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ABSTRACT	OF	DISSERTATION	

Genomics	of	Adaptation	in	Drosophila	Experimental	Evolution	

By		

Mark	A.	Phillips	

Doctor	of	Philosophy	in	Biological	Sciences		

University	of	California,	Irvine,	2018	

Professor	Michael	R.	Rose,	Chair	

	

The	combination	of	experimental	evolution	and	next-generation	sequencing,	termed	E&R,	

has	emerged	as	a	powerful	tool	for	parsing	the	genetic	foundations	of	adaptation.	Rapid	

progress	has	been	made	in	the	genomic	analysis	of	adaptation	in	asexual	microbial	

populations.		Such	adaptation	chiefly	features	“selective	sweeps”	in	which	new	

advantageous	mutations	arise	at	low	frequency	and	proceed	to	fixation.		If	this	is	

representative	of	adaptation	in	outbreeding	sexual	populations,	then	we	can	understand	

the	genetic	basis	of	long-term	adaptation	using	microbial	findings	alone.	However,	results	

from	early	Drosophila	E&R	studies	have	failed	to	support	this	notion;	instead	adaptation	

appears	to	be	primarily	fueled	by	standing	genetic	variation.	But	since	these	studies	were	

limited	in	duration,	little	is	known	about	the	long-term	dynamics	of	experimental	evolution	

in	Drosophila.	My	work	addresses	this	issue	by	comparing	patterns	of	genomic	variation	

and	differentiation	in	the	dozens	of	experimentally	evolved	populations	D.	melanogaster	

maintained	in	the	Rose	Lab	at	UC,	Irvine.	This	experimental	radiation	dates	back	to	the	

1970s,	and	features	groups	of	replicate	populations	that	have	been	subjected	to	various	

selection	regimes	for	dozens	to	hundreds	of	generations.	Using	a	group	of	populations	



 xi 

maintained	on	a	laboratory	domestication	regime	for	~1000	generations,	I	find	that	

adaptation	in	sexual	E&R	is	indeed	characterized	by	a	lack	of	fixation	and	populations	

actually	harbor	more	genetic	variation	than	conventional	population	genetic	theory	

predicts	(Chapter	1).	Work	comparing	newly-derived	and	long-standing	populations	

subjected	to	the	same	selections	pressures	led	me	to	conclude	that	adaptation	can	be	fast	

and	highly	repeatable	at	the	level	of	genotypes	and	phenotypes	due	to	standing	genetic	

variation,	and	it	is	not	dependent	on	the	appearance	beneficial	de	novo	mutation	(Chapter	

2).	Studying	populations	that	were	previously	subjected	to	intense	selection	for	desiccation	

resistance	and	their	controls	led	me	to	conclude	that	evolutionary	history	does	not	have	

major	long-lasting	impacts	in	Drosophila	E&R	studies	(Chapter	3).	Lastly,	using	findings	

from	two	starvation-selection	experiments	performed	at	different	population	sizes,	I	show	

that	population	size	is	an	important	experimental	parameter	to	maximize	in	studies	aimed	

at	deciphering	the	genetic	architecture	of	complex	phenotypes	(Chapter	4).
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INTRODUCTION	

	 Broadly,	the	field	of	evolutionary	biology	is	primarily	concerned	with	studying	and	

characterizing	the	evolutionary	processes	responsible	for	the	patterns	of	diversity	found	in	

nature.	Experimental	evolution	is	an	approach	that	seeks	to	characterize	the	

microevolutionary	dynamics	underlying	these	processes	in	real	time	by	studying	

populations	across	multiple	generations	as	they	evolve	in	response	to	deliberately	imposed	

conditions	(Rose	and	Garland	2009).	The	earliest	well-documented	study	in	the	field	dates	

back	to	1878	when	William	Dallinger	cultured	unicellular	organisms	in	an	incubator	for	

several	years	while	gradually	increasing	the	temperature	from	60	oF	to	158	oF	(Dallinger	

1887).	His	findings	provided	direct	evidence	of	Darwinian	adaptation	by	showing	that	

while	early	cultures	could	not	survive	at	158	oF,	cultures	present	at	the	end	of	the	

experiment	were	largely	unaffected	by	such	high	temperature.		

