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RESEARCH ARTICLE
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Abstract
Chlamydomonas reinhardtii accumulates lipids under complete nutrient starvation condi-

tions while overall growth in biomass stops. In order to better understand biochemical

changes under nutrient deprivation that maintain production of algal biomass, we used a

lipidomic assay for analyzing the temporal regulation of the composition of complex lipids in

C. reinhardtii in response to nitrogen and sulfur deprivation. Using a chip-based nanoelec-

trospray direct infusion into an ion trap mass spectrometer, we measured a diversity of lipid

species reported for C. reinhardtii, including PG phosphatidylglycerols, PI Phosphatidylino-

sitols, MGDGmonogalactosyldiacylglycerols, DGDG digalactosyldiacylglycerols, SQDG

sulfoquinovosyldiacylglycerols, DGTS homoserine ether lipids and TAG triacylglycerols.

Individual lipid species were annotated by matching mass precursors and MS/MS fragmen-

tations to the in-house LipidBlast mass spectral database and MS2Analyzer. Multivariate

statistics showed a clear impact on overall lipidomic phenotypes on both the temporal and

the nutrition stress level. Homoserine-lipids were found up-regulated at late growth time

points and higher cell density, while triacyclglycerols showed opposite regulation of unsatu-

rated and saturated fatty acyl chains under nutritional deprivation.

Introduction
Algae have been considered as promising third generation feedstocks for biofuel production.
The advantages of algae use over terrestrial plants for biofuel generation include: algae do not
compete with food crops, grow at high rates, and have higher oil yields exceeding that of con-
ventional terrestrial plants. At the same time, algae can make use of industrial waste water to
grow and reduce carbon dioxide emissions [1,2].
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The single cell green algae C. reinhardtii serves as an important model organism for study-
ing perturbations in metabolic pathways under environmental stress conditions [3–5]. Such
stressors can include light and nutrients as well as temperature. The effect of nitrogen limita-
tion on the lipid composition of C. reinhardtii has been studied [6–8]. When C. reinhardtii
starved for nitrogen in stationary phase in the presence of exogenous acetate, those cells
undergo a 15-fold increase in lipid body production within 48 h, and these lipid bodies consist
of*90% triacylglycerol and*10% free fatty acid. A change of starch/lipid ratio with
increased lipid production was observed under nitrogen deprivation conditions, even at a
genetically starchless mutant C. reinhardtii [9]. RNA-seq and genetic analysis demonstrated
that three acyltransferases, DGAT1, DGTT1, and PDAT1, have a role in triacylglycerol accu-
mulation in C. reinhardtii under nitrogen starvation [10]. Sulfur, phosphorous, zinc and iron
deficiency also resulted in increased lipid content in C. reinhardtii and other many algal species
[11–15]. However, drastic and complete nitrogen deprivation also stops growth of algal bio-
mass. A recent metabolic engineering report concluded that shunting carbon precursors from
the starch synthesis pathway is more effective for increased triacylglycerol synthesis than a
direct manipulation of lipid pathways [16]. Meanwhile, ambient temperature has a significant
effect on the intracellular fatty acid of algae, such as Chlorella vulgaris and Botryococcus. brau-
nii, but there was no effect on the content of acidic lipids sulfoquinovosyldiacylglycerols and
phosphatidylglycerols in C. reinhardtii when temperature changed [17,18]. Light can also affect
the lipid metabolism in algae. Typically, when algae grown at different light intensity, algae can
be induced the formation of different kinds of lipids [19,20]. Most recently, it was shown that
under partial nitrogen deprivation, biochemical remodeling of pathways enables C. reinhardtii
cells to retain normal rates of cell division with a much more fine-tuned regulation of lipid
biosynthesis [21]. This report had only analyzed the regulation of biosynthetic enzymes and
primary metabolites [21], but not the effect of partial nutrient stress on the remodeling of com-
plex lipids. We therefore now complement this study by comprehensively analyzing the relative
composition of complex lipids in C. reinhardtii using shotgun lipidomics, a method that has
been proven to be a powerful tool in global lipid analysis in a variety of species and organs
[22,23]. Shotgun lipidomics using triplequadrupole mass spectrometry with direct infusion
currently provides 158 annotated lipid species in plant extracts [24]. Such targeted methods are
accurate, but might miss novel or unreported lipid species. Specifically, the lipid composition
of C. reinhardtii had been studied with more classic tools such as thin-layer chromatography
[25–28] and few studies with chromatography tandem mass spectrometry [8,27].Many lipid
species were indentified including phosphatidylglycerols (PG), Phosphatidylethanolamines
(PE), Phosphatidylinositols (PI), monogalactosyldiacylglycerols (MGDG), digalactosyldiacyl-
glycerols (DGDG), sulfoquinovosyldiacylglycerols(SQDG),l,2-diacylglyceryl-3-O-4’-(N,N,N-
trimethyl)-homoserine (DGTS) and triacylglycerols (TAG) (Fig 1). Most of previous studies
usually focused on total lipid content, however, for a detailed interpretation of metabolic
changes the molecular structures of lipids are needed when studying C. reinhardtii under dif-
ferent environmental perturbations.

