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Abstract

Subsemble: A Flexible Subset Ensemble Prediction Method

by

Stephanie Karen Sapp

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Mark van der Laan, Chair

Ensemble methods using the same underlying algorithm trained on different subsets of
observations have recently received increased attention as practical prediction tools for mas-
sive data sets. We propose Subsemble, a general subset ensemble prediction method, which
can be used for small, moderate, or large data sets. Subsemble partitions the full data set
into subsets of observations, fits one or more user-specified underlying algorithm on each
subset, and uses a clever form of V-fold cross-validation to output a prediction function
that combines the subset-specific fits through a second user-specified metalearner algorithm.
We give an oracle result that provides a theoretical performance guarantee for Subsemble.
Through simulations, we demonstrate that Subsembles with randomly created subsets can
be beneficial tools for small to moderate sized data sets, and often have better prediction
performance than the same underlying algorithm fit just once on the full data set. We also
describe how to include Subsembles as candidates in a SuperLearner library, providing a
practical way to evaluate the performance of Subsembles relative to the same underlying
algorithm fit just once on the full data set.

Since the final Subsemble estimator varies depending on the data within each subset,
different strategies for creating the subsets used in Subsemble result in different Subsembles,
which in turn have different prediction performance. To study the effect of subset creation
strategies, we propose supervised partitioning of the covariate space to learn the subsets used
in Subsemble. We highlight computational advantages of this approach, discuss applications
to large-scale data sets, and develop a practical Supervised Subsemble method using regres-
sion trees to both create the covariate space partitioning, and select the number of subsets
used in Subsemble. Through simulations and real data analysis, we show that this subset
creation method can provide better prediction performance than the random subset version.

Finally, we develop the R package subsemble to make the Subsemble method readily
available to both researchers and practitioners. We describe the subsemble function, discuss
implementation details, and illustrate application of the Subsemble algorithm for prediction
with subsemble through an example data set.
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Chapter 1

Introduction

Procedures using subsets of observations from a full available data set are promising tools
for prediction with large-scale data sets. By operating on subsets of observations, computa-
tions can be parallelized, taking advantage of modern computational resources. Much recent
research work has focused on proposing and evaluating the performance of different subset
prediction procedures.

Subset prediction procedures create subsets of the full available data set, train the same
underlying algorithm on each subset, and finally combine the results across the subsets. The
method used to obtain the subsets, and the method used to combine the subset-specific
results, differ depending on the procedure.

A classic subset prediction method is bagging, or bootstrap aggregating, developed in
Breiman 1996a. In bagging, one subsamples a large number of fixed size bootstrap samples,
and fits the same prediction algorithm on each bootstrap sample. The final prediction
function is given by the simple average of the subset-specific fits. This approach has several
drawbacks. First, some observations will never be used, while others will be selected multiple
times. Second, taking a simple average of the subset fits does not differentiate between the
quality of each fit.

Recently, Zhang, Duchi, and Wainwright 2013 proposed two subset methods for estimat-
ing the parameter of a parametric prediction model: an average mixture (AVGM) procedure,
and a bootstrap average mixture (BAVGM) procedure. Both procedures first partition the
full data set into disjoint subsets, and estimate the parameter of interest within each subset.
To obtain the final parameter estimate, AVGM takes a simple average of the subset-specific
estimates. BAVGM first draws a single bootstrap sample from each partition, re-estimates
the parameter on the bootstrap sample, and combines the two estimates into a so-called
bootstrap bias corrected estimate. To obtain the final parameter estimate, BAVGM takes
a simple average of the subset-specific bootstrap bias-corrected estimates. The AVGM and
BAVGM procedures have shortcomings. The approaches are only designed for paramet-
ric models, and the theoretical results provided rely on using parametric models. AVGM
does not account for fit quality differences at all, since it simply averages the subset fits.
BAVGM’s approach to bias correction estimates the bias of a partition’s parameter estimate



2

by reusing data that was already used in the fit of that parameter. Finally, both methods
are only proposed for use with large data sets. That is, the methods are proposed due to
their computational attractiveness, rather than their statistical performance.

Another recent classification method using subsets was discussed in Lin and Kolcz 2012.
This case study explored using subsets of observations to train classification algorithms,
and combining the results linearly. The authors mention the possibility of weighting each
classifier if different underlying algorithms are used, but recommend simple averaging if the
same underlying classifier is trained on different subsets of observations. As their work is a
case study, no theoretical performance guarantees are provided. Furthermore, the approach
is only evaluated for a single algorithm (logistic regression), with a single data set, using
very large subsets. Finally, the method is again only proposed by the authors for use with
large data sets.

While not a subset method, boosting, formulated by Freund and Schapire 1997, is an
example of an ensemble methods that differentiates between the quality of each fit. Boost-
ing iterates the process of training a weak learner on the full data set, then re-weighting
observations, with higher weights given to poorly classified observations from the previous
iteration. However, boosting is not a subset method because all observations are iteratively
re-weighted, and thus all observations are needed at each iteration. Another drawback of
boosting is that it is a sequential algorithm, and hence cannot be parallelized.

Another ensemble method that differentiates between the quality of each fit, but is
not a subset method, is the SuperLearner method of van der Laan, Polley, and Hubbard
2007, which generalizes the stacking algorithms developed by Wolpert 1992 and extended
by Breiman 1996b. SuperLearner learns the optimal weighted combination of a library of
candidate learner algorithms by using cross-validation. SuperLearner generalizes stacking
by allowing for general loss functions and hence a broader range of estimator combinations.
Like boosting, SuperLearner is not a subset method because the ensemble combines fits of
the candidate algorithms trained on the full data set. As with boosting, training on the full
data set cannot be parallelized.

A key drawback of each of the above subset methods is that they do not differentiate
between the quality of each subset-specific fit. To address this, we propose a novel ensemble
method, Subsemble, for combining results from fitting the same underlying algorithm on
different subsets of observations. Subsemble is a general subset ensemble prediction algorithm
that partitions a full data set into subsets of observations, fits one or more underlying
algorithm on each subset, and combines the subset-specific fits through a second metalearner
algorithm using a clever form of V -fold cross-validation, thus accounting for the quality of
each subset-specific fit.

The remainder of this work is organized as follows. In Chapter 2, we introduce the Sub-
semble procedure and study its statistical performance. In Chapter 3, we propose creating
the subsets used in Subsemble through supervised partitioning of the covariate space. In
Chapter 4, we describe the R package subsemble and demonstrate its usage for prediction
applications. Finally, we conclude and discuss future research directions in Chapter 5.
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Chapter 2

The Subsemble Method

2.1 Introduction

In this chapter, we introduce the Subsemble method. Subsemble ensembles together fits
of the same underlying algorithm on different subsets of observations, while also accounting
for the quality of each subset-specific fit. Our approach has many benefits and differs from
existing methods in a variety of ways. Any type of underlying algorithm, parametric or
nonparametric, can be used. Instead of simply averaging subset-specific fits, Subsemble
differentiates fit quality across the subsets and learns a weighted combination of the subset-
specific fits. To evaluate fit quality and determine the weighted combination, Subsemble uses
cross-validation, thus using independent data to train and learn the weighted combination.
Finally, Subsemble has desirable statistical performance and can improve prediction quality
on both small and large data sets.

This chapter focuses on the statistical performance of Subsemble. We provide an oracle
result for Subsemble, showing that Subsemble performs as well as the best possible combi-
nation of the subset-specific fits. We describe how to choose between Subsemble and the
underlying algorithm fit just once on the full data set, resulting in a weighted combination
of the procedures. Through simulation studies, we demonstrate the desirable performance of
Subsemble as a prediction procedure for moderate sized data sets. We show that Subsembles
with randomly created subsets often provide better prediction performance than fitting the
same underlying algorithm only once on the full available data set, and that including both
the usual and Subsemble versions of algorithms in a SuperLearner library provides superior
results to including only the usual versions of algorithms.

The remainder of this chapter is organized as follows. Subsemble is presented in Sec-
tion 2.2. We describe how to choose between fitting an algorithm just once on the full data
set versus various Subsemble fits, through including both the Subsemble and usual versions of
the algorithm as candidates in a SuperLearner library, in Section 2.3. Simulation study and
real data analysis results appear in Section 2.4. We summarize and conclude in Section 2.5.
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2.2 Subsemble

2.2.1 The Subsemble Algorithm

Assume the full data set consists of n independent and identically distributed observations
Oi = (Xi, Yi) of O ∼ P0. Our goal is to predict the outcome Yi given the covariate vector
Xi. Given an algorithm Ψ̂, which is a mapping from an empirical probability distribution Pn
into the parameter space space Ψ of functions of X, the usual approach to prediction using
Ψ̂ applies Ψ̂ to the empirical distribution Pn, resulting in the estimator Ψ̂(Pn).

The Subsemble procedure takes a different approach to forming a prediction function
using Ψ̂. Instead of using the entire data set to obtain a single fit of Ψ̂, Subsemble applies Ψ̂
to multiple empirical distributions, each consisting of a subset of the available observations,
created from a partitioning of the entire data set into J disjoint subsets. We refer to these
J subsets of the entire data set at the final subsets. Subsemble then obtains the optimal
combination of the final subset-specific fits by minimizing cross-validated risk through V-fold
cross-validation.