	 In	the	decades	since	Dallinger’s	pioneering	work,	experimental	evolution	has	been	

chiefly		employed	to	further	our	understanding	of	evolutionary	processes	associated	with	

microbial	ecology	(Chao	et	al.	1977;	Chao	and	Levin	1981;	Crill	et	al.	2000;	Kaltz	and	Bell	

2002;	Turner	and	Chao	1999),	life	history	evolution	(Mueller	and	Ayala	1981;	Luckinbill	et	

al.	1984;	Rose	1984;	Service	et	al.	1988;	Chippendale	et	al.	1997),	and	evolutionary	

physiology	(Graves	et	al.	1992;	Rose	et	al.	1992;	Gibbs	et	al.	1997;	Djawdan	et	al.	1998;	

Swallow	et	al.	1998;	Swallow	et	al.	1999;	Roff	et	al.	1999;	Roff	and	Fairbairn	2002).	

However,	with	the	advent	of	next-generation	sequencing,	experimental	evolution	has	

emerged	as	a	powerful	tool	for	parsing	the	genetic	foundations	of	adaptation	(Long	et	al.	

2015;	Schlötterer	et	al.	2015).	The	use	of	this	approach,	termed	evolve	and	resequence	
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(“E&R”)	by	Turner	et	al.	(2011),	to	generate	insights	into	the	genomics	of	adaptation	is	the	

primary	focus	of	my	thesis.		

	 The	goal	of	my	thesis	is	to	generate	insights	into	the	genomics	of	adaptation	in	

sexually	reproducing	populations.	Unlike	early	E&R	studies	featuring	strictly	asexual	

populations	where	adaptation	was	found	to	be	characterized	by	the	fixation	of	beneficial	

mutations	and	hard	selective	sweeps	(Barrick	et	al.	2009;	Tenaillon	et	al.	2012),	early	E&R	

studies	using	sexual	populations,	typically	D.	melanogaster,	concluded	that	adaptation	was	

primarily	driven	by	standing	genetic	variation	and	characterized	by	a	lack	of	genetic	

fixation	(Teotónio	et	al.	2009;	Burke	et	al.	2010;	Turner	et	al.	2011;	Orozco-terWengel	et	al.	

2012,	Tobler	et	al.	2014).	However,	these	early	E&R	studies	in	sexual	populations	lacked	

the	replication	and	generations	under	selection	seen	in	their	asexual	counterparts.	As	such,	

there	were	certain	limits	to	what	researchers	could	argue	based	on	the	strength	of	their	

experiments.	For	instance,	is	adaptation	in	sexual	populations	really	characterized	by	soft	

sweeps	and	a	lack	of	genetic	fixation	(Burke	2012)?	Or	do	alleles	simply	not	have	time	to	fix	

given	the	duration	of	most	E&R	studies	with	sexual	populations?		Here	I	seek	to	address	

such	concerns	using	the	dozens	of	experimentally	evolved	populations	Drosophila	

melanogaster	maintained	in	the	Rose	Lab	at	the	University	of	California,	Irvine	

	 The	Rose	Lab’s	experimental	radiation	dates	back	to	the	1970s,	and	features	groups	

of	replicate	populations	that	have	been	subjected	to	various	selection	regimes	for	dozens	to	

hundreds	of	generations.	Using	a	group	of	population	subjected	to	the	same	laboratory	

domestication	regime	for	nearly	~1000	generations,	I	characterize	the	long-response	to	

selection	(Chapter	1).	Following	this,	I	use	newly-derived	(dozens	of	generations	under	

selection)	and	long-standing	(hundreds	of	generations	under	selection)	populations	to	



 3 

compare	and	contrast	long	and	short-term	responses	to	selection	(Chapter	2).	Next,	I	

examine	the	impact	of	evolutionary	history	in	sexual	E&R	studies	using	populations	that	

were	previously	subjected	to	intense	selection	for	desiccation	resistance	(Chapter	3).	

