot pose estimation to partially visible scenarios. Our method

integrates the Vision-Language Model (VLM) to detect the visible robot components and

dynamically select the keypoints from visible robot links for the pose estimation. Moreover,

we also improve keypoint detection performance by introducing the distribution-aware

coordinate representation [146] to our previous development for the pose estimation network

[80]. We evaluate our framework on both fully visible and partially visible setups and

achieve state-of-the-art performance on the public robot pose dataset and our self-collected

dataset. In summary, our contributions are threefold:

• We present a framework for markerless camera-to-robot pose estimation for more

practical manipulation setups, where often only parts of the robot can be observed

from a camera.

• We show the benefits of using the vision-language foundation model with few-shot

learning for robot part detection and integrate it into the pose estimation framework.

• We show that our method achieves state-of-the-art performance compared to the

existing methods on the benchmarking dataset while demonstrating the capability of

estimating accurate camera extrinsic information for large-scale robot manipulation

datasets.
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Figure 5.2. Sample images are from DROID robot learning dataset [61]. Often, only
certain parts of the robot are visible in the camera view, and sometimes none of them are
visible.

5.1 Related Works

Camera-to-Robot Pose Estimation. Traditionally, the camera-to-robot pose is

calibrated using the fiducial markers [39, 90]. For articulated robots, the fiducial markers

provide 2D point features on the robots, the 3D position of the markers can be calculated

using robot kinematics, and the robot pose can be derived by solving a Perspective-n-Point

problem [93, 34, 52, 48].

As the field evolved, there was a shift towards markerless pose estimation. Initial

efforts in this direction utilized depth cameras to localize articulated robots [116, 96, 85, 33].

With the rise of Deep Neural Networks (DNNs), a new paradigm emerged. DNNs,

with their advantages of extracting point features without the need for markers, have

significantly enhanced the performance of markerless pose estimation for articulated

robots [68, 69, 79, 153]. Beyond keypoint-based methods, recent works [66, 78, 22]
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have demonstrated the potential of rendering-based methods. Benefiting from the dense

correspondence provided by robot masks, rendering-based methods achieve state-of-the-art

performance on robot pose estimation, but with compromise on the processing speed

due to iterative render-and-compare. Most recently, [80] proposed CtRNet, which uses

robot masks to supervise the keypoint detector, achieving comparable performance to

rendering-based methods while maintaining real-time inference speed. Nonetheless, existing

methods focus on scenarios where the robot manipulator is fully observable. In real-world

manipulations, it’s non-trivial to set up the camera and the manipulator such that all

the robot links stay within the camera view during the episodes, thereby diminishing

the generalizability of existing methods when dealing with less constrained, real-world

environments. In contrast, our proposed method overcomes this limitation by integrating

a vision-language foundation model to detect the visibility of different robot parts and

dynamically select the keypoints from visible robot parts for pose estimation.

Robot Part Detection. With the rapid development of deep learning, con-

volutional neural networks (CNNs) have demonstrated superior performance in object

detection. The introduction of residual connections in ResNet [43] makes it easier to

construct deeper CNN architectures, hence achieving human-level performance on image

recognition. However, deep neural networks typically require very large datasets to learn,

which demands substantial hardware resources as well as labeling efforts. Furthermore,

data is often not available due to not only the nature of the problem or privacy concerns

but also the cost of data preparation [94].

Recent developments of Vision-Language Models (VLMs), such as CLIP [100], have

achieved remarkable performance on open-vocabulary object detection through training on

large-scale datasets collected from the Internet. Recent research has focused on customizing

the training and fine-tuning the CLIP model for specific downstream tasks. For example,

CoOp [150] optimizes the tokenized prompt vectors while freezing the model, reducing

training time and maintaining the model’s performance. Some following works [9], [19],
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[81], [143], [151] further improve prompt learning’s capability. Additionally, Parameter-

Efficient Fine-Tuning (PEFT) like Bitfit [145] and Clip-adapter [37] focuses on VLM model

optimization while attempting to minimize the number of training parameters, balancing

training time and performance. However, the existing work mainly considers individual

and common object classification, whereas their performance on fine-grained object parts

detection is still unexplored. In this work, we explore several methods to tackle this

challenge and demonstrate an effective way of fine-grained robot parts detection with

few-shot learning samples.