Material and Methods

Culture growth and harvest of samples
Samples for lipids analysis were obtained from C. reinhardtii strain CC125 which was similar
to previous published reports [29,30]. Briefly, the strain was cultivated in tris acetate phosphate
(TAP) medium at 23°C under constant illumination with cool white fluorescent bulbs at a flu-
ence rate of 70μmol m−2 s−1 and with continuous shaking. Cells were harvested by centrifuga-
tion, washed twice with sterile20 mM TRIS pH 7.0, supplied with 300 mM CaCl2, 400 mM
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MgCl2, and 7 mMKCl, and resuspended at a starting density of 2×106 cells/mL in TRIS-
buffered media under 3 different conditions (nitrogen deprivation: standard condition and
subsequent decrease in ammonium acetate level: 75%, 50%of standard conditions; sulfur depri-
vation: standard condition and subsequent decrease sulfur level:75%, 50%of standard condi-
tions).All cell numbers were counted using a hemacytometer and a microscope. Per time point
studied, eight independent1ml samples were used in the nitrogen deprivation study, and six
1ml replicates were sampled during the sulfur deprivation study. Samples were harvested at 1h,

Fig 1. Common lipid species reported forChlamydomonas reinhardtii cells. Labels R1, R2 and R3 represent different fatty acid acyl residues.

doi:10.1371/journal.pone.0137948.g001
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4h, 10h, 18h and 26h time points, respectively. At the incubation site, 1 mL cell suspensions
were injected into 1mL of-70°C cold quenching solution composed of 70% methanol in water
using a thermo block above dry ice. Pellets were flash frozen in liquid nitrogen and lyophilized
at -50°C in 2 mL round bottom Eppendorf tubes.

Lipid extraction
Lyophilized cells were disrupted using a MM 301 ball mill (Retsch GmbH & Co., Germany) for
3 minutes using a single 5 mmi.d. steel ball, followed by addition of 0.5 mL extraction solvent
and vortexing for 10s and shaking at 4°C for 5min. Methanol:chloroform:water (MCW) (5:2:2)
was used as the extraction solvent. Solvent ratios are given as volumetric measures. The solvent
was degassed by directing a gentle stream of nitrogen through the solvent for 5 min. It was used
prechilled to -20°C prior to extraction. After 2 min centrifugation at 16,100 rcf, the supernatants
were removed followed by a secondary extraction step using an additional 800 μl extraction sol-
vent, centrifugation and adding the supernatant to the first aliquot. Dried samples in a vacuum
concentrator and kept at -80°C before further Nanomate-LTQ mass spectrometry analysis.

Data acquisition and data processing
Before injection, the dried samples were re-suspended with 100μL methanol/chloroform (9:1)
(degassed with nitrogen). The samples were vortexed and centrifuged for 2 min at 16,100 rcf.
10μL were taken out and diluted with 90uL methanol/chloroform (9:1) containing 7.5mM
ammonium acetate. 20 ul sample volumes were pipetted into 96-well plates for analysis.

Mass spectrometric analysis was performed with an LTQ(Thermo Fisher Scientific, San
Jose, CA)equipped with a Nanomate robotic nano-flow ion source (Advion, Ithaca, NY). The
Nanomate cooling plate was set to 10°C, the Nanomate gas pressure to 0.4 psi and the voltage
to 2.0 kV, and the source was controlled by the instrument’s Chipsoft 6.3.2 software. The sam-
ples were aspirated robotically from the 96-well plate and infused into the mass spectrometer
through separate nozzles on an electrospray chip to avoid cross-contamination in comparison
to conventional nanoelectrospray [31].The mass scan ranged from 350Da to 1100Da via posi-
tive and negative mode with a 60 s acquisition time. Afterwards, a data-dependent MS/MS
method collected tandem mass spectra in positive and negative mode over a range of 10 min-
utes infusion time. In order to increase the number of MS/MS spectra for individual lipids, the
m/z range in the method was split from 350–450 Da, 450–750 Da, 750–850 Da and 850–1100
Da. Lipid species were annotated using the in-house LipidBlast library consisting of over
200,000 lipid mass spectra [32]. A precursor window of 0.4 Da and a product ion search win-
dow of 0.8 Da was used. Scoring was performed using the NIST MS Search GUI with imple-
mented dot product, reverse dot product and MS/MS probability matching. Hit scores of 999
presented optimal hits, hit scores lower than 400 were not considered. Lipid annotations were
also performed using MS2Analyzer [33]. The MSMS data from both positive and negative
modes were analyzed by MS2Analyzer including the calculated precursor ion masses, acyl side
chain masses. All lipid annotations were manually verified. Infusion mass spectra were aligned
using the Expressionist Refiner MS software (Genedata, Waltham, MA).Statistical evaluation
was performed using the Statistica data miner package (Statsoft Tulsa, v9).

