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ABSTRACT OF THE DISSERTATION   

 

Physics-Based Failure Modeling of Manganese Dioxide Pseudocapacitors with  

Probabilistic Methods for Improved Lifetime Prediction and Energy System Operation 

 

by   

 

Bineh Ndefru 

 

Doctor of Philosophy in Materials Science and Engineering  

University of California, Los Angeles, 2023  

Professor Ali Mosleh, Co-Chair   

Professor Bruce S. Dunn, Co-Chair 

 

As we shift away from fossil fuel-derived energy and the electrification of various systems grows 

exponentially, society is increasingly relying on energy storage systems such as batteries to store 

and distribute energy on demand. While batteries are a widely studied technology, other energy 

storage technologies such as supercapacitors have unique performance qualities that can provide 

alternatives or supplements to batteries in systems. This dissertation delves into MnO2 

pseudocapacitors, aiming to unravel the degradation mechanisms impacting their performance 

and reliability under diverse operating conditions, toward their usage (or other pseudocapacitive 

materials) in real systems. While there is a growing body of research on pseudocapacitors, 

including MnO2-based pseudocapacitors, little work has gone into frameworks for predicting 
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their behavior under various environmental and operating conditions. Through a multifaceted 

approach of experimental investigation, physics-based modeling, and probabilistic analyses, this 

research centers on elucidating the impact of temperature and degradation of active material on 

the aging of devices, ultimately predicting capacitance reduction over time. 

Two approaches are taken in this research to predict end of life for pseudocapacitors. The first 

approach utilizes a first-principles physics model, augmented with Bayesian methods to integrate 

experimental and statistical information with uncertainties into the model. This method allows 

for the prediction of changes happening in the cell over numerous cycles, and the associated 

capacitance reductions.  The second approach develops for the first time the use of a Bayesian 

Monte Carlo approach for estimating the remaining useful life (RUL) of pseudocapacitors based 

on experimental data with quantified uncertainty. The combination of estimates from these 

models can lead to improved prediction based both on real world experience through data and on 

theoretical knowledge of the system. 

Overall, this dissertation advances the prediction of aging in MnO2 pseudocapacitors and 

develops models that can be applied to various other pseudocapacitive systems. These 

contributions lay a foundation for further exploration that may decrease the time required to 

conduct pseudocapacitor experiments and contribute to the management and longevity of energy 

storage systems containing pseudocapacitors.  
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CHAPTER 1 

1. Introduction 

1.1. Motivation 

Worldwide, there is escalating demand for energy storage systems for a variety of uses. Electric 

vehicle sales are increasing exponentially in many regions of the world [1], requiring more 

innovation on the electrochemical energy storage (EES) systems that power them. Another 

pressing need is to increase the integration of renewable energy sources such as solar and wind 

into the power grid. Due to their inherent intermittency, these energy systems can cause 

destabilization to power grids that are already often unreliable and vulnerable. Blackouts across 

the United States are the result of weather events and equipment failures and have been 

estimated to cost $150 billion each year [2]. As climate change worsens, the grid is more 

susceptible to extreme weather events and more catastrophic blackouts are predicted to occur. 

Energy storage systems offer solutions to these challenges of intermittency and peak loads, 

enabling faster integration and better utilization of renewable energy sources on the grid while 

also enhancing the reliability of the aging power infrastructure, and resiliency to extreme events.  

 

A subject of extensive research, EES is a versatile technology that converts stored chemical 

energy into electricity, finding a wide variety of applications from personal devices to utility 

level energy storage. Traditional EES, such as batteries, while effective, face limitations from 

relatively slow charging rates and short cycle life. Electrical double layer supercapacitors 

(EDLCs) are a type of EES and a compelling research pursuit due to their unique characteristics 

including high power density, long cycle life, rapid charging, high efficiency, and environmental 

friendliness, though they may suffer from lower energy density that batteries [3]. 
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Pseudocapacitors (a type of supercapacitor) have emerged as a promising storage solution due to 

their ability to combine high energy and power density. The Ragone plot in Figure 1. indicates 

that pseudocapacitors have not only the ability to store more energy than capacitors or EDLCs, 

but can also offer higher power densities than batteries, a boon for applications that require fast 

charging and discharge, such as electric vehicles.  

 

 

Figure 1. Ragone plot comparing energy and power densities for capacitors, batteries, and supercapacitors 

[3]. 

One of the key advantages of pseudocapacitors lies in their ability to respond rapidly on the 

second-to-minute time frame, outperforming traditional batteries that typically respond in the 

minute-to-hour time frame or some mechanical energy storage systems that respond in the day-

month time frame. This enables pseudocapacitors to efficiently address challenges related to 

power quality, intermittent balancing, load following, frequency response, voltage support, black 

start conditions, and avoid potential shutdowns (see Figure 2) [4]; or to recover more energy and 
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extend the life of electric vehicle batteries that face high discharge currents from regenerative 

braking, for example [5]. This rapid response capability makes pseudocapacitors particularly 

well-suited for dynamic operations, where real-time adjustments are required to maintain 

stability and reliability. Their versatility makes them potentially valuable assets for many energy 

systems.  

 

To achieve reliability in complex systems like a power grid or an electric vehicle, it is necessary 

to achieve efficiency and reliability in the various components that support storage, conversion, 

and utilization of energy sources. Many researchers claim remarkable cycling stability (i.e. 

stability of capacitance and resistance values) of their pseudocapacitor devices, some on the 

order of 100,000 or more [6]. This far exceeds conventional batteries, most with cycle lives less 

than 1000 cycles. Despite these claims for some pseudocapacitors, cycle and calendar aging 

(including degradation that occurs when not in use) are difficult and often intractably long to 

determine for the wide variety of environmental and experimental conditions devices may be 

subject to. While there is novel research on pseudocapacitor physics, there is little work that aims 

for their utilization in critical systems by simulating and predicting how they may behave for 

these long periods of time under varying conditions. As pseudocapacitors become 

commercialized, understanding the physics and being able to accurately predict supercapacitor 

lifetime under real-world conditions is critical to the operation of systems and the people that 

they support. This research aims to enable system optimization and lifetime prediction with 

physics-based modeling and probabilistic modeling of pseudocapacitor behavior and degradation 

under different loads and environmental conditions. 
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Figure 2. (Left) Power requirements and timescales for various grid services, as compared to the energy 

storage options (right) that can deliver power on these time scales and at those power ratings [4]. 

 

1.2. Background 

1.2.1. Energy Storage Mechanisms of Pseudocapacitors 

Pseudocapacitors are able to achieve the charge/discharge rates and relatively high theoretical 

capacitance values that set them apart from batteries and EDLCs due to a unique combination of 

charge storage mechanisms. Capacitors store limited charge because the storage mechanism is 

electrostatic interactions that only occur near the surface of the electrode. Batteries store charge 

via bulk diffusion-limited processes that necessitate structural changes which impede the kinetics 

of the charge transfer process. Pseudocapacitors, however, undergo fast and reversible faradaic 

battery-like redox reactions at the surface of the electrode wherein charges are transferred, or 

intercalation in the bulk of the material due to ion channels in the structure of the electrode. 
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Figure 3. Schematic of charge transfer processes of redox reactions and intercalation pseudocapacitance 

into the bulk of electrodes, as compared to EDLCs and battery-like devices [7]. 

 

Transition metal oxides such as ruthenium oxide (RuO2), manganese oxide (MnO2) nickel oxide 

(NiO), cobalt oxide (Co3O4) are commonly used as pseudocapacitor electrodes. Amorphous 

MnO2 pseudocapacitive electrodes in sodium sulfate (Na2SO4) electrolyte are the focus of this 

study. The Mn and Na species involved undergo a redox reaction, wherein Mn is reduced and 

gains electrons, while Na is oxidized and loses electrons. The electron charge transfer is 

mediated by the transport of Na+ to the surface of MnO2 where the valence of Mn changes from 

Mn4+ to Mn3+ to Mn2+. The reaction is shown in equation (1).  

 𝑀𝑛𝑂2 + 𝑁𝑎+ + 𝑒− ⟷ 𝑁𝑎 ∙ 𝑀𝑛𝑂2 (1) 

Low electronic conductivity limits redox reactions to the surface of the electrode. Despite this, 

the theoretical capacity of MnO2 is 308 mAh/g over a potential window of 0-0.9V. Bulk 

diffusion is thought to be the predominant influence on the performance, as compared to 

variations in surface area, due to high ion diffusion rates in various crystal structures that have 

been observed [8]. Amorphous MnO2, however, is unlikely to have long range order that is 

thought to facilitate bulk ion diffusion. Therefore, it is assumed in this study that the reactions 
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are not intercalation reactions and have a greater dependence on surface area for the surface 

redox reactions. Because amorphous, however, the surface features structural defects that can 

enhance diffusion kinetics [9].  

1.2.2. Pseudocapacitor Aging and Degradation (Failure Modes and Mechanisms) 

Some researchers have reported cycling stability of MnO2 pseudocapacitors up to 20,000 cycles 

[10]. Despite these successes and the claim of theoretical long life and long-term stability, 

supercapacitors often show pronounced performance degradation in operation [11]. Like EDLC 

materials which have been more widely studied Figure 4. Common failure mechanisms in 

supercapacitors , [13], [14] (see Figure 4), there are various failure mechanisms for 

pseudocapacitors. A common failure mode for pseudocapacitors is electrode material 

degradation, particularly in transition metal oxide-based pseudocapacitors like MnO2 and RuO2. 

During charge and discharge cycles, repeated redox reactions can lead to material degradation, 

resulting in the loss of active surface area and reduced capacitance over time. MnO2 under the 

inappropriate conditions can be irreversibly reduced to lower valence products that produce 

soluble Mn2+ ions. The reaction in equations (2) and (3) shows the dissolution reactions for 

acidic and basic electrolytes respectively. [15]  

 𝑀𝑛2𝑂3 + 2𝐻+ → 𝑀𝑛2+ + 𝑀𝑛𝑂2 + 𝐻2𝑂 (2) 

 2𝑀𝑛𝑂𝑂𝐻 → 𝑀𝑛2+ + 𝑀𝑛𝑂2 + 2𝑂𝐻− (3) 

Dissolution decreases the availability of active material for capacitance. This phenomenon is 

more severe at higher temperatures, larger surface areas, low electrolyte pH, and higher 

potentials [16, 17, 18]. The dissolved transition metal ions, however, can go through a 

subsequent process of redeposition on the positive electrode in various forms [19]. While many 

researchers report capacitance degradation with dissolution, Yang et al. [20] found that some 
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dissolved Mn2+
 re-oxidizes to a birnessite-phase of MnO2 and redeposits on the surface in a 

flower-like nanostructure. This new morphology and phase was an improvement on the 

interlayer spacing of the other ramsdellite phase present, suggesting a self-repairing process of 

dissolution and redeposition. Therefore, it seems possible to either achieve better or worse 

capacitance upon cycling MnO2 depending on the starting phase of the material.   

 

Studies on MnO2 based electrodes have also reported morphological and structural changes that 

may impact cycling stability [21, 22]. Additionally, mechanical stress and volume changes 

during charge-discharge cycles can cause electrode delamination or cracking, leading to the 

formation of non-conductive regions and further capacity loss [12]. [23] suggests another route 

of mechanical degradation resulting from oxygen evolution and volumetric variation, leading to 

poor conductivity in manganese flakes/petals.  

