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Near-exhaustive Precomputation of Secondary Cloth Effects

Doyub Kim1 Woojong Koh2 Rahul Narain2 Kayvon Fatahalian1 Adrien Treuille1 James F. O’Brien2

1Carnegie Mellon University 2University of California, Berkeley

Figure 1: Our system animates this detailed cloth motion at over 70 FPS with a run-time memory footprint of only 66 MB. We achieve high
quality and high performance by compressing over 33 GB of data generated during 4,554 CPU-hours of off-line simulation into a 99,352
frame secondary motion graph that tabulates the cloth dynamics.

Abstract

The central argument against data-driven methods in computer
graphics rests on the curse of dimensionality: it is intractable to
precompute “everything” about a complex space. In this paper, we
challenge that assumption by using several thousand CPU-hours to
perform a massive exploration of the space of secondary clothing
effects on a character animated through a large motion graph. Our
system continually explores the phase space of cloth dynamics, in-
crementally constructing a secondary cloth motion graph that cap-
tures the dynamics of the system. We find that it is possible to
sample the dynamical space to a low visual error tolerance and that
secondary motion graphs containing tens of gigabytes of raw mesh
data can be compressed down to only tens of megabytes. These re-
sults allow us to capture the effect of high-resolution, off-line cloth
simulation for a rich space of character motion and deliver it effi-
ciently as part of an interactive application.

Keywords: Cloth simulation, data-driven animation, video games
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1 Introduction

Data-driven techniques have enabled real-time animation of stun-
ningly complex phenomena that are either too expensive to simu-
late in real-time (such as the folds and wrinkles in high-resolution
cloth [Kavan et al. 2011; Wang et al. 2010]) or for which we lack
good models (such as human motion). However, the central argu-
ment against these precomputation-based approaches rests on the
curse of dimensionality: it is impossible to capture “everything” be-
cause each additional simulation condition exponentially explodes
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Figure 2: Visualization of Robe’s 99,352-frame secondary motion
graph. Cloth trajectories are colored by their corresponding char-
acter motion. Edges created as a result of dead-end merges (Sec-
tion 3) are shown in light gray.

the dynamical space. For this reason, virtually all previous work in
data-driven animation has studied phenomena in a very controlled
settings with few excitation modes, and under the strict assumption
that the phenomenon will periodically return to a single, rest config-
uration [James and Pai 2002; James and Fatahalian 2003; de Aguiar
et al. 2010; Guan et al. 2012].

In light of rapid growth in the availability of low-cost, massive-
scale computing capability we believe that it is time to revisit this
assumption. While it might not be tractable to capture everything
about a complex dynamical system, it may be possible to cap-
ture almost everything important. This mirrors a growing trend in
computer science where researchers studying theoretically infinite
spaces like machine translation have captured “almost everything”
about translation, for example, simply by using a sufficiently large
data corpus [Halevy et al. 2009].

In this paper, we focus on the precomputation of secondary clothing
effects for a character animated through a finite motion graph. We
introduce the notion of a secondary motion graph: for each state in
the primary motion graph (in this case, the character’s pose) there
may be many corresponding states in the secondary motion graph
(in this case, configurations of clothing on the body). Because cloth
is a dynamical system where the state of the cloth depends on pre-
vious cloth states, not just the body’s pose, the secondary motion
graph can be vastly more complex than the primary motion graph.

We report our findings from performing a massive exploration of
the secondary motion graph space. In contrast to previous work
on precomputation, we simulate significantly more data to build a
large-scale portrait of the phase space of the dynamics. Our primary
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example represents over 55 minutes of simulated cloth animation
generated over 4,500 CPU-hours of computation. The scale of our
exploration allows us to observe bifurcations in the dynamics where
persistent changes in the cloth configuration create new subgraphs
that remain largely disjoint from previously computed states. We
show that even for large motion graphs, it is possible to explore
the secondary dynamical space to low visual error tolerance — es-
sentially, to precompute almost everything important — and that
the resulting data can be compressed to a reasonably small memory
footprint. On a practical level, these results allow us to capture the
effect of high-resolution, off-line cloth simulation for a rich space
of character motions and deliver it in real time on modest hardware
as part of an interactive application.