Note that the cross-validation within Subsemble is used as an estimator selection tool. It
is used to find the best combination of subset-specific fits by minimizing cross-validated risk.
Risk estimates are based on obtaining subset-specific fits on cross-validation training sets,
and estimating risk using the corresponding test sets. For this procedure to yield accurate
risk estimates, the jth subset-specific estimator in the cross-validation training sets needs to
be similar to the final jth subset-specific estimator of the full data set. Otherwise, the risk
estimate of the jth estimator does not reflect its true risk, and the resulting combination of
the J estimators is also meaningless.

The jth estimator is defined as applying the underlying algorithm Ψ̂ to the jth final
subset. In fact, the only difference between the J estimators is the particular data used
to train the underlying algorithm. We thus need to define the jth estimator in the cross-
validation training sets to be very similar to the jth final estimator. This is accomplished
by using very similar data in the jth cross-validation and final subsets.

To motivate the construction of the V folds used in Subsemble, consider randomly split-
ting the entire data set into V folds. Now, suppose that at each cross-validation step, the
training data were randomly assigned to the J subsets. With this approach, the data used
in subset j in a cross-validation training set has no relationship to the data used in the final
subset j. A partial solution would be, at each cross-validation step, to assign the training
data to subsets based on each observation’s assignment in the final subsets. This construc-
tion guarantees that each observation used in the subset-specific fit j during cross-validation
is contained in the data used in the final subset-specific fit j. However, undefined estimates
could occur if all data in the final subset j happened to fall in the same fold v.

Subsemble instead selects the V folds to preserve the subset structure: we first partition
each subset j into V folds, and then create the overall vth fold by combining the vth folds from
all the J subsets. This cross-validation approach has several benefits. First, very similar data
is used in the cross-validation subset assignments and the final subset assignments. Second,
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since only 1/V of each final subset is left out at each cross-validation step, the potential
problem of undefined estimates in the cross-validation steps is avoided. Finally, creating
the cross-validation training sets does not require combining data across the subsets. This
is due to the fact that, since the final subsets are partitioned into V folds, and the subset
assignments in the cross-validation steps are the same as the final subset assignments, leaving
a fold v out of subset j produces all the data assigned to the jth subset in the cross-validation
training set. See Figure 2.1 for an illustration.

Subsemble also requires specifying a second metalearner algorithm Φ̂ to be used for
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)}2

Figure 2.1: Diagram of the Subsemble procedure using linear regression as the metalearner to
combine the subset-specific fits. The full data set, consisting of n observations is partitioned into J
disjoint subsets. The same underlying algorithm ψ̂ is applied to each subset, resulting in J subset-
specific fits ψ̂1, ψ̂2, . . . , ψ̂J . V-fold cross-validation, where the V folds are constructed to preserve
the subset structure, is used to learn the best weighted linear combination of the subset-specific
fits.
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combining the subset-specific fits. For example, the metalearner algorithm Φ̂ could be a
linear regression, random forest, or support vector machine. Figure 2.1 shows the Subsemble
procedure when metalearner Φ̂ is specified as linear regression.

Pseudocode for the Subsemble algorithm is shown in Figure 2.2. More formally, Subsem-
ble proceeds as follows. Given the user-specified number of subsets J , the n observations
are partitioned into J disjoint subsets. Define the algorithm Ψ̂j as Ψ̂ applied to the jth

subset. Each of the J algorithms Ψ̂j are applied to Pn, resulting in J subset-specific estima-

tors Ψ̂j(Pn). V-fold cross-validation is then used to select the optimal combination of the
subset-specific fits based on minimizing the cross-validated risk.

Algorithm 1: Subsemble

input :
• n observations (Xi, Yi)

• partitioning of the n observations into J disjoint subsets

• underlying learner algorithm Ψ̂

• metalearner algorithm Φ̂

output: optimal combination Φ̂∗(Ψ̂1, . . . , Ψ̂J)

for j ← 1 : J do
// create subset-specific learner fits

Ψ̂j ← apply Ψ̂ to observations i such that i ∈ j
// create V folds

randomly partition each subset j into V folds

end

// cross-validation

for v ← 1 : V do
// CV fits

Ψ̂j,−v ← apply Ψ̂ to observations i such that i ∈ j, i 6∈ v
for i : i ∈ v do

// predicted values

X̃i ←
(
Ψ̂1,−v(Xi), . . . , Ψ̂J,−v(Xi)

)

end

end

Φ̂∗ ← apply Φ̂ to training data (Yi, X̃i)

Φ̂∗(Ψ̂1, . . . , Ψ̂J)← final prediction function

Figure 2.2: Pseudocode for the Subsemble algorithm.



7

The V folds are selected as follows. Each subset j = 1, . . . , J is first partitioned into V
folds. Each full fold v is then obtained by combining the vth folds across the J subsets. Define
Pn,v as the empirical distribution of the observations not in the vth fold. For each observation
i, define Pn,v(i) to be the empirical distribution of the observations not in the fold containing
observation i. The optimal combination is selected by applying the metalearner algorithm
Φ̂ to the following redefined set of n observations: (X̃i, Yi), where X̃i = {Ψ̂j(Pn,v(i))(Xi)}Jj=1.

That is, for each i, the redefined input vector X̃i consists of the J predicted values obtained
by evaluating the J subset-specific estimators trained on the data excluding the v(i)th fold,
at Xi. As an example, specifying Φ̂ as linear regression would result in selecting the best
linear combination

∑J
j=1 βjΨ̂j of the subset-specific fits, by regressing Yi onto the J values

of Ψ̂j(Pn,v(i))(Xi).
While this chapter primarily discusses Subsembles which combine different subset-specific

fits of a single underlying algorithm, the procedure can also readily accommodate multi-
ple underlying algorithms. To illustrate this point, instead of a single underlying algo-
rithm Ψ̂, consider L underlying algorithms Ψ̂1, . . . , Ψ̂L. Then, instead of finding the op-
timal

∑J
j=1 βjΨ̂j, for example, the Subsemble procedure can be used to find the optimal∑J

j=1

∑L
`=1 β`,jΨ̂

`
j, where Ψ̂`

j denotes the fit of the `th algorithm Ψ̂` on the jth subset.

2.2.2 Theoretical Performance Guarantee for Subsemble

The following oracle result, following directly from the work of van der Laan, Polley, and
Hubbard 2007, gives a theoretical guarantee of Subsemble’s performance.

Theorem 1. Assume the metalearner algorithm Φ̂ = Φ̂β is indexed by a finite dimensional
parameter β ∈ B. Let Bn be a finite set of values in B, with the number of values growing
at most polynomial rate in n. Assume there exist bounded sets Y ∈ R and Euclidean X such
that P ((Y,X) ∈ Y ×X) = 1 and P (Ψ̂(Pn) ∈ Y) = 1.

Define the cross-validation selector of β as

βn = arg min
β∈Bn

n∑

i=1

{
Yi − Φ̂β(X̃i)

}2

and define the oracle selector of β as

β̃n = arg min
β∈Bn

1

V

V∑

v=1

E0

[{
E0[Y |X]− Φ̂β(Pn,v)

}2]

Then, for every δ > 0, there exists a constant C(δ) < ∞ (defined in van der Laan,



8

Dudoit, and van der Vaart 2006) such that

E
1

V

V∑

v=1

E0

[{
E0[Y |X]− Φ̂βn(Pn,v)

}2]

≤ (1 + δ)E
1

V

V∑

v=1

E0

[{
E0[Y |X]− Φ̂β̃n

(Pn,v)

}2]
+ C(δ)

V log n

n

As a result, if none of the subset-specific learners converge at a parametric rate, then the
oracle selector does not converge at a parametric rate, and the cross-validation estimator Φ̂βn

is asymptotically equivalent with the oracle estimator Φ̂β̃n
:

E 1
V

∑V
v=1E0

[{
E0[Y |X]− Φ̂βn(Pn,v)

}2]

E 1
V

∑V
v=1E0

[{
E0[Y |X]− Φ̂β̃n

(Pn,v)

}2] → 1 as n→∞

Otherwise, the cross-validation estimator Φ̂βn achieves a near parametric logn
n

rate:

E
1

V

V∑

v=1

E0

[{
E0[Y |X]− Φ̂βn(Pn,v)

}2]
= O

(
log n

n

)

The results of this Theorem hold even if the number of subsets J grows at up to a poly-
nomial rate in n.

Theorem 1 tells us that the risk difference, based on squared-error loss, of the Subsemble
from the true E0[Y |X] can be bounded from above by a function of the risk difference of the
oracle procedure. Note that the oracle procedure results in the best possible combination
of the subset-specific fits, since the oracle procedure selects β to minimize the true risk
difference. As a result, the main lesson from this Theorem is, since usually the underlying
algorithm used won’t convergence at parametric rate, Subsemble performs as well as the
best possible combination of subset-specific fits. That is, since their ratio of risk differences
converges to one, the Subsemble not only has the same rate of convergence as the oracle
procedure, as well as the same constant. Our result is even stronger: the risk difference of
the Subsemble is literally asymptotically indistinguishable from that of the oracle procedure.