Lastly,	I	empirically	test	how	population	size	impacts	the	power	to	detect	causal	variants	in	

sexual	E&R	studies	using	findings	from	two	starvation	selection	experiments:	one	with	

moderately	outbred	populations,	and	the	other	with	populations	where	population	size	

was	deliberately	compressed	(Chapter	4).		
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CHAPTER	1	

Genome-wide	Analysis	of	Long-term	Evolutionary	Domestication	in	Drosophila	

melanogaster	

ABSTRACT	 	

Experimental	evolutionary	genomics	now	allows	biologists	to	test	fundamental	

theories	concerning	the	genetic	basis	of	adaptation.	We	have	conducted	one	of	the	longest	

laboratory	evolution	experiments	with	any	sexually-reproducing	metazoan,	Drosophila	

melanogaster.	We	used	next-generation	resequencing	data	from	this	experiment	to	examine	

genome-wide	patterns	of	genetic	variation	over	an	evolutionary	time-scale	that	approaches	

1,000	generations.	We	also	compared	measures	of	variation	within	and	differentiation	

between	our	populations	to	simulations	based	on	a	variety	of	evolutionary	scenarios.	Our	

analysis	yielded	no	clear	evidence	of	hard	selective	sweeps,	whereby	natural	selection	acts	

to	increase	the	frequency	of	a	newly-arising	mutation	in	a	population	until	it	becomes	fixed.	

We	do	find	evidence	for	selection	acting	on	standing	genetic	variation,	as	independent	

replicate	populations	exhibit	similar	population-genetic	dynamics,	without	obvious	fixation	

of	candidate	alleles	under	selection.	A	hidden-Markov	model	test	for	selection	also	found	

widespread	evidence	for	selection.	We	found	more	genetic	variation	genome-wide,	and	less	

differentiation	between	replicate	populations	genome-wide,	than	arose	in	any	of	our	

simulated	evolutionary	scenarios.		
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INTRODUCTION	

The	genetic	basis	of	adaptation	has	historically	been	a	major	point	of	contention	

among	evolutionary	biologists.	In	recent	years,	combining	genome-wide	sequencing	and	

experimental	evolution	has	emerged	as	a	powerful	method	for	parsing	the	genetic	

underpinnings	of	adaptation	(Burke	et	al.	2010;	Turner	et	al.	2011;	Tenaillon	et	al.	2012;	

Schlötterer	et	al.	2014).	Termed	the	“evolve	and	resequence”	(E&R)	approach,	these	

experiments	involve	sequencing	laboratory	populations	that	have	been	exposed	to	clearly	

defined	selective	pressures	in	the	hopes	of	making	direct	connections	between	patterns	of	

genotypic	and	phenotypic	change	(Long	et	al.	2015).	In	the	case	of	largely	or	wholly	asexual	

populations,	genome-wide	sequencing	has	been	performed	on	clones	derived	from	single	

individuals	after	many	generations	of	adaption	to	novel	conditions	(Tenaillon	et	al.	2012;	

Barrick	et	al.	2009).		Since	such	asexual	populations	are	expected	to	undergo	successive	

rounds	of	selective	sweeps	that	purge	genetic	variation	genome-wide	(Burke	2012),	this	is	a	

reasonable	approach	to	the	characterization	of	chiefly	clonal	evolutionary	processes.	

In	the	case	of	outbreeding	sexual	species,	such	as	Drosophila	melanogaster,	the	more	

common	sequencing	strategy	in	E&R	experiments	has	been	to	pool	multiple	individuals	

within	or	across	evolving	replicated	laboratory	populations(Burke	et	al.	2010;	Orozco-

terWengel	et	al.	2012).		This	is	often	referred	to	as	the	“pool-seq”	approach	(Schlötterer	et	

al.	2014).	Results	from	E&R	experiments	in	outbreeding	sexual	species	using	this	pool-seq	

approach	have	revealed	abundant	genetic	variation	genome-wide,	and	suggest	that	

adaptation	is	primarily	due	to	selection	on	standing	genetic	variation	(Schlötterer	et	al.	

2014).	However,	as	most	of	those	studies	typically	feature	populations	with	relatively	small	

effective	population	sizes	that	have	been	subjected	to	only	a	few	dozen	generations	of	
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selection,	there	is	a	limit	to	the	conclusions	that	can	be	drawn	from	them	regarding	the	

relative	importance	of	selective	sweeps	versus	selection	acting	on	standing	genetic	

variation	(Burke	2012;	Hermisson	and	Pennings	2005;	Pennings	and	Hermisson	2006;	

Przeworski	et	al.	2005),	particularly	as	selective	sweeps	are	likely	to	take	much	longer	than	

the	few	dozens	of	generations	commonly	used	in	selection	experiments	with	metazoa,	as	

opposed	to	experimental	evolution	with	microbes	(Barrick	et	al.	2009).	