5.2 Methodology

In this section, we introduce our framework for camera-to-robot pose estimation.

The inference pipeline of our framework is shown in Fig. 5.3. Our framework builds

upon CtRNet [80], extending it to handle partially visible scenarios. We utilize the vision-

language foundation model, CLIP [100], to identify the visible robot parts in the image

frame hence selecting which keypoints to use for robot pose estimation. Moreover, we

also incorporate the Distribution-Aware coordinate Representation of Keypoint method

(DARK [146]) into our framework to further enhance the performance of keypoint detection.

In Section 5.2.1, we detail our approach to fine-tune the CLIP model for robot part

detection. In Section 5.2.2, we first provide an overview of CtRNet and then introduce

our improvements.

5.2.1 Few-shot Learning for Robot Parts Detection

VLM Fine-tuning. Different from classifying the individual objects within images,

our problem lies in detecting the components of the robot. Although vision-language

foundation models demonstrate the capability of zero-shot object classification, they do

not perform well in detecting robot parts. This is because the training data from the

Internet lacks fine-grained semantic labels (e.g. robot end-effector, robot base). In order
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Figure 5.3. Model inference pipeline. CtRNet-X estimates camera-to-robot transform
given the images and the corresponding joint angles. The framework uses a set of
structured prompts and the fine-tuned CLIP model to detect which robot parts are
visible and dynamically adjusts the keypoint selection. The keypoint detector outputs
2D keypoints, and the corresponding 3D keypoints are obtained from the robot forward
kinematics. Finally, a PnP solver is utilized to estimate the camera-to-robot transformation
matrix given the selected keypoint correspondence.

to fine-tune the VLM to detect the robot parts in the images, we collected a small number

of samples from the robot learning dataset, DROID [61], and investigated the few-shot

transfer capability of the popular vision-language foundation model, CLIP [100].

Training a large model like CLIP with a small dataset can be challenging. To address

this, we employ the parameter-efficient fine-tuning method, Low-Rank Adaptation (LoRA

[50]), and a strategic prompting method for fine-tuning the CLIP. LoRA provides inspiration

on freezing the pre-trained model weights and injects trainable rank decomposition matrices

into each layer of the Transformer architecture. We add the LoRA module on both text

and image encoders of the CLIP. For a forward linear passes h = W0x, we apply LoRA

such that

h = W0x+∆Wx = W0x+BAx (5.1)

where the W0 is the pre-trained weight matrix of the self-attention module of CLIP, and

∆W is the trainable weight matrix. Specifically, W0 ∈ Rd×k, B ∈ Rd×r and A ∈ Rr×k,

where the r represents the low intrinsic dimension and r ≪ min(d, k). During the training,

we only optimize the weights of these low-rank matrices B and A which have significant
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fewer parameters, while freezing the pre-trained weight. This approach allows for fast and

efficient fine-tuning.

Prompt Strategy. The prompt plays a crucial role in VLMs as a good prompt

strategy can improve the performance of the model without extra effort. A typical prompt

for CLIP is formulated as A photo of {object}. For classification, the {object} is replaced

with different class labels, and the CLIP will select the class based on the cosine similarity

between the image embedding and text embedding. In our scenario, the {object} is defined

as the name of the robot components (e.g. robot base, robot end-effector). However,

since the text of different robot parts is semantically similar, we have found that it is

more effective to separate the queries for different components. Specifically, for each

robot part, we input a pair of prompts (A photo of robot {component}, A photo without

robot {component}). CLIP conducts binary classification for each component individually,

thereby eliminating ambiguity when choosing from semantically close text embeddings.

