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Learning stochastic dynamics and predicting
emergent behavior using transformers

Corneel Casert1,2 , Isaac Tamblyn3,4,5 & Stephen Whitelam 1

We show that a neural network originally designed for language processing
can learn the dynamical rules of a stochastic system by observation of a single
dynamical trajectory of the system, and can accurately predict its emergent
behavior under conditions not observed during training. We consider a lattice
model of active matter undergoing continuous-time Monte Carlo dynamics,
simulated at a density at which its steady state comprises small, dispersed
clusters. We train a neural network called a transformer on a single trajectory
of the model. The transformer, which we show has the capacity to represent
dynamical rules that are numerous and nonlocal, learns that the dynamics of
this model consists of a small number of processes. Forward-propagated tra-
jectories of the trained transformer, at densities not encountered during
training, exhibit motility-induced phase separation and so predict the exis-
tence of a nonequilibriumphase transition. Transformers have theflexibility to
learn dynamical rules from observation without explicit enumeration of rates
or coarse-graining of configuration space, and so the procedure used here can
be applied to a wide range of physical systems, including those with large and
complex dynamical generators.

Learning the dynamics governing a simulation or experiment is a
difficult task, because the number of possible dynamical transi-
tions increases exponentially with the physical size of the system.
For large systems, these transitions are too numerous be enum-
erated explicitly, and what is usually done is to coarse-grain or
project a system’s dynamical degrees of freedom into a subspace
small enough to be learned explicitly1–8. Here we present a
dynamics-learning method that does not require projection or
coarse-graining, even for large systems. We show that a recently-
introduced neural network called a transformer9, popular in the
fields of natural-language processing and computer vision10–14,
can express a general dynamics without the need for coarse-
graining over the model’s degrees of freedom or choosing a sub-
space of dynamical processes to learn. It can be trained offline,
i.e., by observation only15, to learn the dynamical rules of a model,
even when those rules are numerous and nonlocal. Forward-
propagated trajectories of the trained transformer can then be

used to reproduce the behavior of the observed model, and to
predict its behavior when applied to conditions not seen during
training.

Previous work has shown that it is possible to learn the rules of
deterministic dynamics, such as deterministic cellular automata16–18, or
of stochastic dynamics for small state spaces, using maximum-
likelihood estimation on the rates of the generator19,20. Similar meth-
ods have been used to learn the form of intermolecular potentials that
influence the dynamical trajectories of particle systems21–25. Machine
learning and symbolic regression have been used to rediscover New-
ton’s formula for the gravitational force from trajectories of the solar
system26. The accurate prediction of fluid dynamics and turbulent
flows has been achieved with physics-informed neural networks27–29.
Several approaches exist in which high-dimensional dynamical sys-
tems are approximated by lower-dimensional ones, such as Markov-
state models1–3. In some cases the coarse-graining procedures used to
produce such models involve variational methods4 and neural
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networks5. Coarse-graining methods have also been used to learn
molecular dynamics8, and to obtain deterministic hydrodynamic
equations from stochastic trajectories of active matter, allowing for
the extraction of hydrodynamic transport coefficients6,7. Our work
complements these approaches by showing that it is possible to learn
the dynamical rules of stochastic systems without explicit enumera-
tion of rates or coarse-graining of configuration space, thereby
allowing treatment of large and complex systems. From the observa-
tion of a single dynamical trajectory a transformer can identify how
many classes ofmove exist andwhat are their rates, providing physical
insight into the dynamics and allowing it to be simulated in new set-
tings, where new phenomena can be discovered.

We focus on the case of a lattice model of active matter, simulated
using continuous-time Monte Carlo dynamics30 (in the Supplemental
Information (SI) we show that the transformer can be used to treat a
second class ofmodel, one realization of which has nonlocal dynamical
rules.). We allow the transformer to know that the rates for this
dynamics are independent of time, and that possible moves consist of
single particles rotating in place or translating one lattice site at a time
(both restrictions can be relaxed within our framework). However, we
do not allow the transformer to know the rates for each move, and,
because each rate could in principle depend on the state of the entire

