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INTRODUCTION 

Vibrio cholerae 

Background 

V. cholerae is a gram-negative bacillus responsible for the severe human diarrheal 

disease cholera, affecting millions annually worldwide (1). V. cholerae naturally reside in 

marine environments including brackish water, and in the environment is often found 

complexed with marine organisms such as plankton or shellfish (2). In human 

populations, infection occurs from the ingestion of contaminated food or water, often 

caused by poor sanitation infrastructure (2, 3). Once inside the host, V. cholerae 

preferentially colonizes the distal small intestine, where it expresses several virulence 

factors in order to establish infection, including the cholera toxin (CT) responsible for the 

watery diarrhea characteristic of cholera, and the toxin-coregulated pilus (TCP) required 

for colonization of the epithelium (4). 

It is uncertain as to when V. cholerae became a human pathogen. Descriptions of 

sicknesses that strongly resemble cholera are described by Hippocrates (~460-377 B.C.E) 

as well as inscriptions found in India dating back to the era of Alexander the Great (356-

323 B.C.E.) (5, 6).The first written documentation of the disease dates to 15th century 

India as European observers began arriving in the country (5). The first global pandemic 

of cholera occurred in 1817, originating from the Ganges river in India (7). This was 

followed by six subsequent cholera pandemics, with the seventh pandemic continuing up 

to the present day (8). V. cholerae was first identified as the etiologic agent of cholera by 

Filippo Pacini in studies of an outbreak in 1854 (9). Of the seven recorded pandemics, the 
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first six were caused by the Classical biotype of V. cholerae, while the ongoing seventh 

pandemic has been due to the newer El Tor biotype originating in South Asia in 1960 (8). 

While like Classical V. cholerae part of the O1 serogroup, El Tor biotype strains are 

characterized by lower toxin production and virulence. As a result El Tor biotype strains 

establish a less severe infection, leading to increased numbers of infected individuals and 

higher asymptomatic carriage (2). Today, infections caused by Classical strains are rarely 

reported.  

The study of cholera has been an important driver of the fields of microbiology 

and our understanding of infectious diseases more broadly. For example, during the third 

pandemic, the efforts of John Snow to trace an outbreak of cholera in London contributed 

to the founding of the field of epidemiology (8).  

 

Symptoms and Treatment 

 The symptoms between Classical and El Tor infections are similar, with El Tor 

typically leading to milder infections (10). Once infected, symptoms can take up to five 

days to develop. The hallmark symptom of this disease is severe watery diarrhea (up to 

18 liters a day). This diarrhea has a distinctive “rice water” appearance caused by the 

presence of numerous Vibrio cells and host mucus (3, 8). Other accompanying symptoms 

include vomiting, muscle cramps and irritability as well as signs of dehydration such as 

loss of skin elasticity, dry mucus membranes, sunken eyes, reduced urine, and in severe 

cases lethargy (11, 12). If left untreated, the infection can cause acidosis, shock, and 

circulatory collapse within hours (8).  
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The principle treatment for a cholera infection is rehydration therapy which drops 

the mortality rate under one percent (8, 12). For severe cases, antibiotics including 

azithromycin and doxycycline for adults and erythromycin or azithromycin for children 

and pregnant women are used in conjunction with oral rehydration (12). Reports also 

indicate that zinc administration can reduce infection duration and severity (10).  

Several vaccines on the market for V. cholerae have been approved by World 

Health Organization (WHO), including Dukoral, Shanchol, Euvichol and Vaxchora (13). 

Dukoral uses heat and formalin inactivated V. cholerae as well as the non-enzymatic B 

subunit of CT and provides a 3-4-year immunity in endemic and industrialized countries 

with approximately fifty percent efficacy. Shanchol also includes heat and formalin 

inactivated V. cholerae as well as the CT B subunit but grants five-year immunity and 

only provides protection to endemic populations with approximately sixty-five percent 

efficacy. Euvichol has similar efficacy to Shanchol except for the vaccine uses only heat 

and formalin inactivated V. cholerae. The most recent commercially available vaccines is 

Vaxchora, a live-attenuated vaccine that provides immunity for at least 6 months using a 

recombinant V. cholerae with a deletion for the genes encoding the CT enzymatic subunit 

and hemolysin A (14). Despite the availability of effective treatment options and some 

prophylactics, the morbidity of cholera is still high affecting up to 4 million annually and 

143,000 deaths, and vaccines have demonstrated highly variable efficacy and typically 

short periods of provided immunity, highlighting the need for preventative care and 

alternative treatments (7). 
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Virulence Factors 

Successful V. cholerae infection of mammalian hosts depends on a carefully 

regulated cascade of gene regulation, culminating in the production of CT, and the 

primarily colonization factor TCP (15, 16). The presence of CT was first proposed by 

Robert Koch in 1884, but it was not until 1959 that it was shown that cell-free culture 

filtrates caused diarrhea (17, 18). This work then led to CT being purified a decade later 

(19). CT consists of a single A subunit and five B subunit that are released by infectious 

V. cholerae cells through a Type II secretion system (18, 19). The two genes encoding 

these subunits, ctxA and ctxB respectively, are carried on the lysogenic vibriophage 

CTXφ. Infection with this phage can render previously non-infectious Vibrio strains 

toxogenic and dangerous (20). Before secretion, five CtxB subunits form a pentamer 

around a single CtxA monomer in the periplasm to form a single holotoxin (21). Once 

outside the cell, each of the monomers of the CtxB can bind with the glycan portion of 

the glycolipid GM1 receptor on epithelial cells lining the intestinal lumen. This 

interaction causes the cell to endocytose the toxin, whereupon the B subunit complex 

creates an opening in the endosome for the A subunit (A1) to enter the endoplasmic 

reticulum. A1 then unfolds, hijacking the cellular machinery allowing for export of 

misfolded proteins into the cytoplasm for proteasomal degradation (22). A1 then folds 

and causes G-protein ADP-ribosylation resulting in the constitutive activation of 

adenylate cyclase, increasing the levels of cAMP. cAMP, in turn, activates a cystic 

fibrosis transmembrane conductance regulator, leading to the constitutive expression of 

the transporter resulting in Cl- leaving the cell. This leads to Na+ loss to maintain 
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electroneutrality, prompting H2O loss and resulting in cholera’s distinctive watery 

diarrhea (23). This diarrhea may then help in elimination of other bacterial competition 

through purging of the gut microbiota and allows for V. cholerae to disseminate into the 

environment later in the infection.  

While CT is required for diarrhea, V. cholerae uses TCP in order promote 

bacterial cell-cell interactions, microcolony formation, and attachment to the host 

epithelium cells, as well as providing receptors for the CTX phage (24, 25). It has been 

shown that the expression of tcpA, the pilin subunit of TCP, is induced an hour after 

inoculation into infant mice, while ctxA, the enzymatic subunit of CT, transcription 

occurred at four hours and that this was dependent on the prior expression of TCP. TCP 

has been shown to be absolutely required for infection of humans and mice (16, 25). TCP 

is a Type IV bundle forming pilus made of many monomers of the pilin TcpA, and the 

genes involved in its biogenesis, encoded in the tcp operon, are transcriptionally co-

regulated with the ctxAB genes encoding CT (25). The TCP biogenesis apparatus can also 

act as a type IV secretion system, leading to the secretion of the soluble virulence factor 

TcpF which has been shown to aid in colonization; ∆tcpF mutants demonstrated a 

decreased colonization in suckling mouse intestines compared to WT (26).  These pili, 

along with exopolysaccharides and proteins, help form a biofilm protecting the cells from 

host immunity, environmental factors and other microbial species (27).  

The initial activation of virulence genes in V. cholerae in vivo is a complex 

process involving several coordinately-expressed regulators and environmental stimuli. 

The cell surface complexes ToxRS and TcpPH can respond to environmental signals, 
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such as oxygen concentration and bile acids to time the expression of downstream 

virulence regulators. ToxRS is able to directly activate CT gene expression, and the 

combined action of ToxRS and TcpPH can stimulate the expression of the master 

virulence regulator ToxT, which can then activate the tcp operon and ctx gene expression 

(28-31). The stability of both ToxRS and TcpPH are tied to bile acids in the host. Bile is 

secreted into the proximal small intestine with a large portion being reabsorbed in the 

distal small intestine where V. cholerae colonizes, and thus serve as an effective 

environmental stimuli of virulence activation in the preferred site of V. cholerae 

colonization (16, 25, 32). ToxS and TcpH are thought to stabilize ToxR and TcpP 

respectively, as mutations of these genes showed an increase in proteolytic activity (30, 

33). It has been reported that proteolysis of ToxR was blocked by the introduction of 

deoxycholate (DC), while TC forms a disulfide bridge to form between two TcpP 

monomers leading to downstream signaling and virulence activation (31, 34). This 

disulfide bridge also serves to protect TcpP from degradation independent of TcpH (35).  