In contrast to many data-driven techniques, our model provides
guaranteed bounds on the error of the approximation for the pre-
computed model. Error due to insufficient sampling only manifests
at a sparse set of frames in the database. As a result it is possible
to verify the error entirely and even manually inspect these error
frames. In addition, our system is designed to support “continual
exploration” of the dynamical space wherein an ever-enlarging por-
trait of the phase space is constructed. In contrast, previous pre-
computation approaches typically require careful set up of the exact
scenarios to be precomputed.

2 Related Work

The use of computer simulation to generate cloth motion for an-
imation has been an active research topic for over a quarter of a
century [Terzopoulos et al. 1987]. During that time key problems
related to modeling the dynamics of cloth and for handling colli-
sions have been addressed [Baraff and Witkin 1998; Bridson et al.
2002; Choi and Ko 2002; Bridson et al. 2003]. Summaries cover-
ing much of development of cloth simulation methods can be found
in the survey articles of Nealen et al. [2006] and Thomaszewski et
al. [2007]. Many current methods for simulating cloth can produce
highly realistic results that can be difficult to distinguish from real-
ity [Müller and Chentanez 2010; Narain et al. 2012]. The reality of
these methods can be enhanced by using measured material prop-
erties [Wang et al. 2010; Miguel et al. 2012], or even simulating
physics at the level of individual yarns [Kaldor et al. 2010].

Unfortunately, the computational cost of realistic high-resolution
cloth simulation currently precludes its use in interactive applica-
tions. Graphics researchers have addressed this issue using a variety
of methods, many of which also make use of precomputed data.

One common approach is to run low resolution simulation and
then add extra wrinkle detail based on previously computed high-
resolution simulations [Wang et al. 2010; Kavan et al. 2011; Feng
et al. 2010], recordings of real cloth [Popa et al. 2009; Hilsmann
and Eisert 2012], or a simplified physical model [Müller and Chen-
tanez 2010; Rohmer et al. 2010]. While these approaches dramati-
cally increase cloth realism with minimal computational overhead,
the resulting motion can still reflect the low-resolution of the under-
lying simulation mesh.

Researchers have also looked into model reduction methods to
fully capture complex systems such as fluids [Treuille et al. 2006;
Barbič and Popović 2008; Wicke et al. 2009] and deformable ob-
jects [James and Pai 2002; Barbič and James 2005; An et al.
2008] in a reduced order model. This approach can lead to sig-
nificant speedups, but has difficulty capturing discontinuities and
places other restrictions on the underlying dynamics. Furthermore,
such data-driven approaches often require that the simulated motion
hews closely to the precomputed data with unpredictable error if the
system strays too far from the captured model. This paper explores
a different approach, using a much simpler graph-based model to

tabulate the dynamics while emphasizing massive precomputation
to capture a large portion of the cloth’s phase space.

Rather than reduce the dynamics of clothing on a human charac-
ter, the stable spaces technique of de Aguiar et al. [2010] eschews
run-time simulation entirely and instead learns a quasi-linear model
for the dynamics from black-box simulation data. The learned
model approximates cloth motion based on body pose (echoing
data-driven skinning approaches) and the recent history of the cloth.

In contrast to de Aguiar’s work, James and Fatahalian [2003]
explicitly tabulate the (arbitrarily non-linear) dynamics of a de-
formable system. Real-time cloth animation is achieved by navi-
gating a database of cloth trajectories residing in the precomputed
subspace. Our work is similar in spirit to theirs but differs in two
key ways. First, rather than drive the system using a small palette of
simple impulses, we represent a much richer space of external cloth
forces using a character motion graph. Second, the sheer scale of
our state-space sampling process allows us to tabulate much more
complex cloth behaviors, including spaces that exhibit bifurcations
and cloth that does not return to a single rest state. Our work ad-
dresses the subspace sampling and data-compression challenges of
distilling large amounts of precomputed data into a representation
that delivers high-quality cloth animation in an interactive system.