Results and Discussion

Mass spectral data processing and lipid annotation
We have used the Genedata Expressionist for MS software to find, quantify and align mass
spectral ion traces even if masses slightly shifted during infusions (S1 Data). Results were
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compared to manual peak tracking and exporting using the mass spectrometer’s Xcalibur soft-
ware for randomly chosen ions for different time points and stress conditions (S1 and S2 Figs).
This direct comparison showed that the Expressionist for MS software correctly picked and
aligned all peaks at a fraction of the time needed for manual analysis in the Xcalibur software.
This automatic alignment procedure enabled processing hundreds of files comprising hun-
dreds of ion traces within minutes of total processing time.

Next, we set out to annotate individual precursor ions by lipid structures. Classical algal
lipid analysis involves transmethylation of complex lipids to fatty acid methyl ester (FAME)
and quantification of the individual fatty acyl groups by flame ionization detection (FID) or
mass spectrometry[34–36]. Although this method enables rapid overviews over fatty acyl con-
tents in algal lipids extraction, it provides no information on the nature of intact lipids and
potential differential regulation of specific lipid classes. Chip-based nanoelectrospray ioniza-
tion tandem mass spectrometry has been widely used as lipid analysis tool [37,38], especially
for high throughput lipidomics because the overall run times are in the range of one minute
per sample, much faster than transmethylations and GC-FID analysis.

We have employed chip-based nanoelectrospray direct infusion coupled to iontrap utilizing
data-dependent MS/MS scans in positive and negative mode to identify individual lipid species.
Overall, more than 2,500 MS/MS precursors were collected in positive mode and around 1,000
MS/MS spectra were acquired in negative mode, rendering the complete annotation of all mass
spectra by manual spectral interpretation impossible. Instead, we have aimed at using mass
spectral matching to authentic lipids in analogy to approaches conducted in GC/MS. Searching
public mass spectral databases, including MassBank (www.massbank.jp) with around 15,000
MS/MS spectra, the RIKENMSn Spectral Database for Phytochemicals (http://spectra.psc.
riken.jp/) with around 9,000 MS/MS spectra and Lipidmaps (http://www.lipidmaps.org/) [39]
yielded only few potential hits. Instead, we have used an in-house library of mass spectra that is
based on in-silico extension of lipid mass spectra by varying the acyl chain lengths and degree
of double bonds of a range of authentic lipid reference standards [40,41]. This in house MS/MS
library is called LipidBlast and contains more than 200,000 MS/MS spectra [32,41,42].MS/MS
spectra were also screened for lipid-specific mass spectral features such as product ions and
neutral losses using MS2Analyzer [33].

When both MS2Analyzer and LipidBlast searches were combined, overall 60 lipids were
unambiguously annotated in C. reinhardtii (Table 1).Among all the 60 annotated lipids, 27 lip-
ids were annotated using both LipidBlast and MS2Analyzer. While 11 lipids were only anno-
tated using LipidBlast queries and 22 lipids were only annotated usingMS2Analyzer. The low
mass accuracy of the instrument and stringent use of high match scores may explain the low
identification rates. Furthermore, isobaric interferences and ion suppression in direct infusion
mode may lead to overlapping peaks and mixed-compound tandem mass spectra. However,
the remaining identified compounds were annotated with high confidence. Fig 2 showed that
the experimental MS/MS spectra had good dot product matches with Lipidblast MS/MS
library. All head groups and acyls were confirmed by MS2Analyzer. Most of the lipids com-
monly described for C. Reinhardtii (Fig 1) were positively identified in this manner, including
DGTS, MGDG, DGDG, SQDG and TAG (Table 1). Among them, PG, PI, and SQDG were
detected in negative mode. MGDG, DGDG and SQDG are major components of photosyn-
thetic membranes which account for around 70% of total membrane in C. reinhardtii [27].
Extraplastidial membranes of C. reinhardtii do not contain phosphatidylcholine lipids, but
instead comprise of the non-phosphorous betaine lipid DGTS [25,26]. DGTS substitutes for
phosphatidylcholines (PC) as a major membrane component that is discussed to fulfill similar
functions for the overall membrane structure as PCs perform in other organisms [43]. Using
MS/MS analysis via positive ionization mode, betaine lipids are easily annotated by their
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Table 1. Annotated lipids in C. reinhardtii under nitrogen and sulfur stress conditions. The reverse dot product represents the level of confidence from
in silico-MS/MS library search. Compound annotations without reverse dot product were annotated using MS2Analyzer.