 

Bile Acids 

Synthesis and Regulation 

 Bile acids are molecules in the body derived from cholesterol, synthesized in the 

liver, and stored and secreted by the gall bladder into the small intestine. In the small 

intestines, bile acids play an important role in the emulsification and absorption of dietary 

fats (36). There are two pathways for bile acid synthesis, the classical or neutral pathway 

and the acidic or alternative pathway; together, both pathways utilize seventeen enzymes 
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(32, 36, 37). The classical pathway occurs in the liver and accounts for ninety to ninety-

five percent of all bile acid synthesis (36). Synthesis starts when cholesterol interacts with 

the enzyme CYP7A1, with the end result being either cholic acid (CA) or 

chenodeoxycholic acid (CDCA), which are known as primary bile acids (see Figure 1).  
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Figure 1: Structure and characteristics of bile acids 
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  Figure 1 continued: Structure and characteristics of bile acids 
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The determinative step of bile acid synthesis is the action of enzyme CYP8B1, 

acting as a 12α-hydroxylase by adding a hydroxyl group to C12 of the steroid ring.  If the 

intermediate molecule has the hydroxyl group added, then it will become CA, if not, the 

molecule will become CDCA. The acidic pathway occurs in many different types of 

tissues in the body, with synthesis initiated by one of three enzymes. CYP27A1 is found 

mitochondria of many tissue types, CH25H are found in the endoplasmic reticulum, and 

CYP46A1 is found in the brain (37, 38). It is thought that this pathway is used to control 

lipid homeostasis (38). This pathway produces oxysterol intermediates, which are 

transported to the liver with the end product being CDCA (37). The last step is 

conjugation of the carboxyl group of a bile acid to an amino acid, either glycine or 

taurine in humans, done in a ratio of 3:1 glycine to taurine respectively (36). However, 

diet can affect this ratio; for example, high taurine diets can lead to an increase in taurine 

conjugated bile acids (36, 37) (see figure 2). Bile acid conjugation serves several roles. 

First, since bile acids are hydrophobic, amino acid conjugation makes a portion of the 

molecule hydrophilic, as well as increasing the solubility of the molecule at physiological 

pH (37). Second, conjugation prevents cleavage by pancreatic peptidases that are released 

into the lumen at the same point as bile. Third, conjugation decreases passive 

reabsorption, which allows bile acids to act on food longer. Ultimately, ~95% of the bile 

acids in the gastrointestinal tract is reabsorbed to be reused. Approximately 200-600 mg 

of new bile acids are synthesized by the liver daily, which is roughly equivalent to the 5% 

lost in feces (37). 
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Figure 2: Bile acid biosynthesis. Classical bile biosynthesis is initiated by CYP7A1 

hydroxylation of C7. Alternative biosynthesis is initiated by CYP27A1, CH25H or 

CYP46A1 via hydroxylation of C24, 25, or 27 respectively; an oxysterol intermediate 

that is converted to CDCA when translocated to the liver. CYP8B1 hydroxylates C12 

to the sterol intermediate, the resulting bile acid is CA. Bile Acid: Amino-acid 

Transferase (BAAT) conjugates glycine or taurine to the carboxyl group of 

synthesized bile acids. The resulting conjugated bile acids Glycocholic acid (GCA), 

Taurocholic acid (TCA), Glycochenodeoxycholic acid (GCDCA) and 

Taurochenodeoxycholic (TCDCA) leaves then the hepatocyte. Figure created in 

ChemSketch. Chemical structures based on Structures found on PubChem.com and 

open source material. 
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The concentration of bile acids effect the regulation of their own synthesis. This 

was initially suggested when creation of biliary fistulas resulted in an increase in bile acid 

synthesis. The ability to return bile acid synthesis to a normal level with infusions of bile 

acids into the duodenum was indicative of a negative feedback loop or feedback 

inhibition (39-41). Studies in rats observed increased CYP7A1 activity in animals where 

the luminal bile was reduced by the administration of the bile sequestering 

cholestyramine. The cholestyramine effect was reversed when additional bile acids were 

fed to the animals (37). It has also been shown that CYP7A1 expression can be 

stimulated by cholesterol in rats. Furthermore, bile acids can bind to the nuclear receptor 

FXR and indirectly inhibit CYP7A1 synthesis (37). It has also been shown that glucose 

can increase CPY7A1 gene expression in diabetic patients while insulin inversely 

regulates bile acid synthesis. Diabetic patients saw higher levels of bile acids bile acid 

levels when in a state of hyperglycemia that decreased with insulin treatment (42, 43).  

 

Secretion and Enterohepatic Circulation 

 Once bile acids have been conjugated, they are brought to the gallbladder to be 

concentrated and stored until needed. After a meal, the release of the hormone 

cholecystokinin by the intestinal epithelium causes the gallbladder to release bile into the 

small intestine (44). As bile acids continue down the alimentary canal, they undergo 

chemical changes resulting from interactions with the native microbial flora including 

deconjugation, dehydroxylation and hydroxylation. Deconjugation occurs when the bond 
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between the bile acid and the conjugated amino acid are broken. Dehydroxylation occurs 

when a hydroxyl group is removed from the steroid backbone creating secondary bile 

acids, while hydroxylation involves epimerizing hydroxyl groups from an alpha (α) to a 

beta (β) position or vice versa. (36).  

 Primary bile acids are reabsorbed by the distal ileum as bile acids pass through the 

small intestine, while secondary bile acids are passively absorbed in the large intestine, 

though not as efficiently as primary variants (Table 1). Absorbed bile acids then are 

bound by plasma proteins and shunted back to the liver. Once in the liver, both primary 

and secondary bile acids are conjugated and secreted once again. The exception is LCA, 

which undergoes sulfation at the 3-hydroxyl position (36). This may be to remove LCA 

from the system as sulfated LCA as it is not easily reabsorbed. As a result, the bile acid 

pool is highly diverse (Table 1, Figure 3). 

 

 

Source CA CDCA DCA UDCA LCA Other 

Gallbladder 35% 35% 25% 2% 1% 2% 

Feces 2% 2% 34% 2% 29% 31% 

Table 1: Composition of bile acids in the gallbladder and feces of healthy individuals, 

demonstrating bacterial bile acid metabolism though the gastrointestinal tract. Percentages 

derived from Ridlon et. al. 2006 
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Figure 3: Bile acid metabolism and circulation. In the small intestine bile acids are 

deconjugated by BSH. CA and CDCA metabolized through the 7α-dehydroxylation 

pathway resulting in DCA and LCA respectively.  CDCA is also metabolized by 

7α/β- HDSD enzymes resulting in UDCA. UDCA is metabolized into LCA by the 7β-

dehydroxylation pathway. These bile acids then reabsorbed into the portal circulation 

and transported to the liver or excreted through feces. Black arrow: bile acid 

metabolism, Blue arrow: portal circulation, Red arrow: excretion into feces, Green 

box: BSH deconjugation. Figure created in ChemSketch. Chemical structures based 

on Structures found on PubChem.com and open source material. 
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Function 

Bile acids/salts have many functions in the body.  The most well-known of these 

is solubilizing fats and vitamins, making these molecules available for the body to 

absorb.  This is accomplished by the formation of bile acid micelles with fat soluble 

vitamins, cholesterol, monoglycerides, and fatty acids, acting as a solvent vehicle for 

absorption (32, 36). These micelles are spherical and act in a similar manner as 

phospholipids in cell membranes; the amino acid portion of the bile salt, the hydrophilic 

portion, is exposed to the lumen while the hydrophobic molecules are contained within 

the micelle (36). 

It has also been shown that bile acids act as an antimicrobial agent in the 

alimentary canal. This was first hypothesized after studies showed increased bacterial 

growth with bile duct ligation or in people with cirrhotic livers that had decreased bile 

acid production (45). Further studies have proposed that bile acids accomplish this in 

various ways. Conjugated bile acids, specifically GDCA, decreased the pH of microbial 

cells by causing an influx of protons, forcing cells to put energy into balancing 

intracellular pH (46). Another study suggested that bile acids caused damage to the 

cellular membrane/wall as bacteria exposed to CA and DCA demonstrated signs of 

intracellular leakage through visible changes in cellular morphology, cell survival assays, 

and levels of intracellular material (47). This effect is supported by the fact that bile acids 

possess detergent qualities. It is possible that bile acids can also induce DNA damage as 

Escherichia coli exposed to bile acids activated the promoter for dinD, a gene that is 

induced by DNA damage though the SOS response (48). Bile acids also serve as ligands 
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for nuclear receptors, including FXR. Not only is it involved with the negative feedback 

loop of bile acid synthesis, FXR also plays a role in immunity as a regulator for iNOS 

and IL-18, as well as in other pathways including lipid metabolism, glucose metabolism 

and bile acid transport (49, 50). 

 

Bacterial Effects on Bile Acids 

Bacteria have several methods to modulate and metabolize bile acids and decrease the 

bacteriostatic and bactericidal effects of primary/conjugated bile acids. A major pathway 

for bacterial interaction with bile acids is the action of the enzyme bile salt hydrolase 

(BSH, choloylglycine hydrolase) produced by commensal microbes in the gut and which 

serves to remove the conjugated amino acid on bile acid molecules. Depending on the 

type, this enzyme can be intracellular or extracellular (51). Homologs of this gene can be 

found in many species residing in the small intestine, with each enzyme varying in its 

regulation, subunit size, and function (36). BSH also shows specificity to the different 

conjugated bile acids; Bacteroides thetaiotamicron VPI 5482 is unable to deconjugate 

CA conjugates, but was able to deconjugate CDCA, UDCA, DCA and LCA conjugates at 

different levels (52). The presence and function of these BSH enzymes can vary at the 

strain level within the same bacterial species (see Table 2 and Figure 5 and 6 for 

comparison of bsh in representative bacterial community). Some species host multiple 

bsh genes encoding BSH enzymes; for example Blautia obeum 

 (B. obeum) has two genes, RUMOBE_00028 and RUMOBE_ 03454, that have been 

identified through bioinformatic analyses as encoding BSH (53). In Clostridium 
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perfringens, a strain with its initial bsh deleted (∆bsh) still retained partial deconjugation 

activity, indicating the presence of more than one homolog (54).  

 The most notable microbial dehydroxylation pathway is 7-α/β dehydroxylation, 

which is restricted to deconjugated primary bile acids. This intracellular process utilizes 

several enzymes to convert CA to DCA and CDCA to LCA using 7-α dehydroxylation 

pathway and UDCA to LCA by 7-β dehydroxylation. A well-studied bacterial species 

that metabolizes bile acids in this way is Clostridium scindens, containing a bai operon 

coding for the proteins required for dehydroxylation (36). Dehydroxylation of bile acids 

may serve several purposes in bacteria; it is theorized that bacteria can use bile acids as 

an electron acceptor/carrier (NADP+⇄NADPH, NAD+⇄NADH and ATP→AMP). It is 

also possible that this confers a competitive advantage over other bacteria, since DCA 

and LCA are more inhibitory to sensitive microbes (36). 