A key benefit of our approach is that it naturally models bifurca-
tions in the phase space, a key challenge for precomputation meth-
ods. Twigg and James have exploited dynamical bifurcations (aris-
ing from collisions) for control in graphics. One of their methods
explores contact ambiguity to create animations which converge
to a desired final state [Twigg and James 2008]. Another visual-
izes the bifurcating dynamics of colliding objects as an interaction
paradigm for control [Twigg and James 2007]. Our work similarly
studies large-scale phase spaces including bifurcations, but our goal
is different: rather than seeking control, we view bifurcations as a
modeling challenge for data-driven interactive simulation

3 The Secondary Motion Graph

We pursue an entirely data-driven system for synthesizing real-
time, high-resolution motion of clothing on a human character. Our
approach relies on an extensive sampling of simulated cloth mo-
tion that results from animating a character through a large motion
graph. As new cloth motions are generated they are analyzed and
compressed into a compact representation enabling low-cost run-
time use. We now describe our cloth motion representation and the
techniques employed to sample, compress, and interactively play
back precomputed cloth motion.

3.1 Secondary Graph Definition

We represent character movement and its associated secondary
cloth dynamics using two motion graphs [Kovar et al. 2002; Arikan
and Forsyth 2002]. The first graph, which we call the primary
graph, is a standard motion graph describing movement of the char-
acter. Our graph formulation represents individual character poses
(rather than motion clips) as graph nodes pi. Thus, a graph edge
from pi to pj indicates pj can directly follow pi in animation. A
tiny example of a primary motion graph with seven states is illus-
trated in black in Figure 3.

We augment the primary motion graph with a secondary cloth mo-
tion graph that tabulates the enormous (potentially infinite) space
of cloth dynamics. Each node in the secondary graph (13 red states
in Figure 3) represents a cloth pose ci and it is associated with ex-
actly one primary graph node P (ci). That is, the character is in
state P (ci) when the cloth assumes pose ci. Extensive sampling of
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Figure 3: Top: As clothing can assume many positions for each
character pose, many states in the secondary cloth motion graph
(red) correspond to each primary graph (black) state. Bottom:
Traversal of the primary graph (character animation) triggers cor-
responding traversal of the secondary graph (cloth animation).
Motion of the cloth in response to character motion is defined en-
tirely by the transition table C(ci, pj → pk).

the cloth phase space will result in a secondary motion graph that
is significantly larger than the primary graph. Thus, as shown in
Figure 3, many secondary graph states may be associated with each
node in the primary graph.

During playback, traversal of the primary graph is governed by the
application’s character controller as is common in interactive appli-
cations today. To produce cloth motion, each primary graph tran-
sition from pj to pk also triggers a corresponding secondary graph
transition from current cloth pose ci to C(ci, pj → pk). A table
enumerating secondary graph transitions for cloth states c0 and c5
is provided in the figure.

The secondary graph and its associated transition table
C(ci, pj → pk) describe the cloth’s motion in response to
external forces applied by the character. Together, their function is
analogous to the database of impulse response functions described
by James and Fatahalian [2003]. By representing external forces
as transitions in the primary motion graph we are able to encode
a significantly richer space of forces than James and Fatahalian’s
impulse palette.

3.2 Graph Exploration

Due to its dynamic motion, clothing may assume an arbitrarily large
number of configurations as the character continuously animates
through the primary graph. Therefore, it is likely intractable to tab-
ulate the secondary motion graph in its entirety. Instead, we incre-
mentally build the secondary motion graph by repeatedly travers-
ing segments of the primary graph and computing the correspond-
ing cloth motion using a black-box off-line cloth simulator [Narain
et al. 2012]. Our system is specifically designed to be able to “sam-
ple forever,” exploring for undiscovered motions, while continu-
ously maintaining a valid secondary motion graph for immediate
interactive use.

Graph Initialization. We initialize the secondary graph by explor-
ing each primary graph edge once via breadth-first traversal start-
ing from an arbitrarily chosen initial character pose. The clothing
is placed on this initial pose and traversing the graph requires for-
ward simulation of the clothing over the traversed character poses.