 

 

Figure 4. Common failure mechanisms in supercapacitors [12] 

Self-discharge is another phenomenon that hinders the long-term performance and efficiency of 

pseudocapacitors. Self-discharge is the decrease in capacity from a spontaneous drop in voltage 

when the device is disconnected from an external circuit. This arises as the device goes back to 
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an equilibrium state, wherein non-equilibrium charge carriers in the electrolyte and electrode 

recombine since electronic charges can no longer pass through an external circuit [24, 25]. This 

causes unwanted side-reactions and parasitic processes, involving slow ion migration and 

chemical reactions at the electrode-electrolyte interface. While batteries also experience self-

discharge, pseudocapacitors experience self-discharge to a greater degree, in some cases 

experiencing a 10% loss of stored energy within an hour [25]. Improving the self-discharge 

characteristics of pseudocapacitors is an important area of research. While many experimentalists 

conduct consecutive cycles from which to build lifetime models, a robust lifetime model should 

account for this mechanism that occurs on the calendar life rather than the cycle life scale and 

inhibits these devices from making headway in real applications. While it may not pose a 

problem for connected systems with intermittent recharge (such as electric vehicle regenerative 

breaking), the inability to maintain capacity would be impractical for systems in which they are 

required to remain on standby.   

 

Another failure mechanism arises from electrolyte degradation. Over extended cycling or high 

temperatures, the electrolyte can undergo chemical breakdown, resulting in the formation of side 

products and gas evolution. These processes may lead to an increase in the cell's internal 

resistance, reducing charge transfer efficiency and overall capacitance. As with electrolyte 

degradation, temperature plays a significant role in influencing supercapacitor performance and 

failure at the separator, electrodes together decreasing the lifespan of the device by 50% for 

every 10°C above their working temperature [26]. While increasing temperature can increase 

capacitance under certain conditions [27], extreme temperatures beyond a threshold can 

accelerate aging and decrease performance, increase self-discharge rates, and affect the overall 
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safety and reliability of the device [28]. However, while batteries can experience dangerous 

thermal runaway, tests have shown no exothermic reaction leading to thermal runaway in EDLCs 

[26]. 

 

Figure 5 displays the various potential pathways to the failure of supercapacitors. Failures are 

defined as capacitance loss, increase in equivalent series resistance, or mechanical deformation 

of a cell. To mitigate these failure mechanisms, modes and effects, comprehensive research is 

required that supports better understanding of the underlying degradation pathways. Moritz 

Teuber suggests that it is important to connect first principles physics investigations to 

observable characteristics like capacitance loss to have a more complete assessment of operating 

conditions on performance and lifetime [29]. With better understanding of the degradation 

pathways, modelers may suggest optimal operating strategies that can improve the performance 

and extend the lifespan of pseudocapacitors, making them more viable for energy storage 

applications.   
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Figure 5. Failure Mechanisms, Modes, and Effects diagram for supercapacitors [13]. 

Chen et al. [11] presented a review of modelling approaches for assessing aging and degradation 

of supercapacitors. Many of the papers reviewed are not interested in the reasons for 

performance degradation, and therefore use electrical modeling. However, these models are only 

valid at the beginning of a supercapacitor lifetime and can’t accurately understand the lifetime 

effects of cycling under different conditions. Ma et al. [30] summarized modeling of 

supercapacitors and their aging. Their summary of electrochemical models suggests that while 

they have high possible accuracy, parameter measurement is not always possible so they cannot 

reflect the dynamic processes of charge/discharging and degradation. Through their reviews of 

models, [31] and [32] suggest the overall value of modeling these systems with accurate lifetime 

and reliability predictions by proposing the use of these models to determine key requirements 

for real supercapacitor management in vehicles or other systems. In the present work, the use of 

probabilistic methods along with electrochemical modeling combine to improve both 

understanding and prediction of behavior and are a step toward their use in systems.   
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CHAPTER 2 

2. Research Objectives and Contributions 

2.1. Recent Advances in Supercapacitor Modeling  

As indicated by the various reviews on supercapacitor modeling, models can help elucidate the 

degradation mechanisms that are not readily measurable. This literature review covers various 

approaches to modeling the behavior of supercapacitors, with a particular focus on cyclic 

voltammetry (CV) curves, as they are one of the most informative characterizations of electrode 

processes. [33], [34], [35], [36] [37] adopted first principles electrochemical models to analyze 

EDLCs. These studies achieved significant milestones by providing analytical solutions for 

EDLCs, but pseudocapacitors were not covered. Some researchers [38], [39], [40], [41], [42], 

[43], [44] have simulated pseudocapacitive electrodes, but none have attempted to capture the 

evolution of degradation in the material over its lifetime. Carvalho et al. [45] similarly endeavor 

to predict and model the electrochemical response of pseudocapacitive cobalt hydroxide 

electrodes through CV curves. Although they achieved a representation of the faradaic redox 

behavior shape, the accurate representation of reactions occurring at electrodes (e.g., charged 

species in the electrolyte, diffusion phenomena) remained challenging. Nevertheless, these 

papers highlight the potential for improved diagnostics and lifetime analysis through first 

principles and CV curve modeling of supercapacitors.  

 

Various other papers, such as [46], [47] utilize equivalent circuit models rather than first 

principles to simulate EDLC CV curves. Omori et al. [48] similarly model the degradation of 

EDLCs through the impedance on an equivalent circuit model. These equivalent circuit 

approaches approximate the processes in a pseudocapacitor to the components of a circuit. They 
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often necessitate fitting the models to large sets of experimental data for resistance and 

capacitance values and does not allow for proper diagnostics of degradation processes. Other 

work including [49] presents alternative methods, such as galvanostatic approaches, and explores 

physics-based methods to account for specific effects on EDLCs, such as mesopore effects. 

Other alternative methods include a state of health estimation method for EDLCs based on deep 

learning networks and Bayesian optimization [50] . Challenges concerning interpretability and 

limited data availability are noted, emphasizing the need for further data collection and 

exploration of Bayesian approaches. Another model of EDLCs uses machine learning for 

degradation models of capacitance outside of manufacturer specified temperature ratings 

validated on 9 commercial cells [51]. This, like many machine learning models can suffer from a 

lack of interpretability and that a physics-based model would not.  

 

It is crucial to emphasize that none of the models for pseudocapacitors mentioned thus far have 

addressed the impact of external and changing internal temperatures, as well as the coupled 

effects of other stressors on degradation and capacitive behavior of pseudocapacitors. Pilon et al. 

[34] mention that measuring external temperature oscillations can underestimate the internal 

temperature, which may be very high near electrodes due to Joule heating which can lead to 

premature and unexpected degradation. Especially in high power applications, high cell 

temperatures can be generated. These excessive temperatures can cause accelerated aging, 

increased self-discharge, and decomposition of the electrolytes [52]. d’Entremont et al. 

developed a first principles thermal model of the Joule heating effect, faradaic reactions, and 

double-layer formation in pseudocapacitors [35]. Their model successfully captured the physical 

phenomena governing the thermal behavior of pseudocapacitors. However, their model does not 
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account for the impact of this internal temperature evolution on degradation over the cycle life. 

Moreover, while some work has been done for EDLCs [53], none have attempted to model the 

evolution of degradation over the cycle life of pseudocapacitors. In addition, the current models, 

while useful for assessing charge storage mechanisms and design, have not yet attempted to 

predict the remaining useful life (RUL) based on operating and environmental conditions. RUL 

and state of health are useful measures to provide decision support for the operation of 

pseudocapacitors in real systems. This research aims to fill these gaps and contribute to a more 

comprehensive understanding of pseudocapacitor behavior and performance. 

2.2. Objectives 

1. Identify the Degradation Mechanisms of MnO2 Pseudocapacitors under Different 

Operating Conditions 

 

The first objective of this research is to investigate the degradation mechanisms that 

influence the performance and reliability of MnO2 pseudocapacitors under varying 

operating conditions. This study focuses on the dissolution of the electrode material into 

the electrolyte as a mechanism that leads to capacitance reduction. Through experimental 

studies, modeling, and statistical analyses, the aim is to identify the key factors 

contributing to the extent of this degradation mechanism, such as temperature, cycling, 

and electrolyte pH. By investigating these mechanisms and the conditions under which 

they occur, this work seeks to develop an understanding of optimal operating conditions 

that would enhance the longevity of pseudocapacitors and systems that they may be a part 

of, e.g., electric vehicles.  
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2. Develop a Model that Simulates the Capacitance and Degradation Behaviors of 

Pseudocapacitors over Time 

 

To achieve a deeper understanding of pseudocapacitor behavior, a physics-based model is 

developed that simulates cyclic voltammetry of a pseudocapacitor device, simulating the 

degradation behaviors and the evolution of capacitance over time. This model 

incorporates factors such as the external and internal temperature over numerous cycles 

as they impact the changes in capacitance and the evolution of degradation.  

 

3. Improve upon Physics-Based Model Using Bayesian Updating and Validate the 

Proposed Model through Experimental Studies Conducted on Pseudocapacitor 

Devices 

 

Bayesian updating of parameters in each cycle and time step of the model are employed 

to incorporate experimental and statistical data with uncertainties, enhancing the model's 

robustness and predictive capabilities for real operating conditions. By iteratively 

incorporating observed degradation patterns, the model can adapt and become more 

accurate in predicting pseudocapacitor performance over time. Experimental studies are 

also used to validate the proposed model's accuracy. 

 

4. Probabilistic Remaining Useful Life Prediction  

 

Using a reliability engineering approach, this research also aims to demonstrate the 

applicability of a probabilistic model in predicting the Remaining Useful Life (RUL) of 

pseudocapacitors. By forecasting the RUL based on experimental data, the optimal 
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operation and management of pseudocapacitor energy storage systems can be inferred for 

varying environmental conditions. It can lend itself to maximizing the system availability 

and the lifetime of other components of a larger system, such as the batteries in an 

electric vehicle. By incorporating probabilistic analyses, the model can calculate and 

propagate the uncertainty of inputs, to a distribution of solutions with a measured 

confidence level. This lends itself to proactive maintenance and efficient utilization of 

pseudocapacitors, ultimately reducing downtime and minimizing the risk of system 

failure. This has not been done for pseudocapacitors before. Further, the comparison and 

ensemble results of the physics-based model and the probabilistic model of degradation 

can together provide more confident estimates. 

 

In summary, this dissertation seeks to advance the understanding of MnO2 pseudocapacitor 

degradation, develop a robust physics-based model using Bayesian updating, and demonstrate its 

value in predicting RUL and optimizing system operation. The research will contribute valuable 

insights into the performance of pseudocapacitors, with broader implications for enhancing the 

overall performance of energy storage systems in the pursuit of sustainable and dependable 

power solutions. 

2.3. Contributions  

Bringing together the fields of electrochemistry, materials science, and reliability engineering, 

this research introduces a hybrid model that integrates first-principles physics with Bayesian 

probabilistic approaches to model and predict pseudocapacitor behavior. The few existing 

pseudocapacitor models do not attempt to model the change in the behavior of the system from 

one cycle to the next. Modeling the electrochemical mechanisms and changes that occur over 
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long cycling durations would benefit researchers with faster exploration of materials under 

varying conditions. Unlike many other models, the model in this study utilizes existing data and 

experimental insights to provide a comprehensive understanding of pseudocapacitor degradation 

behavior (via active material dissolution) under various operating and environmental conditions 

over the cycle life. For example, joule heating is cited as a source of reversible and irreversible 

heat generation caused by the resistance of the material, which can impact the electrochemical 

reactions and the rates of dissolution and redeposition. By incorporating underlying physical 

mechanisms like these, the model is highly tunable and interpretable, while enabling prediction 

and suggesting strategies for optimal operation.  

 

Probabilistic methods are not often employed to model electrochemical devices, especially 

pseudocapacitors. In this research, the physics-based model is integrated with probabilistic 

methods. While this has been done with batteries, these methods have not been applied to 

pseudocapacitor devices. The use of probabilistic methods allows for refined model inputs and 

an assessment of the stochastic nature of real electrochemical processes with quantified 

uncertainty, as opposed to deterministic outputs of typical physics-based models. The 

incorporation of Bayesian adjustment to the model presents an example that can also be applied 

to other existing supercapacitor models in the literature, leading to improved accuracy and 

reliability in their predictions.  