 Hydroxylation is a reversable process using two enzymes α and β HSDH 

(hydroxysteroid dehydrogenase). these enzymes act on either the C3, C7 or C12 hydroxyl 

groups on bile acids by oxidation and epimerization. It has been demonstrated that this 

process can occur either within a single species or shared among two (36). The most 

notable are 7-α/β HSDH act on CDCA to make UDCA, a less toxic bile acid as shown in 

a study comparing growth of Clostridium absonum; the bacteria grew on plates with 1 

mM of UDCA but could not grow with the same concentration of CDCA (36, 55). See 

Figure 1 for bile acid properties and Figure 3 for a summarized bile acid metabolism 

pathway. 
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Rodent Models 

Mice are a common animal model used not just microbiome related studies, but in 

studies to understand bile acid synthesis and mechanistic function. It is important to note 

that studies in rodents present a different bile acid pool to microbes than in humans, both 

at the level of synthesis and the relative chemical composition of the final bile acid mix. 

In rats, fasting may stimulate bile acid synthesis as evidenced by the induction of 

CYP7A1 expression (37). The acidic pathway plays a larger role on bile acid synthesis in 

mice than humans.  When comparing CYP7A1 KO mice, their bile acid pool was 25% 

that of WT mice when both were on a normal mouse/rat diet. In CYP7A1 deficient 

humans, however, the bile acid pool is 5-10% that of healthy individuals (56, 57).  People 

with CYP7A1 deficiency experience hyperlipidemic phenotype while CYP7A1 KO mice 

experience normal lipid phenotype (56). On a regular diet of 75 g of fat and 500 mg of 

cholesterol CYP7A1 deficient humans demonstrated more sterols and less fatty acids 

absorption through fecal analysis while CYP7A1 KO mice have been shown to absorb 

<5% of dietary cholesterol (56, 58).  It is important to note that that mouse and human 

diets are quite different, and that diet on its own within either organismal system can 

affect bile acid pools of these organisms. The differences also extend to sex, as female 

mice demonstrate a larger bile acid pool than male, a pattern that is opposite than what is 

seen in humans (59). Mice also can alter a bile acids structure after synthesis by 

rehydroxylating the 7C of secondary bile acids and hydroxylating CDCA into α and β 

muricholic acid (MCA) (36, 60).   
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Rodent-human differences also extend to the composition of the final bile.  In 

addition to having CA and CDCA as major primary bile acids, mice also have MCA, 

with α-MCA and β-MCA being the predominant bile acids (56, 60). MCA is a 6-

hydroxylated bile acid having different forms depending on the steriochemistry of the 

hydroxyl group on C7, with the most common being α and β, the latter being the more 

prevalent of the two (60-62). Murideoxycholic acid (MDCA) and hyodeoxycholic acid 

(HDCA) are also part of the mouse secondary bile acid pool with only trace amounts 

found in humans, where the C7 hydroxyl group has been dehydroxylated (60). Both 

secondary bile acids differ in the C6 hydroxyl group, with one being in the alpha position 

and the other in the beta (60, 63-66). HDCA is formed in two different ways; the first is 

derived from MCA and is strictly microbial where it can go through an additional 

epimerization of the 6C hydroxyl group. LCA can also be metabolized through liver and 

microbial enzymes (67).  Bile acids in the murine bile pool are almost exclusively 

conjugated to taurine (>95%) in contrast to the glycine/taurine conjugated mixture found 

in humans, with sulfation of LCA occurring only in humans (60, 68). Rodent bile acids 

have also been shown to be less hydrophobic than human bile acids (69). 

Despite these differences, mice are useful and an important model for in vivo 

infection and bile manipulation studies. The anatomy and function of the mouse intestinal 

tract is similar to humans, including both digestion and immunity (70). This similarity 

also goes to the genetic level, with humans and mice having 90% of their genes in 

common (71).  Mice can be controlled for genetic variability; inbred mice lines can be 

produced and reduce complications from having a larger gene pool. In addition, mice can 
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be genetically manipulated to knock-in, -out or -down genes of interest. Further, mouse 

diets can be specifically controlled for content and quantity. It is also possible to rear 

mice in germ-free conditions, removing microbial variability and allowing for the 

controlled introduction of specific microbial communities to assay for their effects on the 

host (68). Finally, the generation time is also much shorter with a gestation time around 

21 days and mice reaching maturity between 3-6 months old (72). Mice are specifically 

used for bile acid studies because there are multiple models available such as CYP7A1 

KO lines and humanized liver mouse models (56, 57, 73).  

There are infant and adult models currently used for V. cholerae infection models, 

each with advantages and disadvantages. In suckling animals, V. cholerae colonization is 

dependent on production of TCP and CT, as in humans, however they do not produce the 

large volumes of diarrhea seen in humans (25, 74). The opposite is true for adults, where 

conventional mice are resistant to colonization of V. cholerae. Adult mice only become 

susceptible when they are treated with antibiotics or are reared germ-free, but TCP is not 

needed for V. cholerae colonization (74-76). Thus, adult germfree animals can serve 

largely as a colonization, rather than a virulence, model for V. cholerae. 

 

Effects of Bile Acids on V. cholerae 

Bile has different effects on V. cholerae in the gut. Like other bacteria, bile acids can 

have a toxic effect, requiring V. cholerae to develop defense mechanisms. One of the 

most important defense mechanisms is biofilm formation; in the presence of bile acids 

and crude bile, V. cholerae increases the formation of biofilm through the expression of 
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VpsR (77). However, certain bile acids have shown to be integral in virulence activation. 

This was demonstrated by Yang et. al. who that taurocholate (TC) was able to activate 

virulence gene expression, including TCP and CT production. They were able to show 

that the bile acid acted directly on TcpP, which normally is inactive in a monomer form. 

Under anaerobic/microaerophilic conditions characteristic of the GI tract, TCA acts on 

TcpP by promoting the dimerization via disulfide bridge formation between the C207 

residues of each monomer, resulting in an activated TcpP dimer that activates ToxT 

expression leading to full virulence gene activation (31). A direct effect of bile acids on 

ToxR also had been demonstrated, with ToxR acting on the activation of ctxAB and tcp 

independently of ToxT (28, 34). These differences in responses to bile acids may be 

related to the fact that the strains used in these studies were of the El Tor and the 

Classical biotype respectively. It has also been shown that bile has had the opposite effect 

on virulence expression, more specifically crude ox bile (28, 78). However, oxen are not 

known for being susceptible to cholera infection and they are not used as a cholera 

animal infection model. The complexity of bile acid compositions in the GI tract may 

also contribute to differences in regulation. One study compared three commercially 

available ox gall products, showing conjugated bile acids had different ratios of taurine 

and glycine when compared to human bile and the overall abundance of bile acids were 

CA, DCA, and CDCA respectively compared to CA=CDCA and DCA respectively (36, 

79). It is possible that these ratios have an effect on virulence including a larger 

percentage of a secondary bile acids, which are considered more cytotoxic than primary 

bile acids. It should be noted that there are other components of bile that have been 
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shown to affect virulence expression, specifically, unsaturated fatty acids were shown to 

affect ToxT by affecting the proteins ability to bind to DNA (80). These compounds 

illustrate the complexity of virulence expression for V. cholerae in the small intestine. It 

should also be noted that V. cholerae has a predicted bsh gene (NC_002506.1), however 

its expression, regulation, cellular localization, and substrate specificity have not been 

determined. As of the time of this thesis, we are not aware of any publications that 

address this, and it is unknown as to what affect this has on V. cholerae virulence 

cascade. It is possible that the enzyme may not have an effect on virulence activation if it 

is an intracellular enzyme; the current model for TCA acting on TcpP is an interaction 

occurring in the periplasmic space of the cell (31). If deconjugation occurs intracellularly, 

it is possible that this process is protecting DNA damage and not affecting the pool of 

TCA required for virulence activation. 

 

The Gut Microbiome and Bile Acids 

The microbiome is a complex system within the human GI tract, encompassing 

thousands of different species. This community is not homogenous, and the taxa 

represented can vary dramatically across individuals, ethnicities and human populations, 

though communities are more similar between closely related individuals and within 

closer geographic areas influenced by the food consumed in those areas (7, 42, 81-83). 

Even though these populations differ, it has been shown that the metabolic pathways of 

the community remain similar, highlighting the fact that different bacteria can inhabit the 

same niche/perform similar roles (84).  
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Microbial communities do not remain stagnant and they are ever-changing as a 

result of both internal and external factors. Gastrointestinal infections, such as diarrheal 

diseases, can dramatically but transiently change the composition of the gut microbiome, 

making the microbiome less diverse and abundant, and shifting adult gut microbiomes 

closer in structure to that of infants (85). Diet is another strong driver of the structure and 

abundance of the microbial community in the gut. These changed are seen in 

malnourished individuals, those who consume high fat diets (HFD) and in studies that 

modified ingredients in the diet (86-88). Particularly, HFD have been shown to shift 

phyla in the community to one that has a larger abundance of Firmicutes and less 

Bacteroides (87). Moreover, consumption of high-fat diets in obese participants caused 

an increase in total and secondary bile acids (76). Feeding rats CA caused an increased 

the abundance of Firmicutes and the decrease of Bacteroidetes when compared to the 

control (89). It is possible then that the high fat diet results in an increase in bile acids 

secreted into the small intestine, resulting in increased microbial deconjugation and the 

increase in free bile acids driving the change to a microbiome including a larger 

abundance of firmicutes. 

Hundreds of species contain bsh or putative bsh genes in the gut microbiome. 

