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Abstract
Alkaline phosphatase (AP) isozymes are present in a wide range of species from bacteria to man
and are capable of dephosphorylation and transphosphorylation of a wide spectrum of substrates in
vitro. In humans, four AP isozymes have been identified—one tissue-nonspecific (TNAP) and
three tissue-specific—named according to the tissue of their predominant expression: intestinal
(IAP), placental (PLAP) and germ cell (GCAP) APs. Modulation of activity of the different AP
isozymes may have therapeutic implications in distinct diseases and cellular processes. For
instance, changes in the level of IAP activity can affect gut mucosa tolerance to microbial invasion
due to the ability of IAP to detoxify bacterial endotoxins, alter the absorption of fatty acids and
affect ectopurinergic regulation of duodenal bicarbonate secretion. To identify isozyme selective
modulators of the human and mouse IAPs, we developed a series of murine duodenal IAP (Akp3-
encoded dIAP isozyme), human IAP (hIAP), PLAP, and TNAP assays. High throughput screening
and subsequent SAR efforts generated a potent inhibitor of dIAP, ML260, with specificity for the
Akp3-, compared to the Akp5- and Akp6-encoded mouse isozymes.

Alkaline phosphatases (APs) are well-studied enzymes known for their ability to
dephosphorylate a wide spectrum of substrates.1 In humans, four AP isozymes have been
identified, classified on their predominant tissue localization: intestinal (IAP), placental
(PLAP) and germ cell (GCAP) APs. The expression of the fourth isozyme, designated as
tissue-nonspecific alkaline phosphatase (TNAP), is ubiquitous, at high levels in the
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developing neural tube, kidney, liver and mineralizing tissues such as cartilage and bone. Its
function is intimately associated with mineralization of skeletal and dental tissues, as
deficiency in TNAP function in humans and mice leads to a heritable form of rickets/
osteomalacia known as hypophosphatasia1. Mice also have four active AP genes: Alpl
(encoding TNAP), the Akp5 gene encoding embryonic AP (EAP) and two genes expressed
in the gut, Akp3 and Akp6, encoding a duodenal specific IAP (dIAP) and a globally
expressed IAP (gIAP), respectively.1

Recent work using Akp3 knockout mice indicates that dIAP facilitates fat absorption2, 3,
maintains gut barrier function4-6 and affects the composition of the gut microbiota.7 Many
studies in the literature also relate human IAP with diarrhea-predominant diseases, such as
inflammatory bowel disease (IBD) or pathogenic infections. Wada et al. reported that
infection with Aeromonas sobria hemolysin causes diarrhea; IAP, by binding hemolysin
appears to be involved with its pathogenesis.8 In IBD, genetic and environmental factors
along with chronic deregulation of the host immune system response to gut flora appear to
play key roles in its pathogenesis.9-11

Exogenous purified IAP may be useful therapeutically for these conditions. IAP may
detoxify bacterial products such as lipopolysaccharide (LPS), reducing excessive intestinal
inflammation12. For example, the naso-duodenal delivery of calf IAP to ulcerative colitis
(UC) patients improved clinical and serological measures.13 More recently, we showed that
endogenous IAP likely protects the host from IBD, since oral supplementation of IAP
ameliorates clinical signs and symptoms of IBD in two mouse models of chronic colitis6 and
prevents metabolic syndrome in Akp3−/− mice.14 Despite the ability of IAP enzyme to
detoxify LPS, how IAP affects intestinal inflammation has not been fully elucidated.
Knowledge of this mechanism would thus be a key factor for the development of a
successful therapy for the treatment of IBD patients. More importantly, immunomodulatory
therapy of IBD patients is associated with severe side effects.15

In the present study, we describe a multi-pronged screening approach that enabled the
identification of dIAP inhibitors. SAR efforts based on parallel testing of analogs against
different AP isozymes generated a potent inhibitor of the murine dIAP with IC50 = 540 nM,
at least 65-fold more selective against human IAP than TNAP, and >185-fold more selective
than PLAP. Furthermore, the inhibitor proved to be selective against the Akp3 encoded dIAP
but not the Akp5- or Akp6-encoded EAP and gIAP isozymes. These compounds are likely to
be useful tools in probing the functional roles of human and mouse IAPs during the bacterial
endotoxins detoxifying process, absorption of fatty acids and bicarbonate secretion.

Identification of isozyme-specific inhibitors was part of a platform-based approach where
the entire NIH's small molecule collection (MLSMR) was interrogated against dIAP and
hIAP isozymes in parallel, while assessment of selectivity against TNAP and PLAP
isozymes was based on the results of prior screening campaigns.17 This parallel screening
strategy, using the same CDP Star® luminescent assay format, not only afforded a direct
comparison between several high-throughput screens, but also allowed an efficient
elimination of the artifacts.