Note that Theorem 1 doesn’t tell us how many subsets are best, or how Subsemble’s
combination of many subset-specific fits will perform relative to fitting the single algorithm
Ψ̂ just once on the full available data set. In Section 2.3, we provide a practical way to select
between Subsemble and a single fit of the same underlying algorithm on the full data set,
and also to select among different types of Subsembles. We further show through simulations
in Section 2.4 that there is often a range of subsets which are better than the full fit.
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2.3 Learning When to Use Subsembles

2.3.1 Subsembles as Candidates in SuperLearner

While the oracle result for Subsemble given in Section 2.2.2 provides a theoretical basis for
the performance of Subsemble, it doesn’t tell us whether or not Subsemble will outperform
the standard single fit of an algorithm only once on the entire data set. The oracle result
also provides no guidance about the best number of partitions to use in Subsemble. Here,
we provide a practical approach to select between these options, describing how to include
Subsembles with different numbers of subsets, as well as the usual version of the specified
algorithm, as candidate algorithms in a SuperLearner library.

SuperLearner, developed in van der Laan, Polley, and Hubbard 2007, is a powerful predic-
tion algorithm that finds the optimal weighted combination of a set of candidate prediction
algorithms by minimizing cross-validated risk. SuperLearner generalizes stacking algorithms
developed by Wolpert 1992 and extended by Breiman 1996b, and was named based on the
theoretical performance results discussed in van der Laan, Polley, and Hubbard 2007. Su-
perLearner extends this prior work by allowing for general loss functions, thus allowing for
different parametric combinations of estimators.

SuperLearner takes as input a library of K prediction algorithms, as well as another
cross-validated risk predictor algorithm Θ̂, and outputs the optimal weighted combination,
through Θ̂, of the K algorithms fit on the full data set. To select the optimal weights,
SuperLearner uses V -fold cross-validation. As an example, with Θ̂ specified as linear re-
gression, SuperLearner selects the optimal linear combination of the K candidate predictor
algorithms. The current implementation of SuperLearner uses non-negative linear regression
for Θ̂.

The SuperLearner algorithm proceeds as follows. Propose a library of K candidate
prediction algorithms. Split the data set into V blocks of equal size. For each block v =
1, . . . , V , fit each of the K candidate algorithms on the observations not in the vth block,
and obtain K predictions for each observation in the vth block using these fits. Select the
optimal combination by applying the user-specified minimum cross-validated risk predictor
algorithm Θ̂: regressing the true outcome of the n observations on the K predictions to
obtain a combination of the K algorithms. Finally, fit the K algorithms on the complete
data set. Predictions are then obtained by using these final fits combined as specified by Θ̂
obtained in the previous step. For additional details, we refer the reader to van der Laan,
Polley, and Hubbard 2007.

SuperLearner can be used to evaluate between Subsembles using different number of
subsets, and underlying algorithms fit just once on the entire data set. Simply include
Subsembles as candidates in a SuperLearner library, as well as the underlying algorithms fit
once on all data as other candidates. The SuperLearner will then learn the optimal weighted
combination of these candidates.
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2.3.2 Oracle Result for SuperLearner

The SuperLearner algorithm has its own oracle result. As developed in van der Laan,
Polley, and Hubbard 2007, we have the following Theorem.

Theorem 2. Assume the minimum cross-validated risk predictor algorithm Θ̂ = Θ̂α is in-
dexed by a finite dimensional parameter α ∈ A. Let K be the total number of algorithms
included in the SuperLearner library, including both full and Subsemble versions. Let An be
a finite set of values in A, with the number of values growing at most polynomial rate in n.
Assume there exist bounded sets Y ∈ R and Euclidean X such that P ((Y,X) ∈ Y×X) = 1
and P (Ψ̂k(Pn) ∈ Y) = 1.

Define the cross-validation selector of α as

αn = arg min
α∈An

n∑

i=1

{
Yi − Θ̂α(X̃i)

}2

and define the oracle selector of α as

α̃n = arg min
α∈An

1

V

V∑

v=1

E0

[{
E0[Y |X]− Θ̂α(Pn,v)

}2]

Then, for every δ > 0, there exists a constant C(δ) < ∞ (defined in van der Laan,
Dudoit, and van der Vaart 2006) such that

E
1

V

V∑

v=1

E0

[{
E0[Y |X]− Θ̂αn(Pn,v)

}2]

≤ (1 + δ)E
1

V

V∑

v=1

E0

[{
E0[Y |X]− Θ̂α̃n(Pn,v)

}2]
+ C(δ)

V log n

n

As a result, if none of the learners included in the library converge at a parametric rate,
then the oracle selector does not converge at a parametric rate, and the cross-validation
estimator Θ̂αn is asymptotically equivalent with the oracle estimator Θ̂α̃n:

E 1
V

∑V
v=1E0

[{
E0[Y |X]− Θ̂αn(Pn,v)

}2]

E 1
V

∑V
v=1E0

[{
E0[Y |X]− Θ̂α̃n(Pn,v)

}2] → 1 as n→∞

Otherwise, the cross-validation estimator Θ̂αn achieves a near parametric logn
n

rate.

E
1

V

V∑

v=1

E0

[{
E0[Y |X]− Θ̂αn(Pn,v)

}2]
= O

(
log n

n

)

The results of this Theorem hold even if the number of algorithms K grows at up to a
polynomial rate in n.
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Similar to the oracle result for Subsemble, Theorem 2 tells us that the risk difference,
based on squared-error loss, of the SuperLearner from the true E0[Y |X] can be bounded from
above by a function of the risk difference of the oracle procedure. The oracle procedure results
in the best possible combination of the candidate algorithms, since the oracle procedure
chooses α to minimize the true risk difference. Typically, none of the candidate algorithms
will converge at a parametric rate. As a result, SuperLearner will perform as well as best
possible combination of candidates. That is, since their ratio of risk differences converges to
one, the risk difference of the SuperLearner is literally asymptotically indistinguishable from
that of the oracle procedure.

2.4 Data Analysis

2.4.1 Description of Data Sets

The oracle results of Theorems 1 and 2 show the benefits of Subsemble for large sized
data sets. In this section, we investigate Subsemble’s statistical performance for small to
moderate sized samples.

In the studies that follow, we used four small to moderate sized data sets (Simulated 1,
Simulated 2, Yacht, Diamond) to evaluate the practical performance of Subsemble. All data
sets have one real-valued output variable, and no missing values.

The first two data sets are simulated, and generated as below. The Sim 1 data set has
20 input variables. The sim 2 data set has 200 input variables.

Sim 1:

Xi ∼ N(0, 9), i = 1, . . . , 20

ε ∼ N(0, 9)

Y = ε+X1 + sin(X2) + log(|X3|) +X2
4 +X5X6 + I(X7X8X9 < 0) + I(X10 > 0)

+X11I(X11 > 0) +
√
|X12|+ cos(X13) + 2X14 + |X15|+ I(X16 < −1)

+X17I(X17 < −1)− 2X18 −X19X20

Sim 2:

Xi ∼ N(0, 16), i = 1, . . . , 200

ε ∼ N(0, 25)

Y = −1 + ε+
200∑

i=1

log(|Xi|)

The second two data sets are publicly available real-world data. The yacht data set,
available from Bache and Lichman 2013, has 308 observations and 6 input variables. The
diamond data set, described by Chu 2001, has 308 observations and 17 input variables.
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2.4.2 Subsemble Performance Comparison

In this study, we compare the performance of Subsemble with two alternatives: fitting
the underlying algorithm just once on all data, and a naive subset method which simply
averages the same subset-specific fits used in the Subsemble instead of learning a weighted
combination.

We used four underlying algorithms: linear regression, lasso, regression tree, and ran-
dom forest. We selected these algorithms because they are well-known and commonly used
methods, and examples that cover a range of algorithm properties: both adaptive (regres-
sion tree) and non-adaptive (linear regression) methods, as well as regularized (lasso) and
ensemble (random forest) versions. Note that these algorithms merely serve for the purpose
of demonstration, as the oracle results given in Theorems 1 and 2 show that using more
algorithms, and particularly more diverse algorithms, will result in even better statistical
performance.

For each of the four algorithms, we first fit the algorithm just once on the training set
(the ‘Full’ fit). We then divided the training set into 2, 3, 4, and 5 randomly created subsets.
For each subset division, we fit each of the four algorithms on the subsets, and combined the
results across the subsets in two ways: naive simple averaging across the subset-specific fits,
and the Subsemble procedure with linear regression as the metalearner.

Tuning details of the underlying algorithms were defaults and set as follows. For lasso, we
used 10-fold cross-validation to select the regularization weight among a grid of 100 possible
values, ranging from very close to zero up to a maximum of the smallest data derived weight
for which all coefficients were zero. For regression tree, we set 20 observations as the minimum
needed for a split to be attempted, the minimum number of observations in any leaf node
to 7, maximum depth to 30, the ANOVA between-groups sum-of-squares metric to measure
and select the best covariate split, minimum R-squared increase at each step to 0.01, and
10-fold cross-validation for pruning. For random forest, we used 1000 trees, with the same
parameters used for each tree in the forest: one third the number of variables as candidates
randomly selected among for each split, and minimum number of terminal nodes as 5.