These genes vary when comparing sequence homology, and are classified into eight 

phylotypes (36, 90) BSH enzymes from each phylotype were tested for their docking and 

deconjugating ability on primary and secondary conjugated bile acids resulting in 

different deconjugation percentages among phylotypes demonstrating that gut bacteria 

likely have different effects on the bile acid pool (90). As noted above, alteration of the 
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bile acid pool is not restricted to bsh activity, as bacteria can metabolize primary bile 

acids into secondary through dehydroxylation and/or hydroxylation as bile passes through 

the alimentary canal. Therefore, the microbiome is important for shaping the bile acid 

pool and is readily observed by the complex array of bile acids detected in feces (36). 

 

My Research 

My research focuses on the microbiome can downregulate virulence activation in 

V. cholerae, specifically through deconjugation of bile acids. We designed complex 

resistant and dysbiotic microbial communities, using bacterial strains selected to 

represent the human gut microbiome under homeostatic and dysbiotic conditions in 

cholera endemic areas (42, 81, 85, 86, 91, 92). Malnutrition affects the composition of the 

gut microbiome, as seen with children with severe acute malnutrition where the diversity 

of the microbial community was reduced compared to healthy children (91). Diarrheal 

diseases also have been shown to decrease the diversity and increase the proportion of 

streptococcal species, including Streptococcus salivarius (S. salivarius), as well as 

enterococci and enterobacteriaceae (86). Studies following cholera infections found 

bacterial communities during an infection to be similar to malnourished and/or diarrheal 

states, but the communities shifted toward healthy adult-like communities as individuals 

recovered (85). These healthy adult microbiomes the genera Dorea, Bacteroides, 

Collinsella and Blautia are abundant and are correlated or strongly associated with 

disease recovery from a V. cholerae infection, while high levels of streptococcal species 

were associated with diarrhea (85). Moreover, B. obeum was shown to decrease V. 
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cholerae colonization in germ-free mice. Out of the bacteria tested in vitro, B. obeum and 

S. salivarius were identified as species that can and cannot deconjugate TC respectively. 

In studies performed by Salmasadat Alavi, these communities were introduced into 

suckling mice alongside V. cholerae. Salmasadat Alavi also performed studies in germ-

free mice using these communities to look at their effect on V. cholerae colonization. 

Both studies saw B. obeum having a negative effect on V. cholerae colonization, while S. 

salivarius did not. These results coupled with studies with similar associations with these 

bacteria led me to incubate these two species in infant mouse intestinal homogenate, 

showing a decrease in tcp activation compared to control with further testing revealing 

that this effect was not due to AI-2 but by modification to an inducer present in the 

homogenate (79, 80). By testing with cholestyramine and measuring bile acid levels by 

mass spectrometry, we determine that the bile acid TC was involved with tcp induction 

and this signal was being lost due to B. obeium possessing a bsh gene. We looked for bsh 

homologs in the microbial community by in vitro deconjugation of TC and database 

searches. By performing several database searches for bsh homologs in the genomes of 

gut commensals in our representative communities, we identified species that 

deconjugated TC and found two loci in B. obeum as putative encoders of BSH enzymes. 

These findings for Blautia obeum agree with a study looking at the taxonomic profile of 

bsh genes found in BSH-T1 and BSH-T7 phylotypes were seen to be mainly distributed 

in genera including Blautia. BSH-T1 had the highest relative abundance of BSH’s and 

had one of the higher specific activity to bile acids including TC, while BSH-T7 was had 

one of the lowest relative abundance and specific activity (90). One of these genes, 
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RUMOBE_00028, was cloned into a plasmid constitutive expression vector to enable the 

expression of this enzyme in a non-bile acid deconjugating E. coli strain. Using this 

transgenic E. coli, we found in both in vitro and in vivo experiments that B. obeum bsh 

genes were active and able to degrade virulence-gene activating bile acids in mouse 

tissues. We also performed quantitative real-time PCR (qPCR) for RUMOBE_00028 on 

bacterial DNA derived from complete fecal specimens of healthy human donors. When 

comparing to V. cholerae infection experiments, qPCR of the B. obeum bsh enzymes in 

these samples were predictive of the ability of these fecal communities to restrict V. 

cholerae colonization when compared to colonization studies in infected animals.  

Together, these results show that V. cholerae virulence activation is significantly affected 

the structure and BSH activity of human gut microbiomes, which forms a risk factor for 

susceptibility to this important human pathogen. 
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METHODS 

Ethics Statement 

All animal experiments used protocols approved by the Institutional Animal Care 

and Use Committee of the University of California, Riverside (UCR). All human samples 

were part of a study approved by the UCR Institutional Review Board. Both animal and 

human studies followed NIH guidelines. 

 

Animal Experiments 

All CD-1 suckling and adult animals were purchased from Charles River 

Laboratories. 

 

Bacterial Strains and Growth Conditions 

Unless otherwise noted, human gut strains were propagated in LYHBHI liquid 

medium (BHI supplemented to 5g/L yeast extract, 5mg/L hemin, 1mg/mL cellobiose, 

1mg/mL maltose and 0.5mg/mL cysteine-HCl). Cultures were then propagated at 37oC 

either in a Coy anaerobic chamber (5% H2, 20% CO2, balance N2), under microaerophilic 

conditions with Campy BD GasPakTM, or aerobically. All V. cholerae strains were 

derived from the C6706 El Tor pandemic isolate, including the lacZ::PtcpA:sh Ble zeocin 

resistance reporter strain, and propagated in LB media with streptomycin (100μg/ml) at 

37°C. To construct a strain resistant to kanamycin, the plasmid pZE21 was cloned into V. 

cholerae C6706 (C6706-KMR) and propagated in LB with kanamycin sulfate (Fisher 
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Scientific, 50μg/ml) and streptomycin sulfate salt (100μg/ml). Vibrio harveyi BB170 was 

propagated in LM medium aerobically at 37°C. 

To construct a strain constitutively expressing bsh, RUMOBE_00028 was 

amplified from B. obeum genomic DNA using primers 5’-

GTCGACGGTATCGATAATGCTTATGTGTACAGCTGC-3’ and 5’-

GCAGGAATTCGATATCACTAATTCTGAAAATGAATCTGC-3’. This amplicon was 

then cloned downstream of the constitutive PLtet-O1 promoter of plasmid pZE21 through 

digestion of the vector backbone with HindIII followed by Gibson assembly (NEB). The 

resulting plasmid was electroporated into E. coli strain DH5𝛼λpir to generate bshc. 

Strains were propagated aerobically in LB with kanamycin (50μg/ml) at 37°C.  

A strain overexpressing the AI-2 signal of B. obeum (BW30045_RO_AI-2) was 

constructed by electroporating into E. coli BW30045 (ΔluxS) a plasmid constitutively 

expressing the B. obeum luxS AI-2 synthase. The B. obeum luxS coding region (from 

genome Q9KUG4, position 33,305-33,784) was codon-optimized for expression in E. 

coli, placed downstream of the PLtet-O-1 constitutive promoter sequence derived from the 

plasmid vector pZE21 vector, with the construct cloned into vector pMK using the 

GeneArt Subcloning & Express Cloning Service (ThermoFisher). Strains were 

propagated aerobically in LB with kanamycin (50μg/ml) at 37°C. 

 

Human Study Design and Sample Collection  

We collected intact fecal samples from six healthy adult volunteers in University 

of California Riverside using an IRB-approved protocol. Inclusion criteria were: 1) age 
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between 18 and 40 years, 2) must be able to provide signed and dated informed consent, 

3) must be willing and able to provide stool specimen. Exclusion criteria were: 1) 

systemic antibiotic usage (oral, intramuscular, or intravenous) in the 2 weeks prior to 

sampling; 2) acute disease at time of 2 enrollment (presence of moderate or severe illness 

with or without fever); 3) diarrhea (liquid or very loose stools not associated with a 

change in diet) in the 2 weeks prior to sampling; 4) active uncontrolled GI disorders or 

diseases including Inflammatory bowel disease (IBD), ulcerative colitis, Crohn’s disease, 

or indeterminate colitis, persistent, infectious gastroenteritis, colitis, or gastritis, and 

chronic constipation; 5) Major surgery of the GI tract, excluding cholecystectomy and 

appendectomy, but including major bowel resection at any time. Fecal samples were 

collected aseptically from each person at UCR and immediately preserved at −80°C until 

processing for DNA extraction and animal colonization. Stocks of fecal slurries for 

subsequent experiments were prepared by resuspending samples at 1:3 weight/volume in 

sterile reduced PBS and adding sterile glycerol to a final concentration of 25% 

volume/volume. 

 

Preparation of Human Fecal Samples for Inoculation into Mice   

Human fecal slurries were cultured from glycerol stocks in LYHBHI media for 24 

hours at 37°C, and then diluted (1:50) in fresh LYHBHI media. After growth for an 

additional 48 hours, cultures were normalized for density by OD600. For inoculation into 

suckling mice, the equivalent total of 300μl of OD600=0.4 were pelleted by centrifugation 

and resuspended in fresh LYHBHI. Each mouse received this mass of bacterial cells in a 
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maximum gavage volume of 25μl with the remaining 25μl containing ~1x104 CFU V. 

cholerae in PBS. Microbial levels in human fecal slurries were estimated via real-time 

PCR using universal 16S primers as described below, and samples were normalized to so 

that each suckling animal received slurries containing the equivalent of ~20μg of 16S 

amplicon. 

 

Antibiotic Clearance of Murine Microflora in Suckling Mice 

Four-day old suckling CD-1 mice were fasted for 1.5 hours, then orally dosed 

with ~1mg/g body weight streptomycin or using 30-gauge plastic tubing, after which the 

animals were placed with a lactating dam for 1 day. After 24 hours, mice received 

microbial communities with V. cholerae in a maximum gavage volume of 50μl. At 

eighteen hours post-infection, animals were sacrificed, and their intestines homogenized 

for CFU numeration and DNA extraction.  