To investigate the few-shot capability of VLM for robot part detection, we conducted

a comparison of different few-shot learning approaches. These included parameter-efficient

fine-tuning method (LoRA [50]), prompt learning method (CoOp [150]), and traditional

image classification using ResNet [43] on the dataset we scraped from DROID.

5.2.2 Camera-to-Robot Pose Estimation

CtRNet Overview. The Camera-to-Robot Pose Estimation Network (CtRNet

[80]) is the pioneer method for end-to-end robot pose estimation. The CtRNet includes

a segmentation network, a keypoint detection network, and a differentiable Perspective-

n-Point solver (BPnP [18]). During the inference time, given the image frames and

corresponding joint angles, the keypoint detector predicts the 2D keypoint coordinates on

the robot manipulator, and the PnP solver estimates the robot pose with 2D-3D keypoint

associations. The CtRNet is pre-trained on the synthetic dataset with ground-truth labels

of segmentation masks and keypoint coordinates and is fine-tuned in the real-world data
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without labels in a self-training manner. In the self-training phase, a differentiable renderer

is utilized to compute the robot mask based on pose estimation, and the masks obtained

from the segmentation network are leveraged to provide image-level supervision to optimize

the keypoint detector.

Model Training. In this work, we follow the training strategy of the CtRNet

with modified keypoint placement. The CtRNet defines the keypoint at the location of

each robot joint. To ensure the framework has a sufficient number of keypoint to estimate

the pose for each image frame with partial view, we place N (N ≥ 4) number of keypoints

for each robot link. During the pre-training phase, CtRNet uses coordinate regression for

training the keypoint detector, which minimizes the L2 distance between the ground-truth

and predicted keypoint coordinates. Inspired by DARK [146], we adapt heatmap regression

for training the keypoint detector. The heatmap provides spatial support around the

ground-truth location, taking into account contextual clues and the inherent ambiguity of

the target position. Importantly, this approach can effectively reduce the risk of overfitting

in the model during training, similar to the concept of class label smoothing regularization.

The heatmap regression minimizes the per-pixel L2 distance between the predicted and

ground-truth heatmap. In this work, we assume the heatmap should follow the Gaussian

distribution. To supervise the heatmap prediction, the ground truth keypoint coordinates

are encoded into the Gaussian heatmap, D, as

D(u, v) = 1

2πσ2
exp

(
−(u− u∗)2 + (v − v∗)2

2σ2

)
(5.2)

where u, v are pixel coordinates in the heatmap, u∗, v∗ are the ground truth keypoint

coordinates, and σ is the predefined spatial variance. After pre-training on the synthetic

dataset, we conduct self-supervised training on the real-world data without labels. The

objective of self-training is to optimize the neural network parameters by minimizing the

difference between the segmentation robot mask and the robot mask rendered based on the
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predicted pose. We follow the same self-training strategy as the CtRNet and the details

can be found in [80].

Model Inferencing. During the inference phase, we integrate the distribution-

aware coordinate decoding [146] to extract 2D coordinates of keypoints from the predicted

heatmap. We assume the predicted heatmap follows a 2D Gaussian distribution:

G(x;µ,Σ) = 1

(2π)|Σ|1/2
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
(5.3)

where x is the pixel location, µ is the Gaussian mean and Σ is the distribution’s covariance.

In order to estimate µ, we follow the maximum likelihood estimation principle and

transform the distribution function to the Log-likelihood function:

P(x;µ,Σ) = ln(G) = − ln(2π)− 1

2
ln(|Σ|)− 1

2
(x− µ)⊤Σ−1(x− µ) (5.4)

Following [146], we can approximate µ using the maximum activation m of the predicted

heatmap, as the maximum activation generally represents a good coarse prediction that

approaches µ. Then, we can approximate P(µ) using the Taylor series expansion evaluated

at m:

P(µ) = P(m) +D′(m)(µ−m) +
1

2
(µ−m)⊤D′′(m)(µ−m) (5.5)

Solving the above equation, we can obtain the equation to estimate µ as

µ = m− (D′′(m))
−1D′(m) (5.6)

where the D′′(m) and D′(m) are the first and second image derivative of the predicted

heatmap at the maximum activation m. The detailed derivation can be found in [146].