 

Further, this study represents the first endeavor to probabilistically predict the reliability and 

Remaining Useful Life (RUL) of pseudocapacitors. This can facilitate the creation of 

Degradation Based Optimization models for larger system optimization and management. This 
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integration of first-principles physics and Bayesian probabilistic methodologies expands the state 

of knowledge, enabling more informed decision-making in materials and systems design, better 

reliability assessment for energy storage applications. 
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CHAPTER 3 

3. Experimental Work and Characterization 

3.1. Experimental Setup & Degradation Characterization 

The electrochemical behavior of MnO2 pseudocapacitors was examined by cyclic voltammetry 

(CV), one of the most informative characterizations of electrode processes. In a three-electrode 

setup, the resulting current is recorded as a function of changing potential over time. The current-

voltage curves obtained through CV characterization allow for the study of the kinetics of 

electrochemical reactions, the measurement of device capacitance, the 

reversibility/irreversibility, and information about the capacitive behavior and faradaic redox 

reactions occurring at the electrode-electrolyte interface.  

 

To prepare the MnO2 test electrodes for CV, the following procedure was followed: 

• Substrate Preparation—A conducting carbon cloth with dimensions of 1x2 cm² was cut 

and plasma cleaned to be the substrate for electrodeposition. The carbon cloth provides a 

conductive surface for the deposition of MnO2. The cut samples were weighed on a 

microbalance before electrodeposition. 

• Electrodeposition Process—A 0.1 M manganese acetate solution was prepared as the 

electrolyte for the electrodeposition process. The conducting carbon cloth was immersed 

in the manganese acetate solution, such that a 1x1 cm2 area was submerged. A constant 

current of 5 mA/cm² was applied for 20 minutes to facilitate the deposition of MnO2 on 

the surface of the carbon cloth to be the working electrode for subsequent CV testing. 

Other researchers have found 20 minute deposition to be optimal for high performance of 
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their devices [54]. The samples were dried overnight and weighed again to assess the 

initial mass loading of active material on the substrate.  

• Heat Treatment—The electrodes were tested both as deposited in their amorphous form 

(as confirmed by X-ray diffraction) and following a 6-hour heat treatment at 350°C as it 

was thought that treatment may reduce the propensity for Mn dissolution into the 

electrolyte. [55] suggests heat treatment of MnO2 at this temperature leads to higher 

capacity and power outputs due to the structural conversion. Others, however, have found 

no change at 350°C from the amorphous material as-synthesized, and rather saw the 

development of short-range order resulting in mainly Mn3+, with Mn4+ at the interior and 

Mn2+ at the surface [56]. This could, in fact, be detrimental to the electrode capacity due 

to the solubility of Mn2+ in Na2SO4 electrolyte.  

For the CV experiments, the following materials were utilized: 

• Carbon Cloth/MnO2: served as the working electrode, where the electrochemical 

reactions occurred. 

• Carbon Paper: used as the counter electrode to complete the electrochemical circuit and 

facilitate the charge transfer during CV. 

• Ag/AgCl Reference Electrode: provided a stable reference potential for measuring the 

voltage applied to the working electrode. 

• 1 M Aqueous Na2SO4 Electrolyte: ion conducting medium for the electrochemical 

reactions.  
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A three-electrode setup was chosen to explore the electrochemical properties of MnO2 

pseudocapacitors. A symmetrical set up is not necessary given that symmetrical MnO2 devices 

have been shown to only undergo redox reactions at the negative electrode due to their high 

oxidation state and inability to be further oxidized at the positive electrode [57]. CV 

measurements were conducted at 1 mV/s, 5 mV/s, and 10 mV/s. The voltage window was 

selected to cover a range from 0 V to 0.8 V, ensuring the exploration of the desired potential 

range for the redox reactions without undergoing irreversible reactions around the electrolyte’s 

decomposition limit (approximately 1.2 V for solutions in water due to the hydrogen and oxygen 

evolution reactions that cause gas bubbles and can also lead to mechanical degradation of the 

electrodes) [58, 59].  

 

 

3.2. Degradation Characterization  

For electrochemical energy storage technologies like batteries or supercapacitors, failure is 

typically when the device reaches 70-80% of nominal capacity [53]. In this study, high 

temperatures and elevated float voltage levels and scan rates were the variable stressors. The 

devices were subjected to numerous charge and discharge cycles while controlling the relevant 

parameters of voltage, scan rate, and temperature, and continuously evaluating the shapes of the 

cyclic voltammograms and the degree of capacitance fade, a key indicator of degradation. 

Because the dissolution of Mn compounds into the electrolyte is expected as a mechanism of this 

capacity fade, Ultraviolet-Visible Spectroscopy (UV-Vis) was used to measure the concentration 

change of materials in the electrolyte during cyclic voltammetry. Aliquots of electrolyte were 

taken at 5 cycles, 10 cycles, 20 cycles and/or at the end of cycling to measure the change in 
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absorbance after a certain amount of cycling. The change was then calculated to an average Mn 

loss per cycle in each regime (e.g., average loss per cycle within 0-20 cycles, or within 20-100 

cycles).  

The pH of the electrolyte was also confirmed to be neutral. Work by [60] and [61] suggested the 

association of pH with changing Mn2+ concentrations in electrolyte mixtures, with low pH 

leading to higher dissolution of active material. Further, [61] indicates that the overpotential for 

oxidation by MnO2 has a dependence on pH, wherein neutral and basic conditions result in 

different mechanisms for water oxidation by manganese oxides.  

 

Self-discharge and Electrochemical Impedance Spectroscopy (EIS) measurements were also 

taken. For self-discharge, the samples were charged, then held at a constant high voltage at the 

maximum of the voltage window for 30 minutes. Aliquots were then taken to examine in UV-

vis. This was done at room temperature, 40C and 60C. Impedance measurements were taken 

intermittently before CV cycling, after 5 cycles, 10 cycles, and 20 cycles. These tests were also 

conducted at room temperature and the elevated temperatures.  

 

High temperature testing of pseudocapacitors was employed to get an initial assessment of the 

performance of pseudocapacitor devices under different operating conditions. ALT is designed to 

expedite the assessment of a device’s lifetime by subjecting it to intensified stress conditions. In 

this case, the increased stress conditions were higher temperatures (30, 40, 50, 60°C), and lower 

or higher scan rates. This accelerates aging processes and enables observation of failure modes 

and mechanisms in shorter times. The extrapolation of failure data using Arrhenius equations and 

acceleration factors can allow statistical prediction of device behavior and expected lifetime 
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under normal conditions without much knowledge of the system. Further, it allows direct 

understanding of behavior at higher stress conditions.  

3.3. Results 

3.3.1. Microscopy 

SEM characterization shows imperfect adherence of the MnO2 to the surface of the fibers of the 

carbon cloth and some cracking in the as deposited condition. After 1000 cycles, the SEM 

images show petal-like formations on the surface of the MnO2 electrode. Given the findings of 

[61], [62], [63] , it is possible that these morphological changes are due to a dissolution-

redeposition process that may happen as the Mn products of various oxidation states reduce or 

oxidize.  

As Deposited After 1000 Cycles 
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Figure 6. SEM images of MnO2 electrode (left) as deposited and (right) after 1000 cycles of cyclic 

voltammetry. 

3.3.3. Cyclic Voltammetry 

Cyclic voltammetry of a pseudocapacitive MnO2 sample in  

Figure 7 a and c shows a decrease in overall area of the CV curve after 1000 cycles suggesting a 

decrease in capacitance. After 1000 cycles, the CV also displays more pronounced redox peaks 

in  

Figure 7a. While the initial capacitance is larger for the sample cycled at elevated temperature of 

40C ( 

Figure 7c), the capacitance retention after 1000 cycles ( 

Figure 7d) is lower than that of the sample cycled at room temperature.  
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Figure 7. (a) cyclic voltammogram of pseudocapacitive MnO2 in the first cycle and after 1000 cycles. (b) 

Plot of capacitance retention after 1000 cycles. (c) CV at 40C (d) capacitance retention at 40C 

 

Figure 8, a-c, compares the cyclic voltammetry results of samples tested at 20°C, 40°C, and 50°C 

for 100-200 cycles. As the temperature increases, there is a noted shift in the shape of CV curves. 

At higher temperatures the shape departs from the rectangular shape to a more leaf-like shape, 

similar to the changes documented to occur with increasing scan rate in EDLCs and 

pseudocapacitors [64, 65, 66]. In each case, the capacitance calculated (Figure 8, e.) from the 

area of the CV curve shows an increase from initial values. Some researchers have suggested an 

electrochemical activation process in the initial cycles [67, 68, 69]. Given the surface area 
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dependence for capacitance, it is possible that this activation process is evident through the 

morphological changes seen upon cycling in Figure 6, which may give rise to more active sites 

for redox reactions, increased ion diffusion, and more surface area for double layer capacitance. 

This would align with researchers claims that the dissolution process is accompanied by a 

redeposition of the material back onto the electrode. This activation process appears to occur 

faster in samples tested at elevated temperature (Figure 8, e.) stopping around 25 cycles, while 

room temperature samples activation process ceases around >100 cycles. More characterization 

is necessary to assess the onset of these morphological changes, and how they impact the 

capacitance of the device.  The final specific capacitance does, however, begin to decrease from 

the max value obtained after the initial activation process (as shown in Figure 8, e.). From the 

max values, samples tested at 40 and 50 °C exhibit a 97% capacitance retention and an 82% 

capacitance retention respectively.   
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Figure 8. a-c) cyclic voltammograms of MnO2 pseudocapacitive devices at 20C, 40C and 50C 

respectively. d) Specific capacitance of the sample in (a), showing steadily increasing capacitance with 

cycling. e) plots of specific capacitance over cycles for 20C, 40C, and 50C.  

 

Cyclic voltammetry of heat treated MnO2 electrodes tested at room temperature in sodium 

sulfate resulted in relatively low specific capacitance values and a sharp decrease from initial 

values upon cycling (Figure 9). This is further evidence of the findings from [56] which found 

short-range order resulting in mainly Mn3+, with Mn4+ at the interior and Mn2+ at the, a potential 

detriment to the electrode capacity due to the solubility of Mn2+ in Na2SO4 electrolyte. 
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Figure 9. Specific capacitance evolution with cycling of cell with annealed MnO2 electrode 

 

3.3.4. Ultraviolet Visible Spectroscopy 

Because the dissolution of Mn compounds into the electrolyte is expected as a mechanism of this 

capacity fade, Ultraviolet-Visible Spectroscopy (UV-Vis) was used to measure the concentration 

change of materials in the electrolyte during cyclic voltammetry. Aliquots of electrolyte were 

successively taken from the three-electrode setup at various intervals of cycling. Based on the 

intensity of light through the sample solution, data for absorbance as a function of wavelength 

were obtained. The heights of the absorption peaks are directly proportional to the concentration 

of the species in solution, as described by the Beer-Lambert Law (equation (4)). 

 𝐶 =
𝐴

𝜀∙𝑑
  (4) 

The sample concentration, C, depends on the absorbance, A, the distance of the light path, d, and 

𝜀, a material specific constant describing its molar absorptivity. The molar absorptivity of Mn2+ 

was determined to be 5.21E3 at a wavelength of 400 nm and that of MnO2 has been determined 

to be approximately 15000  [dm3.mol-1.cm-1] at a wavelength of 390 nm [70, 71, 72]. This 

measurement was done especially for conditions that were not represented by data in literature 
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[73, 74, 75, 76], i.e. mass or concentrations changes of Mn in electrolyte when cycling at high 

temperatures. Estimates were made of concentration increase per cycle (at lower cycle numbers 

and higher cycle numbers) and these values for the expected change in concentration per cycle 

were used in the electrochemical model in Chapter 5. Figure 10b shows the quick increase in 

active material concentration in electrolyte in early cycles relative to the slower increase in 

concentration in later cycles. The electrolyte solution tested was consistently neutral, though 

various papers suggest increased dissolution in acidic electrolytes [77, 78]. 