For mice being pre-colonized with bacteria, four-day old suckling CD-1 mice 

received a ~1/g body weight oral gavage of kanamycin. Infants were colonized 24 hours 

later using overnight cultures of bshC and vector strains grown in LB with kanamycin 

(50μg/ml at 37°C then normalized for density by OD600. For inoculation into suckling 

mice, the equivalent total of 300μl of OD600=0.4 culture was pelleted by centrifugation 

and resuspended in fresh LB with kanamycin (50 μg/ml). 50μl of this was then 

introduced via intra gastric gavage into 5-day old CD-1 suckling mice that had been 

fasted for 1.5 hours. Pups were then returned to a lactating dam. 24 hours after pre-

infection colonization, mice were co-gavaged with 50µl of bshC or the isogenic vector 
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and C6706-KMR. For C6706-KMR, the total resuspension volume of 50μl containing 

~1x104 CFU V. cholerae in LB with kanamycin (50μg/ml); the same CFU of bshC and 

vector strains were gavaged as the previous day. Suckling mice were fasted overnight 

during infection. After eighteen hours post introduction of V. cholerae, animals were 

sacrificed, and their intestines homogenized for CFU numeration. 

 

Purification of Bile Acids from Intestinal Homogenate 

Intestines were collected from six-day-old CD-1 suckling mice fasting for 

eighteen hours, homogenized in sterile H2O (n*2.5ml), pooled, and centrifuged to clear 

tissue debris. The resulting aqueous suspension was treated at 100oC for thirty minutes 

and sterilized with a 0.22µM filter. The resulting sample was desiccated using a Savant 

Integrated Speedvac System (Fisher Scientific) and resuspended in one-fifth volume of 

sterile water. Four volumes of acetonitrile (Sigma Aldrich) were then added and sample 

was vortex and incubated at room temperature for twenty minutes for deproteinization 

(93). Samples were then clarified, with the aqueous layer filter sterilized, desiccated and 

resuspended in one-fifth original volume sterile H2O as described above.  

 

Processing of tcp-Activating Signals by Commensal Bacteria 

Commensal isolate cultures were grown for 2 days then sub-cultured at 3:100 for 

2 days. Growth was measured by OD600 and cultures normalized to 1.5mL of OD600=0.4 

culture. bshc and the corresponding vector strain were grown overnight in LB with 

kanamycin, sub-cultured at 1:100 for 24hr, and normalized as above. Cells were pelleted, 
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the supernatant removed, and cells resuspended in sterile PBS with TC to a final 

concentration of 125uM for in vitro assays; for ex vivo assays cells were resuspended in 

purified homogenate. Cultures grown with antibiotics were washed an additional time 

with 1 volume of PBS prior to addition of TC. Samples were then incubated 

anaerobically for 24 hours at 37oC followed by heat treatment at 100oC for thirty minutes. 

Samples were then cooled to room temperature, centrifuged and the aqueous layer filter 

sterilized with a 0.22μm filter. To sequester bile salts, 12.5mg of cholestyramine resin 

(Sigma-Aldrich) was added to 0.5ml of de-protonated sample, and the mixture incubated 

at 1 hour at 37oC with agitation followed by passage through a 3kDa protein concentrator 

(Pierce PES Protein Concentrators). 

 

Bile-dependent Induction of tcp Gene Expression 

PtcpA-sh Ble was grown as overnight culture, diluted 1:1000 in fresh LB with 

streptomycin (100μg/ml), and grown for ~2 hours at 37°C. Each reaction was prepared in 

40µl of 0.5X LB pH 8.5 medium containing homogenate incubated with bacteria as 

described above or pure solutions of bile salts. TC (Sigma-Aldrich), GC (Sigma Aldrich), 

CA (Alfa Aesar), Taurine (Acros Organics), Glycine (Fisher Scientific), Taurine + CA, 

Glycine + CA, TDC (Sigma-Aldrich), TCDCA (Cayman Chemical), GCDCA 

(FrontierScientific), CDCA (Sigma Aldrich), GDC (Sigma Aldrich) DCA (MB 

Biomedicals), Taurine + DCA, LCA (Sigma Aldrich), UDCA (Alfa Aesar), Tβ-MCA 

(Steraloids Inc.) and β-MCA (Steraloids Inc.) were added to a final concentration of 125 

µM in sterile H2O (for a list of bile acid names, see Figure 1).  
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2µl of reporter strain subculture was then added, and samples incubated 

anaerobically at 37°C for four hours. 2µl of each reaction was then added to 200µl of 

0.5X LB pH 8.5 +/-10µg/ml of zeocin (Sigma Aldrich), incubated for thirty minutes 

aerobically at 37°C with agitation. Samples were then serially diluted and plated onto 

streptomycin (200μg/ml) LB agar plates to determine survival rates, defined as (zeocin-

treated sample CFU/average CFU of no zeocin control) *100. 

 

Autoinducer-2 Heat Stability Assay 

Cultures of BW30045_RO_AI-2, BB170 and C6706 were grown overnight. 

BW30045_RO_AI-2 was sub-cultured at 1:100 into 12ml of LB and grown in a shaker at 

37oC until OD600 ≈ 0.22, centrifuged, and the supernatant filter sterilized. For heat 

treatment, aliquots of supernatant were treated at 100oC for thirty minutes and cooled to 

room temperature. AI-2 activity was assessed using the BB170 bioassay (94). Briefly, 

overnight cultures of reporter strain BB170 in LM medium was diluted at 1:1000 into AB 

medium. 10μl of supernatant or heat-treated supernatant were then added to 90µl of 

BB170 dilution. Luminescence and OD600 of each sample were measured immediately, 

and at 3.5hrs, with growth at 30oC aerobically with agitation. 

 

Identification of Bile Salt Hydrolase Homologs 

Using the Kyoto Encyclopedia of Genes and Genomes (KEGG), the Universal 

Protein resource (UniProt) and the National Center of Biotechnology Information (NCBI) 

protein database, we were able to identify bsh homologs and compared amino acid 
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sequences between species using NCBI blastn and blastp respectively. Percent identity 

matrices were constructed using results of pairwise comparison between species using 

Clustal Omega and MUSCLE provided through European Molecular Biology Laboratory.  

 

Quantification of Bile acids with Mass Spectrometry  

All standards (TC, CA, and DCA) were submitted as 10mM solutions. LC-MS 

analysis of bile acids was performed on a Synapt G2-Si quadrupole time-of-flight mass 

spectrometer (Waters) coupled to an I-class UPLC system (Waters). Separations were 

carried out on a CSH phenyl-hexyl column (2.1 x 100 mm, 1.7 µM) (Waters). The mobile 

phases were (A) water with 0.1% formic acid and (B) acetonitrile with 0.1% formic acid. 

The flow rate was 250 µL/min and the column were held at 40° C. The gradient was as 

follows: 0 min, 1% B; 1 min, 1% B; 8 min, 40% B; 13 min, 58.8% B; 13.5 min, 100% B; 

15.5 min, 100% B; 16 min, 1% B; 18 min, 1% B. Flow rate was ramped to 600 µL/min at 

13.5 min to speed up column flushing and re-equilibration. The MS was operated in 

positive ion mode (50 to 1200 m/z) with a 100 ms scan time. Source and desolvation 

temperatures were 150° C and 600° C, respectively. Desolvation gas was set to 1100 L/hr 

and cone gas to 150 L/hr. All gases were nitrogen except the collision gas, which was 

argon. Capillary voltage was 1 kV. Injection volume was 1μl for all samples. The identity 

of bile acids in samples was confirmed by mass, retention time, and MS/MS as compared 

to authentic standards. Samples were analyzed in random order and injected in duplicate. 

Leucine enkephalin was infused and used for mass correction. Data processing (peak 
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integration) was performed using QuanLynx software (Waters). Accuracy of peak 

integrations was checked manually. 

 

In vitro Processing of Bile by Human Complex Fecal Communities 

The ability of a complex human donor fecal community to process taurocholate 

was assayed in vitro. 100μl of fecal slurries in glycerol prepared were inoculated into 5ml 

LYBHI and incubated anaerobically for 2 days at 37°C. Cells were then pelleted, 

normalized to ~OD600 =0.4 in 1.5ml sterile PBS with 125μM TC and incubated 

anaerobically at 37°C for 24hrs with a TC control. Supernatants were then collected via 

centrifugation and heat treated at 100oC for thirty minutes then sterilized with a 0.22μm 

filter then submitted for Liquid Chromatography Mass Spectrometry. 

 

Quantitative Real-Time PCR 

Levels of the B. obeum bsh enzyme (RUMOBE_00028) were determined by real-time 

PCR. Reactions comprised 2 μl of extracted DNA as template, 12.5 μl SYBR Green 

Master Mix (BioRad), 10 μl PCR-grade water, and 0.25 μl of forward and reverse 

primers at 10μM (5’-GCGATCAGATTACGATCACTC-3’ and 5’-

GCCATGCCAACACCTTTTTC-3’). 200ng of purified DNA from intestinal 

homogenates of CD-1 mice colonized with complex human fecal samples were used as 

template for each reaction. Cycle conditions were 95°C for 3 min, followed by 39 cycles 

(95°C for 10sec, 55°C for 30 sec, 95°C for 10 sec, 65°C for 5 sec, 95°C for 5 sec).  