RemoveDeadend(cend):

(csimilar , err) = FindMostSimilar(cend)

// merge cend into csimilar

foreach edge e incoming to cend do:
modify e to point to csimilar

remove cend from graph

workQueue.AddJob(err, (cend, csimilar))

ExpandGraph():

do forever:
(cend, csimilar) = workQueue.LargestErrorJob()

// revert the merge of cend into csimilar

re-insert cend into graph
foreach edge e incoming to csimilar do:

if e resulted from prior merge with cend:
modify e to point to cend

newSubtree = SimulateCloth(cend)
foreach new dead-end cnew in newSubtree do:

RemoveDeadend(cnew)

Figure 4-left illustrates exploration beginning at node p0 with ini-
tial cloth state c0. The result is a tree of cloth trajectories (shown in
red) produced from simulation. (The tree is re-drawn for clarity in
the bottom-left of the figure.) Each path from the tree’s root c0 to a
leaf ci represents a simulated cloth motion sequence corresponding
character animation from initial pose P (c0) = p0 to P (ci).

At this point, the leaves of the tree constitute dead-ends in the sec-
ondary motion graph. We remove each dead-end state by merging
it with the most similar interior cloth state that shares the same pri-
mary graph state (see function RemoveDeadend()). Notice that in
the center panel of Figure 4, dead-end nodes c5 and c9 have been
merged into c0 and c2 respectively. (Removed nodes c5 and c9
are shown in gray in the secondary graph.) Edges that previously
transitioned to dead-end nodes now transition into the target of the
merges (shown in blue). Once all dead-ends have been removed,
graph initialization is complete. The secondary graph now provides
a cloth animation result for any sequence of character motion and
thus represents a coarse approximation to the full space of cloth
dynamics. While red edges in the figure correspond to actual simu-
lated trajectories, blue edges constitute transitions that approximate
the real cloth dynamics. When the approximation is poor (that is,
when no interior node in the graph is similar to the dead-end state),
further sampling of cloth phase space is needed to reduce this error
and avoid low-quality motion during playback.

Endless Graph Expansion. After each dead-end merge operation,
we store both the (pre-merge) dead-end cloth graph state and its as-
sociated (post-merge) edge approximation error in a priority work
queue for further sampling. To reduce cloth motion error, we ex-
tensively refine the secondary-motion graph using the process given
by function ExpandGraph(). In each expansion step we extract the
largest error dead-end cmax from the priority queue and reinsert
cmax into the graph by reverting the prior graph merge operation
that eliminated it. We then simulate further cloth motion beginning
from cmax (and character pose P (cmax)). Further simulation sam-
ples a previously unexplored region of the cloth phase space and
produces additional, new dead-ends in the secondary graph. These
new dead-ends are eliminated as described before via additional
merges.

Figure 4-right shows the results of performing one step of graph
exploration beginning with enqueued dead-end state c5. The addi-
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Figure 4: Left: Secondary graph initialization begins by sampling cloth motion once for each transition in the character motion graph.
(Secondary cloth states are shown in red.) Center: Dead-end states (c5 and c9) are removed by merging them with similar interior graph
nodes. The resulting edges (blue) correspond to motions that only approximate actual cloth dynamics. Right: Error in the secondary graph
is reduced by continually replacing the highest-error edges with the results of additional simulation.

tional simulation results in two new dead-ends, both of which are
merged into c2. The process of secondary graph refinement contin-
ues repeatedly, eliminating the largest physics errors encountered as
the cloth phase space is explored while always maintaining a dead-
end-free secondary motion graph. Although the simulations carried
out in each new expansion step depend on prior results, expansion
of the graph from each dead-end in the work queue is independent,
making graph expansion embarrassingly parallel.

3.3 Refinements

Garment-customized error metric. Certain cloth transition errors
are significantly more objectionable than others. To provide the sys-
tem knowledge of the worst errors, we can customize the cloth-pose
similarity metric for a particular garment or domain of motion. For
example, in the case of the robe garment (discussed in Section 5)
it is particularly objectionable for the cloth graph to contain back-
links that take the hood from a position down on the character’s
shoulders to up on its head. We find that simple error metrics (e.g.,
L1 or L∞ error for vertex positions and velocities) do not identify
such transitions as egregious, so we adopt a metric that classifies
the hood’s position for a cloth pose as up or down and assigns high
error to merges that create implausible down-to-up transitions. As a
result, these transitions rise to the head of the queue and the system
quickly eliminates the error by exploring dynamics beginning from
these high-error dead-ends.

Graph Blending. Motion error in the secondary graph occurs pre-
cisely at edges that result from dead-end merges (blue edges in Fig-
ure 4). To reduce visual artifacts caused by these discontinuities we
diffuse their error over a sequence of frames (our implementation
uses ten) by linearly blending trajectories just before and after the
merged state.