Experimental mass m/z Precursorm/z library Rev-Dot library Adduct Annotated Species

741.471 741.683 516 [M-H]- PG 34:4 (16:1/18:3)c

743.685 743.486 502 [M-H]- PG 34:3 (16:1/18:2)c

745.50 745.58 650 [M-H]- PG 34:2 (16:1/18:1)c

793.69 793.73 NA [M-H]- SQDG 32:0(C16:0/C16:0)b

815.68 815.74 NA [M-H]- SQDG 34:3(C18:3/C16:0)b

817.68 817.58 NA [M-H]- SQDG 34:2(C18:2/C16:0)b

819.72 819.77 NA [M-H]- SQDG 34:1(C18:1/C16:0)b

835.75 835.534 NA [M-H]- PI 34:1 (16:0/18:1)c

474.711 474.379 NA [M+H]+ LysoDGTS 16:0b

496.740 496.364 NA [M+H]+ LysoDGTS 18:3b

680.451 680.546 673 [M+H]+ DGTS 30:2 (14:2/16:0)c

704.882 704.546 868 [M+H]+ DGTS 32:4(16:0/16:4)c

706.91 706.562 915 [M+H]+ DGTS 32:3 (16:0/16:3)c

708.51 708.578 899 [M+H]+ DGTS 32:2 (16:0/16:2)c

732.37 732.578 900 [M+H]+ DGTS 34:4 (16:0/18:4)c

734.41 734.593 756 [M+H]+ DGTS 34:3 (16:0/18:3)c

736.32 736.609 773 [M+H]+ DGTS 34:2 (16:0/18:2)c

738.407 738.625 762 [M+H]+ DGTS 34:1 (16:0/18:1)c

748.90 748.609 869 [M+H]+ DGTS 35:3(16:0/19:3)c

750.76 750.625 880 [M+H]+ DGTS 35:2 (16:0/19:2)c

752.44 752.640 900 [M+H]+ DGTS 35:1 (16:0/19:1)c

754.56 754.5622 782 [M+H]+ DGTS 36:7 (18:3/18:4)c

756.20 756.578 857 [M+H]+ DGTS 36:6(18:3/18:3)c

758.68 758.5935 911 [M+H]+ DGTS 36:5(18:2/18:3)c

760.74 760.609 765 [M+H]+ DGTS 36:4 (18:1/18:3)c

760.600 760.609 NA [M+H]+ DGTS 36:4 (18:2/18:2)b

762.23 762.625 796 [M+H]+ DGTS 36:3 (18:1/18:2)c

762.550 762.625 NA [M+H]+ DGTS 36:3 (18:0/18:3)b

764.866 764.640 784 [M+H]+ DGTS 36:2 (18:1/18:1)c

764.29 764.640 896 [M+H]+ DGTS 36:2 (18:0/18:2)a

772.922 772.609 900 [M+H]+ DGTS 37:5 (18:3/19:2)a

774.939 774.625 874 [M+H]+ DGTS 37:4 (18:3/19:1)a

776.963 776.6404 863 [M+H]+ DGTS 37:3 (16:0/21:3)a

786.762 786.6248 903 [M+H]+ DGTS 38:5 (18:3/20:2)a

788.906 788.6404 911 [M+H]+ DGTS 38:4 (18:3/20:1)a

802.845 802.6561 848 [M+H]+ DGTS 39:4 (18:1/21:3)a

762.47 762.516 NA [M+H]+ MGDG 34:7(16:4/18:3)b

798.42 798.609 NA [M+H]+ MGDG 36:3(16:0/20:3)b

799.8028 799.53 999 [M+Na]+ MGDG 36:5 (18:2/18:3)a

929.801 929.524 NA [M+Na]+ DGDG 34:7(16:3/18:4)b

931.23 931.539 NA [M+Na]+ DGDG 34:6(16:3/18:3)b

936.95 936.662 NA [M+NH4]+ DGDG 34:1(16:0/18:1)b

937.20 937.5865 869 [M+Na]+ DGDG 34:3 (16:0/18:3)c

939.83 939.608 810 [M+Na]+ DGDG 34:2 (16:0/18:2)c

818.030 817.632 NA [M+Na]+ TAG 48:6(16:2/16:2/16:2)b

868.688 868.739 NA [M+NH4]+ TAG 52:6(16:0/18:2/18:4)b

(Continued)
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dominant product ion m/z 236 [41,44]. Neutral loss analysis from the precursor ions accounted
for the enumeration of different fatty acid acyl chains to identify individual DGTS species. For
example, a precursor750.76 Da was detected as precursor for an experimental MS/MS spec-
trum which matched very well the LipidBlast MS/MS spectrum of DGTS (16:0/19:2) and its
precursor ion [M+H]+m/z750.625. In order to validate this LipidBlast match, we performed a
manual spectral interpretation of the experimental MS/MS spectrum. The experimental MS/