Average Cq results were used to compare to in vivo V. cholerae colony counts.  
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Total bacterial load in fecal samples were determined by quantitative real-time 

PCR as described above, using the primers forward: 5’-CTCCTACGGGAGGCAGCAG-

3’ and reverse: 5’-TTACCGCGGCTGCTGGCAC-3’. 
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RESULTS 

Complex Resistant Microbiomes Suppresses V. cholerae Colonization 

How the microbiome affects V. cholerae colonization in the gut is the central 

question of this thesis. Studies show that pressures such as diarrhea and malnutrition 

decrease the diversity of the gut microbiome and increase the abundance of specific 

species including Streptococci, enterococci and enterobacteria, creating a dysbiotic 

microbiome (42, 79, 80, 91-93). Healthy microbiomes have also been profiled, and 

increases in Dorea, Bacteroides, Collinsella and Blautia, which are characteristic of 

healthy individuals, have been associated with recovery from cholera and malnutrition 

(85, 91). Based on these studies, we designed a complex resistant (CR) and a dysbiotic 

(DS) microbiome. The CR community encompassed thirteen diverse species based on 

16S rRNA that are commonly associated with healthy adult-associated microbiomes. The 

DS contained five species based on diarrhea-associated microbiomes and represented less 

taxonomic diversity (see Table 2). In studies performed by Salmasadat Alavi in the Hsiao 

laboratory, these communities were introduced into antibiotic cleared suckling mice by 

gastric gavage alongside V. cholerae infection, with their intestines collected and 

homogenized eighteen hours post-infection. Results showed that the presence of CR 

communities statistically significantly and dramatically lowered V. cholerae colonization 

compared to DS communities. In addition, co-administration of DS and CR microbiomes 

(or just a subset of the CR community) showed a rescue of the CR colonization resistance 

phenotype (data not shown), suggesting that the metabolic or enzymatic activity of CR 
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and SR microbes are able to compensate or suppress the activity of DS microbes as they 

pertain to affecting V. cholerae infection. 

Another study from Salmasadat Alavi involved collecting fecal samples from 

healthy individuals that were prepared and stored in -80oC in 25% volume/volume 

glycerol. These slurries were cultured and introduced into antibiotic cleared suckling 

mice by gastric gavage with V. cholerae, with their intestines collected and homogenized 

eighteen hours post-infection. Results demonstrated each community had different effects 

on V. cholerae colonization with the CR community being having the greatest effect on 

ablating pathogen colonization (data not shown), emphasizing the complex and 

individual-specific interaction between pathogen and the host microbiome. 
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Bacterium Community Strain Name 

NCBI 

Taxonomy 

ID 

Bacteroides caccae CR ATCC 43185 411901 

Bacteroides thetaiotamicron CR VPI-5482 226186 

Bacteroides uniformis CR ATCC 8492 411479 

Bacteroides vulgatus SR, CR ATCC 8482 435590 

Bifidobacterium longum subsp. 

Longum CR DSM 20219 565042 

Blautia obeum SR, CR ATCC 29174 411459 

Blautia torques CR ATCC 27756 411460 

Clostridium scindens SR, CR ATCC 35704 411468 

Collinsella aerofaciens CR ATCC 25986 411903 

Dorea formicigenerans CR ATCC 27755 411461 

Dorea longicatena CR DSM 13814 411462 

Eubacterium rectale CR ATCC 33656 515619 

Faecalibacterium prausnitzii CR DSM 17677 411483 

Enterococcus faecalis DS OG1RF 474186 

Escherichia coli DS DH5α 668369 

Streptococcus infantarius subsp. 

infantarius DS 

ATCC BAA-

102 471872 

Streptococcus salivarius subsp. 

salivarius DS ATCC 13419 1304 

Streptococcus salivarius subsp. 

thermophilus DS DSM 20617 1091038 

Table 2: Human gut commensal strains, SR= Simple resistant, CR= complex resistant, 

DS= dysbiotic 
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An ex vivo Model of tcp Induction  

 V. cholerae in vivo virulence expression, and thus colonization, is regulated by 

numerous environmental cues, which can be mimicked in vitro using specific culture 

conditions such as microaerophilic/anaerobic growth with the addition of bile acids such 

as TC (28-31, 33, 34). To determine the relative contribution of bile acids and other in 

vivo compounds in virulence activation, the intestines of suckling mouse were processed 

via homogenization, heat treatment and deproteinization and assayed for their ability to 

activate a tcp transcriptional reporter. This reporter strain contained a PtcpA –sh ble 

construct inserted into the lacZ locus of V. cholerae C6706; activation of tcp genes in this 

strain confers resistance to the bactericidal antibiotic zeocin. Due to the age of the infants 

and the amount of material required, samples were concentrated before downstream 

processing. To determine the effect homogenate had on tcp induction, PtcpA –sh ble was 

incubated anaerobically for four hours with purified intestinal homogenate from suckling 

mice, and then subjected to zeocin for thirty minutes. Surviving V. cholerae were then 

enumerated by serial dilution and plating on LB agar with streptomycin. As has been 

reported previously(31), a major component of the virulence-inducing activity of 

intestinal homogenates was due to bile acids; intestinal homogenates demonstrated tcp 

induction levels similar to that of pure 125µM TC solution (Figure 4A).   

 To determine bacterial effects on induction, purified intestinal homogenate was 

incubated with either B. obeum, S. salivarius or a mixture of the two; B. obeum was 

selected due the strong association the bacteria has to V. cholerae recovery and 

decreasing colonization in germ-free mice (79), while S. salivarius has been shown to 
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increase in diarrheal diseases, making these two strains a subset of the CR and DS 

communities (79, 80). The bacteria were grown anaerobically for two days then pelleted 

and resuspended in purified homogenate to a concentration ~0.4 OD600 for twenty-four 

hours. Samples were then heat treated for 30 minutes at 100oC, sterilized using a 0.22 µM 

filter and used for a tcp induction assay. Compared to S. salivarius, B. obeum was able to 

significantly lower induction of homogenate compared to the TC control and S.  

salivarius alone (Figure 4B). These results suggest that B. obeum is affecting levels of 

this activating signal in intestinal homogenates (31). 
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Figure 4: tcpA-activating signals in TC solution and suckling CD-1 mouse 

homogenate (A) and modulation of tcpA-activating signals in homogenate by pure 

cultures of B. obeum and S. salivarius (B). PtcpA-sh ble induction results were 

normalized to PBS with 125µM TC control. Error bars calculated using ±SEM based 

on unpaired t-test. ***P-value< 0.001 
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B. obeum Effects on Intestinal Homogenate Activation of tcp is not due 

to AI-2 Activity 

 B. obeum has also been shown to suppress V. cholerae virulence expression 

through the production of AI-2 quorum sensing signals (79). To determine if these signals 

were solely responsible for the suppression of PtcpA –sh ble induction by intestinal 

homogenates and TC, we examined the ability of heat treatment to differentially affect 

virulence-regulatory signals. Bile acids have previously been demonstrated to be heat-

resistant; heat treatment did not affect the ability of TC to interact with TcpP (31). To 

determine if AI-2 molecules made by B. obeum were heat labile, supernatants were 

collected from stationary cultures of V. cholerae and BW3114_RO_AI-2, which is an E. 

coli strain mutated for luxS, the AI-2 synthase, and which instead constitutively expresses 

the AI-2 synthase enzyme of B. obeum. Supernatants were collected, heat treated for 

thirty minutes at 100oC and sterilized using a 0.22 µM filter. To assay for AI-2 activity, 

we used the Vibrio harveyi strain BB170, which contains an intact lux operon responsible 

for bioluminescence in the presence of AI-2. When BB170 was grown in the presence of 

heat-treated supernatants, heat-treated samples induced very little luminescence in 

comparison to non-heat-treated supernatants (Figure 5). These results indicate that 

treating samples with heat is enough to remove any AI-2 signal from solution and that 

virulent expression is affected by other means.  
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Figure 5: Induction of BB170 AI-2 reporter by B. obeum (A) and C6706 (B) with and 

without heat treatment. Induction measured by luminescence/OD600. Error bars 

calculated using SEM Significance based on unpaired t-test. ****P-value< 0.0001 
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Bile Sequestration Does Not Affect B. obeum’s Effect on V. cholerae 

Virulence Activation  

 Previous work indicates that a key activating signal in intestinal homogenates are 

bile acids (31). To confirm if bile acids, which are highly heat stable, were causing V. 

cholerae virulence expression, infant mouse intestinal homogenate was once again 

treated with B. obeum and S. salivarius with the addition of cholestyramine (31). A 

solution with 125 µM of taurocholate TC was used as a positive control. Cholestyramine 

is a resin that binds to bile acids resulting in sequestering the steroid derivative and 

preventing interaction with the environment. It is used as a medication to treat 

hyperlipidemia; with the increased loss of bile acids through feces the liver increases bile 

acid synthesis and resulting in reduced cholesterol levels (37, 39). Pure TCA and mouse 

intestinal homogenates without bacterial treatment strongly induced tcp transcription. 

Again, incubation of homogenates with B. obeum ablated tcp induction and S. salivarius 

had no effect on homogenates’ ability to induce virulence genes. Bile sequestration 

largely eliminated the ability of intestinal homogenates to activate tcp, confirming the 

role of bile acids in virulence induction in this system. Significantly, S. salivarius treated 

homogenates incubated with cholestyramine were largely unable to induce virulence, 

suggesting that the ability of these organisms to affect bile acid levels is a key driver in 

virulence activation by host intestinal signals. There was also no difference observed in 

virulence inducing capability of B. obeum treated homogenates incubated with and 

without cholestyramine (Figure 6A). These sample were analyzed by LC-MS to 

determine the level of dehydroxylation bile acids in the homogenate by the UCR 
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metabolomics core, using pure solutions of TC and CA as standards. Measuring peak 

area, the relative abundance of B. obeum and B. obeum + S. salivarius treated 

homogenate had significantly lower levels of TC compared to S. salivarius and untreated 

homogenate. Interestingly, the opposite was true for CA (data not shown). These results 

indicate that V. cholerae tcp expression is dependent on the bile acids in the mouse 

homogenate and these signals are being affected by B. obeum though BSH activity 

(Figure 6B).  
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Figure 6: Modulation of tcpA-activating signals in suckling CD-1 mouse 

homogenates by pure cultures of B. obeum and S. salivarius as seen by PtcpA-sh ble 

induction (A) and peak area of TC by LC-MS (B). PtcpA-sh ble induction results were 

normalized to PBS with 125µM TC control Note TC Sample was not treated with 

cholestyramine. Peak area describes the relative abundance of bile acid per group. 