 

 

Figure 10. a) UV-Vis spectra of 10 ml aliquots of electrolyte before cycling, after 10 cycles, and after 100 

cycles. b) plot of concentration of MnO2 in electrolyte over cycles.   
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3.3.5. Electrochemical Impedance Spectroscopy 

Equivalent series resistance (ESR), charge transfer resistance (RCT), and charge transfer rates 

were obtained from electrochemical impedance spectroscopy (EIS). Results of these tests for 20 

and 40 °C are shown in Figure 11. Results of these tests conducted at 0, 5, 10, and 20 cycles 

indicate increasing resistance values upon cycling. An average increase in resistance per cycle, 

with a dependence on the temperature, was calculated from these results to be used in the 

electrochemical model. In each case, the resistance increases significantly from 0 to 5 cycles, and 

again between 5 and 10 cycles. Relative to these values, increases in resistance occurring 

between 10 and 20 cycles are minimal Figure 12. When tested at elevated temperature, while the 

ESR value slightly increased with cycling, the RCT was seen to decrease slightly from initial 

values (Figure 11, f).  
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Figure 11. a-e) Nyquist plots showing various tests on samples at room temperature. f) Nyquist plot of 

sample at 40C 
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Figure 12. Plot of charge transfer resistance over the cycles tested, showing larger increases at lower 

cycles as compared to higher cycles. 

 

These results are relevant to understanding the change in internal temperature occurring at each 

cycle, as the irreversible heat, the Joule heat, is a result of the internal resistance [79].  

 

3.3.6. Self-Discharge and Leakage Currents 

The self-discharge characteristics of MnO2 pseudocapacitors were also assessed under different 

temperatures to provide insight into the stand-by performance and shelf life of devices. By 

observation alone when connecting to terminals of the potentiostat, the open circuit voltage of 

devices often started around 0.4 to 0.5 V and quickly declined. Within 10-20 minutes, the open 

circuit voltage often decreased to approximately 0.1 V or less. If left overnight after charging and 

reconnected the next day, the open circuit voltage would often be around -0.2 to 0.1 V.  

 

A  constant voltage test was conducted to quantify leakage currents, the parasitic current required 
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CV tests were conducted) and the current was measured over time. This current is the self-

discharge current, the amount supplied by the DC source to maintain a given cell at a constant 

voltage and state of charge. The initial high current seen in Figure 13 is a result of ions reaching 

active sites of the material, while the stable current over time is the leakage current.  Results of 

these tests at 20, 40, and 60 °C are shown in Figure 13. The leakage currents for cells tested at 

elevated temperature stabilize around approximately the same leakage current value of 30 mA. 

Room temperature samples stabilized around approximately 10 mA.  

 

Figure 13. Plots of leakage current over time, obtained at 20C, 40C, and 60C. 
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CHAPTER 4 

4. Modeling of MnO2 Electrodes in Aqueous Sodium Sulfate 

Electrolyte 

4.1. Model Structure Overview 

 

Figure 14. Overview of electrochemical model structure, highlighting the use of conditional probabilities 

for updating the behavior in each cycle and the interaction of the model with external data. 

 

A physics-based model of pseudocapacitor behavior was developed in MATLAB. The model 

iteratively updates in time, distance, and cycle number with parameters informed by probabilistic 

methods that use variables from literature and from experiments that elucidate the degradation 
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processes occurring in redox-active MnO2 pseudocapacitors. The outputs from the hybrid 

physics and probabilistic degradation model will then be used, along with data on the number of 

cycles to failure, to predict the remaining useful life (RUL) of the pseudocapacitor under various 

imposed conditions.  

4.2. Physics-based Modeling of MnO2 Pseudocapacitor 

The objective for modeling pseudocapacitors is to understand and predict performance, aging 

and degradation, to guide experiments, and to support the optimization, scale-up and 

commercialization of the technology. This model seeks to model the charge and discharge 

process as it evolves in CV, wherein a linear voltage sweep is applied at a constant rate and the 

current response is the output. The fast and reversible redox reactions at the surface occurring in 

equation (1) are responsible for the faradaic current density, while the capacitive current results 

from the double-layer and does not involve chemical reactions.  

 

Example model parameters are shown in 

Table 1. The integral of the area in the modeled current-voltage profile is the specific capacitance 

(Csp) of the device. The energy density (Ed in Wh/kg) and power density (Pd in W/kg) are derived 

from this (equations (5), (6), and (7))  

 𝐶𝑠𝑝 =  
∫ 𝑖𝑉 𝑑𝑉

𝑣2
𝑣1

𝑚𝑣∆𝑉
 (5) 

 𝐸𝑑 =
1

2
× 𝐶𝑠𝑝 × ∆𝑉2 (6) 

 𝑃𝑑 =
𝐸

∆𝑡
 (7) 

In these equations, 𝑖 is current, V is the voltage, and t is time.  
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The physics-based model at the continuum mechanics level was created in MATLAB. It is 

adapted from [80], [39], [45] and is schematically similar to the one-dimensional hybrid 

pseudocapacitor cell studied by [39] with a different electrolyte composition (Figure 15). The 

theoretical foundations of this model are the set of modified Poisson-Nernst-Planck (PNP) 

equations that describe ion diffusion and transport, specifically the effects of temperature, 

electric potential, or other variables on the ion concentrations as functions of space and time.  

 

Figure 15. Schematic diagram of one-dimensional pseudocapacitor cell from [39] 

This model uses a finite difference method with nested loops for spatial and temporal 

discretization to solve the partial differential equations that describe the diffusion of ions based 

on concentration gradients given by Fick’s 2nd Law (equation 8) and calculate the flow of current 

at the electrode-electrolyte interface.  

 
𝜕𝐶

𝜕𝑡
= 𝐷 ∙

𝜕2𝐶

𝜕𝑥2   (8) 

The empirical solution for the capacitive current (based on averages of double layer capacitance 

from experimental data) is calculated within the time loop, while the solution for the faradaic 

current is calculated both spatially and temporally. The currents estimated at each potential value 

simulate a CV cycle and are used to calculate the energy storage capacity of the simulated 
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pseudocapacitor. For a pseudocapacitor, the total current density, 𝑗𝑡𝑜𝑡 the sum of the current 

densities arising from capacitive charge transfer and faradaic charge transfer as in equation (9). 

 𝑗𝑡𝑜𝑡 = 𝑗𝑐 + 𝑗𝑓 (9) 

 𝑗𝑐 =  −𝜅𝑒𝑓𝑓
𝜕𝜙𝑒

𝜕𝑥
|

𝑥=𝐿
 (10) 

 𝑗𝑓 = 𝑗0 [exp (
𝛼𝑛𝑒𝐹𝜂

𝑅𝑇
) − exp (

−(1−𝛼)𝑛𝑒𝐹𝜂

𝑅𝑇
)] (11) 

Here, 𝜅𝑒𝑓𝑓 is the effective electrical conductivity of the electrolyte in the porous electrode, 𝜙𝑒 is 

the electric potential of the electrolyte, x is distance, 𝛼 is the charge transfer coefficient, F is 

Faraday’s constant, 𝑛𝑒 is the number of electrons, and 𝜂 is the overpotential (the difference 

between ψ(t) and ψeq).  

 

The approach of De Levie and other researchers [33] was used to calculate the capacitive current 

using the electric potential of the electrolyte 𝜙𝑒 within a porous electrode, given that the woven 

carbon fiber substrate creates a porous electrode. This satisfies a non-stationary diffusion 

equation (12) with initial condition (13)𝜙𝑒|𝑡=0 = 0 (13) and boundary conditions (14) and (15). 

 𝑎𝐶𝑑𝑙
𝜕𝜙𝑒

𝜕𝑡
−

𝜕

𝜕𝑥
(𝜅𝑒𝑓𝑓

𝜕𝜙𝑒

𝜕𝑥
) = 0 (12) 

 𝜙𝑒|𝑡=0 = 0 (13) 

 
𝜕𝜙𝑒

𝜕𝑥
|

𝑥=0
= 0 (14) 

 𝜙𝑒|𝑥=𝐿 + ℎ
𝜕𝜙𝑒

𝜕𝑥
|

𝑥=𝐿
=

𝑈(𝑡)

2
 (15) 

For the faradaic charge transfer process, the Butler-Volmer equation above (11) can break down 

into the oxidative and reductive portions of the reaction, represented by the charge transfer rates, 

k, for both processes (equations (16) and (17) respectively).  
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 𝑘𝑜𝑥
′ = 𝑘0 exp (

𝛼𝑛𝑒𝜂𝐹

𝑅𝑇
) (16) 

 𝑘𝑟𝑒𝑑
′ = 𝑘0 exp (

−(1−𝛼)𝑛𝑒𝜂𝐹

𝑅𝑇
) (17) 

𝑘0 is the charge transfer rate constant. These charge transfer rates depend exponentially on the 

changing overpotential, 𝜂. Concentration gradients of the active material create diffusion 

gradients near the electrode surface that vary spatially and temporally. These gradients impact 

the rate of chemical reactions described by the Butler-Volmer equations. Therefore, numerical 

methods are required to solve the coupled partial differential equations. The boundary and initial 

conditions for the system are as shown in equations (18) – (21) [45].  

 𝑐𝑜𝑥 (𝑥, 0) = 𝑐𝑜𝑥(𝐿, 𝑡) =  𝑐𝑜𝑥,𝑏𝑢𝑙𝑘 (18) 

 𝑐𝑟𝑒𝑑 (𝑥, 0) = 𝑐𝑟𝑒𝑑(𝐿, 𝑡) =  𝑐𝑟𝑒𝑑,𝑏𝑢𝑙𝑘 (19) 

 𝑐𝑜𝑥 (𝑥, 0) =  𝑐𝑜𝑥,𝑠𝑢𝑟𝑓𝑎𝑐𝑒 (20) 

 𝑐𝑟𝑒𝑑 (𝑥, 0) =  𝑐𝑜𝑥,𝑠𝑢𝑟𝑓𝑎𝑐𝑒 (21) 

A finite difference method was used to discretize the spatial and temporal domains of the 

modeled pseudocapacitor. The concentration changes of the oxidant and reductant are 

approximated at discrete grid points over time intervals. The flux is then calculated as: 

 𝑗𝑜𝑥  =
𝑘𝑜𝑥𝑐𝑜𝑥(1∆𝑥,𝑡)−𝑘𝑟𝑒𝑑𝑐𝑟𝑒𝑑(1∆𝑥,𝑡) 

1+
𝑘𝑜𝑥∆𝑥

𝐷𝑜𝑥
+

𝑘𝑟𝑒𝑑∆𝑥

𝐷𝑟𝑒𝑑

  (22) 

By solving the system of equations iteratively, the method allows for the simulation of the time-

dependent evolution of redox reactions during the charging and discharging process for a given 

cycle. The equilibrium potential is also adjusted in time as in [40]: 

∆Ψ𝑒𝑞 = 10.5 (4 −
𝑐1𝑝(𝑡)

𝑐1𝑝,𝑚𝑎𝑥
) − 39.9 
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The model computes these partial differential equations for each cycle and outputs the CV 

profile and the calculated specific capacitance. Due to the expectation of Mn dissolution as seen 

in literature and experimental results, the model accounts for degradation in the current-voltage 

characteristics of the pseudocapacitors CV profile by adjusting the amount of active material 

available for redox reactions from one cycle to the next. Further the model accounts for 

empirically determined changes in resistance during cycling. Given the uncertainty in 

temperature and ion concentrations, these values are sampled from uniform distribution and the 

model is run through as many cycles as the user is interested in assessing, for as many Monte 

Carlo samples as specified.  