Genome-wide	sequencing	of	genetic	variation	present	in	experimentally	evolving	

sexual	populations	after	many	generations	of	selection	remains	of	interest	as	a	method	for	

addressing	the	relative	importance	of	selective	sweeps,	particularly	from	the	standpoint	of	

alleles	being	driven	to	fixation.	Hitchhiking	effects	arising	from	successive	selective	sweeps	

are	not	expected	to	purge	genetic	variation	genome-wide	in	sexual	populations	

immediately	(Burke	2012;	Maynard	Smith	and	Haigh	1974).	But	sufficiently	many	such	

selective	sweeps	acting	in	conjunction	with	reductions	in	heterozygosity	resulting	from	

background	selection	and	genetic	drift	conceivably	could	progressively	purge	genetic	

variation,	given	the	moderately	small	population	sizes	commonly	used	in	experimental	

evolution	with	sexual	species	(Mueller	et	al.	2013).	The	data	analyzed	by	Burke	et	al.	

(2010)	do	not	show	a	widespread	purging	of	genetic	variation	in	populations	that	had	

evolved	in	the	lab	for	some	decades.	However,	save	for	a	single	replicate	sequenced	

individually,	this	study	featured	data	generated	from	pooling	across	replicates,	which	could	

have	potentially	masked	genetic	fixation	in	individual	replicate	populations.		This	raises	the	

question	whether	genome-wide	sequencing	of	independently	evolving,	replicate,	sexual	

populations	that	have	been	maintained	in	the	lab	for	hundreds	of	generations	will	indeed	
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show	a	pattern	of	generally	purged	genetic	variation	when	these	populations	are	

resequenced	separately.	

Here	we	show	that	such	long-evolved	moderate-sized	sexual	populations	do	not	

exhibit	the	general	lack	of	genetic	variation	that	is	characteristic	of	long-evolved	clonal	

populations.		Instead,	after	sequencing	five	independent	replicate	populations	sharing	a	

common	selection	regime,	and	more	than	900	generations	of	sustained	directional	

selection,	we	find	widespread	maintenance	of	genetic	variation	genome-wide.	While	it	

could	be	argued	we	still	do	not	have	sufficient	generations	of	selection	or	population	sizes	

large	enough,	our	study	features	the	best	data	collected	from	laboratory	evolution	to	date	

with	respect	to	the	long-term	evolution	of	patterns	of	genetic	variation	in	sexually	

reproducing	populations	of	multicellular	eukaryotes.	Furthermore,	we	compare	measures	

of	variation	within	and	differentiation	between	our	populations	to	simulated	data	from	a	

number	of	evolutionary	scenarios.	We	consistently	find	that	there	is	more	variation	

maintained	in	our	populations,	and	less	differentiation	between	replicate	populations,	than	

is	found	in	any	of	the	evolutionary	scenarios	we	simulated.	Lastly,	we	look	at	patterns	of	

genetic	variation	and	the	frequency	distribution	of	genetic	variation	to	test	for	selective	

sweeps.			

MATERIALS	AND	METHODS	

Experimental	material	

The	novel	experimental	material	analyzed	here	is	pooled	genomic	DNA	obtained	

from	each	of	the	five	“B”	populations	maintained	in	the	Rose	laboratory	(Rose	1984,	Rose	

et	al.	2003).		These	five	B	populations	were	founded	in	February	1980	from	a	single	

generation	of	the	“IV”	stock	studied	by	Rose	and	Charlesworth	(1980	and	1981),	which	was	
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in	turn	founded	in	August	1975	from	a	sample	of	200	wild-caught	Drosophila	melanogaster	

females	obtained	by	Phillip	Ives	from	his	long-studied	South	Amherst,	Massachusetts	

endemic	population	(Ives	1970).	From	their	first	founding,	IV	and	B	populations	have	been	

cultured	using	14-day	discrete	generations,	with	mixing	of	flies	across	all	culture	vessels	

within	replicate	populations,	at	temperatures	of	23-25	degrees	Celsius.	Effective	

populations	size	(Ne)	are	around	~1000	based	on	calculations	from	demographic	data	

(Mueller	et	al.	2013).	