Error bars calculated using ±SEM based on unpaired t-test. *P-value< 0.05, **P-

value<0.01, ****P-value<0.0001 
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bsh In the Model Microbiomes 

 The remainder of the bacterial strains in our model communities were 

investigated for their ability to affect TC induced virulence gene expression by incubating 

125 µM of TC with pure cultures of these species for twenty-four hours then were heat 

treated and filter sterilized, and measuring how the resulting cell-free supernatants were 

able to induce a tcp expression in PtcpA-sh-ble. Dramatic differences in the ability these 

strains to affect TC induction of virulence as measured by survival after zeocin treatment 

were observed, with members of the CR microbiome in general being better able to 

prevent tcp activation. This varied at the genus level, with Blautia torques unable to 

affect tcp induction by TC in comparison to B. obeum, and Streptococcus infantarius 

showing TC effects in comparison to the rest of the Streptococcus species in the DS 

community (Figure 7). Levels of tcp induction were higher in groups including E. 

faecalis and S. salivarius. Although currently unknown, it is possible that these species 

boost virulence induction by some mechanism. 
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Figure 7: Ability of CR and DS-member pure cultures to interfere with TC activation 

of PtcpA in V. cholerae in vitro. PtcpA-sh ble induction results were normalized to 

PBS with 125µM TC control Error bars calculated using ±SEM based on unpaired t-

test. *P-value< 0.05, **P-value< 0.01, ****P-value< 0.0001. 
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To search for bsh homologs in our community we searched the KEGG, UniProt 

and the NCBI protein databases using the EC designation 3.5.1.24 and bacterial species. 

Homologs were identified within the CR and DS microbial communities, with putative 

bsh genes in thirteen of the species of which six had multiple copies. B. obeum genes 

CK5_10630 and CK5_18830 were identified from the genome of the strain A2-162. 

When compared to homologs in the B. obeum ATCC 29174 used in our described 

experiments, there are mild difference in amino acid sequences with percent identity 

ranging between 80-90%, showing a higher similarity compared to other genes in the 

community (Table 3 and Figure 8). There were bacteria in the communities that 

demonstrated no effect on V. cholerae tcp expression, such as Bacteroides 

thetaiotamicron, have bsh homologs based on our database search. This is in congruence 

with previous metagenomic analysis of amino acid similarity to a reference BSH ranging 

from 25-100% identity, as well as reports in bsh differences in amino acid sequence and 

preference in bile acid deconjugation leading to the assignment of genes into eight 

phylotypes (52, 53, 86). Together, these results suggest that there are bacteria in our 

microbial community have bsh that may affect other conjugated bile acids rather than TC. 
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A Putative B. obeum bsh Ablates tcp Activation by TC and Intestinal 

Homogenates  

 Based on our findings, we wanted to determine if the bsh gene alone was enough 

to negatively affect V. cholerae tcp activation. We constitutively expressed, 

RUMOBE_00028 from B. obeum to be cloned and expressed in E. coli DH5αλpir, which 

does not process TCA (53). The gene from B. obeum was amplified from purified 

genomic DNA by PCR and cloned downstream of a constitutive PLtet-O-1 promoter on 

plasmid pZE21 in E. coli DH5αλpir to generate strain bshC. The DH5αλpir with an empty 

vector did not degrade TC in infant homogenate as measured by Liquid chromatography 

mass spectrometry and in vitro PtcpA-sh-ble induction (see Figure 9A and 9B). 

Incubation of homogenate with bshC significantly ablated the tcp incubation of 

homogenate duction compared to the isogenic vector control (see Figure 11B), suggesting 

RUMOBE_00028 alone can alter V. cholerae virulence activation though deconjugation 

of TC. 
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Figure 9: Modulation of tcpA-activating signals in suckling CD-1 mouse 

homogenates by pure cultures of bshC, vector and S. salivarius as seen by peak area of 

TC by LC-MS (A) and in vitro PtcpA-sh ble induction (B). PtcpA-sh ble induction 

results were normalized to PBS with 125µM TC control. Peak area describes the 

relative abundance of bile acid per group. Error bars calculated using SEM 

Significance based on unpaired t-test. *P-value< 0.05, **P-value<0.01, ****P-

value<0.0001 



 55 

RUMOBE_00028 Alone is Sufficient to Reduce V. cholerae Colonization  

 To determine if RUMOBE_00028 was sufficient to affect V. cholerae 

colonization, five-day old kanamycin treated infant mice were colonized with bshC or the 

vector strain by gastric gavage. After twenty-four hours, these mice were gavaged with a 

co-culture of either bshC or the vector strain with and C6706 containing a kanamycin 

resistant plasmid by gastric gavage and left fasting. Eighteen hours after, small intestines 

were removed and homogenized. V. cholerae was enumerated by serial dilution and 

plating on streptomycin LB agar. There was a significant decrease in V. cholerae levels in 

bshC colonized animals, indicating that deconjugation by RUMOBE_00028 alone can 

decrease V. cholerae colonization (see Figure 10). 
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Figure 10: Effects on V. cholerae infection of suckling CD-1 

mice by 1-day pre-colonization with indicated E. coli strains. 

Error bars calculated using ±SEM based on unpaired t-

test.***P-value< 0.001 
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Interpersonal Differences in B. obeum bsh Levels in Complex Human 

Fecal Microbiomes Explain Differences in Resistance to V. cholerae 

Infection 

 Since Blautia demonstrated intra-genus differences in BSH activity, as well as 

association with cholera in human populations, we assayed for the level of the B. obeum 

bsh gene by real-time PCR in total DNA extracted from human fecal samples provided 

by healthy donors that did not have: (a) an acute disease or uncontrolled GI disorders or 

diseases, (b) any antibiotic usage or diarrhea two weeks prior to sample collection and (c) 

did not have major surgery of the GI tract (79). We found that communities associated 

with higher V. cholerae colonization had lower levels of RUMOBE_00028 (Figure 12). 

These results mimic the bile acid levels seen in Figure 11, again highlighting the trend 

among V. cholerae CFU of mice colonized with donor bacteria.  
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Figure 11: Result of incubation of TC solution with cultured samples of human fecal 

communities, †: TC not detected in sample. Peak area describes the relative 

abundance of bile acid per group. 
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Figure 12: (A) Real-time PCR quantification of B. obeum bsh in DNA extracted from 

mice colonized with indicated complex human fecal samples. (B) shows resulting V. 

cholerae CFU (mean log per group) after infection of animals containing indicated 

complex human fecal sample. V. cholerae CFU provided by Salmasadat Alavi. Error 

bars calculated using ±SEM. 



 60 

To determine whether these findings corresponded to functional degradation of TC, 

bacterial colonies were grown from donor fecal samples and then incubated in vitro as 

described above followed by heat treatment, filter sterilization and submitted for LC-MS. 

Levels of TC tended to be elevated in groups with increased V. cholerae counts when 

tested in vivo. DC was also found in each group, indicating that there were species that 

contained an intact 7α-dehydroxylation pathway. This is expected as 16S revealed 

bacteria that belong to Clostridium cluster XIVa were present and most 7-

dehydroxylation bacteria are come from this culture (95) (data not shown).  

 

Variation in Bile Acids Effect on V. cholerae Virulence 

Previous studies that looked at bile acids activating V. cholerae virulence 

expression looked at a subset of total bile acids found in bile (31, 33). Therefore, we 

again tested tcp induction using our reporter assay and screened a panel including 

primary bile acids, individual amino acids, conjugated forms, secondary bile acids and 

several murine derived forms. When tested, amino acid alone or adding taurine or glycine 

to deconjugated bile acids was not enough for tcp induction, highlighting the need for 

conjugation (see Figure 15A). Except for TCDCA, we saw human primary conjugates 

induce higher virulence gene expression in V. cholerae compared to secondary 

conjugates and unconjugated bile acids. This highlights the need for conjugated bile acids 

for V. cholerae to properly express tcp. Interestingly, GCDCA had the highest induction 

when compared to other bile acids (see Figure 15B). It is important to note that glycine 

conjugates resulted in higher percent survival compared to taurine and that murine 
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derived bile acids showed low induction. It is possible that this is due to humans having a 

3:1 ratio of glycine to taurine conjugates with the disease evolving to be a human 

pathogen, utilizing bile acids found in this environment (37).  
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Figure 13: Ability of indicated bile acid species(B) and amino acids (B) to activate 

tcp gene expression in V. cholerae. PtcpA-sh ble induction results were normalized to 

PBS with 125µM TC control. Error bars calculated using ±SEM based on unpaired t-

test. 
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DISCUSSION 

 The mammalian small intestine is a complex cellular and molecular milieu that 

enteropathogens must navigate to protect themselves from bactericidal and bacteriostatic 

effects of host components and the activity of commensal microbes. However, some of 

the molecules in this environment also act as signals that provide important timing cues 

for virulence gene regulation. The ability of pathogens to sense these signals ensures that 

metabolically expensive virulence regulons are only expressed in suitable environments. 

For example, in V. cholerae, utilization of bile acids and microaerophilic/anaerobic 

conditions to induce CT and TCP activation (28, 31, 34). Important signals like bile acids 

however are chemically diverse and variable in composition between individuals in part 

due to the ability of native gut microbial communities to process bile acids. 