4 Compression

After any step of secondary graph expansion we can compress and
package the data for interactive visualization or integration into a
game engine. Compression is crucial for interactive playback as our
raw secondary-graph data consists of tens of thousands of frames
of cloth meshes requiring hundreds of gigabytes of storage. How-
ever, as others have previously observed [Wang et al. 2010], cloth-
ing tends to form nearly repetitive patterns and there is substantial
redundancy in these data. We have found that the raw secondary-
graph data compresses remarkably well, and that compressed re-
sults have a small footprint and can be decompressed efficiently in
real time. This compression is critical as modern games typically
have tight memory budgets, particularly for secondary effects.
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Figure 5: Graph: maximum contribution to cloth mesh displace-
ment by each basis vector (Robe secondary graph). Many vectors
provide only a small contribution and thus are candidates for fur-
ther compression. Inset: Quantization of basis vector values allows
for compact representation. Quantization to three-hundred-micron
tolerance yields results that are visually indistinguishable from the
original data and permit basis representation using 16-bit and 8-bit
values.

We first reduce the dimensionality of the data set by performing
an out-of-core SVD as described by James and Fatahalian [2003].
This step factors the cloth data matrix D ∈ R3v×n (containing
n frames of v vertex positions) into a b-dimensional cloth basis
B ∈ R3v×b and a matrix of trajectory coefficients C ∈ Rb×n so
that D ≈ BC. We experimentally determined that with 200 bases
(b = 200) the reconstructed cloth mesh is visually very similar to
the original model. However in places where the cloth is in contact
with the underlying body model, even small compression errors can
cause a reversal in depth ordering causing clear rendering artifacts.
We eliminate these artifacts during rendering using the depth offset
technique of [de Aguiar et al. 2010] and by very slightly shrinking
the body model.

We further observe that although fewer basis vectors are not ad-
equate for maintaining good visual fidelity, individual basis vec-
tors vary greatly in their geometric impact. We denote mi =
maxj |Cij | as the maximum absolute contribution of each basis and
find that mi can vary by orders of magnitude across the basis (Fig-
ure 5). We achieve further compression by representing low impact
basis vectors with fewer bits.

We re-scale the cloth basis by {mi} to produce B′ = BM and
C′ = M−1C, where M = diag(m1, . . . ,mb). The re-scaled basis
B′ can be interpreted in length units of maximum vertex displace-
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Robe Casual

Cloth vertex count 29,654 32,984

Average sim. time / frame (s) 165 243
Total simulated frames 99,352 27,545
Total CPU-hours 4,554 1,859

Uncompressed DB size (MB) 33,614 10,397
Compressed basis size (MB) 24 22
Compressed trajectories size (MB) 42 12

Total runtime footprint (MB) 66 34

Robe Casual

Table 1: Secondary motion graph exploration and compression
statistics for our two example garments.

ment, and is now amenable to quantization. We found 300-micron
quanta represent the coarsest possible quantization before visual ar-
tifacts become evident. At this tolerance, basis vectors are easily
representable using 16-bit shorts and 8-bit bytes. In the case of
our Casual demo scene (Section 5), 82% of basis vectors are rep-
resentable using 8-bit values. The resulting compressed basis re-
quires only 22 MB of storage. Similar quantization to 16-bit values
is also performed on the trajectory coefficients. This simple com-
pression scheme using two bit widths achieves high compression
while enabling efficient decoding of trajectory data in matrix C′ at
run time.

5 Results

To evaluate our method, we conducted a massive exploration of
cloth motion by animating a character through a motion graph con-
structed from the HDM05 motion capture data set [Müller et al.
2007]. Our primary motion graph contains 12 unique motion clips
(totaling 3,115 frames). We selected clips featuring a variety of
vigorous motions, including running, throwing, kicking, hopping,
and performing cartwheels, to trigger highly dynamic cloth mo-
tion and to direct garments into a wide range of configurations.
From this primary graph, we generate secondary motion graphs for
two cloth setups: Robe, a one-piece, hooded robe, and Casual,
which features three layered garments (including baggy pants and
a loose-fitting vest). We used ARCSim1, a high-quality, off-line
cloth simulator, to compute cloth motion [Narain et al. 2012; Wang
et al. 2011]. To accommodate our compression scheme we disabled
adaptive remeshing and used a fixed mesh topology. On average,
off-line frame simulation times for our two demos are 165 seconds
and 243 seconds respectively. Although both demos feature gar-
ments of similar resolution, complex collision handling between
the multiple cloth layers in Casual results in longer execution time.