For the simulated data sets, we simulated training sets of 1,000 observations and test
sets of 10,000 observations, and repeated the experiment 10 times. For the real data sets,
we split the data sets into 10 folds, and let each fold serve as the test set. Mean Squared
Prediction Error (MSPE) results were averaged across the 10 trials for both simulated and
real data sets. We also performed a t-test for the difference in means between each subset
method (naive and Subsemble, for each number of subsets) and the ‘Full’ fit. Results are
presented in Table 2.1.

With simulated data set 1, for both linear regression and lasso, the full algorithm fit,
Subsembles, and naive versions have essentially the same performance. For regression tree
and random forest, all the Subsembles significantly outperform the full fit. For regression
tree, the naive versions have essentially the same performance as the corresponding Subsem-
bles, and also significantly outperform the full fit. However, for random forest, the naive
versions are much worse than the Subsembles, and the naive versions perform significantly
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Table 2.1: MSPE comparison of three different methods using the same underlying algorithm:
the ‘Full’ fit of the algorithm only once on the entire data set, Subsembles with randomly created
subsets, and naive averages of the same fits used in the Subsembles. The underlying algorithm
used in each row appears in The Algorithm column. J indicates the number of subsets. The
method with lowest MSPE for each underlying algorithm is in bold. The number of symbols in the
superscript indicates the significance level of a t-test for the difference in means between the subset
method and the full fit: 0.10 (1 symbol), 0.05 (2 symbols), 0.01 (3 symbols). Asterisks (*) are used
when the subset method MSPE is significantly lower, and tick marks (′) are used when the subset
method MSPE is significantly higher.

Dataset Algorithm Full Method J = 2 J = 3 J = 4 J = 5
Sim 1

Linear 347.6
Subsemble 347.6 347.8 347.7 348.1
Naive 347.6 348.0 347.7 348.2

Lasso 341.4
Subsemble 341.6 342.0 342.2 343.1
Naive 342.7 343.6 345.5 347.6′

Tree 265.6
Subsemble 254.7∗∗ 253.6∗∗∗ 253.6∗∗∗ 249.9∗∗∗

Naive 254.9∗∗ 253.2∗∗∗ 254.4∗∗∗ 251.7∗∗∗

Forest 229.3
Subsemble 195.1∗∗∗ 195.6∗∗∗ 196.5∗∗∗ 198.5∗∗∗

Naive 246.5′′′ 258.4′′′ 270.3′′′ 279.6′′′

Sim 2

Linear 340.8
Subsemble 271.7∗∗∗ 271.7∗∗∗ 271.4∗∗∗ 277.6∗∗∗

Naive 362.9′′′ 408.5′′′ 549.2′′′ 3.10 e6′′′

Lasso 274.0
Subsemble 274.1 273.8 274.2 275.1
Naive 273.8 274.1 273.9 274.1

Tree 349.9
Subsemble 271.1∗∗∗ 270.9∗∗∗ 270.9∗∗∗ 271.7∗∗∗

Naive 334.4∗∗∗ 316.8∗∗∗ 302.3∗∗∗ 295.1∗∗∗

Forest 263.0
Subsemble 252.6∗∗∗ 253.3∗∗∗ 253.7∗∗∗ 255.1∗∗∗

Naive 264.4 265.4′′ 266.2′′′ 267.0′′′

Yacht

Linear 83.42
Subsemble 57.95∗ 58.18∗ 57.38∗ 55.66∗∗

Naive 72.44 72.17 71.49 72.17

Lasso 80.82
Subsemble 57.34 58.94 58.01 55.71∗

Naive 74.17 74.74 75.15 75.16

Tree 4.296
Subsemble 6.866 15.60′′′ 22.39′′′ 17.52′′′

Naive 7.349 18.75′′′ 24.30′′′ 20.41′′′

Forest 14.54
Subsemble 7.213∗ 8.460 8.760 8.977
Naive 21.13 28.28 35.35′′ 43.29′′

Diamond

Linear 3.07 e5
Subsemble 2.61 e5∗∗ 2.73 e5∗ 2.67 e5∗ 2.72 e5∗

Naive 2.74 e5∗ 2.75 e5∗ 2.94 e5 2.76 e5

Lasso 3.13 e5
Subsemble 2.73 e5∗∗∗ 2.75 e5∗∗ 2.74 e5∗∗∗ 2.96 e5
Naive 2.78 e5∗∗ 2.91 e5∗∗ 3.05 e5 2.90 e5

Tree 1.15 e6
Subsemble 1.10 e6 1.01 e6∗ 1.10 e6 1.07 e6
Naive 1.11 e6 1.06 e6 1.18 e6 1.13 e6

Forest 5.05 e5
Subsemble 6.00 e5′′ 6.81 e5′′′ 7.80 e5′′′ 8.26 e5′′′

Naive 6.54 e5′′′ 7.50 e5′′′ 8.04 e5′′′ 8.60 e5′′′
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worse than the full fit.
For simulated data set 2, the lasso once again has essentially the same performance

across the full fit, Subsembles, and naive versions. With linear regression, regression tree,
and random forest, the Subsembles significantly outperform the full fit. The naive version
has poorer performance. With linear regression and random forest, the naive version is
significantly worse than the full fit. With regression tree, the naive version does significantly
improve on the full fit, but still has much worse performance than the Subsembles. In this
simulation, we also see an important problem with the naive version: there is no way to
account for a poor subset-specific fit. This is likely the reason why the MSPE results for the
naive versions with linear regression are so high.

With the yacht data set, the full fit of the regression tree fit was significantly better than
both the Subsembles and the naive versions. For the other three underlying algorithms, at
least one Subsemble significantly outperformed the full fit, while the naive versions were
either not significantly different, or had significantly worse performance than the full fit.

For the diamond data set, with linear regression and lasso, most Subsembles and naive
versions has significantly better performance than the full fit, with the Subsembles being
more significantly better. With regression tree, one Subsemble was significantly better than
the full fit, while all naive versions were not significantly different. With random forest, both
Subsembles and naive versions were significantly worse than the full fit.

Across all the data sets, we see that the Subsembles can often significantly outperform
the full algorithm. Note that performance of the Subsemble depends on both the underlying
algorithm and the distribution generating the data. None of the underlying algorithms
always had the best performance by using the full fit, or by using Subsembles. As a result,
for real data sets in which the generating distribution is unknown, we cannot predict ahead
of time whether the full fit or Subsembles of a given underlying algorithm will have better
performance.

Subsembles also perform at least as well as, and usually better than, the correspond-
ing naive averaging versions. This result is not only practical: it is also predicted by the
theoretical oracle inequality in Section 2.2.2. The oracle result tells us that Subsemble per-
forms as well as the best possible combination of subset-specific fits. Since naive averaging
is a possible combination of subset-specific fits, it follows that Subsemble is asymptotically
superior.

2.4.3 SuperLearner Performance Comparison

In this study, we compare the performance of the SuperLearner using two different li-
braries of candidate algorithms: a library including only algorithms fit on the full data set,
and a library including both Subsembles and algorithms fit on the full data set. We again
created the subsets randomly, used linear regression as metalearner, and used the following
underlying algorithms: linear regression, lasso, regression tree, and random forest. In the
library with Subsembles versions, we included Subsembles with 2 and 5 subsets for each of
the 4 algorithms, as well as the full algorithms.
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Table 2.2: MSPE comparison of SuperLearners with two different libraries: one using only algo-
rithms fit once on the entire data set, and the other using both algorithms fit once on the entire
data set and two Subsemble versions of each algorithm. Underlying algorithms used were: linear
regression, lasso, regression tree, and random forest. The method with lowest MSPE for each each
data set is in bold. The Significance column indicates the significance level of a t-test for the
difference in means between the two methods.

Dataset No Subsembles Subsembles Significance
Sim 1 228.4 194.7 < 0.01
Sim 2 263.9 250.7 < 0.01
Yacht 4.827 4.046 0.07
Diamond 284171 248882 0.02

For the simulated data sets, we simulated training sets of 1,000 observations and test sets
of 10,000 observations, and repeated the experiment 10 times. For the real data sets, we split
the data sets into 10 folds, and let each fold serve as the test set. Mean Squared Prediction
Error (MSPE) results were averaged across the 10 trials for both simulated and real data
sets. We also performed a t-test for the difference in means between the two SuperLearner
library results. Results are presented in Table 2.2.

Across all data sets, the SuperLearner whose library included Subsembles outperformed
the SuperLearner whose library used only full algorithm versions.

2.5 Summary

In this chapter, we introduced the Subsemble procedure for fitting the same underlying
algorithm on different subsets of observations, and learning the optimal weighted combi-
nation using V-fold cross-validation. We provided a theoretical statistical result, showing
that Subsemble performs as well as the best possible combination of the subset-specific fits.
Through simulation studies and real data analysis, we illustrated that Subsembles with ran-
domly created subsets can provide practical performance improvements on moderate sized
data sets.
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Chapter 3

Learning Subsemble’s Subsets

3.1 Introduction

In Chapter 2, we studied the performance of Subsembles created from randomly selected
subsets of observations. In particular, we demonstrated that such random subset Subsembles
have good performance in practice, and often provide better prediction performance than
fitting the underlying algorithm only once on a full available data set.