1536-well high throughput screens of MLMSR library comprising 330,480 compounds
against dIAP and hIAP isozymes were conducted at 10 μM compound concentration, as
described in PubChem (AID 2544). Ultimately only one compound, hit CID24790981
(Figure 1), was selective against TNAP and PLAP. CID24790981 has an IC50 = 1.82 μM in
the dIAP assay and displays excellent selectivity against TNAP and PLAP.
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The general SAR strategy we pursued around this scaffold from the screening hit is depicted
in Figure 2. We focused on changing the nature and number of the R1 substituents attached
to the phenyl ring highlighted in yellow and we investigated changes in the chain length,
increasing and decreasing the carbon chain length (n = 0, 1, 2, or 3) highlighted in red.
Finally, we investigated if it is possible to replace the hydrogen atom at R2 by alkyl groups
highlighted in green.

We developed an efficient synthesis for our lead series of molecules that was
straightforward and followed the general methods outlined in Scheme 1. Treatment of the
commercially available sulfonyl chloride 1 with the tert-butyl 2-aminoacetate afforded the
(sulfonamido)acetic acid 2. Removal of the boc-protecting group of compound 2 with
trifluoracetic acid afforded the free acid 3 in excellent yields. Coupling of acid 3 with
various amines 4 produced the desired dihydrobenzo[d]oxazole compounds 5 directly.

The results of our efforts are summarized in Table 2 below. Initially we focused our SAR on
the R1 group in Figure 3, where n = 2. Generally, mono substituents, either electron
donating or electron withdrawing, are inactive (Entries 27 to 42). Interestingly, we found the
position of substituents on the phenyl ring was critical for activity. For example entry 17 and
entry 34 both contain a di-methyl substituent on the phenyl ring, and this scaffold greatly
prefers the 2,5 substitution pattern of entry 17 over the 3,4 substitution pattern of entry 34.
We found the most active compounds contain either a 2,5-di-methylphenyl, 3,4-di-
methoxyphenyl, 4-methoxybenzyl, 3-cyanobenzyl or methylene-di-oxybenzyl substituents
(Entries 17 – 21). Most of these compounds display little activity against TNAP or PLAP
with IC50 values >100 μM. Methylation of the nitrogen atom of the dihydrobenzo[d]oxazole
heterocycle completely eliminates the activity (Entry 34). We next focused our attention on
increasing the chain length by one carbon atom, where n = 3. Generally these compounds
are less active than comparable compounds in the n = 2 series of molecules. (Entries 50 –
61). The series of compounds where n = 0 produced very disappointing results as all
compounds are inactive with IC50 values ranging from 40 to >100 μM. (Entries 1-8 and 16).

Finally, we investigated a series of compounds where n = 1. We synthesized 8 analogs with
the most potent analog containing the 2,5-di-methylphenyl group, entry 9. Consideration of
the potency and in vitro selectivity data presented herein we nominated compound 9 as our
probe molecule ML260 as it was the most potent dIAP inhibitor in this series while having
excellent selectivity against both PLAP and TNAP. The multiple dose response titrations of
ML260 against dIAP, TNAP and PLAP are shown in Figure 4.

When the relative IAP selectivity was further tested using p-nitrophenyl phosphate as a
substrate the Akp3-encoded dIAP was inhibited selectively over murine EAP and gIAP
isozymes as well as the hIAP isozyme with an IC50 equivalent to 3.8 μM (Figure 5). Further
analysis, using pNPP as a substrate revealed that ML260 inhibits dIAP competitively with
an apparent Ki = 3.2 μM (Figure 6). For this reason, a concentration of 10 μM was selected
to inhibit dIAP activity expressed by transfected Cos-1 cells. Figure 7 shows that the dIAP
activity expressed in these cells could be fully inhibited with ML260 at 10 μM.