The	B	populations	were	pooled	and	sampled	for	sequencing	at	generation	785	from	

their	founding	in	1980,	in	March	2010,	though	this	was	after	a	total	of	915	generations	of	

lab	domestication	since	Ives	supplied	the	wild-caught	females	for	founding	the	laboratory	

IV	stock.	From	August	of	1975	to	June	of	1981,	the	IV	and	B	populations	were	cultured	

using	corn	meal	based	medium	in	16	glass	milk	pint	bottles	per	population,	with	12L:12D	

light	exposure.	From	June	1981	to	March	2010,	the	B	populations	sequenced	here	were	

cultured	in	40	shell	vials	at	densities	of	60-80	eggs	per	vial,	yielding	50-75	adults	per	vial.	

This	equates	to	around	a	minimum	census	size	of	2000	each	generation.	During	this	period,	

these	B	populations	were	cultured	using	banana-molasses	medium	with	24L:0D	light	

exposure	(Rose	1984).		

The	pooled	genomic	DNA	was	obtained	by	isolating	250	female	flies	from	each	of	the	

five	population	replicates	of	the	B	flies,	with	harvesting	ten	days	after	the	pupal	stage,	using	

the	Gentra	Puregene	Cell	Kit	(Qiagen,	Valencia,	CA)	according	to	standard	protocol,	after	

maceration	of	the	fly	tissues	using	Dounce	Tissue	Grinders	(Daigger,	Vernon	Hill,	IL).	

Genomic	DNA	concentrations	and	purities	of	the	samples	were	assayed	by	DNA	

spectrophotometer.	Size	distributions	were	visualized	by	low	agarose	gel	electrophoresis	
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with	DNA	size	markers.	Genomic	DNAs	were	stored	at	–20°	C	before	shipment	to	Beckman	

Coulter	(Brea,	CA)	for	Illumina	paired	end	sequencing.	Reads	were	76	bp	in	length.	The	

fastq	files	used	in	our	analyses	are	available	through	NCBI	SRA	(BioProject	ID:	

PRJNA350701).	

Mapping	of	reads	

We	mapped	reads	with	BWA	(version	0.7.8)	(Li	and	Durbin	2009)	against	the	D.	

melanogaster	reference	genome	(version	5.55)	using	bwa	mem	(Li	2013)	with	default	

settings.	We	filtered	and	sorted	the	resulting	SAM	files	for	reads	mapped	in	proper	pairs	

with	a	minimum	mapping	quality	of	20	using	and	converted	them	to	the	BAM	using	the	

view	and	sort	commands	in	SAMtools	(Li	et	al.	2009).	These	files	were	then	converted	to	

mpileup	format	once	again	using	SAMtools.	Using	the	PoPoolation2	(Kofler	et	al.	2011a)		

software	package,	these	files	were	converted	to	“synchronized”	files,	which	is	a	format	that	

allele	counts	for	all	bases	in	the	reference	genome	and	for	all	populations	being	analyzed.	

Lastly,	we	used	RepeatMasker	4.0.3	(http://www.repeatmasker.org)	(Smith	et	al.	2013)	to	

create	a	gff	file	to	mask	simple	sequence	repeats	and	transposable	elements	of	the	D.	

melanogaster	genome	version	5.55.	

A	table	with	major	and	minor	allele	counts	for	each	SNP	in	each	population	was	then	

generated	from	this	synchronized	file.	SNPs	where	discarded	if	coverage	in	any	of	the	

populations	was	less	than	20X	or	greater	than	150X.	We	also	required	a	minimum	minor	

allele	frequency	of	2%	across	all	five	populations.	Based	on	these	parameters,	~1.2	million	

SNPs	were	identified	across	the	major	chromosome	arms.	The	average	coverage	at	each	

called	SNP	was	62X,	65X,	57X,	66X,	and	69X	in	B1	through	B5	respectively.		
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Characterizing	genetic	variation	

	 Local	depressions	in	genetic	variation	are	considered	one	of	the	primary	

means	of	detecting	selective	sweeps	from	population	level	data	(Oleksyk	et	al.	2010).	We	

calculated	and	plotted	heterozygosity	across	the	five	major	chromosome	arms	to	see	if	we	

could	find	any	such	evidence	for	such	depressions	in	our	real	and	simulated	data	sets.	