system, explicit enumeration of rates would require a generator with
many more than 10100 entries for the system size considered. From
observation of a single trajectory of the model, carried out at a density
at which its steady state comprises small, dispersed clusters, the
transformer learns that particle moves fall into a small number of
classes, and accurately determines the associated rates. Forward-
propagated trajectories of the trained transformer at the training den-
sity reproduce the model’s behavior. Moreover, forward-propagated
trajectories of the transformer carried out at densities higher than that
used in training exhibit motility-induced phase separation (MIPS)31–35.
The details of this phase separationmatch those seen using the original
model, although that information was not available to the transformer
during training. The trained transformer is therefore able to accurately
extrapolate a learned dynamics to predict the existence and details of
an emergent phenomenon that it had not previously observed. Given
that the transformer is expressive enough to represent a nonlocal
dynamics, these results indicate the potential of such devices to learn
dynamical rules and study emergent phenomena from observations of
dynamical trajectories in a wide variety of settings.

Imagine that we are given a dynamical trajectoryω of total time T.
The trajectory starts in configuration (microstate) C0, and visits K
additional configurations Ck (Fig. 1a). In configuration Ck it is resident

Fig. 1 | Schematic of our dynamics-learning procedure. aWe are providedwith a
trajectory ω, a time series of configurations, and wish to learn the dynamics that
created it. For the lattice-based active-matter model studied here, red or blue
indicates a particles whose orientation vector points toward an occupied or empty
site, respectively. b We parameterize a general dynamics using a neural network
called a transformer. Rates connecting configurations depend on the weights of
the transformer, which are adjusted during training in order to maximize the log-
likelihood with which it would have generated ω. c The transformer receives the

position and orientation of all particles, and must calculate the transition rates to
translate or rotate each particle. To do so, it must learn which interactions affect
these rates (line thickness denotes attention given to each particle), and their
numerical values. d Once trained, the neural-network dynamics can be forward-
propagated to generate new trajectories, evenunder conditions not observed inω.
The transformer calculates the rates for all possible transitions Ck ! fC0kg, repre-
sented by the blue blobs, at each step.
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for time ΔtCk
. Schematically,

ω= C0 �!
ΔtC0 C1 �!

ΔtC1 � � � CK�1 �!
ΔtCK�1 CK �!ΔtK CK ,

where ΔtK � T �PK�1
k =0 ΔtCk . We are told that ω was generated by a

dynamics whose ratesW ?
C!C0 for passing between configurations C and

C0 we do not know. We will call this unknown dynamics the original
dynamics. Here we show it is possible to efficiently learn the original
dynamics offline, i.e., solely by observation of ω. We start by con-
structing a synthetic dynamics, which consists of a set of allowed
configuration changes fC ! C0g (whichmust include those observed in
ω) and associated ratesW ðθÞ

C!C0 . Without prior knowledge of the system
we should allow the rates for these moves to depend, in principle, on
the entire configuration of the system. The number of possible rates
grows exponentially with system size, and so treating a system of
appreciable size requires the use of an expressive parameterization of
the synthetic dynamics. Here we parameterize the rates W ðθÞ

C!C0 of the
synthetic dynamics using the weights θ of a neural network.

One way to learn the original dynamics is to propagate the syn-
thetic dynamics and alter its parameters θ until the dynamical trajec-
tories it generates resemble ω. One drawback of this approach is that
original and synthetic dynamics are stochastic, and so comparison of
trajectories can be made only in a statistical sense, potentially requir-
ing the generation of many synthetic trajectories at each stage of
training. In addition, a comparison of this nature would require the
introduction of additional order parameters, different combinations
of whichmay result in different outcomes of training. Instead, we train
the synthetic dynamics by maximizing the log-likelihood UðθÞ

ω with
which it would have generated ω19. We consider continuous-time
Monte Carlo dynamics, in which case

UðθÞ
ω =

XK�1

k =0

lnW ðθÞ
Ck!Ck + 1 � ΔtCk R

ðθÞ
Ck

� �
� ΔtKR

ðθÞ
CK ; ð1Þ

see Methods. Training proceeds by adjusting the parameters θ of the
neural network until UðθÞ

ω no longer increases; see Fig. 1(b). For a suf-
ficiently long trajectory ω, the dynamics that maximizes UðθÞ

ω is the
original dynamics,W ?