For robot manipulation tasks, the robot and camera positions often remain fixed

throughout the episode. We can leverage this temporal consistency to improve the accuracy
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of estimation. Instead of estimating the robot pose for each single frame, we estimate it

based on a batch of image frames from a single episode. To perform batch estimation, we

first use CLIP to predict which parts of the robot are visible in each image frame and

select the keypoints that appear on the visible parts. Since we have more than enough

keypoints to solve for the pose, we prioritize the keypoints with high confidence. We

evaluate each keypoint based on the maximum activation value in the heatmap, denoted

as |m|, and filter out the keypoints with a maximum activation value below a certain

threshold. Finally, we combine all the reliable keypoints from multiple frames and use the

PnP solver to estimate the robot pose.

5.3 Experiments and Results

5.3.1 Implementation Details

We implemented the framework in Pytorch. The CLIP for robot parts detection

is fine-tuned using an NVIDIA RTX 3090 GPU, while the pre-training and self-training

of the keypoint detector are conducted on an NVIDIA RTX A6000 GPU. For few-shot

learning comparisons, the network or prompt parameters are trained for 200 epochs, given

the small sample size and the models converge quickly. For fine-tuning the CLIP using

LoRA, we apply low-rank matrices on the query, key and value matrices for both image

and text encoders with r = 2.

For the keypoint detector, we pre-train the neural network on synthetic data from

the DREAM dataset [69] and follow the training parameters from the CtRNet [80]. The

standard deviation of the Gaussian heatmap is set to 6 pixels. In the robot manipulation

scenarios, the most common visible components are the robot end-effector and robot base.

Hence, we simplify our framework to specifically recognize the robot end-effector and robot

base. We place 6 keypoints for each of the links representing the robot end-effector and

robot base (see example in Fig. 5.3). For self-training, we utilize the DREAM-real dataset
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and our self-collected Panda manipulation dataset.

5.3.2 Few-shot Learning for Robot Parts Detection

To examine the performance of VLM for robot parts detection, we compare popular

fine-tuning methods, including Low-Rank Adaption [50], prompt learning [150], and full-

fine-tuning. Moreover, we also include classical object recognition technique using ResNet

[43] with ImageNet pretrained weights. For simplicity, we conduct the experiment on

detecting the robot end-effector and robot base links. We train the networks on the

training dataset scraped from DROID [61] and evaluate the performance on a test dataset

that has various unseen environments. We experiment with 3 random seeds and report

the average top-1 accuracy for each category. The results are shown in Table 5.1. We

found that increasing the number of learning samples improves performance in general.

However, the improvement becomes marginal when the training dataset becomes larger.

Fine-tuning the CLIP with LoRA achieves better performance overall and requires less

training time when learning with 32 shots.

99



T
a
b
le

5
.1
.
C
om

p
ar
si
on

of
to
p
-1

ac
cu
ra
cy

(%
)
an

d
tr
ai
n
in
g
ti
m
e
(s
)
of

d
iff
er
en
t
fi
n
e-
tu
n
in
g
m
et
h
o
d
s
on

ro
b
ot

p
ar
ts

d
et
ec
ti
on

w
it
h
fe
w
-s
h
ot

le
ar
n
in
g.

W
e
ev
al
u
at
e
th
e
d
et
ec
ti
on

ac
cu
ra
cy

fo
r
th
e
ro
b
ot

b
as
e
(B

as
e)

an
d
ro
b
ot

en
d
-e
ff
ec
to
r
(E

E
).
T
h
e
re
su
lt
s

ar
e
b
as
ed

on
th
e
av
er
ag
e
of

3
se
ed
s.