Heterozygosities	were	calculated	over	100kb	non-overlapping	windows	directly	from	the	

major	and	minor	counts	in	our	SNP	table.	Watterson	theta	(Ɵ)	was	also	calculated	using	

PoPoolation	(Kofler	et	al.	2011b),	where	the	details	of	these	calculations	can	be	found.		

Mpileups	were	first	made	for	each	population	using	the	bam	files	mentioned	above.	We	

then	subsampled	(without	replacement)	to	a	uniform	coverage	level	of	30X	across	all	

populations,	as	these	calculations	can	be	sensitive	to	coverage	variation.	Estimates	of	

genetic	parameters	were	then	calculated	over	100kb	non-overlapping	windows	across	the	

major	chromosome	arms.	For	a	SNP	to	be	called	at	a	given	position,	we	required	a	minimum	

minor	allele	count	of	2.	Lastly,	sufficient	coverage	(30X)	was	required	for	at	least	60%	of	

our	100kb	windows	for	estimates	to	be	generated.	

FST	estimates	

	 FST	estimates	were	obtained	using	the	formula:	FST	= #$%#&
#$ 	where	HT	is	

heterozygosity	based	on	total	population	allele	frequencies,	and	HS	is	the	average	

subpopulation	heterozygosity	in	each	of	the	B	populations	(Hedrick	2009).	FST	estimates	

were	made	at	every	polymorphic	site	in	the	data	set.	This	was	done	to	quantify	the	levels	of	

differentiation	between	our	five	B	populations,	as	well	as	between	replicate	populations	in	

our	simulated	scenarios.	FST	estimates	were	calculated	for	the	B	populations	along	
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chromosome	3R	at	every	polymorphic	site.	This	was	also	done	for	the	simulated	data,	and	

once	again	all	polymorphic	positions	along	3R	not	present	in	the	SNP	table	created	from	

our	real	data	set	were	discarded.	

We	also	used	the	formula:	FST	= 1 − (1 − *
+,
)$ 	to	generate	a	predicted	FST	value	

where	N	is	the	effective	population	size	of	each	subpopulation	and	t	is	the	time	since	

divergence	from	their	ancestral	population	(Hartl	and	Clark	1997).	This	model	assumes	

that	population	diverge	randomly	over	time	and	that	there	is	no	migration.	In	the	event	that	

there	is	some	level	of	migration	between	our	populations,	we	used	the	formula:	FST	=

	 *
.,/0*	

where	m	is	equal	to	the	migration	rate	and	the	quantity	Nm	is	equal	to	the	number	of	

migrants	per	generation	(Dobzhansky	and	Wright	1941;	Hartl	and	Clark	1997).	This	model	

assumes	no	mutation	and	that	the	migration	rate	is	small.	As	with	the	previous	model,	it	

corresponds	to	a	scenario	where	a	single	population	is	split	into	subpopulations	at	some	

point	and	diverges	randomly	over	time.	But	in	this	scenario,	migration	has	placed	a	limit	on	

how	much	these	subpopulations	can	diverge	and	assumes	that	the	populations	have	

reached	this	limit	and	are	at	equilibrium.	It	is	worth	noting	that	this	assumption	of	

equilibrium	might	not	be	met	in	our	system.	

Simulations	

To	perform	our	first	set	of	simulations	we	used	MimicrEE	

(https://sourceforge.net/projects/mimicree/)	(Kofler	2015),	a	forward	simulation	

specifically	designed	to	mimic	experimental	evolution.	It	simulates	populations	of	diploid	

individuals	where	genomes	are	provided	as	haplotypes	with	two	haplotypes	constituting	a	
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diploid	genome.	There	are	no	changes	in	the	demography	once	the	initial	population	file	is	

submitted	and	a	list	of	selected	loci	may	be	provided.		