C!C0 . The synthetic dynamics obtained in this way
—the learned dynamics—is then the best approximation to the original
dynamics that our choice of allowed configuration changes and
method of training allows. We focus here on the case of continuous-
timeMonte Carlo dynamics and lattice configurations, but themethod
can be straightforwardly adapted to other scenarios. Working with
another classof dynamics (e.g., Langevin dynamics) requires defining a
replacement for the trajectory log-likelihood Eq. (1). Working with off-
lattice configurations requires an appropriate parameterization of the
possiblemicroscopicmoves, but the transformer itself is not restricted
to taking lattice-based configurations as inputs.

Results and discussion
The original dynamics we consider is a lattice model of active matter
simulated using continuous-time Monte Carlo30 (we also consider a
lattice model of a supercooled liquid in the SI, see Supplementary
Figs. S1–S5). It consists of a two-dimensional periodic square lattice of
size L2, occupied by n volume-excluding particles. Each particle
α∈ {1,…, n} possesses a unit orientation vector eα that points toward
one of the four neighboring sites. The orientation vector of each par-
ticle rotates π/2 clockwise or counter-clockwise with rate D. A particle
moves to a vacant adjacent lattice site with rate v+ if it points toward
that lattice site, and with rate v0 otherwise. The steady state of this
model depends on the particle density ϕ = n/L2. At small values of ϕ,
typical configurations consist of small clusters of particles. Upon
increasing ϕ, for sufficiently large v+, the system undergoes the
nonequilibrium phase transition called MIPS. We shall show that the

existence of this phase transition can be deduced by observation of a
single trajectory obtained at a value of ϕ at which MIPS is not present.

We introduce a general synthetic dynamics using a neural-
network architecture called a transformer9. We allow the transformer
to know only that the dynamics is time-independent and consists of
single-particle translations and rotations, though these restrictions can
be lifted within this framework. In microstate C, the transformer
represents the transition rates W ðθÞ

C!C0 to each of the microstates C0
connected to C through translation or rotation of a single particle
(Fig. 1c). The transformer learns which particle interactions are rele-
vant to each of these moves, and what their rates are. To train the
transformer we perform gradient descent on its weights using back-
propagation in order to maximize the log-likelihood UðθÞ

ω , Eq. (1), with
which it would have generated ω. This trajectory is of length
T = 5 × 103, using a 30 × 30 lattice, with parameters
ϕ=0:124, v+ = 10, v0 = 1, and D =0.1. MIPS is not present at these
parameter values; see Fig. 3.

During training we operate the transformer in one of two modes.
In Mode 1, the transformer freely predicts lnW ðθÞ

C!C0 for each possible
transition. InMode 2, the transformer assigns each transition to one of
an integer numberNðθÞ

W of classes, and a second neural network assigns
a value lnW ðθÞ

C!C0 to each class. NðθÞ
W is a hyperparameter that constrains

the complexity of the learned dynamics, and provides ameasure of the
number of distinct classes of move (or processes) present in the ori-
ginal dynamics: the maximum value of UðθÞ

ω obtained under training
increases with NðθÞ

W up to a value N?
W . The value N?

W provides insight
into the structure of the generator of the original dynamics, signaling,
for instance, the presence of translational invariance. In Methods,
additional details of the architectures of both types of neural-network
dynamics and their optimization are provided. We have used lattice
models in this paper, but the transformer architecture can be directly
applied to off-lattice models in any dimension.

In Fig. 2a we show the results of training inMode 1. The trajectory
log-likelihoodUðθÞ

ω increases with the number of observations (epochs)
of the trajectory ω, and converges to the value U?

ω that is obtained
using the original dynamics. This value, not available to the transfor-
mer during training, indicates that the learned transition ratesW (θ) are
numerically very close to those of the original dynamics,W ⋆. In Fig. 2b
we show the results of training in Mode 2, for several values of NðθÞ

W .
These results show that N?

W =4, indicating that the transformer has
correctly learned the degree of complexity of the original model,
whose dynamical rules are translationally invariant and consist of 4
distinct rates. The inset to Fig. 2b shows the evolution with training
time of the values of the 4 rates, compared with their values in the
original model.

During training we did not assume that the dynamical rules are
local, nor that some processes (those that violate volume exclusion)
are suppressed. The transformer was able to learn both things. If we
know that interactions are of finite range then such knowledge can be
used to reduce the number of transformer parameters required to
learn dynamics (see the SI). Transformers can also learn long-ranged
interactions if they are present, which we illustrate in Supplementary
Figs. S6 and S7 in the SI. We also note that learned rates for forbidden
processes (inset Fig. 2b) are small and decrease with training time, but
are not exactly zero: the result is that in forward-propagated trajec-
tories a small fraction of particles can experience overlaps. If volume
exclusion is suspected then it can be imposed directly. In addition,
withMonte Carlomethods it is possible to determine that the rate of a
forbidden process is exactly zero, even given a finite-length training
trajectory; see Table S1 in the SI.