F
in
e-
tu
n
in
g
C
L
IP

u
si
n
g
L
oR

A
ac
h
ie
ve
s
go

o
d
p
er
fo
rm

an
ce

w
it
h
sh
or
t
tr
ai
n
in
g
ti
m
e.

M
et
h
o
d

0
sh
ot
s

4
sh
ot
s

8
sh
ot
s

16
sh
ot
s

32
sh
ot
s

E
E
(%

)
B
as
e
(%

)
T
im

e
(s
)

E
E

B
as
e

T
im

e
E
E

B
as
e

T
im

e
E
E

B
as
e

T
im

e
E
E

B
as
e

T
im

e

R
es
N
et
50

[4
3]

-
-

-
62
.7
6

62
.2
3

3
1
.1
7

70
.5
6

69
.4
3

4
6
.1
4

79
.4
3

79
.4
6

7
2
.9
0

91
.1
3

77
.2
3

13
8.
91

R
es
N
et
15
2
[4
3]

-
-

-
55
.0
0

61
.1
0

70
.2
3

62
.7
6

61
.6
6

85
.1
6

71
.6
6

67
.2
3

12
1.
90

91
.6
6

75
.5
6

20
3.
34

C
oO

p
[1
50
]

75
.0
0

63
.3
3

-
8
2
.7
6

67
.7
6

69
.7
0

8
6
.7
0

73
.3
3

87
.1
0

87
.2
3

72
.2
3

13
8.
82

93
.3
3

68
.9
0

15
9.
79

C
L
IP

(F
u
ll
F
in
e-
tu
n
in
g)

75
.0
0

63
.3
3

-
76
.6
6

72
.2
0

31
6.
06

82
.2
3

72
.7
6

33
0.
69

86
.1
3

75
.0
0

36
5.
27

90
.0
0

80
.0
0

45
0.
81

C
L
IP

(L
oR

A
[5
0]
)

75
.0
0

63
.3
3

-
76
.6
6

8
1
.1
3

40
.7
0

81
.1
0

8
0
.5
6

57
.8
9

9
2
.7
6

8
0
.5
6

89
.5
1

9
6
.7
0

8
7
.2
3

1
0
8
.3
3

100



5.3.3 Experiment on DREAM-real Dataset

We benchmark the robot pose estimation performance of CtRNet-X on the DREAM-

real [69] dataset. The DREAM-real dataset consists of real-world images of the Franka

Emika Panda robot arm captured from three different camera setups with total of around

57k image frames. We evaluate our method, together with other state-of-the-art robot

pose estimation methods, on a single-frame setup. We adopt average distance (ADD)

metric to evaluate the pose estimation accuracy,

ADD =
1

n

n∑
i=1

∥∥∥T̃c
bpi −Tc

bpi

∥∥∥
2

(5.7)

where T̃c
b and Tc

b stand for the ground truth and estimated pose respectively. The area-

under-the-curve (AUC) value and mean ADD are reported in Table 5.2. Benefiting from

the advanced distribution-aware coordinate decoding method, CtRNet-X achieves higher

AUC and lower mean errors compared to existing methods.

5.3.4 Experiment on Panda Manipulation Dataset

The DREAM-real dataset only includes images where the robot arm is fully visible.

To better evaluate our performance in real-world robot manipulation scenarios, we collected

the Panda manipulation dataset. This dataset contains scenarios where only certain parts

of the robot are visible during manipulation, and the robot arm is sometimes in and out

of the image frame.

This dataset includes 60 video episodes: 30 robot-in-view episodes, where the

visibility of the robot parts remains the same throughout the episode, and 30 robot-in-

and-out episodes, where the visibility of the robot parts changes throughout the episode.