 Through in vitro and ex vivo screening, mass spectrometry, and genomic analysis, 

we were able to identify gut community members that deconjugate TC through bsh 

activity. This screen also revealed gut strains that contain putative bsh genes but do not 

deconjugate TC, supporting studies have shown bsh variation in both sequence and 

function, with bsh enzymes being broadly grouped into 8 phylotypes by amino acid 

sequence identity and biochemical activity against specific bile species (51, 53). 

Therefore, different communities may exhibit varying levels of cumulative bsh activity. It 

is still unclear how differences in community bsh function, specificity, and activity 

translates into the final bile pool composition of the gut. However, it is reasonable to 

hypothesize that a host’s microbiome diversity and abundance of these enzyme 

phylotypes decreases or disappear completely, as seen in microbial communities with 
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patients experiencing diarrhea or antibiotic treatment, would lead to changes in the 

deconjugated bile acid profile. Humans with dysbiotic gut microbiota have been shown to 

have a decrease in bacterial diversity, and therefore I propose there would be correlated 

decreases in bsh homologs (84, 85, 97). 

 One study that indirectly supports this proposition examined patients infected 

with Clostridium difficile and profiled the microbiome and bile acid pools before and 

after fecal transplant therapy. Prior to treatment, individuals had decreased diversity in 

their gut microbiome, higher conjugated bile acids, and lower levels of secondary bile 

acids. After the patient gut microbiomes were restored via fecal transplants, microbial 

and bile acid pool diversity increased (97). In germ-free mice that lack all of their gut 

microbes exhibit a similar pattern and have been shown to have bile acid pools that are 

predominated by conjugated bile acids and secondary bile acids are virtually absent with 

the exception of taurine conjugated UDCA (98).  

 Given that bile acids are important virulence signals for V. cholerae and that 

resident microbes can alter the composition of bile acids present, we examined how 

microbial communities of different composition might affect V. cholerae colonization. Of 

the bile acids tested on V. cholerae, our results saw primary conjugated bile acids having 

the greatest effect on the expression of tcp. These results suggest that communities with a 

higher abundance of bsh genes or 7-dehydroxylation pathways would create an 

environment unfavorable for V. cholerae colonization by a repression of virulence 

activation. Conversely, we expect that communities with lower abundance of the genes 

involved in these pathways to great a more favorable environment for V. cholerae 



 65 

colonization. We propose that dysbiotic gut communities, like those found in 

malnourished or having recently experienced diarrhea would be favorable for 

colonization because these patients generally have significantly lower bacterial diversity 

and are likely to in turn have lower diversity of bsh genes or 7-dehydroxylation 

pathways. This could result in conjugated primary bile acids encompassing a larger 

percentage of the total bile acid pool and secondary forms decreasing in abundance. 

 Through studies performed by Salmasadat Alavi and studies in this thesis, B. 

obeum and, specifically, the bsh gene RUMOBE_00028 are shown to have a detrimental 

effect on V. cholerae virulence activation and colonization. This enzyme efficiently 

deconjugates TC and converts TC into CA. S. salivarius lacked significant bsh activity 

under our conditions and had a no or a slightly positive effect on V. cholerae virulence 

activation (Figure 4, 6, 7). I also identified additional bacterial strains that had significant 

effects on tcp activation (B. uniformis, B, vulgatus, B. longum, D. longicatena and E. 

rectale) and the regulation and activity of these enzymes will be the subject of further 

research in the lab. Curiously, S. infantarius from our DS model community encodes an 

intact bsh gene and demonstrated deconjugation of TC in vitro. However, the presence of 

this microbe did not act to inhibit V. cholerae infection in vivo as we might expect. One 

possible reason is that the expression or activity level in vivo of this enzyme is absent or 

down regulated. Another possible explanation is that different species establish 

differently in the small intestines causing bsh to be more abundant in different 

sections.Very little work has addressed the possibility of bsh regulation, and it is possible 
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that bile concentration is not the only determinant in bsh expression, nor may every bile 

acid be equal in terms of regulating bsh.   

 It is important to note that, while examining the genomes of our defined model 

communities, a functional search revealed that V. cholerae contains a bsh gene (Locus: 

VCA0877). To our knowledge, no studies are available that describe the ability of this 

predicted V. cholerae enzyme to process bile acids. Homologs of bsh have also been 

found in other pathogenic bacteria, specifically Listeria monocytogenes and Brucella 

abortus, and a search in UniProt found homologs in Salmonella enterica and Yersinia 

enterocolitica (101). Given the necessity of gut-resident organisms to deal with the anti-

microbial effects of bile, the ability of pathogens to process bile into less toxic forms is 

not surprising. What is not known is how these enzymes, and specifically the enzyme in 

V. cholerae is able to work on particular components of the bile acid pool; V. cholerae 

BSH was closest to the BSH type 6 (BSH-T6) phylotype as defined by Song et al. (Table 

4). BSH-T6 enzymes have demonstrated no deconjugation capabilities to GCA or TCA, 

bile the acids we have shown to be strong activators of tcp, while deconjugating 

secondary bile acids that have bacteriostatic function instead (89). It is reasonable to 

hypothesize that this is a beneficial adaptation by deconjugating potential inhibitors of 

growth while sparing those bile acids that are used for tcp activation. B. obeum’s BSH 

was closest to the BSH-T1 phylotype. This is in line with Song et al. with BSH-T1 

phylotype demonstrating almost 100% deconjugation of TCA and the fact B. obeum 

demonstrated one of the highest BSH activity against TC in our community (89).  
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BSH phylogenetic 

Group 

V. cholerae 

Percent Identity 

B. obeum 

Percent 

Identity 

BSH-T0 25.42 26.78% 

BSH-T1 22.63% 76.31% 

BSH-T2 21.94% 59.69% 

BSH-T3 22.58% 47.38% 

BSH-T4 22.74% 39.18% 

BSH-T5 24.72% 28.08% 

BSH-T6 45.53% 23.05% 

BSH-T7 22.58% 24.18% 

 

 

 

 

  

  

  

Table 4: Comparison of V. cholerae and B. obeum BSH 

amino acid sequence against a reference BSH enzyme from 

each phylotype as described by Song et al. Highlighted 

percent identity indicate closest similarity to phylotype. 

Percent identity determined by NCBI BLASTp. 



 68 

 Future work will focus on the other microbial species in the communities. The 

establishment of phylotypes of the bsh has led to a broad classification of deconjugation 

ability in these genes. More species found within these bsh types should be tested to 

determine if the enzymes effect on conjugated bile acids are the same; additionally, these 

phylotypes should be tested against all conjugated bile acid types found in humans to get 

a better understanding as to why bsh has specificity, and how the expression of these 

enzymes are regulated. Studies to look into bsh gene regulation would include incubation 

with different concentrations and types of bile acids, coupled with qRT-PCR to determine 

if bile acids are acting directly on bsh expression. It is also important to note that 

deconjugation can be an intracellular or extracellular process (51). This can be tested by 

comparing cytoplasmic, membrane, and extracellular fractions of bacteria with a 

functional bsh. Other studies to be performed on complex communities’ effect on V. 

cholerae colonization through bsh intervention focusing on having bacteria with bsh 

genes from all eight phylotypes and their effect on the bile acid pool as well as profiling 

the genes expressed in these communities. Additional studies will focus on microbial 

7α/β-dehydroxylation should be studied. This process creates the secondary bile acids 

seen in the human gut and our results demonstrate that secondary bile acids demonstrated 

lower tcp expression than primary, possibly leading to an additive effect on V. cholerae 

colonization over and above the degradation of virulence inducing bile acid species (36).  

 In addition, we will examine the role of bsh in providing protection from bile 

acids (46). By creating ∆bsh mutants in V. cholerae, the effects bile acids have on these 

bacteria can be tested in in vitro and in vivo assays. Also, a more comprehensive 
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examination on conjugated bile acids should be performed on tcp expression. Our bile 

acid screen demonstrated the effect different bile acids conjugates and amino acids had 

on V. cholerae tcp expression. However, this screen gave an incomplete picture of the 

bile acids seen in the intestinal tract and should be expanded to include conjugated forms 

of LCA, UDCA and other murine forms. For example, we expect that LCA conjugates 

would have lower induction as it is considered more toxic and am interested about the 

effect UDCA has as it is a non-toxic bile acid (32, 36). 

 Taken together, my results suggest that B. obeum ATCC 29174 are antagonistic to 

V. cholerae infections, both by production of quorum sensing molecules but also through 

activity of its bsh enzyme, providing new insight on how colonization of V. cholerae is 

affected by the gut microbiome (84). It is important to note that this antagonistic activity 

may not be not refer to the species as a whole as differences are seen in BSH amino acid 

sequence and function within species (see Figure 8) (51). Many individuals in cholera 

endemic areas exhibit a disrupted microbiome due to malnutrition and non-cholera 

infectious diarrhea. My results suggest that this may in turn feed back into infection 

susceptibility by laying the framework for a V. cholerae infection due to an increase in 

conjugated primary bile acids (97). Based on reports in the literature, and our results, 

establishing and maintaining a resistant microbiome with bacteria containing bsh genes 

from the different phylotypes could decrease the risk of infection; one way to accomplish 

this is through the development of probiotics made up of cultures that have bsh genes and 

species that participate in dehydroxylation. By establishing these microbiomes, the bile 

acid pool can be manipulated in that secondary bile acids are created by the microbiome 
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and increasing the diversity of conjugated bile acid pool, bile acids that do not positively 

affect virulence expression in V. cholerae. There are other ways of manipulating bile acid 

composition, such a high fat diet and cholestyramine; these avenues would not be feasible 

as the acquisition of foods high in fat is more difficult in these developing areas and 

cholestyramine maybe more detrimental by affecting malnourished individuals ability to 

absorb and retain fat needed for survival. These results not only affect the microbial field, 

but also highlights the need for dietary and medical intervention in order to reduce the 

incidences of infection and maintaining a resistant microbiome in individuals.  
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