Table 1. Example parameters for electrode and electrolyte for physics-based simulation 

Parameter Value Units 

T – Temperature   variable K 

Area  2 cm2 

𝑘0 – Reaction rate constant 1.2E-1 cm2.5 mol−0.5s−1 

α – Transfer coefficient 0.5  

𝜐 – Scan Rate 0.005 mV/s 

D – Diffusion Coefficient (bulk) 1E-5 cm2/s 

Dox – Oxidant diffusion coefficient 5.27E-5 cm2/s 

Dred – Reductant diffusion coefficient 2.23E-4 cm2/s 

Ψeq – Equilibrium potential 0.5 V 

Ψ – Applied Potential  0-0.8 V 

cox – concentration of oxidant (Mn) variable mol/cm3 

cred – concentration of reductant (Na) variable mol/cm3 

m – Active material mass 2.2 g/cm2 

pH 7  

Cycle number variable  

Resistance variable Ohms/cm2 

Experimental steady state current 

mean 

0.0025 Amps 

xtotal – total x range  6√𝐷𝑜𝑥 ∗ 𝑡𝑐𝑣 cm 

tcv – total scan time  
2 ∗

Ψ𝑤𝑖𝑛𝑑𝑜𝑤

𝜐
 

seconds 
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4.3. Physical Modeling of Aging Phenomena  

4.3.2. Degradation modeling  

Most existing models of pseudocapacitors aim to reproduce what occurs in a single charge and 

discharge cycle. A physics-based model that can correctly model how degradation evolves over 

time and multiple cycles requires knowledge of what parameters are changing, how they interact, 

and how they change from time step to time step. While there is not an easily applicable 

theoretical formula for how dissolution evolves in a pseudocapacitor, for example, data from 

various experiments can suggest how specific parameters of the model should change based on 

the conditions of the model at a given time step. In the present model of an MnO2 

pseudocapacitor, many model input parameters are obtained from literature that are simple point 

estimates or sampled from a fitting distribution of possible values (see  

Table 1). The parameters that impact the degradation in capacitance from one time step to the 

next are uncertain parameters that may not be easily calculated or measured at every time step. 

They therefore depend probabilistically on the condition of the model at a given time. These 

parameters include the internal/interface temperature, and the concentration of Mn products in 

the electrolyte. 

4.3.3. Parameter Estimation  

Point estimates or distributions of input parameters are determined based on experimental 

observations and from literature values. A normal distribution is then used to simulate the 

variation in possible values with the point estimate as the mean. A value for each parameter is 

selected using Monte Carlo random sampling. This is done for important operating parameters 

that are stochastic in nature (e.g., external temperature) and the samples are assigned to different 

time steps in a process similar to [81]. This is repeated multiple times for each parameter with 
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many random samples input to the physics model, allowing the model to generate not just a point 

estimate for the output capacitance, energy density, and power density values, but a distribution 

for the value after each charge/discharge cycle. This might allow a researcher or operator to 

estimate the best- and worst-case scenarios for their device, especially when experimentation is 

not a possibility. 

4.3.4. Parameter Estimation from Experimental Data 

The semi-empirical formulation of the model uses the double layer capacitance and changing 

resistance values obtained from experiments. Bard and Faulkner define the average steady state 

current value (where the current in the CV is approximately steady) as equal to 𝜐 ∙ 𝐶𝑑, the scan 

rate times the double layer capacitance. Experiments allows estimation of this value with 

uncertainty to be used in the model. The results of EIS in section 3.3.5 permit the estimation of 

the change in resistance from one cycle to the next with uncertainty.  

4.3.5. Bayesian Inference for Statistical Parameter Estimation and Updating 

The identification and estimation of latent model parameters is important to understanding their 

impact on degradation. In this study, Bayesian inference is employed within the algorithm using 

measured data and literature to estimate and update the probability density functions (PDFs) of 

these parameters that are difficult to observe or unobservable (e.g., material loss percentage and 

internal temperature as shown in Figure 16). Instead of using a single fixed value for internal 

temperature or for dissolution amounts in the physics-based model, this method allows for 

probabilistic calculations that considers multiple possible internal temperature values based on 

their respective probabilities, given the input values of external temperature, current, cycle 

number, or pH at a given time in the model. This Dynamic Bayesian Network (DBN) in Figure 

16 captures the complexity of the interactions of input parameters to the latent variables over 
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time. This is achieved with conditional probability tables (CPTs) that use data from literature, 

expert judgement, and best guesses for the mean values of the latent variables.  

 

Figure 16. Bayesian Belief Network used for parameter updating, showing the probabilistic relationships 

used to develop the conditional probability table.  

 

To produce a CPT for the change in internal temperature based on the external temperature, the 

cycle number, and the current at the interface at a given time, mean values of internal 

temperature change were pulled from the literature [82, 83, 84, 85, 86]. Data included 

information such as that shown in Figure 17 where the total increase in temperature after a cycle 

was used as the mean value. As evident from this data, the internal temperature increases are 

higher at lower cycle numbers and close to zero at higher cycles. Additionally, the internal 

temperature increase is higher when the cell experiences higher currents.  
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Figure 17. Example of data used to estimate change in internal temperature per cycle. a) highlights an 

example of a value for ΔT that occurs within the 2nd cycle [83].  b) shows the slowing increase in 

temperature at high cycle numbers and the influence of current [86]. 

 

A lognormal distribution was chosen to ensure that the distribution created around these mean 

values does not include negative values (i.e., decreasing internal temperature). To produce a 

lognormal distribution, equations (23) and (24) were used to calculate the lognormal mean and 

standard deviation from the values obtained from literature. 

 𝜇 = ln (
𝜇𝑋

2

√𝜇𝑋
2 +𝜎𝑋

2  

) (23) 

 𝜎2 = ln (1 +
𝜎𝑋

2

𝜇𝑋
2 ) (24) 

The probability distributions from this were then used when sampling the values of variables in 

the physics-based model. The MATLAB model then selects randomly from discrete intervals of 

temperature increase based on the probability of being in that interval of temperature increase 

given by the CPT dependencies on cycle, external temperature, and current. A similar process 

was followed for estimating the active materials loss in each time step, considering the 

dependencies on internal temperature, cycle number, and pH [87, 88, 77, 62]. However, a normal 

distribution is used for this estimation given that there is some probability of increasing active 

ΔT 
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material from one time step to the next (as suggested by the redeposition process in literature and 

the increasing capacitance from experimental results). By using this probabilistic information 

from the CPTs and Monte Carlo sampling of these parameters, the model can propagate 

uncertainty from the input variables of external temperature and current, for example, to the final 

output of capacitance. With this propagated uncertainty, sensitivity analysis may also be 

informative to understand how influential certain inputs are to the final outcome. Figure 18 

shows an example concentration profile for the concentrations of the oxidizing agent and 

reducing agent, cox and cred, respectively, at each distance (differentiated by colors). Images b 

and c show the minor changes occurring in each concentration at the 200th cycle as compared to 

a and b at the 1st cycle. 
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Figure 18. Concentration profiles at the first cycle for a) the oxidant species and b) reductant species. 

Bottom: Concentration profiles at the 200th cycle for c) oxidant species and b) reductant species. 

 

4.4. Model Results and Validation 

The physics-based model of pseudocapacitors developed in this work was calibrated and 

validated with comparisons between the model's predictions and experimental data, as well as 

other established models and theoretical predictions. The validation process involved analyzing 

the model's performance under various scenarios and evaluating its ability to capture various 

mechanisms evident in cyclic voltammograms. By refining the model iteratively, uncertainties 

can be reduced, and it can deliver more precise and reliable predictions.  
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Figure 19 shows the voltage profiles simulated for multiple scan rates, the blue one in this case 

being the slowest scan rate of 0.005 mV/s. This was the scan rate used for most runs of the 

simulation. This figure also shows the relative contribution of the faradaic and capacitive 

currents that are summed in the model for one example case with a slow charge transfer rate. 

Figure 19, c and d show results of the simulation run at faster (0.01 mV/s) and slower (0.001 

mV/s) scan rates, respectively, as compared to the typical value used in this study of 0.005 mV/s. 

 

 

Figure 19. a) Voltage profiles for multiple scan rates from 5mV/s to 100mv/s. (b) Example of simulated 

CV results with faradaic current in red, capacitive current in yellow, and total current in blue. c) faster 

scan rate – 0.01 mV/s. d) slower scan rate – 0.001 mV/s. 
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Figure 20 displays the results of multiple simulation runs, comparing the relative impact of each 

of these important model parameters. The effect of temperature, with all else held constant, is 

seen to change the shape of the cyclic voltammogram, with less prominent redox peaks. In the 

forward scan, for example, it can be thought of as redox reactions beginning to occur at earlier 

times (lower voltages), as the activation barrier for these reactions becomes lower with 

temperature. With the combination of other factors, however, such as diffusion coefficients 

changing with temperature or concentrations changing, this effect may become moderated.  

 

k0 decreasing ESR increasing 

Dred decreasing Dox decreasing 
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Figure 20. Sensitivity analysis of various model parameters, each simulated while keeping all others 

constant.  

 

Figure 21 shows results from running the simulation for 500 cycles, including the Bayesian 

updating for temperatures, concentrations, and resistance values. The CV curves are plotted 

every 50 cycles. Figure 21b shows the capacitance values over cycling. The model output should 

also read “failure at X cycles” if the capacitance reaches 80% of the maximum capacitance 

value. In this case, the simulation did not reach failure at 500 cycles.  

 

 

Temperature increasing 

decreasing 
Cox decreasing 
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Figure 21. a) 500 cycles (plotted every 50 cycles). b) Specific capacitance over cycles for the run in (a). c) 

500 cycles plotted every 100 cycles. 
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Figure 22. a) cycle 100 of a simulated cyclic voltammogram. b) cycles 1 and 100 of cyclic voltammogram 

for a real cell collected experimentally. 

 

While the increase in capacitance seen in the real data of Figure 22,b and in Chapter 3 is not 

captured in every simulation run, the general shape of the cyclic voltammetry curves is replicated 

by the simulation results, including the locations for the broad cathodic and anodic peaks and the 

range of values for the specific capacitance over the number of cycles.  

4.5. Model Limitations 

Some of the main model limitations are: 

• The current formulation of the model is in 1D and does not account for volumetric effects 

such as porosity, which are known to be important factors in the capacitance of devices. 

• While the model is highly interpretable, it can be quite complex. The probabilistic 

methods add robustness and a way to directly model the stochastic processes occurring in 

the material, but also increase the computational time through numerous sampling steps. 

Expanding the sensitivity analyses may help with this. 
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• Assuring proper assignment of probability distributions to the uncertain variables of the 

BBN is challenging. It requires using expert judgement and deductive reasoning to 

estimate mean values of the changes that may occur in active material concentration and 

temperature. This is done by interpolating between known data points, so inaccurate 

choices may impact the model’s predictive capability.  

• The model is tuned for MnO2 devices and may require experimental tests to know certain 

parameters of the model for other materials. It still, however, is an improvement on the 

time required to run 10,000 or more cycles on multiple devices to obtain data.    
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CHAPTER 5 

5. Remaining Useful Life Prediction 

5.1. Introduction 

Remaining useful life (RUL) prediction can take on many forms. Prognostic RUL modes can be 

statistical and data-driven, physics-based, or a hybrid approach. Hybrid approaches seek to 

capitalize on the strengths of both data-driven and physics-based models. This can work by 

integrating a mechanistic understanding of the system into the process of parameter selection for 

a data-driven model, or conversely, integrating insights from data into a mechanistic 

understanding of a system. 

The MATLAB simulation of pseudocapacitor electrochemistry described in chapters 4 and 5 

outputs the capacitance in consecutive cycles, allowing interpretation of the decreasing 

capacitance, energy, and power density over time. The simulated operation of the 

pseudocapacitor may change from cycle to cycle, with changes to external and internal 

temperature, changes to the speed of charge and discharge, changes to voltage requirements, 

while also predicting the degradation. Therefore, the simulation can more accurately represent 

specific use cases with different operation schedules, such as a pseudocapacitor as a part of a 

grid energy storage system, or as part of a regenerative braking system in an electric vehicle. 