In Fig. 3 we show that trajectories generated by the trained
transformer can be used to determine the existence of a none-
quilibrium phase transition not seen during training. We randomly
initialize a configuration at a chosen density ϕ and propagate the
transformer dynamics forfixed timeT (see Fig. 1d andMethods). At the
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training density ϕ=0:124, the model’s steady state consists of small
clusters, but trajectories generated by the transformer at larger values
ofϕ showMIPS: the transformer has therefore predicted this emergent
phenomenon.

In Fig. 4 we quantify the details of this phase separation. We
measure the fraction of particles with four neighboring occupied sites
f4, and the varianceof thatquantity, aswell as thenumber of clustersnc
and the average cluster size sc. The time averages of these observables
are shown as a function of ϕ for trajectories obtained with the trans-
former, both in Mode 1 and Mode 2. For comparison, we show the
same quantities from trajectories generated using the original
dynamics. The agreement between original and learned dynamics is
good, and slightly better using Mode 2, indicating that the transfor-
mer, trained under conditions for which no phase separation is
observed (see the vertical line in the figure), has predicted the exis-
tence and details of a non-equilibrium phase transition (we have ver-
ified that we can similarly learn the dynamics at high density and
accurately predict the behavior at low density).

We have shown that the stochastic dynamics of a many-body
system can be efficiently determined using machine-learning tools
developed for language processing. A neural network called a trans-
former can function as an expressive ansatz for the generator of a
many-body dynamics, for systems large enough that its possible rates
are too numerous to represent explicitly. For instance, for the lattice
model of active matter considered here, a 30 × 30 lattice at density

ϕ =0.1 admits
900
90

� �
∼ 10125 arrangements of particles. Each particle

takes 1 of 4 rotational states, can move in 4 directions and undergo 2

types of rotation, meaning that there are in principle ∼ 10180 possible
rates. Trained on this model, the transformer learns its dynamics,
correctly identifying its local and translationally-invariant nature, and
the numerical values of the associated rates. Forward-propagated
trajectories of the transformer, carriedout at higher densities than that
observed during training, show MIPS. The details of this none-
quilibrium phase transition predicted by the transformer agree with
those of the original model. Our work shows that it is possible to learn
the dynamical rules of stochastic systems without explicit enumera-
tion of rates or coarse-graining of configuration space, complementing
existing papers on learning dynamics and pointing the way to the
treatment of large and complex systems.

Methods
Derivation of the path weight of a continuous-timeMonte Carlo
dynamics
Consider a dynamical trajectory ω of total time T, which starts in con-
figuration C0 and visits K additional configurations Ck . Schematically,

ω= C0 �!
ΔtC0 C1 �!

ΔtC1 � � � CK�1 �!
ΔtCK�1 CK �!ΔtK CK ,

where ΔtCk
is the time spent in configuration Ck and ΔtK �

T�PK�1
k =0 ΔtCk .

The trajectoryωwas generated by a continuous-timeMonte Carlo
dynamics (the original dynamics), whose rates whose rates W ?

C!C0 for
passing between configurations C and C0 areunknown. In order to learn
the original dynamics, we introduce a new continuous-time Monte
Carlo model called the synthetic dynamics. The synthetic dynamics
consists of a set of allowed configuration changes fC ! C0g (which
must include those observed in ω) and associated rates W ðθÞ

C!C0 . Rates
are parameterized by a vector θ = {θ1,…, θN} ofN numbers (in themain
text these numbers corresponds to the weights of the transformer).
We train the synthetic dynamics by maximizing the log-likelihood UðθÞ

ω

with which it would have generated ω. To calculate UðθÞ
ω we start by

considering the portion

Ck �!
ΔtCk Ck + 1 ð2Þ

Fig. 3 | Trajectories of the lattice active-matter model generated using the
dynamics learned by the transformer. The top row shows time-ordered snap-
shots of a trajectory generated at density ϕ=0:124, the value used during training.
The twomiddle rows use densitiesϕ =0.3 andϕ =0.5; here,motility-induced phase
separation can be seen. For comparison, the bottom row shows a trajectory gen-
erated with the original dynamics at ϕ =0.5.