Note that the final Subsemble estimator varies depending on the data used to create
each subset-specific fit. As a result, different strategies for creating Subsemble’s subsets
will result in different Subsembles. In this chapter, we introduce a different method for
partitioning a data set into the subsets used in Subsemble. In particular, we propose the
use of Supervised Subsembles, which create subsets through supervised partitioning of the
covariate space, combined with a form of histogram regression as the metalearner used to
combine these subset-specific fits. We also develop a practical Supervised Subsemble method,
which employs regression trees to both partition the observations into the subsets used in
Subsemble, and select the number of subsets to use. We discuss computational independence
properties of our proposed methods that are advantageous for applications involving big data,
and show through simulations that our proposed version of Subsemble can result in further
improved prediction performance.

The remainder of this chapter is organized as follows. The Supervised Subsemble ap-
proach for creating subsets, along with associated metalearner, is presented in Section 3.2.
We describe the practical Supervised Subsemble method using regression trees in Section 3.3.
Simulation and real data analysis results are discussed in Section 3.4. We summarize and
conclude in Section 3.5.
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3.2 Supervised Subsemble

3.2.1 Supervised Partitioning of the Covariate Space

To obtain the subsets used in Subsemble, we propose partitioning of the covariate space
to create J disjoint subsets of covariates, S1, . . . , SJ , such that any given vector of covariates
belongs to exactly one of the J subsets. Numerous methods to achieve a partitioning of
the covariate space are available. For example, the unsupervised k-means algorithm could
be used to first cluster the observations into J clusters based on only their covariates, with
these J clusters also forming the J subsets. In general, supervised partitioning methods also
consider the outcome variable, thus creating a partitioning that is directly predictive of the
outcome.

Compared to randomly selecting the subsets, constructing the subsets to be similar in-
ternally and different from each other results in locally smoothed subset-specific fits when
fitting the same algorithm on each subset. In particular, each subset-specific fit is in fact tai-
lored for the associated partition of the covariate space. More specifically, the subset-specific
fit Ψ̂j associated with Sj is tailored for the partition Sj, and we would not expect Ψ̂j to be
a good fit for observations with covariates in some other Sj′ , where j 6= j′.

3.2.2 Modified Histogram Regression Metalearner

To reflect the above observation, we propose using a modified version of histogram regres-
sion as the metalearner used to combine the subset-specific fits. The usual form of histogram
regression, applied to our J subsets Sj, would output a local average of the outcome Y within
each subset. Instead of this standard form of histogram regression, our version of histogram
regression outputs the associated Ψ̂j for each subset Sj. In addition, our version of histogram
regression includes a coefficient and intercept within each subset. Concretely, we define our
proposed histogram regression metalearner Φ̂ for combining the subset-specific fits as follows:

Φ̂(Ψ̂)(x) =
J∑

j=1

I(x ∈ Sj)
(
β0
j + β1

j Ψ̂j(x)

)
(3.1)

The value of the functional form of Equation 3.1 is its generalization to using more
than one underlying algorithm. That is, applying multiple prediction algorithms to each
subset. That is, instead of applying a single underlying algorithm Ψ̂ to each subset, the
Subsemble procedure readily accommodates applying L underlying algorithms Ψ̂1, . . . , Ψ̂L

to each subset. The generalization of Equation 3.1 gives us the following histogram regression
metalearner Φ̂ for combining these multiple subset-specific fits as follows:

Φ̂(Ψ̂1, . . . , Ψ̂L)(x) =
J∑

j=1

[
I(x ∈ Sj)

(
β0
j +

L∑

`=1

β`jΨ̂
`
j(x)

)]
(3.2)



18

3.2.3 Computational Independence of Subsets

Note that the computations Subsemble performs on each subset are always independent,
even in the cross-validation training steps. This is because the partitioning of the n observa-
tions into J subsets remains the same during cross-validation. As a result, leaving out a fold
v from a subset j produces all the data assigned to the j-th subset in the cross-validation
training set. However, with randomly constructed subsets, minimizing the cross-validated
risk to learn the optimal combination of the subset-specific fits requires access to all the
data.

The Supervised Subsembles proposed here have the additional benefit of preserving the
subset computation independence. That is, if subsets are known a priori, by keeping the
subset assignments fixed, computations on the subsets of the Supervised Subsemble described
in this section remain completely computationally independent across the entire procedure.

To see this, let βn to be the cross-validation selector of β. Then by definition of the
cross-validation selector,

βn = arg min
β

n∑

i=1

{
Yi − Φ̂β(X̃i)

}2

Using the fact that each observation i belongs to exactly one subset Sj, we rearrange terms
as follows:

= arg min
β

J∑

j=1

∑

i:i∈Sj

{
Yi − Φ̂β(X̃i)

}2

From the definitions of Φ̂ and X̃i,

= arg min
β

J∑

j=1

∑

i:i∈Sj

{
Yi −

J∑

j′=1

[
I(Xi ∈ Sj′)

(
β0
j′ +

L∑

`=1

β`j′Ψ̂
`
j′,v(i)(Xi)

)]}2

Again, since each observation i belongs to exactly one Sj,

= arg min
β

J∑

j=1

∑

i:i∈Sj

{
Yi −

[
β0
j +

L∑

`=1

β`jΨ̂
`
j,v(i)(Xi)

]}2

Finally, since the observations i : i ∈ Sj are disjoint for different j, terms involving each βj
can be minimized independently:

=

{
arg min

βj

∑

i:i∈Sj

(
Yi −

[
β0
j +

L∑

`=1

β`jΨ̂
`
j,v(i)(Xi)

])2}J

j=1
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Thus, each term βj can be estimated by minimizing cross-validated risk using only the data
in subset Sj.

We are thus able to estimate the coefficient associated with each subset independently,
using only data within that subset. Consequently, unlike the randomly constructed subsets,
we avoid needing to recombine data to produce the final prediction function.

3.3 SRT Subsemble: Supervised Regression Tree

Subsemble

3.3.1 Motivation

The Supervised Subsembles proposed in the previous section maintain computational
independence across subsets. However, this assumes that both the number of subsets, and the
partitioning of the covariate space, are provided. In this section, we propose the a practical
Supervised Regression Tree Subsemble (SRT Subsemble) algorithm, which uses regression
trees with Subsemble as a practical and computationally feasible way to determine both of
the number of subsets, and the partitioning of the covariate space to create the subsets.

To motivate our approach, we first discuss relevant concerns about constructing covariate
space partitions when dealing with large-scale data set applications. For big data, splitting
data up can be a significant computational concern. As a result, it is preferable to avoid
approaches that, when creating different numbers of subsets, first split the full data set into,
for example, two partitions, and then recombine the data in order to determine a way to
split the data into three partitions. Instead, it is better to work with greedy methods, which
enforce that once the data has been split, any further splits will only divide an already
existing partition.

3.3.2 Constructing and Selecting the Number of Subsets

Classification and Regression Trees (CART), developed by Breiman et al. 1984, recur-
sively partition the covariate space by creating binary splits of one covariate at a time.
Concretely, using covariate vector Xi = (X1

i , . . . , X
K
i ), the first iteration of CART selects a

covariate Xk, and then creates the best partition of the data based on that covariate. As a
metric to measure and select the best covariate split for a continuous outcome, CART fits an
ANOVA model and uses the between-groups sum-of-squares metric. The best split is then
selected to maximize this between-groups sum-of-squares. For additional details, we refer
the reader to Breiman et al. 1984.

The first iteration of CART thus creates the first partition of the data based on two
regions S1

1 = I(Xk ≤ c1) and S2
1 = I(Xk > c1). Subsequent splits are obtained greedily,

by repeating this procedure on each new partition. For example, the second iteration of
CART selects a covariate Xk′ , and partitions S1

1 into S1
2 = I(Xk ≤ c1, X

k′ ≤ c2) and
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S2
2 = I(Xk ≤ c1, X

k′ > c2). For a given partitioning, the standard prediction function from
CART outputs the local average of the outcome Y within each subset.

To partition the covariate space and select the number of subsets for Subsemble, we
apply CART as follows. First, we simply run the CART algorithm on the data set, resulting
in a sequence of nested partitionings of the covariate space. That is, the CART algorithm
outputs a sequence of sub-trees: a first tree with a single root node, a second tree with two
nodes, a third tree with three nodes, and so on, ending with the full tree with M nodes. We
treat the m nodes of each m-th sub-tree as a candidate partitioning into m subsets.

Next, we explore the sequence of M possible partitions (sequence of sub-trees) produced
by CART, beginning at the root. For each candidate number of subsets 1, . . . ,M , we fit the
associated Supervised Subsemble. Concretely, with m subsets, we create L subset-specific
fits Ψ̂`

j for each subset j = 1, . . . ,m, and create the overall prediction function according to
Equation 3.2. Note that we use CART to create the subsets Sj that appear in Equation 3.2.
Finally, we select the best number of subsets as the Subsemble with minimum cross-validated
risk.