This model is well suited for a combined physics-based and probabilistic method for assisting 

researchers with exploration of new devices, estimating the lifetime of a pseudocapacitor device 

subject to real usage scenarios, and optimizing its use in connection with other systems. Accurate 

RUL predictions from hybrid models with enhanced reliability will be especially important for 

critical systems, such as energy infrastructure, where failures can have significant consequences. 
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For electrochemical energy storage technologies like batteries or supercapacitors, a device is 

generally accepted to have reached end of life when it reaches 80% of nominal capacity. For this 

study, this threshold is also considered failure for pseudocapacitors. While some have conducted 

cycling and stability studies of pseudocapacitors [15], no researchers have attempted to predict 

the expected RUL for these devices. As with most other systems, RUL predictions are likely to 

change depending on the environmental and operating conditions. For planning and operating 

systems optimally, it is useful to know what one might expect from an energy storage device that 

has previously experienced specific conditions. While these predictions have been made 

extensively for batteries and are increasingly being analyzed for supercapacitors, the charge 

transfer kinetics of pseudocapacitors are unique, highly susceptible to environmental and 

operating conditions, and require their own RUL predictions.  

5.2. Probabilistic lifetime model 

Probabilistic models utilize knowledge about a system or system components which can be 

defined using a probability density function (PDF). This function describes the likelihood of a 

random variable falling within a particular range of values rather than one deterministic value. 

Common model choices include, exponential, Weibull, and lognormal distributions, among 

many others. The parameters of the distribution are estimated from data and the chosen 

distribution can then be used to describe the probability distribution of failure times. Given the 

historical data and the fitted model, the RUL can be estimated. As new data becomes available, 

the model can be updated to improve the accuracy of RUL predictions.  

Uncertainty propagation is a feature of RUL and other probabilistic analyses that helps enhance 

decision-makers' understanding of how variations in input parameters impact failure and risk 

outcomes. Uncertainty propagation is often used to assess risk outcomes by considering the 
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uncertainty in input data parameters. This is particularly useful when there are complex 

correlations between parameters, as previously discussed in this chapter. These methods aid 

decision-makers in expressing their assessments as a probability of a certain outcome with a 

defined confidence interval. One approach to uncertainty propagation is Monte Carlo Simulation. 

Monte Carlo Simulation generates random numbers to sample from a distribution of each input 

variable, calculates the outputs and can then display the level of certainty one has of obtaining 

those outputs based on the uncertainty of input parameters.  

To propagate the parameter uncertainty to the RUL output of the degradation model in this 

simulation, a Markov Chain Monte Carlo (MCMC) method was used. In this process, many 

samples of the parameters are generated from the posterior distribution and the degradation 

model in equation (25). The Monte Carlo method is Markovian because the values are sampled 

consecutively, and the future state only depends on the current state. As more samples are 

generated, the samples more closely approximate the posterior PDF. A uniform proposal 

function is used as a part of the MCMC sampling process. This function generates candidate 

parameter values for each next iteration of the MCMC simulation. When the Markov chain 

reaches a stationary distribution, the samples can be considered representative of the target 

posterior distribution. An illustration of this process is shown in Figure 23. 
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Figure 23. Illustration of Markov Chain Monte Carlo process, with sampling from proposal distribution, 

and uncertainty propagated to posterior distribution in the form of a histogram [89]. 

 

In this research, pseudocapacitor RUL was estimated using a Bayesian prognostics model. The 

model takes inputs for any number of cycles of known capacitance values and predicts the length 

of time (or number of cycles) the device can operate (assuming fully charging and discharging) 

before it goes below the threshold value of 70-80% of the initial specific capacitance. A 

degradation model of the exponential form𝑦=𝑎∙ 𝑒𝑥𝑝(−𝑏𝑡) (25) was used, as this has been 

shown to be applicable to the degradation of capacitance or increase in resistance as a function of 

time or cycles in various studies of battery lifetime prediction [89, 90, 91].  

 𝑦 = 𝑎 ∙ 𝑒𝑥𝑝(−𝑏𝑡) (25) 

More details on model selection can be found in section 5.3. 
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In this equation, y can represent internal battery or supercapacitor parameters such as capacitance 

or resistance which are measurable indicators of degradation. When fit to data, b = 0.001. This 

was tested against the real data in Figure 24 at 50°C, using the first 10 values after the peak in 

capacitance as the initial data for the RUL model. The capacity retention for this cell was just 

82% at 200 cycles, close to the failure threshold of 80%. Given the initial data, and setting the 

threshold to 82% of initial capacity, the model predicts approximately 102 cycles after these 

initial 35 cycles (75 cycles at the 5th percentile, and 198 cycles at the 95th percentile). Compared 

to the real value of approximately 165 cycles to failure, the model slightly underestimates the 

RUL of the cell. The real value, however, is within the bounds of the model’s uncertainty. A 

similar prediction for a cell tested at 40°C was made, with median of 8 cycles of remaining 

useful life after the peak (5 cycles at the 5th percentile and 12 cycles at the 95th percentile). The 

real data shows failure approximately 37 cycles after the peak, which is outside the confidence 

intervals of the RUL prediction. This suggests that the RUL prediction cannot be generalized for 

varying environmental conditions when the parameters are chosen based on limited data. 
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Figure 24. a) Specific capacitance changes with cycles at 50C. b) Histogram of RUL for 50C. c) Specific 

capacitance changes with cycles at 40C. d) Histogram of RUL for 40C. 

 

For cells operating under differing environmental conditions, the parameters a and b may need to 

be chosen with more precision. For EDLCs, some researchers have represented capacity 

attenuation with an Arrhenius equation of the form,  

𝐶𝑙𝑜𝑠𝑠 = 𝐴 ∙ exp (−
𝐸𝑎

𝑅𝑇
) ∙ 𝑁𝑧 

Where A is a pre-exponential parameter, N is the cycle number, and z is the power index 

parameter [53]. The activation energy Ea was also examined to be a linear function of the electric 
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current. With this formulation, the model can more explicitly capture the impacts of temperature 

and current. However, this was only applicable within the temperature range of 25-55 °C and is 

limited to these inputs as parameters of the model.  

In the present study, parameters a and b were also then fitted to data that detail the specific 

capacitance values of MnO2 pseudocapacitors over numerous cycles under different conditions 

of temperature, scan rate. Cycle life data with different electrolyte pH were also collected. With 

theoretical cycle stability on the order of 10,000 or more cycles, running multiple long term 

cycling tests for that length of time proved intractable. Therefore, experimental data collected 

was supplemented with many data points pulled from existing literature on the same or similar 

MnO2 pseudocapacitive devices. The shorter experimental tests conducted in this research 

obtained capacitance values in the first 200-300 cycles of operation. These tests were valuable to 

train the model for early stages of cycling, wherein experimental observations and literature 

show large variations in capacitance (e.g., sharply increasing, sharply decreasing, or oscillating). 

With these data of capacitance over cycles for different combinations of temperature and scan 

rate, curve fitting was done in a MATLAB application using a nonlinear least squares method. 

With this methodology, other environmental and operating conditions (beyond temperature and 

scan rate or current) that may impact the lifetime of the cell may be more readily incorporated 

into the degradation model through the selection of parameters to be used in equation (25). 

Isolating temperature as a factor impacting the parameters, the scatter charts in Figure 25, were 

obtained. These feature parameters fit to data collected from experiments in this study and 

experiments throughout the literature. Except for parameter b in the power law case, there seems 

to be very little correlation between the parameters and the outputs, suggesting that the power 
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law may be the best suited fit for representing the degradation in capacitance, or more likely, that 

more data is needed to assess the impact of temperature on parameters.  
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Figure 25. Correlations between parameters and changing temperature (x axis) for a polynomial model, an 

exponential model, a two-term exponential model, and a power law model. (Bolded letters within 

equations are the parameters represented on the y axis for that given model).  

 

To assess the correlation of variables, they were also assessed simultaneously. The values of a 

and b for the different combinations of temperature and scan rate are shown in Table 2.  

Table 2. Table of hyperparameters fit to data for the exponential model. 

 

Temperature 

(°C) 

Scan Rate 

(mV/s) 

a -b 

20 1   

20 5 139.7206 -0.0005 

20 5 133.2232 0.0011 

20 5 36.225 0.0031 

20 5 41.7252 -1.00E-20 

20 5 296.9563 -1.00E-20 

20 10   

20 20 694.3342 -0.0001 

20 100 259.1189 -1.00E-20 

20 100 179.9263 -0.0004 

-0.4

-0.3

-0.2

-0.1

0

0.1

0 20 40 60

𝑦=𝑎∙𝑒𝑥𝑝(−𝑏𝑡)+c∙𝑒𝑥𝑝(−d𝑡)

-12000

-10000

-8000

-6000

-4000

-2000

0

2000

0 20 40 60

y = a*tb + c

-2

0

2

4

0 20 40 60

y = a*tb + c

0

100

200

300

0 20 40 60

y = a*tb + c



60 
 

20 100 58.3902 -1.00E-20 

20 100 163.7287 -1.00E-20 

20 200 237.7389 -0.0001 

20 5 139.7206 -0.0005 

20 5 133.2232 0.0011 

20 5 36.225 0.0031 

40 5 149.2615 -0.0031 

40 5 132.5438 -0.0002 

50 5 100.8964 -0.0008 

5 100 172.3421 1.00E-20 

20 100 163.7287 -1.00E-20 

50 100 246.1486 -1.00E-20 

 

When selected to represent the conditions of the system in the RUL model, the parameters a and 

b can be considered functions of temperature and scan rate. Instead of semi-arbitrarily choosing 

parameters for the RUL model, this allows for the model to become more representative of real 

conditions and continually improve with more data. Multiple linear regression of the two 

independent variables, temperature (T) and scan rate (υ), were calculated with degradation model 

hyperparameters a and b representing the dependent variables. The multiple linear regression 

equation took the form: 

 𝑎 =∝ 𝑇 + 𝛽υ + 𝜀 (26) 

Where α and β are the coefficients associated with each independent variable, with an error term 

𝜀. A least squares regression was computed in MATLAB. With this regression, we can choose 

the best mean values for a and b in the exponential degradation model based on the best-fit 

surface for a desired temperature and scan rate. Results of the best-fit surfaces for a and b are 

shown in Figure 26.  
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Figure 26. Best fit surfaces for parameters a and b of exponential model. 

 

The data is sparse, the RMSE is quite high, and the R2 value is only approximately 0.04 for 

parameter a and 0.29 for parameter b. With the current data of temperature and scan rate 

together, we do not seem to get much more information about the hyperparameters a and b than 

we did knowing each individually. Another input, such as voltage together with temperature, 

might contribute more information about the parameters. However, the RUL model can still run 

with these preliminary estimates of the model parameters for different temperatures and scan 

rates and continuously improve the prediction with new datasets. Further, in the Bayesian 

prognostics used to predict RUL, these values represent initial beliefs about the parameters a and 

b, which will be updated with a likelihood function to obtain a posterior probability of these 

parameters given the capacitance data input to the prognostics algorithm. The fitted regression 

equations for a and b are shown below.  

𝑎 = 214.3597 − 2.1767𝑇 − 0.5576𝜐 + 0.0388 ∙ 𝑇𝜐  

𝑏 = 0.0025 − 0.000087𝑇 − 0.000024𝜐 + 0.000000859 ∙ 𝑇𝜐  
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Using common values from experimental conditions, T=20C and υ=5mV/s, these regression 

equations return a = 171.913 and b = 722.9E-6 for a room temperature degradation model 

𝑦 = 171.913 ∙ 𝑒𝑥𝑝(−722.9 × 10−6 ∙ 𝑡) 

A uniform prior distribution 𝑓(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) = 𝑓(𝑎) ∙ 𝑓(𝑏) (27) was chosen, representing 

initial beliefs about the parameters a and b of this degradation model. A likelihood function for a 

given capacitance data point (input to the model) was then obtained (equation 28) representing 

the probability of observing the available data given the possible values of the model parameters. 