Fig. 2 | Learning the dynamics of the lattice active-mattermodel. a Training of a
transformer in Mode 1 (unrestricted rates) to maximize the log-likelihood UðθÞ

ω , Eq.
(1), of the training trajectory ω. The horizontal black line denotes the value of the
path weight associated with the original model. b Dependence of UðθÞ

ω for a trans-
former trained in Mode 2, in which it is asked to identify NðθÞ

W distinct classes of
move. This procedure allows us to identify the existence of N?

W =4 distinct rates.
Inset: Evolution of the rates during training in Mode 2, with NðθÞ

W =4. The horizontal
black lines denote the values of the rates in the original dynamics.
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of ω, which involves a transition Ck ! Ck + 1 and a residence time ΔtCk .
The probability with which the synthetic dynamics would have gen-
erated the transition Ck ! Ck + 1 is

W ðθÞ
Ck!Ck + 1=R

ðθÞ
Ck , ð3Þ

where RðθÞ
Ck �PC0W

ðθÞ
Ck!C0 , the sum running over all transitions allowed

from Ck . The probability density with which the synthetic dynamics
would have chosen the associated residence time ΔtCk is

RðθÞ
Ck e

�ΔtCk R
ðθÞ
Ck ð4Þ

The product of transition- and residence-time factors is

W ðθÞ
Ck!Ck + 1e

�ΔtCR
ðθÞ
Ck � pCk : ð5Þ

Noting that the probability of the final portion of the trajectory,
CK �!ΔtK CK , is

1�
Z ΔtK

0
dτ RðθÞ

Ck e
�RðθÞ

Ck
τ
= e�ΔtKR

ðθÞ
CK � pK , ð6Þ

the log-likelihood with which the synthetic dynamics would have
generated ω is

UðθÞ
ω = ln pK

YK�1

k =0

pCk

 !

=
XK�1

k =0

lnW ðθÞ
Ck!Ck + 1 � ΔtCk R

ðθÞ
Ck

� �
� ΔtKR

ðθÞ
CK :

ð7Þ

The sum in (7) is taken over the trajectoryω, i.e., over all configuration
changes and corresponding residence times (we note that working

with the probability RðθÞ
Ck e

�ΔtCk R
ðθÞ
Ck ΔtCk for the residence time gives rise

to an additional term
PK�1

k =0 ΔtCk in (7) that does not depend on the

choice of synthetic dynamics and may be omitted without con-
sequence). To train the synthetic dynamics we adjust its parameters θ
until (7) no longer increases.

Neural-network architecture and training
The neural network used to treat the active-matter model described in
the main text (and the models described in the SI) is a transformer9,
originally developed for language processing. We have opted for this
architecture for two main reasons: (1) a transformer does not intro-
duce a bias toward interaction ranges when learning the dynamics

most likely to have generated the observed trajectory, and (2) a
transformer can efficiently learn symmetries and locality in the inter-
action rules. This ability stands in contrast to other neural-network
architectures such as fully-connected neural networks or convolu-
tional neural networks. A convolutional neural network, for instance, is
parameterized using small kernels which slide along the input con-
figuration. This means that in order to capture long-range interactions
in the data, we need to apply many convolutional layers successively,
and the choice of neural-network depth introduces a bias on the range
of interactions we want to learn. Likewise, the weight sharing of the
kernels in the convolutional layer introduces a bias toward transla-
tional invariance of the interaction rules. A fully-connected neural
network does consider interactions between all elements of the sys-
tem, but because it lacks meaningful positional information it can not
efficiently learn whether interactions are local, or whether there are
symmetries present in the data.

A transformer possesses an attention mechanism—explained
below—that allows it to learn which parts of a configuration are rele-
vant for a particular process. This generality ensures that it is not
biased toward learning local interactions, as is the case for e.g., con-
volutional neural networks, but can efficiently learn locality if needed.

The first step in calculating the transition rates is a learned
representation of the current state of the system. We first embed
particle positions and orientations as dh-dimensional vectors using
trainable weight matrices; dh is a hyperparameter controlling the
expressivity of our neural-network model. For the positional embed-
ding of the active matter model, we map the x- and y-coordinate of
each particle to a vector of size dh/2 using a weight matrix, and then
concatenate these representations. For computational efficiency, we
do not use the empty sites. Instead, the transformer must learn which
neighboring sites are occupied for eachparticle through the positional
embedding. We do not impose the boundary conditions of our lattice
models; the transformer has to learn these through its positional
embedding.