3.3.3 Computational Advantages

Our proposed SRT Subsemble retains the desirable subset computational independence
discussed in Section 3.2, while also creating the subsets used in Subsemble in a computa-
tionally friendly way, as well as providing a criteria for choosing the number of subsets to
use in Subsemble.

As a consequence of this subset computational independence, note that in fitting a se-
quence of Subsembles in a series of sub-trees, each subsequent Subsemble only requires
computation for the two new nodes at each step. That is, given the Subsemble fit with, say,
m subsets, computing the next Subsemble with m+ 1 subsets only requires computation for
the two new nodes formed in the m + 1-st split of the tree. This is due the fact that the
nodes are computationally independent in the SRT Subsemble framework, plus the fact that
at each split of the tree, all nodes remain the same, except for the single node in the m-th
tree that is split into two new nodes in the m+ 1-st tree.

3.3.4 Implementation Flexibility

There are several paths that can be taken when applying the SRT Subsemble process
in practice. These user-selected options allow SRT Subsemble to be quite flexible, with
decisions made to suit the application at hand. There is no one best approach, instead
the options will be determined based on the application/constraints/desired properties. We
briefly discuss these options.

First, the user must decide how to build and explore the tree. One possibility is to simply
build a very large tree, resulting in a full tree with M nodes, build a Subsemble for each
sub-tree 1, . . . ,M , and through this process simply locate the Subsemble with the lowest
cross-validated risk among the sequence of sub-trees outputted by CART. Alternatively, a
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greedy process can be used. Instead of calculating cross-validated risk for all sub-trees of
a very large tree, the cross-validated risk can be tracked while the tree is being built-out.
That is, after each additional split to the tree, build the associated Subsemble, calculate its
associated cross-validated risk, and stop adding additional splits when some stopping criteria
is achieved. As an example, the stopping criteria could be an increase of the cross-validated
risk.

Second, the user must decide where in the tree to start building Subsembles. The most
obvious approach is to start with building a Subsemble at the root node of the tree. That
is, building a Subsemble with only one subset containing all observations. For small- to
moderate-sized data sets, where computational considerations are of less concern, this is a
good choice. However, for large-scale data sets, it may be preferable to first split the data
into partitions of some desired size, and only then start building Subsembles. This approach
would allow the user to take advantage of multiple independent computational resources,
since each partition of data could be transferred to a dedicated computational resource,
since all subsequent computations remain independent from other partitions.

3.4 Data Analysis

3.4.1 Preliminary Observations

We next present results from comparing the performance of SRT Subsemble with the
version of Subsemble using randomly created subsets. We discuss further implementation
details in the next subsection.

Before presenting our simulated and real data set results, we first discuss a few preliminary
observations, through simple examples, which show that there are certainly scenarios in which
SRT Subsemble results in better performance than the random subset version of Subsemble.
To see this, consider an actual histogram with a single covariate, where the outcome is simply
the mean in various subsets of that covariate. Further, suppose we use a single underlying
algorithm Ψ̂, which simply takes the mean outcome among observations. In this case, it is
clear that the SRT Subsemble procedure will produce superior prediction performance, as
compared to the random subset version of Subsemble.

We also note that using homogeneous subsets presents desirable behavior for more subsets
with fewer observations. With SRT Subsemble, as subsets become smaller, they also become
more homogeneous. As a result, data-adaptive prediction algorithms can still result in good
fits. In contrast, when using random subsets, aggressive data-adaptive algorithms often
sacrifice performance from over-fitting when subsets become too small. We also note that
using homogeneous subsets allow less data-adaptive prediction algorithms to achieve good
fits within each subset. In particular, we do not need to use aggressive algorithms within
each subset to get a good fit.
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3.4.2 Implementation Details

As mentioned above, we compared the performance of SRT Subsemble with the version of
Subsemble using randomly created subsets. In both methods, we estimated β coefficients to
minimize cross-validated risk, and used the same four underlying algorithms for the purposes
of this demonstration: linear regression, lasso, regression tree, and random forest. Additional
details about the methods compared are discussed below.

For SRT Subsemble, we used the following procedure to build the tree used in SRT
Subsemble. We used the R package rpart (Therneau, Atkinson, and Ripley 2012) to build
a full tree. In the rpart package, the splits and size of the tree built are controlled by
four parameters: minsplit (minimum number of observations needed for a node to split),
minbucket (minimum number of observations in any node), cp (complexity parameter), and
maxdepth (maximum depth of any node in the tree). Since we used V = 10-fold cross-
validation to select the optimal number of subsets, we set minbucket= 2V to ensure a
sufficient number of observations in each node to perform this cross-validation. For the
remaining parameters, we used rpart’s defaults: minsplit = 3×minbucket, cp = 0.01, and
maxdepth = 30.

We then selected the best number of subsets for the SRT Subsemble by building a Sub-
semble as in Equation 3.2 at each sub-tree outputted by rpart, starting at the root node
with only one subset, and selecting the Subsemble with the lowest estimated cross-validated
risk among the sequence of sub-trees outputted by rpart.

For the random subset Subsembles, we first built the same number of Subsembles as
those that we explored with the SRT Subsemble. That is, if the SRT Subsemble explored a
full tree with M nodes, we built random subset Subsembles with 1, . . . ,M nodes. We used
combined the subset-specific fits according the the following equation:

Φ̂(x) =
J∑

j=1

(
β0
j +

L∑

`=1

β`jΨ̂
`
j

)

To select the optimal number of subsets for the finally selected random subset version,
we simply selected the Subsemble with the lowest oracle risk; that is, the lowest true risk
on the test data. Note that this is not possible in practice, and is included here only
for illustration purposes. Observe that we are comparing the SRT Subsemble to the best
conceivable random subset version of Subsemble. In particular, this includes the version
with only a single subset: a combination of the underlying algorithms fit on the full available
data set (i.e., the SuperLearner method of van der Laan, Polley, and Hubbard 2007).

3.4.3 Description of Data Sets

In the studies that follow, we used four small to moderate sized data sets (Synthetic 1,
Synthetic 2, Yacht, Diamond) to evaluate the practical performance of Subsemble. All data
sets have one real-valued output variable, and no missing values.
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The first two data sets are simulated. We created this pair of synthetic data to demon-
strate one scenario in which the SRT Subsemble provides better performance (Synth 1), and
another scenario in which the random subset Subsemble yields better performance (Synth
2). The first synthetic data set exhibits significant greater local behavior than the second
synthetic data set. Both simulated data sets have 2 input variables X1, X2 ∼ N(0, 9), and
random error ε ∼ N(0, 1). The outcome variable for each simulated data set is generated as
follows:

Synth 1:

Y = ε+ sin(X1) + 2 log(|X1|) + 3
√
|X1|+ sin(0.5πX1)

Synth 2:

Y = 2 + ε+ sin(X1)

Note that in practical applications, we do not know the true data generating distribution
a priori. In particular, for data sets with many covariates, it becomes challenging even to
visualize the data, and thus impractical to determine ahead of time whether or not the data
exhibits significant local behavior. As a result, the two synthetic data sets presented here
merely serve for illustrative purposes, to provide the reader with some general intuition for
the performance of the SRT Subsemble method.

The second two data sets are publicly available real-world data, and are the same data sets
studied in the analysis of Chapter 2. These data sets illustrate actual data from applications
in which the SRT Subsemble method performs better than the random subset Subsemble.
The yacht data set, available from Bache and Lichman 2013, has 308 observations and 6
input variables. The diamond data set, described by Chu 2001, has 308 observations and 17
input variables.

3.4.4 Results

For the synthetic data sets, we simulated training and test sets of 1,000 observations, and
repeated the experiment 10 times. For the real data sets, we split the data sets into 10 folds,
and let each fold serve as the test set. Mean Squared Prediction Error (MSPE) results were
averaged across the 10 trials for both simulated and real data sets. We also performed a
t-test for the difference in means between the two methods. The average number of subsets
used in each method, as well as the maximum number of subsets (size of the full tree built)
are also included. Results are presented in Table 3.1.

From Table 3.1, we see that the SRT Subsemble method significantly performs better
than the oracle-selected random subset version on three of the four data sets: synthetic data
set 1, the yacht data, and the diamond data. In fact, for all data sets, the two methods are
significantly different at the 0.01 level.
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Table 3.1: MSPE comparison of SRT Subsemble versus an oracle-selected version of Subsemble
with random subsets. Underlying algorithms used were: linear regression, lasso, regression tree,
and random forest. The method with lowest MSPE for each each data set is in bold. The Sig /
Max column indicates the significance level of a t-test for the difference in means between the two
methods, and the maximum number of subsets considered.

Dataset SRT Random Oracle Sig / Max
Synth 1 MSPE 1.21 1.45 <0.01

# Subsets 6.3 2.5 7.5
Synth 2 MSPE 2.84 1.40 <0.01

# Subsets 7.4 1.4 9.8
Yacht MSPE 1.19 2.96 0.01

# Subsets 3.2 1.7 3.5
Diamond MSPE 1.30 e5 2.10 e5 <0.01

# Subsets 3.1 2.1 5.0

We emphasize that while the SRT Subsemble method is viable in practice, the comparison
oracle-selected random subset Subsemble is not, since it utilizes the test data to select the
number of subsets to minimize the MSPE on the test data. The fact that the SRT Subsemble
method achieves lower MPSE than this oracle-selected random subset version show clearly
that SRT Subsemble can often significantly outperform any random subset version, including
a single subset.