For	each	selected	locus,	the	selection	coefficient	(s),	the	dominance	coefficient	(h),	

and	the	nucleotide	of	the	nonselected	allele	are	provided	(w11).	The	fitness	of	the	

heterozygous	and	homozygous	individuals	is	given	by:	ѡ** = 1,ѡ*+ = 1 + ℎ𝑠, and	ѡ++ =

1 + 𝑠	(Gillespie	2010).	The	simulation	assumes	multiplicative	fitness	when	several	selected	

loci	are	specified.	No	de	novo	mutations	are	considered,	as	its	purpose	is	to	simulate	

scenarios	where	adaptation	results	from	selection	on	standing	genetic	variation.	The	

simulated	populations	have	non-overlapping	generations	and	all	individuals	are	

hermaphrodites	(though	selfing	is	excluded).	At	each	generation,	matings	are	performed,	

where	mating	success	(number	of	offspring)	scales	linearly	with	fitness,	until	the	total	

number	of	offspring	in	the	population	equals	the	targeted	population	size	(fecundity	

selection).	Each	parent	contributes	a	single	gamete	to	the	offspring.	Crossing-over	events	

are	introduced	according	to	a	user-specified	recombination	rate.	

To	generate	our	starting	haplotypes,	we	started	with	105	individuals	from	the	

Drosophila	Genetics	Reference	Panel	(DGRP)	(Mackay	et	al.	2012).	We	only	used	positions	

along	chromosome	3R	and	only	sites	that	were	polymorphic	in	the	B	populations.	In	total,	

there	were	238,291	polymorphic	sites	after	this	filtering.	From	these	105	haplotypes,	we	

randomly	sampled	with	replacement	to	1000	to	achieve	our	desired	population	size.	

Recombination	rates	were	specified	for	100kb	windows	and	were	obtained	from	the	D.	

melanogaster	recombination	rate	calculator	v2.2	(Fiston-Lavier	et	al.	2010).	As	

recombination	does	not	occurs	in	male	Drosophila,	the	empirically	estimated	female	

recombination	rate	was	divided	by	two	for	the	simulations.		
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We	first	performed	neutral	simulations,	featuring	only	drift	and	recombination,	to	

establish	a	baseline.	We	then	ran	simulations	across	a	variety	of	evolutionary	scenarios	

that	involved	different	numbers	of	selected	loci.	Our	goal	was	to	see	which,	if	any,	of	these	

scenarios	would	produce	the	sorts	of	patterns	we	observer	in	our	real	data	set.	For	each	

scenario,	we	simulated	five	populations	for	800	generations.	This	was	then	done	100	times	

for	each	scenario.	In	our	selection	scenarios,	we	simulated	populations	with	5,	10,	or	20	

randomly	distributed	beneficial	sites.	For	one	set	of	simulations,	the	reference	nucleotide	

(A1)	was	defined	as	the	beneficial	allele	in	each	case	and	was	also	defined	as	dominant	

(h=0).	For	another	set,	the	A2	allele	was	defined	as	beneficial	and	dominant	(h=1).	And	for	a	

final	set,	all	selected	loci	were	codominant	(h=.5).	For	each	set,	we	simulated	scenarios	with	

selection	coefficients	ranging	from	0.03	(low)	to	0.1	(high)	(Table	1.1).	As	we	increased	the	

number	of	selected	sites,	we	reduced	the	selection	coefficients	to	generate	scenarios	with	

either	few	sites	of	large	effect	or	many	sites	of	small	effect.	Lastly,	we	simulated	scenarios	

featuring	sites	with	overdominance	to	see	if	extensive	balancing	selection	could	be	behind	

the	patterns	we	observe	in	our	data	set.	In	these	scenarios,	we	simulated	populations	with	

20	or	30	randomly	distributed	sites	with	overdominance.	And	once	again,	we	simulated	

scenarios	with	a	range	of	selection	coefficients	(Table	1.1).	