The likelihood for multiple data points is given by the product of their likelihoods. Bayes 

theorem (equation 29) was then applied to update the prior distribution based on the observed 

data.  

 𝑓(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) = 𝑓(𝑎) ∙ 𝑓(𝑏) (27) 

Where 𝑓(𝑎) ~ 𝑈(𝑎𝑚𝑖𝑛 , 𝑎𝑚𝑎𝑥) and  𝑓(𝑏) ~ 𝑈(𝑏𝑚𝑖𝑛 , 𝑏𝑚𝑎𝑥) 

 𝐿(𝑑𝑎𝑡𝑎|𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) =
1

√2𝜋
∙ exp (−

1

2
(𝑑𝑎𝑡𝑎𝑖𝑚

− 𝑑𝑎𝑡𝑎𝑖𝑐
)

2
) (28) 

Where 𝑑𝑎𝑡𝑎𝑖𝑚
 represents measured data and 𝑑𝑎𝑡𝑎𝑖𝑐

 represents calculated data. 

 𝑓(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠|𝑑𝑎𝑡𝑎) =
𝐿(𝑑𝑎𝑡𝑎|𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)∙𝑓(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠)

𝑓(𝑑𝑎𝑡𝑎)
 (29) 

𝑓(𝑑𝑎𝑡𝑎) can be considered as a normalizing constant. Finally, the form of the distribution for N 

data points is  

𝑓(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠|𝑑𝑎𝑡𝑎) =
1

𝐾√2𝜋
∙ exp (−

1

2
∑ (𝑑𝑎𝑡𝑎𝑖𝑚

− 𝑑𝑎𝑡𝑎𝑖𝑐
)

2𝑖=𝑁
𝑖=1 ) ∙ 𝑓(𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠) (30) 

The updated distribution, the posterior distribution, represents the updated beliefs about the RUL 

given both the prior information and the likelihood. Because the prior knowledge is represented 



63 
 

as distributions, the posterior is capable of characterizing the uncertainty in RUL estimation 

propagated from the uncertainty of the underlying data.  

5.3. Model Determination for RUL Prediction 

While previous research suggested the exponential degradation model used above for 

degradation of batteries or EDLCs, the data obtained in the present research variably fit well to 

other models. The exponential model especially seems unfit for early cycle capacitance data that 

is increasing due to activation processes discussed in Chapter 3. Figure 27 shows erroneous RUL 

predictions for a sample tested at room temperature, which displayed increasing capacitance over 

100 cycles, unlike those at elevated temperatures that reach a maximum capacitance value within 

30 cycles (after which RUL predictions were made). Median RUL prediction after the first 10 

cycles was 83 cycles, with 60 cycles at the 5th percentile and 92 cycles at the 95th percentile. 

Given the real data showing continuously increasing capacitance beyond these values, the model 

does not seem capable of predicting RUL for cells that experience an extended activation 

process.  
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Figure 27. a) Specific capacitance over 100 cycles at room temperature. b) Histogram of predicted RUL 

 

With this behavior, other models like a two-term exponential function or a power law model 

(equations (31) and (32), respectively) may be better suited as degradation functions to predict 

the remaining useful life.  

 𝑦 = 𝑎 ∙ 𝑒𝑥𝑝(−𝑏𝑡) + 𝑐 ∙ 𝑒𝑥𝑝(−𝑑𝑡) (31) 

 𝑦 = 𝑎 ∙ 𝑡𝑏 + 𝑐 (32) 
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Following the same method as with the exponential model, a power law model and a two-term 

exponential function were also fit to the data to ensure selection of the best model. Table 3 and 

Table 4 show the values of the hyperparameters at the same temperature and scan rate 

combinations for the two-term exponential function and power law, respectively.  

 

Table 3. Table of hyperparameters fit to data for the two-term exponential model. 

 

Temperature (°C) Scan Rate (mV/s) a b c d 

20 5 7.93E+04 -0.0053 -7.92E+04 -0.0053 

20 5 6.27E+04 0.0093 -6.27E+04 0.0093 

20 5 62740 0.0093 -62707 0.0093 

20 5 9.3082 -0.0014 37.1021 1.00E-20 

20 5 11.8923 -0.0087 291.8292 -1.00E-20 

20 20 39.3361 -0.0376 680.5523 -1.00E-20 

20 100 260.3959 -1.00E-20 -46.2256 -0.0018 

20 100 30.4596 -0.015 156.9199 -1.00E-10 

20 100 4.24E+04 -7.06E-05 -4.23E+04 -7.07E-05 

20 100 9.0735 -0.0004 159.246 -1.00E-20 

20 200 15.0403 -0.0217 229.9379 -0.0001 

20 5 -0.0009 0.075 132.9113 0.0012 

20 5 -1.49E+06 0.01 1.49E+06 0.01 

20 5 -1492300 0.01 1492400 0.01 

40 5 3.3917 -0.0768 148.2568 -0.0031 

40 5 132.7178 -0.0002 -38.9375 -0.2352 

50 5 3.88E+06 0.0041 -3.88E+06 0.0041 

5 100 172.136 1.00E-20 -105.8954 -0.0044 

20 100 163.7543 -1.00E-20 -18.302 -4.80E-03 

50 100 245.4988 -1.00E-20 -39.9046 -0.0134 
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Table 4. Table of hyperparameters fit to data for the power law model. 

 

Temperature (°C) Scan Rate (mV/s) a b c 

20 5 -80.7115 -0.1758 159.4606 

20 5 123.7011 0.0361 0 

20 5 -129.4363 -0.1354 122.5819 

20 5 14.1605 -0.3593 40.4227 

20 5 -164.4793 0.0151 472.621 

20 20 55.936 -0.3641 671.6245 

20 100 -107.3574 -0.2118 273.9984 

20 100 -9.7282 0.2497 197.652 

20 100 91.1585 -0.0697 0 

20 100 596.2894 -0.6351 158.4313 

20 200 -10.0511 0.1964 256.4337 

20 5 -80.7115 -0.1758 159.4606 

20 5 123.7011 0.0361 0 

20 5 -129.4363 -0.1354 122.5819 

40 5 -1.2634 0.7676 152.4603 

40 5 -0.0003 1.7557 131.5632 

50 5 -1.00E-20 3.2063 96.6481 

5 100 -9770.7 -1.0236 175.6667 

20 100 596.2894 -0.6351 158.4313 

50 100 -0.0972 0.6436 252.7685 

 

With the available data, the best fit surfaces to correlate these operating conditions with the 

parameter values for the power law model are shown in Figure 28.  
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Figure 28. Best fit surfaces for parameters a, b, and c in the power law model 

 

While there is not great correlation value for the parameters a and c (R2 = 0.13 and R2 = 0.03 

respectively), parameter b has a relatively high R2 value of 0.86 and a best fit surface showing 

some correlation with changes in operating parameters. The equations to obtain parameters for 

the power law model based on the temperature and scan rate are shown below.  

𝑎 = −13.1135 + 0.25939𝑇 + 2.2105𝜐 − 0.0442 ∙ 𝑇𝜐  

𝑏 = −2.1812 + 0.09832𝑇 + 0.01309𝜐 − 0.000648 ∙ 𝑇𝜐  

𝑐 = 232.2172 − 2.6137𝑇 − 0.73492𝜐 + 0.04415 ∙ 𝑇𝜐  
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When used in the Bayesian Monte Carlo method for RUL, the model does not converge to a 

RUL value, suggesting adjustments to the Monte Carlo method are required. Additionally, more 

data is needed to better refine parameters. 

5.4. Integration with Physics-based Lifetime Model 

5.4.2. Model Weighting Based on Uncertainty  

Physics-based models (as described in chapter 4) involve simulation of a system based on the 

underlying physics and engineering principles, requiring a deeper understanding of the physical 

processes and mechanisms that govern operation, degradation, and failure. The parameters of 

these models represent material properties and environmental conditions which are calibrated 

and validated from experimental data or literature. This approach is beneficial for its 

interpretability and generalization to varying conditions but is inefficient for capturing all 

uncertainties and random variations. A hybrid approach, combining the physics-based model 

with a probabilistic model, allows for accounting of uncertainties and variations that are not 

explicitly captured by the physics-based model. This is done directly in the pseudocapacitor 

physics-based model with Monte Carlo sampling of parameters (e.g., resistance, concentration, 

temperature), which are empirically adjusted from one time or cycle step to the next based on 

observed data. Further the combination of predictions generated by both models can lead to more 

robust and accurate predictions and further support decision making. This combination can be 

done by weighting the predictions from each model based on the confidence or uncertainty of 

each of their outputs. This ensemble approach, as done by [92], represents the weight as the 

standard deviation at a point in the model in ratio with the maximum standard deviation for the 

model’s prediction.  
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𝜆𝑖 =
𝜎𝑖

𝜎𝑚
  

Capacitance value outputs of the probabilistic and the physics-based model are integrated into a 

single output based on the weighting of each model’s uncertainty, as shown in equation (33). 

 𝑦ℎ = (1 − 𝜆)𝑦𝑚1 + 𝜆𝑦𝑚2  (33) 

This method is useful in cases such as this one, where the physics is only partially known or 

represented, and the data is limited. Information from the data and the physics and their known 

uncertainty can reduce overall uncertainty and improve the prediction accuracy. Further, another 

weighting factor can be added by the user to express their degree of confidence in either model 

based on their knowledge of the given system.  

5.4.3. Bayesian Model Uncertainty  

With multiple models of reasonable accuracy, another method of integrating models utilizes 

Bayesian model averaging. Bayesian model averaging can ostensibly provide better predictive 

performance, especially when one has multiple partially applicable models [93]. With Bayesian 

model averaging, the various models can be averaged for an optimal prediction 𝑦ℎ with the 

distribution  

𝑝(𝑦ℎ|𝐷) =  ∑ 𝑝(𝑦ℎ|𝑀𝑖)𝑝(𝑀𝑖|𝐷)

𝑁

𝑖=1

 

Where 𝑝(𝑀𝑖|𝐷) is the posterior probability of model Mi, with data D.  

𝑝(𝑀𝑖|𝐷) =
𝑝(D|𝑀𝑖)𝑝(𝑀𝑖)

∑ 𝑝(D|𝑀𝑖)𝑝(𝑀𝑖)
𝑁
𝑖=1

 

This method, however, assumes that the models assessed are collectively exhaustive of all 

possible models. To characterize the uncertainty of predictions based on what is known about the 
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models of their outputs, we can use a Bayesian model uncertainty. We can assess the uncertainty 

around model predictions by developing the probability distribution π(y), the distribution around 

the unknown true value of 𝑦ℎ, or more simply the distribution of  y given all available evidence 

that may be relevant (i.e. D—the known information about the model, and y*—the model 

prediction). Using Bayes theorem, the posterior distribution of the output y (e.g. the value of 

capacitance/remaining useful life) is  

π(y|y∗, D) =  
𝐿(𝑦∗|𝐷, 𝑦)𝜋0(𝑥)

∫ 𝐿(𝑦∗|𝐷, 𝑦)𝜋0(𝑥)
𝑥

 

𝐿(𝑦∗|𝐷, 𝑦) = 𝐿(y∗|𝐷 , 𝑦)𝐿(𝐷 |𝑦) 

Where 𝜋0 is the prior distribution and 𝐿(𝑦∗|𝐷, 𝑦) is the likelihood function [94].  