3.5 Summary

In this chapter, we introduced Supervised Subsembles and proposed the SRT Subsemble
method. Supervised Subsembles partition the covariate space to obtain subsets, and use a
modified form of histogram regression as the metalearner used to combine the subset-specific
fits. We described how Supervised Subsembles preserve computational independence of the
subsets throughout the entire algorithm. SRT Subsemble is a practical method to both con-
struct the covariate partitioning, and select the optimal number of subsets. We explained
the desirable computational properties of SRT Subsemble, as well as the flexibility it pro-
vides in implementation. Finally, we presented simulated and real data set results, which
demonstrated that the SRT Subsemble method can result in better prediction performance
than comparable random subset Subsembles.
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Chapter 4

The R Package subsemble

4.1 Introduction

To make the Subsemble method easily applicable and accessible to both practitioners
and the research community, we developed the R package subsemble. In this chapter, we
describe the subsemble package and functionality, discuss our algorithm implementation,
and demonstrate the package’s usage for prediction applications through an example data
set.

The remainder of this chapter is organized as follows. Implementation details are dis-
cussed in Section 4.2. We describe the features of the subsemble function in Section 4.2.1,
and the algorithm implementation in Section 4.2.2. We illustrate the application of sub-
semble for prediction with an example data set in Section 4.3. We summarize and conclude
in Section 4.4.

4.2 Package Description

The subsemble package leverages several functions from the SuperLearner package of
Polley and van der Laan 2012. In particular, we use the SuperLearner package’s easy to
use prediction algorithm wrappers and built-in data partitioning functions. The subsemble

function is also similar in syntax to the SuperLearner::SuperLearner function.
While numerous prediction algorithms are available in R, the default versions of these al-

gorithms follow different syntax conventions. Since subsemble takes as input user-specified
learner and metalearner algorithms, common syntax is important. Fortunately, the algo-
rithm API provided in the SuperLearner package provides this common syntax through a
variety of prediction algorithm wrappers.

The subsemble package utilizes the SuperLearner package’s data partitioning func-
tion, CVFolds. We use the SuperLearner::CVFolds function to assign training observation
indices to (optionally shuffled and stratified) V-fold cross-validation folds.
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When the user does not specify the exact subset assignments, the SuperLearner::CVFolds
function is also used to assign training observation indices to subsets, since it is a general-
purpose data partitioning function. The subset assignment process is determined by the
subControl argument of the subsemble function. Additional details are discussed in Sec-
tions 4.2.1 and 4.2.2.

4.2.1 The subsemble Function

The subsemble function implements the Subsemble algorithm. It is used to train a
subset-ensemble model and is the primary function of the package. In this section, we
describe the most interesting arguments of the subsemble function.

Underlying algorithm (learner)

The underlying prediction algorithm(s) trained on each of the subsets is specified by the
learner argument in subsemble. We currently use the SuperLearner algorithm API from
the SuperLearner package, which identifies the algorithms by wrapper function name (e.g.
"SL.glm") from the SuperLearner package. A complete list of available algorithms is avail-
able via the SuperLearner::listWrappers function. The currently available algorithms are
shown in Table 4.1.

Table 4.1: Learning algorithms for the subsemble function supported by default via the Super-
Learner package.

Function Name Package Tuning Parameters Description
1 SL.bart BayesTree ntree Bayesian Regression Tree

sigdf

sigquant

k

power

base

binaryOffset

ndpost

nskip

2 SL.bayesglm arm - Bayesian GLM
3 SL.caret caret method Interface to the caret package

tuneLength

trControl

metric

4 SL.caret.rpart caret tuneLength caret Regression Tree
trControl

metric

5 SL.cforest party - Conditional Tree Forest
6 SL.earth earth degree Adaptive Regression Splines

penalty

nk
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7 SL.gam gam deg.gam Generalized Additive Model
cts.num

8 SL.gbm gbm gbm.trees Gradient Boosting
interaction.depth

9 SL.glm stats - Generalized Linear Model
10 SL.glm.interaction stats - GLM with Interaction Terms
11 SL.glmnet glmnet alpha Elastic Net

nfolds

nlambda

useMin

12 SL.ipredbagg ipred nbagg Bagging Trees
control

13 SL.knn class k K-Nearest Neighbors
14 SL.leekasso sva - Leekasso
15 SL.loess stats span Local Polynomial

l.family Spline Regression
16 SL.logreg LogicReg ntrees Logic Regression

nleaves

kfold

17 SL.mean stats - Weighted Mean
18 SL.nnet nnet size Neural Network
19 SL.polymars polspline - Adaptive Polynomial
20 SL.randomForest randomForest ntree Random Forest

mtry

nodesizes

21 SL.ridge MASS lambda Ridge Regression
22 SL.rpart rpart cp Regression Tree

minsplit

xval

maxdepth

minbucket

23 SL.rpartPrune rpart cp Pruned Regression Tree
minsplit

xval

maxdepth

minbucket

24 SL.step stats direction Stepwise Regression
trace

k

25 SL.step.forward stats trace Forward Stepwise Regression
k

26 SL.step.interaction stats direction Forward Stepwise Regression
trace with Interaction Terms
k

27 SL.stepAIC MASS direction Stepwise Regression
steps

k

28 SL.svm e1071 type.reg Support Vector Machine
type.class

nu
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Combination Algorithm (metalearner)

The prediction algorithm used to learn the optimal combination of the subset-specific
fits is specified by the metalearner argument. The metalearner argument uses the same
list of function wrapper names as the learner argument. Unlike the learner argument, the
metalearner argument must specify exactly one algorithm.

Subset Description or Creation (subsets)

The subsets argument supports three ways to specify the assignment of training obser-
vations to subsets. The user may provide a vector assigning each training observation to a
subset. Alternatively, the user may provide a list of vectors, with each vector identifying the
observations belonging to the same subset. Finally, the user may simply specify the number
of subsets into which the training data should be partitioned. In this final case, subsemble
will handle creation of the subsets, while the user can still control how these subsets are
created by using the subControl argument.

Subset Process Parameters (subControl)

If the user specifies subsets as a number, the creation of subsets is controlled by the list
of two logical parameters (stratifyCV and shuffle) specified in the subControl argument.
The user may specify whether the training observations should be stratified by a binary
response, and assigned to subsets to preserve the same response ratio across subsets, via the
stratifyCV parameter. The user may specify whether the training observations should be
shuffled before assignment to subsets through the shuffle parameter. The last element of
the subControl list is subControl[["supervised"]] which, in the future, will support the
supervised learning of subsets. Currently this is set to NULL.

Cross-Validation Process Parameters (cvControl)

The cross-validation process can be controlled through the list of three parameters (V,
stratifyCV, and shuffle), specified in the cvControl argument. The number of cross-
validation folds is specified by the V parameter. The stratifyCV and shuffle parameters
are the same as in the subControl list and also both default to TRUE.

Learning Process Parameters (learnControl)

Currently, the only parameter controlled by the learnControl list is multiType, which
is only used if there is more than one learner specified by the learner argument. The
two supported values for multiType are "crossprod" (the default) and "divisor". The
"crossprod" type will train all of the learners on each of the subsets. For the "divisor"
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type, one learner will be trained on each subset, and thus the length of the learners vector
must be a divisor of the number of subsets. If length(learner) equals the number of
subsets, each learner will be applied to a single subset. If length(learner) is a divisor of
the number of subsets, then the learners will be repeated as necessary (to equal the number
of subsets).

Parallelization (parallel)

The parallel argument is specified by a character string and defaults to "seq" for
sequential computation. Using the "multicore" option will parallelize several pieces of code
using the built-in parallel library. In particular, the internal cross-validation step, as well
as the final model fitting of individual sub-models (underlying algorithms trained on the
subsets of the training data), will be performed in parallel. This is discussed in greater
detail in Section 4.2.2

4.2.2 Algorithm Implementation

The Subsemble algorithm implementation can be broken up into four main phases. The
first task is to partition (the row indices of) the training data into J subsets and assign
the indices to cross-validation folds. The next three phases are: internal cross-validation,
metalearning, and the final model fitting phase.

Data Partitioning Step

If the subsets are not explicitly defined by the user via the subsets argument, they
will be created as specified by the subControl argument. Currently, the package supports
partitioning the indices at random (with optional stratification by a binary outcome, when
applicable) using the SuperLearner::CVFolds function, but in the future we hope to include
additional functionality for learning subsets.

After the indices have been partitioned into subsets, we further partition each subset
into V cross-validation folds as specified by the cvControl argument. This list of lists,
subCVsets, is returned as part of the subsemble function output.