MS fragment ion m/z 732.6 represented a water loss from the precursor ion; m/z 512.4 and m/z
494.2represented a neutral loss of a palmitoyl acyl chain (256.7 Da) from the intact precursor
ion and its water loss fragment, respectively; fragment ions m/z 474.5 and 456.4the loss of the
odd-chain nonadecanoyl group with two unsaturated bonds (294.4 Da; C19:2) and finally, m/z
235.9 represented the residual mass of the DGTS backbone and head group after the loss of
both fatty acid acyl chains. We found this mass spectral interpretation in clear agreement with
the automatic Lipidblast and MS2Analyzer annotation. However, MS/MS analysis alone does
not enable assigning accurate stereochemical and regiospecific positional isomers; hence, final
assignments of sn1/sn2 positions and the correct positioning of the unsaturated double bonds
is not possible without using further techniques.

Thylakoid lipids in most vascular plants and algae are synthesized either by the chloroplast
(prokaryotic pathway) or by the endoplasmic reticulum (eukaryotic pathway) [45]. However,
unlike in higher plants, C. reinhardtii employs its own autonomous biosynthetic pathway by
assembling galactoglycero lipids in the chloroplast. Therefore, MGDG, DGDG and SQDG in
C. reinhardtii contain exclusively C16 fatty acids at the sn-2position of the glycerol backbone
[25,46]. Correspondingly, SQDG and DGDG lipids are all presented with palmitoyl residues in
the sn-2position (Table 1). We found the dipalmitolyl lipid SQDG (16:0/16:0) as predominant
SQDG in C. reinhardtii in accordance to previously published results [25]. DGTS lipids should
contain mostly octadecanoyl fatty acids in the sn-2 position [25]. Our study demonstrated that
some DGTS lipids may also comprise C19 and C20 fatty acids in the sn-2 position, while we
confirmed that most of DGTS lipids indeed had C18-residues in the sn-2 position. More

Table 1. (Continued)

Experimental mass m/z Precursorm/z library Rev-Dot library Adduct Annotated Species

866.725 866.818 NA [M+NH4]+ TAG 52:7(16:0/18:3/18:4)b

868.517 868.739 914 [M+NH4]+ TAG 52:6(16:0/18:3/18:3)c

941.804 941.97 800 [M+Na]+ TAG 56:0(16:0/20:0/20:0)c

955.830 955.773 NA [M+Na]+ TAG 58:7(16:0/20:1/22:6)b

957.820 957.789 NA [M+Na]+ TAG 58:6(16:0/20:1/22:5)b

959.910 959.804 NA [M+Na]+ TAG 58:5(16:0/20:0/22:5)b

958.8274 958.93 948 [M+NH4]+ TAG 58:3(18:2/20:0/20:1)a

970.00 969.883 NA [M+Na]+ TAG 58:0(18:0/20:0/20:0)b

983.8795 983.90 991 [M+Na]+ TAG 59:0(19:0/20:0/20:0)a

986.8871 986.94 901 [M+NH4]+ TAG 60:3(18:1/20:1/22:1)c

997.8779 997.91 999 [M+Na]+ TAG 60:0(20:0/20:0/20:0)c

1011.834 1011.93 984 [M+Na]+ TAG 61:0(20:0/20:0/21:0)a

1013.549 1013.851 NA [M+Na]+ TAG 62:6(20:0/20:0/22:6)b

1015.980 1015.867 NA [M+Na]+ TAG 62:5(20:0/20:0/22:5)b

a: represented these lipids only can be annotated using Lipidblast;
b: represented these lipids only can be annotated using MS2Analyzer;
c: represented these lipids can be annotated by both databases.