1http://graphics.berkeley.edu/resources/ARCSim

Figure 6: Visualization of hood state in the Robe secondary graph.
Red indicates the hood is up, blue incades the hood has fallen. Sim-
ulation begins from cloth pose with the hood up. Graph expansion
uncovers motion sequences that cause the hood to fall, then it simul-
taneously explores these disjoint regions of the cloth phase space.
Our method automatically explores both branches of this dynamical
bifurcation in parallel.

5.1 Large-scale Exploration

Using more than 6,400 CPU-hours of computation (on a cluster
of machines provided by Intel) we generated over 99,000 frames
of cloth animation (about 55 minutes of simulated motion, visual-
ized directly in Figures 2 and 6) for Robe and 27,000 frames of
animation (15 minutes) for Casual. Both secondary graphs are ap-
proximately an order-of-magnitude larger than the character motion
graph. For brevity we focus on our findings from the Robe explo-
ration in this section and refer the reader to the accompanying video
to view results from Casual.

Simply put, we find that our massive computation has adequately
sampled the phase space of cloth dynamics to good visual toler-
ance. We are able to generate pleasing cloth animations for arbi-
trary traversals of the primary graph. As evident in the accompa-
nying video, paths through the secondary graph produce highly de-
tailed, smooth cloth motion even after vigorous character actions,
such as a cartwheel (Figure 1), that leave the cloth in a dramatically
different pose than its starting state.

Although our final secondary graphs do represent high-quality mo-
tion, this was not true after early stages of exploration. Immediately
following graph initialization, the secondary graph contains only
one cloth pose for each primary character pose and thus resembles
a kinematic approximation to cloth motion. As expected, this ap-
proximation was severely inadequate to produce realistic motion
for our garments, confirming that the secondary cloth graph must
be significantly more complex than the primary graph. In these
early phases, large errors were clearly visible as the cloth transi-
tioned from complex configurations back to configurations near its
initial starting state.

Further exploration incrementally eliminates egregious motion er-
rors and, more importantly, uncovers interesting structure in the
secondary motion space, such as bifurcations. While our initial
Robe configuration features the hood covering the character’s head,
we find that a few sequences of motion (e.g., walk→ jumping-jack
→ walk, or walk→ jog left→ walk backward→ jog right) cause
the hood to fall. Figure 6 illustrates the complete Robe secondary
graph with states colored according to the hood’s state. (Red indi-
cates the hood remains on the character’s head, while blue indicates
the hood has fallen off.) Our exploration finds five unique character
motion sequences that cause the hood to fall. It then explores these
distinct regions of the phase space in parallel. When the bifurcation
is first encountered, there are very few secondary graph states with
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Figure 7: The thinner line represents the maximum back-link error
over time. The thicker line represents the lowest maximum error
we can get from the database at certain time by excluding the ad-
ditional data until it reduces the maximum error in the graph. At
coarse scale, motion error steadily declines as the Robe state space
is explored in detail. Novel behaviors in the space temporally in-
crease error until they are sufficiently sampled.

the hood down. As a result, dead-end merges often create transi-
tions that take the hood from the down to the up state (there are no
similar hood-down poses to merge with). However, our error met-
ric (which classifies hood state) tags these implausible transitions
with high error, so the system immediately dedicates compute re-
sources to exploring these parts of the graph. Once the secondary
graph has reached 99,000 frames in size, is free of merged tran-
sitions from hood down to hood up states. The graph is roughly
partitioned into two subgraphs based on the hood state. The edges
linking those subgraphs all correspond to correct simulated motion
where the hood naturally falls down or falls over the character’s
head as he does a flip.