We then sum the representations of the position and spin for each
particle, which serve as the input to the first layer of the transformer.
Next, we calculate the attention matrix for the configuration using
scaled dot-product attention9. This means that we construct a query,
key, and value vector for each input particle through a linear trans-
formation. We match the query vector of each particle against all the
keys through a dot product, resulting in an attention score for all
combinations of keys with the query. These scores are then normal-
ized, and the output of the attention layer is obtained through a sumof
the value vectors of every particle, each weighted by the attention
score. As a result, we obtain a dh-dimensional vector for each particle,
containing a weighted sum of features of all other particles (the
weighting being a measure of the attention paid to each particle). This

Fig. 4 | Quantitative comparison of the learned and original dynamics at dif-
ferent densities. a Time-averaged fraction of particles with four neighboring
occupied sites, f4, as a function of densityϕ, averagedover 10 trajectories of length
104, generated using a transformer trained in Mode 1 (crosses) and Mode 2

(plusses). Training was done only at ϕ=0:124 (vertical dashed line). Squares
denote results obtained using the original dynamics. The remaining panels have
the same format and show (b) the variance of f4, (c) the number of clusters nc, and
(d) the averaged cluster size sc. Angle brackets denote time averages.
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mechanism can be applied in parallel, where multiple key, query, and
value combinations (“heads”) are produced at each stage, allowing to
attend to different properties of the input sentence simultaneously.

These vectors are then processed using fully-connected neural
networks, where we apply the same fully-connected network to each
vector. We apply this alternating process of attention and application
of fully-connected neural networks nl times. The final output of these
transformations is used to calculate the transition rate for each pos-
sible particle update (a particle rotation or translation for the active-
matter model).

Training in Mode 1, the rates are obtained by applying a fully-
connected neural network to the output vectors of the transformer.
We apply the same network for each particle. This fully-connected
neural network has one output node for each possible particle update,
the value of lnW assigned to the corresponding transition. Training in
Mode 2, we first classify the transformer’s output vectors using a fully-
connected neural network with NW output nodes and a softmax acti-
vation function, again for each possible particle update. The class with
the highest probability is sent, as a one-hot vector, to another fully-
connected neural network with one output node, which calculates the
value of lnW for each of theNW classes. Picking the highest-probability
class is not a differentiable operation, and sowe use a straight-through
estimator to obtain the gradients to optimize these neural networks36.

The results in this paper were obtained with the hyperparameters
dh = 64 and nl = 2. We used the AdaBelief optimizer37 with a learning
rate of 10−4 to optimize the transformer’s weights. To obtain a baseline
for the trajectory log-likelihood UðθÞ

ω , we first train a Mode 1 neural-
network dynamics on the provided trajectory. For efficiency we train
for several epochs on smaller sections of the trajectory; during thefinal
stages of training we use the entire trajectory to obtain more accurate
gradients of the trajectory log-likelihood. Next, we train a Mode 2
neural-network dynamics to gain insight into the model’s generator.
We initialize the first layers of the neural network (the embedding and
transformer layers) with the weights obtained with the Mode 1
dynamics, which leads to much faster convergence.

We have here assumed that the dynamics are independent of
time, and the only possible moves are single-particle translations and
rotations. We note that these assumptions may also be lifted: time
could be used as an additional input to the neural network, and col-
lective updates could be achieved using an encoder-decoder archi-
tecture as used in language translation9.

The transformer architecture can by construction be applied to
configurations consisting of a different number of particles (much like
transformers used in natural language processing can be used to
model sentences with a different number of words). The transformer
receives as input a sequence of n particles (i.e., their position and their
state), and returns the transition rates for each particle in the input
sequence. This means that we can naturally apply the trained trans-
former to lattice configurations of the activemattermodel at the same
system size, but at a different particle density than seen during train-
ing. In order to provide accurate results at a different density, the
transformer has to have learned an accurate representation of how
particles interact with one another through its positional embedding.

Data availability
Training trajectories can be generated using the code in Ref. 38.

Code availability
Training code and a tutorial for learning dynamics can be found in
ref. 38.
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