doi:10.1371/journal.pone.0137948.t001
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surprisingly, we detected clear evidence for odd-chain fatty acyl groups (C17 and C21)in neu-
tral lipids, triacylglycerols. TAGs with C19 and C17 acyl chains were founded in C. reinhardti
[8].We did not observe PE that were reportedly detected by thin layer chromatograph (TLC) in
C. reinhardtii [25,26,28]. Vieler et al [27] reported that PE constitute less than 5% of the total
content of complex lipids in C. reinhardtii. It is possible that such minor components might
have remained undetected in our direct infusion approach, for example due to isobaric
interferences.

Effect of nitrogen and sulfur deprivation on growth rates and lipidomic
phenotypes of C. reinhardtii
Growth curves of C. reinhardtii CC125 showed that cell growth rates were unaffected by N-lev-
els of 75% or 50% of normal condition (TAP, 100%N) for at least 18 hours, about 3 cell cycles
(Fig 3). The same results were obtained for C. reinhardtii CC125 grown under different sulfur
levels in comparison to normal sulfur levels. However, cell growth would be slightly different
after 18h and cell numbers would grow to 1.5×107/ml when C. reinhardtii grows under normal

Fig 2. Annotation of complex lipids in algae bymatching nanoelectrospray-linear ion trap MS/MS low resolution fragment spectra against the UC
Davis LipidBlast library.Mass accuracy is <0.4 Da. Upper left panel: Annotation of the MS/MS spectrum from precursor m/z 750.9 Da as betaine lipid
DGTS 35:2 (16:0/19:2); Upper right panel: Annotation of betaine lipid DGTS 36:2 (18:0/18:2); Lower left panel: Annotation of triacylglycerol TAG 56:0 (16:0/
20:0/20:0); Lower right panel: Annotation of triacylglycerol TAG 61:0 (20:0/20:0/21:0).

doi:10.1371/journal.pone.0137948.g002
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condition. Inversely, C. reinhardtii growing under nutrient deprivation media turned to grow
slowly after 18h compared to TAP media. We have not completely starved cultures of nitrogen
or sulfur supply, as it is well known that cell division is halted when C. reinhardtii cultures are
depleted of nitrogen containing media[21,35]. In contrast, in our experimental design we stud-
ied the modulation of lipid composition under stress conditions under which algal cells were
still alive and actively dividing.

Overall profiles clearly showed the effect of deprivation of both nitrogen and sulfur contents
in the media (S3 Fig). Unsupervised Principal Component Analysis (PCA) readily distin-
guished the lipidomic profiles under normal growth conditions from any of the two stress con-
ditions. Under nitrogen deprivation, an additional clear separation of profiles of early time
points and late growth time points were observed. For sulfur deprivation, unrelated variance in
the data set was found to be higher than for the nitrogen experiment, and only vectors 2 and 3
(that explained less amount of the total variance than vector 1) were related to parameters of
the study design and separated the 100% complete sulfur conditions from the 75% and 50%
sulfur-depleted growth media. In order to get clearer lipidomic phenotype clusters we per-
formed supervised Partial Least Square multivariate regression analysis (PLS) by ignoring vari-
ance in the data set that was unrelated to either growth media conditions or growth time
points. PLS score plots more readily visualized the extent of lipidomic differences between the
growth conditions and time points (Fig 4). For both nitrogen and sulfur deprivation, lipidomic
phenotypes were found to be drastically different from normal TAP media growth. Similarly,
for both stress conditions the partly reduced nutrient content (75%) was indistinguishable
from the more drastically reduced nutrient content (50%). On top of the differentiation of lipid
clusters under nutrient stress, the PLS graphs (Fig 4) also clearly show temporal differences in
the composition of complex lipids in C. reinhardii between early-growth and late-growth time
points. This temporal pattern was found to be more pronounced and faster for nitrogen stress
conditions than for reduced sulfur contents, reflecting the fact that many complex lipids
comprise nitrogen in their structure which might lead to earlier remodeling in overall lipid
compositions.