Figure 7 plots the evolution of L∞ error (from a vector containing
both vertex positions and time-scaled velocities) of the worst tran-
sition in the secondary graph. At coarse scale, error in the graph
decreases as we explore the phase space in detail. However, there
is significant fine-scale variation in error, which we attribute to two
reasons. First, a simple distance metric can be a poor predictor of
future error in the phase space. (Improving error metrics to consider
potential future error, in order to discover high-error regions earlier,
is an important area of future work.) Second, exploration uncovers
novel parts of the space (e.g., the hood falling) that require further
sampling to decrease maximum error back to previous levels.

We selected the Robe example because it contains large flowing
regions that flop about with a relatively high degree of hysteresis.
This behavior produces many secondary states per primary state,
but nevertheless we end up with a reasonably sized compressed
database. The Casual example is less hysteretic, and as a result
requires less precomputation and produces a smaller compressed
database.

5.2 Interactive Playback

We are able to play back cloth animation from the compressed
secondary graph at well over 70 frames per second on an Apple
MacBook Pro laptop (Core i7 CPU). Decompression as well as
computation of the matrix-vector product to synthesize each cloth
pose (which can be performed using fixed-point arithmetic) are per-
formed using a simple CPU-based implementation parallelized us-
ing OpenMP.

6 Discussion

In this work we leveraged massive computing resources to push
data-driven animation to unprecedented scales. While previous
data-driven methods were limited to simple, controlled settings, we
used thousands of hours of CPU-time to exhaustively explore the
enormous phase space of secondary cloth motion. We believe the
results of our large-scale exploration are striking. We not only cap-
ture a rich set of detailed cloth motions with sufficient density to
eliminate playback artifacts for a wide range of character motions,
we are able to discover bifurcations in the phase space and proceed
to sample cloth dynamics in each of the distinct regions. The cloth-
ing in our demos does not simply return to a single rest state: hoods
fall off and clothes wrap around the character in diverse ways.

A number of techniques were necessary to make large-scale explo-
ration and subsequent real-time playback possible. Most impor-
tantly, we introduced the notion of a secondary motion graph to
guide the phase-space exploration process and to enable efficient
cloth response to run-time user input. Analysis of the reduced cloth
basis led to a simple adaptive quantization scheme that further com-
pressed the data set. We also created a cloth-pose similarity func-
tion that specifically accounted for the position of the robe’s hood
to robustly identify the most egregious secondary graph transition
errors. All together, our system generated over 43 GB of cloth data,
compressed this data into secondary cloth graphs of 34 MB and
66 MB in size, and delivered high-quality secondary cloth anima-
tion in response to user input on a laptop at over 70 fps.

A common concern about the viability of data-driven techniques
focuses on run-time memory footprint. While our approximately
70 MB requirement is likely too large to be practical for games
targeting modern console systems (for example, the Xbox 360 has
only 512 MB of RAM), we believe its cost is modest in the context
of today’s modern PCs (and the coming generation of gaming con-
soles) which currently have multiple GBs of memory. Furthermore,
we have not fully explored that gamut of cloth basis or secondary-
graph compression strategies and so both better compression, as
well as run-time solutions that stream regions of the secondary-
graph (leaving only the basis representation in core), are likely pos-
sible.

We are excited by a number of potential benefits of the secondary
motion graph representation. For example, the ability to view the
entire database of cloth motion could be a significant advantage in
the context of authoring a game. As part of the routine task of
production game inspection, precomputed secondary cloth anima-
tion cloud be manually viewed, tagged for re-simulation, or even
edited. Bad secondary graph transitions could be identified, adding
a human component to what is currently an entirely procedural pose
similarity metric. The result of this inspection effort would be high-
quality, computationally-cheap, interactive clothing that is known
to be free of objectionable artifacts.

More generally, while it is natural to consider graph exploration as a
precomputation, we view phase-space sampling as an ongoing pro-
cess whose improving results can be continually compressed and
made available to an interactive system. Thus, phase-space explo-
ration need not only proceed interactive playback as is typical of
data-driven approaches, it may also be triggered and influenced as
a result of it. Future on-line virtual worlds could deliver new sec-
ondary graphs to clients when new behaviors are discovered. Con-
versely, player actions in a virtual environment could indicate the
most important areas of the phase space to sample. We believe there
are many exciting possibilities for augmenting interactive environ-
ments with ongoing massive-scale computation.
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