Each episode comes with synchronized robot joint angles and ground-truth camera-to-

robot transformation. The camera-to-robot transformation is carefully calibrated using a

checkerboard. To reduce calibration errors, we verify the calibration results by projecting
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Figure 5.4. Qualitative results on Panda manipulation dataset. The first row is rendered
robot masks using ground-truth extrinsic calibration (green) and the second row is the
rendered robot masks using the pose from CtRNet-X (blue).

the points at each link and overlaying the robot masks to ensure alignment with the images.

We compare our method with the original CtRNet [80], and report the ADD metric in

Table 5.3. Additionally, we have provided the qualitative results in Fig. 5.4. Our method

demonstrates significant improvements in partial-view robot pose estimation compared

to the previous method. By leveraging temporal consistency through batch estimation,

CtRNet-X further improves accuracy by a significant margin.

5.3.5 Experiment on DROID Dataset

In this section, we demonstrate that our method can be used to obtain accurate

extrinsic calibration for large robot learning datasets. DROID [61] is a large-scale in-the-

wild robot manipulation dataset. We randomly sampled video episodes from the DROID
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and applied CtRNet-X to obtain the camera-to-robot transformation. We show some of

the qualitative results in Fig. 5.5, where we render the robot masks based on the estimated

robot pose.

To quantitatively evaluate our pose estimation performance on DROID, we use Seg-

ment Anything [63] to obtain the ground-truth robot masks and compute the Intersection

over Union (IoU) for the rendered robot masks. Due to labeling intensity for a hand-labeled

ground-truth, we randomly selected 10 video episodes from DROID, which in total contain

3232 image frames, to label the ground-truth robot masks. The CtRNet-X achieves the

average IoU of 0.8356. We noticed that using the extrinsic information provided by the

dataset, the average IoU of the rendered robot mask is 0.0186, demonstrating that the

extrinsic calibration is prone to having errors which highlights the necessity for accurate

extrinsic calibration using our method.

Figure 5.5. Qualitative results of our method on the real-world manipulation dataset
DROID [61]. The first row is the raw image frames, the second is the robot masks rendered
based on the estimation of the original CtRNet (orange), and the third row is the robot
masks rendered based on the estimation of the CtRNet-X (blue). As shown above, CtRNet
fails under real-world conditions whereas our method exhibits greater generalizability.
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Table 5.2. Performance comparison of different methods on DREAM-real dataset. We
report the overall keypoint accuracy for the mean ADD and AUC of ADD.

Method Category AUC ↑ Mean (m) ↓

DREAM-F [69] Keypoint 60.740 113.029
DREAM-Q [69] Keypoint 56.988 59.284
DREAM-H [69] Keypoint 68.584 17.477
RoboPose [66] Rendering 80.094 0.020
CtRNet [80] Keypoint 85.962 0.020
CtRNet-X Keypoint 86.231 0.014

Table 5.3. Qualitative results on Panda Manipulation Dataset. We report the overall
mean and AUC of ADD with both single-frame and batch estimation.

Method
robot in view robot in-and-out

AUC ↑ Mean (m) ↓ AUC ↑ Mean ↓

CtRNet (single frame) 16.764 0.381 35.944 0.335
CtRNet-X (single frame) 60.317 0.059 59.828 0.056
CtRNet-X (batch) 70.817 0.038 79.665 0.022

5.4 Conclusion

We propose CtRNet-X, an end-to-end image-based robot pose estimation framework

that can generalize to real-world robot manipulation scenarios. We employ the VLM,

CLIP, for robot parts detection and dynamically select the keypoints of the visible robot

parts. The robot pose is then estimated using a PnP solver with selected 2D and 3D

keypoint correspondence. We evaluate our method on the public robot pose dataset and

self-collected manipulation dataset, demonstrating the superiority of our method in both

fully and partially visible scenarios. Admittedly, the performance of the framework would

be limited by the visible robot parts since we only utilize the robot end-effector and robot

base links for pose estimation. However, our approach can be extended to finer granularity

by including more robot parts. In the future, we will extend our method to different

robots, incorporate kinematic uncertainty [106], and investigate the performance in more

complex environments.
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Chapter 6