Besides the fact of overall modulation of lipid compositions, it is important to individually
assess metabolic trends in different lipid classes under nutrient stress. Nitrogen is the most crit-
ical growth-limiting nutrient in photosynthetic organisms. The effect of nitrogen limitation on
the fatty acid composition has been studied in C. reinhardtii wild-type and starch-less mutant,

Fig 3. Growth curves of C. reinhardtii after transfer to nitrogen-deprived (left panel) or sulfur-deprivedmedia (right panel). The values are averages
±SE (standard deviation) for six replicate culture flasks.

doi:10.1371/journal.pone.0137948.g003
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BAF-J5 [35]. It was found that the total fatty acids increased in wild-type and mutants, and the
mutants produced significant levels of 16:0, 18:1 (9), 18:2 (9,12) and 18:3 (9,12,15) and low lev-
els of long chain fatty acids under nitrogen deprivation [35]. Under nitrogen limitation condi-
tion, many algal species including C. reinhardtii can accumulate neutral lipids, mainly in the
form of TAG, as a storage of energy and carbon in response to stress conditions [47]. Using
thin layer chromatography, the SQDG, DGTS and PE lipids remained largely unaltered after
nitrogen withdrawal [46]. However, there were no reports about the regulation of individual
lipid species in algae under nitrogen deprivation condition.

As demonstrated in Fig 5, we observed neutral lipids with a high degree of unsaturation,
specifically TAG58:3 (18:2/20:0/20:1) and TAG 60:3 (18:1/20:1/22:1), to be increased under
reduced nitrogen conditions compared to normal media-TAP (100% N). These findings were
in agreement with previous studies reporting that C. reinhardtii accumulates neutral lipids
under acute nitrogen starvation conditions [6,7]. Conversely, we found saturated triacylglycer-
ols, specifically TAG 60:0 (20:0/20:0/20:0) and TAG 61:0 (20:0/20:0/21:0) to be significantly
down-regulated under nitrogen deprivation conditions (Fig 5). This finding suggests differen-
tial activities of lipid desaturases in C. reinhardtii under nitrogen stress which might yield more
fluid and permeable membranes. A substantiation of this novel hypothesis requires accurate
quantification of more triacylglycerol species and detailed enzymatic studies.

DGTS homoserine ether lipids are very important for C. reinhardtii. This lipid class has
been suggested to act as a substitute for phosphatidylcholines. DGTS 36:4 (18:1/18:3) and
DGTS 34:4 (16:0/18:4) were significantly increased under nitrogen deprivation, especially at
late exponential growth time points (Fig 5). Similar trends were observed for DGTS 36:3 (18:1/
18:2), DGTS 36:2 (18:1/18:1), DGTS 34:3 (16:0/18:3), DGTS 34:2 (16:0/18:2), DGTS 34:1 (16:0/
18:1) and DGTS 34:0 (16:0/18:0) (S4 Fig). However, DGTS 39:4 (18:1/21:3) was found
decreased under nitrogen deprivation conditions and other homoserine lipids remained

Fig 4. Partial Least Square supervisedmultivariate analysis of lipids under nutrient deprivation conditions at time points ranging from 1h, 4h, 10h,
18h and 26h.Closed symbols reflect samples taken at early exponential growth rates, open symbols denote samples harvested at late growth stages. Left
panel: Lipidomic phenotypes of C. reinhardtii cells grown under normal nitrogen-containing media (TAP, 100%N) or under reduced nitrogen conditions
(N75%, blue, and N50%, red). Right panel: Lipidomic phenotypes of C. reinhardtii cells grown under normal sulfur-containing media (TAP, 100%S) or under
reduced sulfur conditions (S75%, blue, and S50%, red).

doi:10.1371/journal.pone.0137948.g004
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unaltered, specifically DGTS 35:3 (16:0/19:3) and DGTS 35:2 (16:0/19:2). A previous study
showed that the amount of DGTS remained largely unaltered at 48h after nitrogen withdrawal
[46]. Our study demonstrates a more nuanced view on DGTS metabolism. It appears that
while total DGTS contents may not be altered under nitrogen stress conditions, there is a dif-
ferential remodeling of even-chain DGTS in opposite to DGTS species that comprised odd-
chain fatty acyl groups. In addition, a range of DGTS lipids showed a clear temporal regulation
even under nitrogen replete conditions.

Sulfur (S), is a further macro-nutritional element critical for algal growth. Its effect on the
acidic lipids in thylakoid membranes has been studied in C. reinhardtii [13,48,49]. We found
the sulfolipid SQDG 32:0 (16:0/16:0) to be decreased under sulfur-deprived conditions relative
to normal TAP media (Fig 6). This finding is in accordance with previous studies demonstrat-
ing that sulfur depletion can cause degradation of SQDG chloroplast membrane lipids in C.
reinhardtii [48,49]. SQDG was also found to be degraded in order to supply sulfur for the
synthesis of proteins as early as 6 h after sulfur withdrawal[48].Triacylglycerol regulation
showed similar trends under sulfur stress as under nitrogen deprivation. Specifically, the highly

Fig 5. Univariate box-whisker plots of triacylglycerol and betaine lipid species inC. reinhardtii in temporal response to nitrogen deprivation.
Arithmetic mean values with ±S.E. as box and ±1.96 S.E. as whiskers.

doi:10.1371/journal.pone.0137948.g005
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desaturated TAG 58:3 (18:2/20:0/20:1) increased in 75%S and 50%S media compared to nor-
mal media, whereas the completely saturated TAG 60:0(20:0/20:0/20:0)decreased under sulfur
stress. This finding shows that the potential difference in desaturase activities may be a generic
stress response, rather than specific to the lack of a certain nutrient.