When using the outputs of the electrochemical model and the RUL model to predict future 

behavior of a device, one can use a credibility factor, φ, as a weight for the likelihood equation of 

each model under a given context or ψ as an applicability factor under a different context. This 

factor are between 0 and 1 for lowest and highest confidence, respectively, and may be based on 

the analysts confidence that the model will properly predict y under these contexts. The 

likelihood function gets modified as [94] 

𝐿(𝑦∗|𝐷, 𝑦) = ∬[𝐿(y∗|𝐷𝑀 , 𝑦)]𝜑𝜓π(φ|𝐼𝑐)π ∙ (ψ|Ia)

𝜑 𝜓

𝑑𝜑𝑑𝜓 

Where Ia and Ic are information on applicability and credibility, respectively.  

With multiple models that may be dependent on each other, coupling them by averaging may just 

multiply the amount of error. To deal with this dependence the likelihood function can be 
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constructed as a joint probability distribution of the likelihoods from both models 𝐿(𝑦1, 𝑦2|𝑦) 

expressed as marginal distributions through a copula function.  

5.5. Discussion 

The present study aimed to predict the RUL of pseudocapacitors under varying operating 

conditions. While the RUL prediction showed promise in some situations, the model’s 

performance becomes compromised when confronted with changing environmental factors, such 

as temperature. As seen in the results, deviations between predicted and actual RUL values 

became more pronounced in scenarios involving significant temperature variations. This finding 

raises important considerations regarding the generalizability and robustness of the model in 

real-world applications where dynamic environmental conditions are common. Several factors 

may contribute to the observed discrepancies. Firstly, the training dataset might not have 

adequately represented the full spectrum of temperature conditions encountered during the 

operational life of the system and may also need to include other types of variation such as 

electrolyte degradation, variations in deposition processes or voltage dependencies. The model 

and parameters may not have explicitly accounted for the influence of temperature or other 

factors on the degradation processes, especially in early cycle life when activation processes are 

occurring in the material prior to degradation. In practical applications, especially in use cases 

where temperature variations are inherent, the limitations identified highlight the importance of 

developing adaptive RUL prediction models. Consideration should be given to implementing 

real-time monitoring systems that continuously update the model parameters based on the current 

environmental conditions, ensuring a more accurate and responsive RUL prediction. Overall, this 

model contributes to the body of work that addresses the challenges of temperature-dependent 

RUL prediction and provides a foundation for future research aimed at addressing these 
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challenges and improving the reliability of prognostic models in dynamic operational 

environments. 
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CHAPTER 6 

6. Case Studies and Applications 

6.1. Case Study  

EDLCs, with their distinct electrochemical properties, have garnered attention for use in 

regenerative braking systems, which aim to recover and store kinetic energy during vehicle 

deceleration. The utilization of energy storage systems regenerative braking is integral to 

enhancing overall fuel efficiency and reducing energy consumption. Batteries, commonly 

employed in hybrid and electric vehicles, face challenges with the high power charging during 

regenerative braking, leading to degradation and performance issues. As mentioned in Chapter 1, 

supercapacitors and pseudocapacitors offer notable advantages, such as high power density and 

potentially excellent cycling properties. making them particularly well-suited for the rapid charge 

and discharge cycles inherent in regenerative braking. While the predominant focus has been on 

batteries and supercapacitors, this chapter presents a case study for the potential incorporation of 

pseudocapacitors into regenerative braking systems. Despite the increasing adoption of electric 

vehicles, the specific exploration of pseudocapacitors in regenerative braking systems remains an 

underexplored area. This gap in research prompts a closer examination of the electrochemical 

characteristics of pseudocapacitors for optimal operation, positioning, and sizing within the 

context of regenerative braking. The distinct charge storage mechanism of pseudocapacitors, 

combining features of both capacitors and batteries, positions them as a compelling candidate for 

efficiently capturing and releasing energy during braking events. Further, the fast usage of the 

stored charge during regenerative braking may circumvent issues arising due to the self-

discharge characteristics of pseudocapacitors, which could lead to lower overall system 

reliability in various other stand-by operations (e.g., grid operations). Because energy stored 
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during braking will likely be used within seconds to minutes after charging, the energy losses 

due to self-discharge are likely to be relatively small. Overall, the use of pseudocapacitors in 

regenerative braking has implications for addressing the limitations associated with traditional 

battery technologies and improving the overall performance and longevity of energy storage 

systems in electric vehicles. The models presented in this dissertation can be utilized to optimize 

electric vehicle systems. Optimized systems including pseudocapacitors have the potential for 

longer driving range and extended battery lifetimes.  

 

To simulate a hybrid pseudocapacitor braking system, a simplified model of an electric vehicle 

under standard conditions was created. the sample driving schedule used by the United States 

Environmental Protection Agency (EPA) for vehicle fuel and emissions testing was used as an 

input [95]. This is shown in Figure 29.  

 

Figure 29. EPA Urban Dynamometer Driving Schedule 

Other inputs are the assumed vehicle mass, and other forces on the vehicle. The behavior of the 

vehicle can be described by  
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𝐹𝑇𝑜𝑡𝑎𝑙𝑇𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝐹𝑎 + 𝐹𝑟 + 𝐹𝑔 + 𝐹𝑑 

𝑃 = 𝐹𝑇𝑜𝑡𝑎𝑙𝑇𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ∙ 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦  

 

The simulation recharges the pseudocapacitor pack at, for example, 300 A during each of the 

declining velocity (braking) portions of the driving schedule in Figure 29. This exercise is left for 

future research.  
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CHAPTER 7 

7. Summary 

This dissertation aims to identify the degradation mechanisms affecting the performance and 

reliability of MnO2 pseudocapacitors under varying operating conditions. Through experimental 

studies, modeling, and probabilistic analyses, the research focuses on elucidating the dissolution 

of the electrode material into the electrolyte, as it relates to capacitance reduction. Factors such 

as voltage sweep rates, temperature, pH, and cycling were studied to identify key contributors to 

degradation. The objective is to enhance the feasibility of pseudocapacitors for sustainable 

energy storage systems and enhance the longevity of systems that incorporate these devices.  

 

A physics-based model was developed to simulate the capacitance and degradation behaviors of 

pseudocapacitors over time. This model considers external and internal temperature variations 

over multiple cycles and their effects on capacitance evolution and degradation. The model 

estimating the degree of mass dissolution and degradation and increases in resistance based on 

the temperature and other operating conditions at each cycle with uncertainty based on the inputs 

of to the model. Bayesian updating was employed to improve the physics-based model, 

incorporating experimental and statistical data with uncertainties to enhance its predictive 

capabilities for real operating conditions. Experimental studies both provided data and helped 

validate the model's accuracy. This represents the first attempt at modeling the cycling behavior 

of pseudocapacitors through cyclic voltammetry, which allows additional analysis of the 

reactions taking place in the material. Further the was the first cyclic model that sought to 

account for the evolution in internal temperature due to reversible and irreversible heat, 

connecting it to the degradation of the material species over cycling.  
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Furthermore, this research demonstrated the applicability of a Bayesian Monte Carlo approach to 

estimating the remaining useful life (RUL) of pseudocapacitors. By forecasting RUL, this 

approach can optimize the operation and management of pseudocapacitor energy storage 

systems, contributing to efficient utilization, reduced downtime, and minimized risk of system 

failure. This research presents a new approach to predict pseudocapacitor performance, offering 

insights into reliability and efficiency in energy storage systems for sustainable and dependable 

power solutions. 

 

7.1. Conclusions and Outlook 

In conclusion, this dissertation has made significant strides in understanding and addressing the 

degradation mechanisms impacting the performance and reliability of MnO2 pseudocapacitors. 

Through a comprehensive approach encompassing experimental studies, modeling, and 

probabilistic analyses, the research has shed light on and developed a method for capturing the 

external and internal temperature effects and dissolution of electrode material into the electrolyte 

as a critical factor influencing capacitance reduction over numerous cycles. The developed 

physics-based model stands as a noteworthy achievement, providing a simulation tool capable of 

capturing capacitance and degradation behaviors over time. This is especially useful for EDLCs 

and other pseudocapacitors that can have prohibitively long experimental test times for assessing 

cycle life.  

 

The utilization of Bayesian updating in refining the physics-based model has demonstrated a 

novel approach to incorporating uncertainties and improving the model ability to reflect reality. 
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This integration of experimental and statistical data, as well as validation with real data, has 

elevated the model's ability to predict pseudocapacitor performance, especially under dynamic 

and unpredictable environmental conditions.  

 

The introduction of a Bayesian Monte Carlo approach for estimating the remaining useful life 

(RUL) of pseudocapacitors also demonstrates potential to advance the operation, management 

and lifetime value of larger energy storage systems containing pseudocapacitors. Looking ahead, 

the findings from this dissertation pave the way for further advancements in the design and 

implementation of reliable systems that utilize pseudocapacitors for energy storage, such as 

hybrid battery-pseudocapacitor regenerative braking systems. Future research endeavors could 

explore additional factors influencing degradation, expand models to encompass broader ranges 

of operating conditions, and investigate other novel materials for pseudocapacitors. The 

Bayesian Monte Carlo approach, introduced here for RUL estimation, offers a promising avenue 

for continued exploration and application in real-world energy storage systems, promising a 

more sustainable and dependable energy future.  

7.2. Future Work: Addressing Model Limitations and Advancing RUL Predictions 

The findings of this study have shed light on critical limitations in our RUL prediction model, 

particularly in accommodating changing environmental conditions such as temperature 

variations. Several avenues for continued research in this area emerge, each aimed at enhancing 

the accuracy and adaptability of pseudocapacitor models. 

• Uncertainty Analysis of Physics Model Parameters: 
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One key aspect for future investigation involves a comprehensive analysis of uncertainties 

associated with parameters in the physics model beyond temperature and active material mass or 

concentration degradation. Understanding and quantifying uncertainties in parameters such as 

the changing diffusion parameters, the changing overpotential, the changing charge transfer 

rates, and others can contribute to a more robust prediction model, especially under dynamic 

operating conditions. 

• Regression Techniques and Criteria for Convergence of Degradation Model Parameters: 

To improve the reliability of the degradation model used to predict RUL, it is imperative to 

define criteria for convergence when fitting the model to real-world data. This involves a 

systematic exploration of various datasets to ensure the model's adaptability across different 

operational scenarios. Testing against multiple datasets will validate the model's convergence 

criteria and enhance its generalizability. Further, exploration of Bayesian regression for fitting 

the model parameters may be an alternative avenue for refining the RUL prediction. The model 

currently uses a multiple linear regression technique. A Bayesian regression can better handle 

uncertainties that may be better suited to available data and potentially improve the predictions 

of the model. As an extension of this, incorporating Bayesian model uncertainty into the RUL 

prediction framework can leverage the data to continually refine and tune the model, reducing 

prediction errors and enhancing the adaptability to changing conditions.  

• System-Level Modeling and Experimental Data Integration: 

The application of RUL prediction models to system-level modeling is a critical step towards 

real-world implementation. Future work on this subject will aim to integrate experimental data, 

such as the self-discharge characteristics of pseudocapacitors obtained in this study, into the 
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modeling framework. This will allow for a more comprehensive understanding of system 

behavior and provide practical insights for system-level RUL predictions. For example, 

understanding the impact of self-discharge on the performance and life of a pseudocapacitor can 

allow one to optimize, for example, how the current is maintained during charge and discharge 

of the device when braking and accelerating an electric vehicle with regenerative braking 

capabilities. As a hybrid battery-supercapacitor system, a battery relieved of these high current 

loads in a given driving cycle may then experience extended lifetime, increasing the lifetime 

value of the whole system. 

 

In summary, the future work outlined above seeks to address the identified limitations and 

elevate the state-of-the-art in RUL prediction models. By delving into uncertainty analysis, 

convergence criteria, Bayesian regression, and system-level applications, a future model may not 

only accurate under varying conditions but also adaptable to the complex and dynamic nature of 

real-world operational environments. These advancements will contribute significantly to the 

field of prognostics and facilitate the practical implementation of RUL prediction models in 

diverse industries and applications. 
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