In conclusion, we have discovered the first selective murine IAP inhibitor, ML260, which
represents a tool compound to further explore the functional role of dIAP in a variety of
disease states, in particular as a gut mucosal defense factor18 and as a mediator in fatty acid
absorption. Current efforts to examine the effects of IAP inhibition in these models are
underway. 19
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Figure 1.
Screening hit
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Figure 2.
Overall SAR strategy
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Figure 3.
General structure for dihydrobenzo[d]oxazoles
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Scheme 1.
Synthesis of 5, conditions: a. dichloromethane, triethylamine, (70 - 88% yield); b.
trifluoroacetic acid, dichloromethane, 0°C warm to RT (100% yield); c. EDC, HOBT,
NMM, DMF, (40-55%)
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Figure 4.
Potency and selectivity of ML260. The potency of the inhibitor against dIAP (o), PLAP (+)
and TNAP (x) was assessed by 16pt dose-response testing in 1536-well format in duplicate
in 1xAssay Buffer, containing 100 mM DEA, pH 9.8, 0.02 mM ZnCl2, 1 mM MgCl2, and
1:250, 1:1000 and 1:2000 diluted enzymes, respectively, in a total volume of 4 μL/well. The
reactions were started by addition of the CDP-star substrate to the final concentrations of
200 μM for the dIAP reaction, and 250 μM for the PLAP and TNAP reactions, with the
luminescence intensity measured after 30 min incubation at room temperature.
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Figure 5.
Selectivity of intestinal isozyme inhibition by ML260. Dose-dependency of inhibition of
dIAP (IC50 = 3.8 μM), versus inhibition of EAP (IC50 = 21.1 μM), gIAP (IC50 = 21 μM)
and hIAP (IC50 = 27.6 μM), as indicated.
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Figure 6.
Mechanism of dIAP inhibition by ML260. Double reciprocal plots of residual dIAP activity
versus the concentration of pNPP, constructed for each of the indicated ML260
concentrations.
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Figure 7.
CHO cells expressing dIAP protein, stained with ELF97 in the absence (A) or presence of
10 μM ML260 (C). (B) and (D) are phase contrast views of (A) and (C) respectively. Bar =
50 μm.
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Table 1

Summary of characteristic of initial hit CID24790981

Entry
IC50 (μM)

dIAP huIAP TNAP PLAP

1A 1.82 >100 >100 >100
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Table 2

SAR elucidation of dihydrobenzo[d]oxazole series (n = chain length)

Entry R1 R2 n
IC50 (μM)

muIAP TNAP PLAP

1 3-OMe-benzyl H 0 40 >100 >100

2 2,4-di-OMe-benzyl H 0 89 >100 >100

3 4-OMe-benzyl H 0 98 >100 >100

4 3-CN-phenyl H 0 >100 >100 >100

5 4-CN-phenyl H 0 >100 >100 >100

6 2,5-di-Me-phenyl 0 >100 >100 >100

7 3,4-di-OMe-phenyl H 0 >100 >100 >100

8 H 0 >100 >100 >100

9
ML260

2,5-di-Me-phenyl H 1 0.54 35 >100

10 3-OMe-benzyl H 1 0.73 74 >100

11 4-OMe-benzyl H 1 2.1 >100 >100

12 4-CN-phenyl H 1 4.7 81 >100

13 3-CN-phenyl H 1 >100 >100 >100

14 2,4-di-OMe-benzyl H 1 >100 >100 >100

15 H 1 >100 >100 >100

16 H 1 >100 >100 >100

17 2,5-di-Me-phenyl H 2 0.4 >100 >100

18 3,4-di-OMe-phenyl H 2 0.53 37 >100

19 3-CN-benzyl H 2 2 >100 >100

20 4-OMe-benzyl H 2 2.3 >100 >100

21 H 2 2.6 >100 >100

22 3,4-di-hydroxybenzyl H 2 7.7 >100 >100

23 H 2 12 >100 >100

24 3-F-benzyl H 2 66 >100 >100
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Entry R1 R2 n
IC50 (μM)

muIAP TNAP PLAP

25 H 2 19 >100 >100

26 H 2 44 >100 >100

27 3-trifluoromethylbenzyl H 2 70 >100 >100

28 benzyl H 2 81 >100 >100

29 3,4-dimethylphenyl H 2 84 >100 >100

30 4-chlorobenzyl H 2 88 >100 >100

31 4-methylbenzyl H 2 89 >100 >100

33 4-fluorobenzyl H 2 >100 >100 >100

34 2,5-di-Me-phenyl CH3 2 >100 >100 >100

35 3-MeO-benzyl H 2 >100 >100 >100

36 2-MeO-benzyl H 2 >100 >100 >100

37 2-F-phenyl H 2 >100 >100 >100

38 4-OH-benzyl H 2 >100 >100 >100

39 4-CF3-benzyl H 2 >100 >100 >100

40 3-F-benzyl H 2 >100 >100 >100

41 2-Cl-benzyl H 2 >100 >100 >100

42 3-Cl-benzyl H 2 >100 >100 >100

43 H 0 >100 >100 >100

44 3,4-di-OMe-phenylethyl H 3 1.5 96 >100

45 2-MeO-benzyl H 3 2 >100 >100

46 4-HO-phenethyl H 3 4.2 >100 >100

47 4-MeO-phenethyl H 3 7.4 >100 >100

48 2,4-di-MeO-phenyl H 3 6.3 >100 >100

49 3-F-benzyl H 3 13 >100 >100

50 2,4-di-MeO-benzyl H 3 37 >100 >100

51 H 3 45 >100 >100

52 3,4-di-MeO-benzyl H 3 78 >100 >100

53 2-Cl-phenyl H 3 >100 >100 >100

54 2-Me-benzyl H 3 >100 >100 >100

55 3,4-di-OMe-phenyl H 3 1.5 >100 >100
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