When C. reinhardtii exposed to sulfur deprivation, DGTS homoserine lipids did not show
significant changes to the stress conditions (Fig 6). However, some DGTS lipids showed clear
temporal changes along the growth curve. For the homoserine lipids DGTS 36:4 (18:1/18:3)
and DGTS 34:4 (16:0/16:4), relative contents increased over time whereas DGTS (14:2/16:0)
contents decreased almost linearly (Fig 6). Interestingly, there were no changes in DGTS 35:3
(16:0/19:3), DGTS 35:2 (16:0/19:2) and DGTS 35:1 (16:0/19:1) at different time points under
sulfur deprived or normal condition (S5 Fig). The observed temporal trends of DGTS lipids
were also found as high-impact metabolites driving the differentiation of overall lipidomic phe-
notypes in the PLS graphs between early stage (1-10h) and late stage (18-26h) growth (Fig 3).
We suggest that DGTS lipids, constituting a major component of algal membrane, remodels in
a temporal manner in response to overall cell density in addition to nuanced remodeling of
odd-chain and even-chain lipids under nitrogen stress conditions.

Fig 6. Univariate box-whisker plots of triacylglycerol, betaine and sulfoquinovosyl lipid species inC. reinhardtii in temporal response to sulfur
deprivation. Arithmetic mean values with ±S.E. as box and ±1.96 S.E. as whiskers.

doi:10.1371/journal.pone.0137948.g006
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Conclusion
We have shown that chip-based nanoelectrospray direct infusion coupled to iontrap mass
spectrometry can rapidly profile lipid extracts in algal extracts, specifically demonstrated for C.
reinhardtii. Identification of major lipid species by tandem mass spectral fragment analysis
concurred with findings reported by much more laborious thin layer chromatography/GC-FID
analysis methods. Despite the caveats of relative quantification and the potential effects of ion
suppression, multivariate and univariate analyses clearly showed that nanoelectrospary-MS
lipidomic assays can directly be used for analyzing overall trends in lipid remodeling, including
the extent and temporal basis of lipid regulation. Importantly, we demonstrated that under
nutrient deprivation, unlike under complete nutrient starvation, lipid remodeling occurs in a
specific manner for different lipid classes, different degree of desaturation level of acyl groups
and different impact on odd-chain versus even-chain lipids. We suggest this tool to be easily
used for high throughput screening of algal strains in biotechnology and biofuel production.

Supporting Information
S1 Data. Data file for lipidomic data, mass spectra metadata. Supplementary data set lists
annotated lipids and all mass spectra under nutrient deprivation conditions at different time
points.
(XLSX)

S1 Fig. Evaluation of alignment results from direct infusion mass spectrometry experi-
ments comparing Genedata’s Expressionist Refiner MS software to ThermoFisher’s instru-
ment software Xcalibur for M/Z 734.91.
(TIF)

S2 Fig. Evaluation of alignment results from direct infusion mass spectrometry experi-
ments comparing Genedata’s Expressionist Refiner MS software to ThermoFisher’s instru-
ment software Xcalibur for M/Z 1011.83.
(TIF)

S3 Fig. Unsupervised Principal Component Analysis clustering lipidomic profiles under
sulfur deprivation (left panel) and nitrogen deprivation (right panel). Black = TAP normal
medium, blue labels: 25% reduction in nutritional input (N or S), red labels: 50% reduction in
nutritional input in media (N or S).
(TIF)

S4 Fig. Univariate box-whisker plots of individual homoserine (betaine) lipid species in C.
reinhardtii in temporal response to nitrogen deprivation. Arithmetic mean values with ±S.E.
as box and ±1.96 S.E. as whiskers.
(TIF)

S5 Fig. Univariate box-whisker plots of individual homoserine (betaine) lipid species in C.
reinhardtii in temporal response to sulfur deprivation. Arithmetic mean values with ±S.E. as
box and ±1.96 S.E. as whiskers.
(TIF)
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