Conclusion

This dissertation has explored novel approaches for image-based robot pose estima-

tion, with a focus on enhancing flexibility and accuracy in camera-to-robot pose estimation

for robotic manipulators. The proposed methods, which bypass the need for fiducial

markers, address longstanding challenges in robot pose estimation by introducing deep

learning-based, markerless solutions suitable for dynamic and unstructured environments.

This work contributes both theoretical advancements and practical implementations to

the field of robot perception, demonstrating methods that can be applied across various

robotic systems, such as robot manipulators, surgical robots, and snake-like robots.

6.1 Summary of Contributions

The first contribution of this work is the development of a keypoint-based approach

to robot pose estimation, as discussed in Chapter 2. This approach leverages deep neural

networks to detect robot keypoints from visual data. By optimizing the selection of

keypoints and applying Domain Randomization for sim-to-real transfer, this approach

demonstrates robust performance in robot pose estimation across diverse tasks, with

significant improvements in accuracy and speed over traditional methods.

A second contribution is the introduction of a rendering-based method in Chapter

3, which utilizes differentiable rendering to iteratively refine pose estimates by minimizing
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the difference between rendered and observed data. This method addresses pose estimation

challenges in scenarios with limited feature visibility. By utilizing dense image-level

supervision, this method achieves state-of-the-art performance and demonstrates enhanced

robustness.

By integrating the above methods with probabilistic filtering techniques such as

Particle Filters and Kalman Filters, this dissertation demonstrates the capability of online

pose tracking. This capability is particularly valuable for real-time applications like surgical

task automation and space exploration. These results indicate the methods’ adaptability

and reliability in dynamic settings where precise, continuous tracking is essential.

To overcome the limitations of sim-to-real domain adaptation, Chapter 4 proposed

a self-supervised training framework that enhances the generalization capability of the

model. This approach integrates keypoint-based and rendering-based methods, leveraging

their complementary strengths to improve robustness in real-world environments, without

the need for human-labeled data.

Finally, this work extends the camera-to-robot pose estimation framework to

scenarios where robots are only partially visible within the camera’s field of view. By

incorporating a vision-language foundation model to detect visible robot parts, this

framework broadens the scope of practical applications, allowing for reliable pose estimation

even in cluttered and partially occluded environments.

6.2 Future Work

While this dissertation has made substantial strides in advancing markerless robot

pose estimation, several promising avenues for future work remain: 1) Extension to

multi-camera and multi-robot systems: Future research could extend these approaches

to scenarios involving multiple cameras and robots, where accurate, synchronized pose

estimation across several viewpoints or robot agents is required. Such applications are
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relevant for collaborative robotics and environments where robots interact closely with

humans or other robots. 2) Adaptive models for variable environments: Incorporating

adaptive models that respond to changes in lighting, background, and environmental factors

would increase the robustness of the pose estimation methods. Exploring meta-learning

and active learning paradigms could further improve model adaptability. 3) Application

to soft robotics and deformable objects: While this work primarily focuses on rigid-body

manipulators, extending the techniques to soft robots or deformable objects is a promising

direction. This would involve refining the keypoint-based or rendering-based approach to

account for non-rigid shapes, enabling applications in fields such as medical robotics and

agriculture.

The advances presented in this dissertation reflect the potential of deep learning in

transforming robot pose estimation from a labor-intensive process to a more flexible and

robust solution. By demonstrating the feasibility and effectiveness of markerless approaches

in diverse robotic applications, this work contributes to the ongoing evolution of intelligent

robotic systems. It is anticipated that the findings and methodologies developed here

will serve as a foundation for further research, inspiring continued innovation in robotic

perception, automation, and human-robot collaboration.
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