Cross-Validation Step

The cross-validation step involves generating cross-validated predictions for the learning
algorithm on each of the subsets. When there are multiple learners defined by the learner

argument, the “cross-product” multi-learning type involves training all of the L unique
learners on each of the J subsets, for a total of L × J distinct models that make up the
ensemble. As mentioned previously, this is the default behavior for subsemble and can be
modified using the learnControl parameter. The “divisor” multi-learning method will train
one learner on each of the J subsets, repeating unique learners across subsets (assuming that
L is a divisor of J), for a total of J unique models.
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The V iterations of the cross-validation step can be performed in parallel using the
parallel option. During the vth iteration, for each subset, j, we fit a model, Ψ̂

(l)
j,−v, where

l ∈ {1, ..., L} indexes the specific learner. The training indices will be those that are in
subset j, but not in fold v of subset j. Then we generate predictions on the test set that is
defined by the indices from fold v of all subsets.

In the case of cross-product multi-learning, we repeat this process across V folds, J
subsets, and L learners. By stacking the cross-validation predictions back together, we
construct the matrix Z, of dimension n × (J × L), where n is the number of observations
in the original training set. Define M := J × L. Then each of the M columns of the Z
matrix correspond to each of the unique subset-specific learner models that make up the
final ensemble model.

For a single learner algorithm or divisor multi-learning, we repeat this process across V
folds and J subsets, while using either the same (in the case of a single underlying learner)
or different (in the case of divisor multi-learning) underlying learner. In this case, our Z
matrix has dimension n× J .

The Z matrix is required for the next step, metalearning.

Metalearning Step

As described previously, the metalearning algorithm is specified using the metalearner

argument. The metalearning step simply fits the metalearner algorithm Φ̂, using the matrix
Z of cross-validated predictions as the training data, and the original outcome vector Y. The
resulting metalearner fit is the function which combines the output from the M individual
models, which are fit in the next step. This fit is saved as part of the function output in an
object called metafit.

Final Model-Fitting Step

The last step involves training M models, where M = J ×L in the case of cross-product
multi-learning and M = J in the case of divisor multi-learning. The final models can be fit
in parallel using the parallel argument. These objects are saved in a list called subfits

and returned as part of the output of the subsemble function.
The final Subsemble model takes the predicted values generated from the individual

underlying models and combines them together into a single predicted value using the met-
alearner fit. The test set predictions are stored in a vector called pred and returned as part
of the output of the subsemble function. For reference, the predicted values from each of the
individual M models are also saved in a data.frame called subpred. Like many other machine
learning packages in R, we also provide a predict.subsemble function that takes as input
a subsemble fit object along with a test set, and generates predictions for the observations
in the test set.
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4.3 Examples

4.3.1 Set Up the Subsemble

We first present a simple example showing how to use the subsemble function with
a single underlying learning algorithm and mostly default arguments. In this example,
our underlying algorithm is random forest, our metalearner is lasso, and our Subsemble is
composed of 3 subsets. We begin by specifying these arguments:

learner <- c("SL.randomForest")

metalearner <- c("SL.glmnet")

subsets <- 3

4.3.2 Training

With the important arguments specified above, we now train our Subsemble. In this
example, we use training data X with binary outcome vector Y. Using mostly default argument
values, we train our Subsemble as follows:

fit <- subsemble(Y=Y, X=X, newX=newX, family=binomial(),

learner = learner, metalearner = metalearner,

subsets = subsets)

4.3.3 Testing

Since we specified a test data set newX during the above training phase, the subsemble

function returns predicted values for that test set via the pred value. We can use these
predictions on the test data (fit$pred), combined with the true binary outcome vector
of the test data (newY), to evaluate the Subsemble model performance using AUC. In this
example, the test set AUC is 0.925.

auc <- cvAUC(predictions=fit$pred, labels=newY)$cvAUC

print(auc)

Alternatively, we can also use subsemble’s predict function to generate predictions on
a test set after creating the Subsemble fit object. The format is similar to most machine
learning algorithm interfaces in R, as shown in the following example:

pred <- predict(fit, newdata=newX)

auc <- cvAUC(predictions=pred$pred, labels=newY)$cvAUC
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4.3.4 Binary Outcome Data Example

We next present a binary outcome example using a simulated example data set from the
cvAUC package of LeDell, Petersen, and van der Laan 2013. The data set represents ad-
missions information for a graduate program in the sciences. The binary outcome represents
1 for “admitted” and 0 for “not admitted.” There are three continuous predictors and two
binary predictors for a total of 5 feature columns.

library(cvAUC)

data(admissions)

We first created an example training data set using the first 400 observations, and an
example test data set using the final 100 observations:

X <- subset(admissions, select=-c(Y))[1:400,]

newX <- subset(admissions, select=-c(Y))[401:500,]

Y <- admissions$Y[1:400]

newY <- admissions$Y[401:500]

For this demonstration, we use two underlying learners (random forest and GLM) to illus-
trate the two currently implemented types of learning with multiple underlying algorithms.
We begin by setting up the Subsemble.

learner <- c("SL.randomForest", "SL.glm")

metalearner <- c("SL.glm")

subsets <- 2

Cross-Product Multi-Learning

In this example, the use the two underlying algorithms specified above, with the re-
maining arguments allowed to use their default values (including learnControl). With
learnControl[["multiType"]] set to "crossprod" (the default), we ensemble four models
together – a random forest on both of the two subsets, and a GLM on both of the two
subsets.

fit <- subsemble(Y=Y, X=X, newX=newX, family=binomial(),

learner = learner, metalearner = metalearner,

subsets = subsets)

We then evaluate the Subsemble model performance on a test set. In this example, the
test set AUC is 0.937.

auc <- cvAUC(predictions=fit$pred, labels=newY)$cvAUC

print(auc)
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Divisor Multi-Learning

In the next Subsemble example, we modify the parameters to train a different type of
Subsemble model. For this example, we set learnControl[["multiType"]] to "divisor",
which means we will ensemble a total of two models instead of four. In this example, a
random forest is trained on the first subset, and a GLM is trained on the second subset.
When using multiple learners, the “divisor” type of multi-learning will always be faster than
cross-product multi-learning, so it can be used to get quick results.

We begin by training the Subsemble:

fit <- subsemble(Y=Y, X=X, newX=newX, family=binomial(),

learner = learner, metalearner = metalearner,

subsets = subsets,

learnControl = list(multiType="divisor"))

We then evaluate performance on a test set. In this example, the test set AUC is 0.922.

auc <- cvAUC(predictions=fit$pred, labels=newY)$cvAUC

print(auc)

4.4 Summary

The R package subsemble implements the general Subsemble prediction algorithm for
creating an ensemble of subset-specific algorithm fits. In this chapter, we described the func-
tionality of the subsemble function of the package, detailed our algorithm implementation
and discussed its operations, and demonstrated the usage of subsemble through an example
data set.
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Chapter 5

Discussion

In this work, we introduced the flexible subset ensemble prediction method Subsemble.
Subsemble partitions a full data set into subsets of observations, fits one or more underlying
algorithm on each subset, and combines the subset-specific fits through a second metalearner
algorithm using a clever form of V -fold cross-validation. We provided a theoretical perfor-
mance guarantee showing that Subsemble performs as well as the best possible combination
of the subset-specific fits, and illustrated the desirable practical performance of Subsem-
bles composed of randomly created subsets. We next proposed creating the subsets used in
Subsemble through supervised partitioning of the covariate space. We described the com-
putational advantages of this Supervised Subsemble approach, developed the practical SRT
Subsemble algorithm to both construct the covariate partitioning and learn the optimal
number of subsets, and demonstrated that the SRT Subsemble performs well in practice.
Finally, we developed the R package subsemble, described the package and our algorithm
implementation, and demonstrated the application of the package for prediction with an
example data set.

There are many promising directions for future research with the Subsemble method.
Study applying Subsemble, and specifically SRT Subsemble, to large-scale data sets would be
a valuable area for future work. In particular, future research should explore more practical
suggestions and concrete recommendations for implementing and using SRT Subsemble in
practice on large-scale data sets. For example, with big data, it is probably impractical to
build a very large tree. While we give some ideas in this work regarding stopping criteria,
additional work should be done to determine improved stopping criteria. Determining the
starting node is another interesting area for future work. That is, for very large data sets,
starting at the root node is likely not feasible. As a result, future study should examine
criteria for selecting this starting point.

Modifying the CART algorithm used in SRT Subsemble is another interesting area for
future work. Rather than simply using the default CART algorithm to build a tree, and
then exploring the Subsembles associated with the resulting sub-trees, future work should
consider instead directly incorporating Subsembles into the CART procedure. For example,
future work could consider using a different metric to determine the best covariate split, such
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as the associated Subsemble’s cross-validated risk.
Characterizing when the SRT Subsemble method performs better and/or worse than

Subsembles with randomly created subsets should also be the subject of future study. In
this work, we provided preliminary intuition comparing the performance of these methods.
However, thorough simulation studies should be conducted to provide further insight into the
differences between the two methods for varying data generating distributions, underlying
learner algorithms, and metalearner algorithms.

Developing other methods for creating the subsets used in Subsemble is another topic for
future research. While the random subsets and SRT Subsemble methods presented in this
work demonstrate desirable practical performance, there are certainly plenty of opportunities
to explore alternative approaches. Comparing the relative statistical performance, run time,
and computational properties of the varying subset creation techniques would also be of
interest.

Finally, the subsemble R package should continue development, incorporating new re-
search advances. For example, future work should implement the SRT Subsemble method
within the subsemble package.
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