	 From	each	set	of	5	simulated	populations	under	each	scenario,	we	calculated	

average	heterozygosity	and	average	FST	across	all	polymorphic	sites	to	compare	to	values	

observed	in	the	B	populations.	We	also	looked	at	heterozygosity	and	FST	over	50kb	

windows,	and	calculated	the	variance	between	windows	as	a	means	of	comparing	spatial	

variation	in	heterozygosity	and	FST	to	what	we	observe	in	the	B	populations.		
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Simulations	with	migration		

	 Given	how	long	our	populations	have	been	maintained	in	the	lab,	it	is	easy	to	

imagine	that	there	may	have	been	some	instances	of	migration	due	to	accidental	cross-

contamination.	Thus,	in	addition	to	the	selection	scenarios	mentioned	above,	we	performed	

simulations	featuring	migration.	These	simulations	also	feature	optimizing	selection,	as	

opposed	to	our	other	simulations	featuring	directional	and	over	dominant	selection.	We	

once	again	simulated	an	evolve-and-resequence	experiment	for	a	63	cM	long	D.	

melanogaster	chromosome	3R.		An	R	program	was	created	to	simulate	an	initial	population	

of	F	founder	chromosomes	expanded	and	used	to	found	five	populations	that	were	then	

evolved	for	G	generations	at	a	population	size	of	N	gametes	per	population	with	M	migrant	

gametes	in	the	meta-population	per	generation.		The	simulation	was	accomplished	by	

tracking	founder	segments	and	recombination	breakpoints	over	time.		So,	the	N	gametes	

used	to	found	a	subpopulation	initially	consist	of	a	random	sample	of	size	N	drawn	from	

the	numbers	1	through	F	with	replacement.		Then	each	generation	to	create	N	new	gametes	

(n=1...N)	we	draw	two	gametes	with	replacement	from	the	previous	generation	and	create	

a	recombination	breakpoint	at	position	r	=	unif(0,1),	if	r	<	0.63	(to	simulate	a	chromosome	

of	63	cM)	and	n	modulus	2	equal	zero	(since	recombination	only	takes	place	in	females).		

Recombinant	chromosomes	are	represented	as	a	pair	of	vectors:	a	founder	state	vector,	

and	a	recombination	breakpoint	vector.		So,	for	example,	the	nth	gamete	in	a	population	

might	be	Sn={3,17,31,3}	and	Bn={0.20,0.25,0.60},	indicating	that	gamete	has	material	from	

founder	#3	from	0	to	20cM,	founder	17	from	20	to	25	cM,	etc.		This	sampling	scheme	

models	drift	and	recombination	in	a	Wright-Fisher	population.	
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Next	we	added	selection	to	the	simulation.		We	simulated	Q	evenly	spaced	

quantitative	trait	loci	(QTL)	on	the	chromosome,	with	a	vector	of	effect	sizes	and	starting	

allele	frequencies	(E	and	F),	with	QTL	states	randomly	assigned	via	binomial	sampling	

given	Fq	for	each	locus.		The	resulting	quantitative	trait	has	a	heritability	due	to	the	QTL	on	

3R	of	12%,	and	an	additional	polygenic	heritability	of	38%	due	to	the	other	chromosomes,	

and	a	total	phenotypic	variance	of	one.		We	then	model	a	gamete’s	phenotype	as	the	sum	of	

its	effect	sizes	plus	a	random	Gaussian	deviate	representing	a	polygenic	component,	plus	a	

second	random	Gaussian	deviate	representing	an	environmental	deviation,	plus	the	

current	polygenic	mean	of	the	population.		The	fitness	of	each	gamete	is	a	standard	

Gaussian	fitness	function	proportional	to	w=(pheno	–	

NewOptimum)^2/(2*VarianceFitness),	normalized	to	total	fitness.		Under	this	selection	

scheme	each	generation	gametes	are	resampled	proportional	to	w,	resulting	in	allele	

frequency	changes	at	the	underlying	QTL,	and	resulting	changes	in	the	mean	phenotype	

due	to	those	QTL.	Furthermore,	each	generation	the	polygenic	mean	(the	mean	phenotype	

due	to	chromosomes	other	than	3R)	changes	according	to	the	Breeder’s	equation(Falconer	

and	Mackay	1996).That	is	we	partition	the	trait	variance	into	the	variance	due	to	tracked	

loci	(each	having	Va,i=2piqiai2),	a	polygenic	component	with	Gaussian	variance	Va;poly,	and	

environmental	variation	(Ve).	We	held	Ve	/Vt	constant,	but	allowed	the	ratio	of	Va	to	Va;poly	to	

vary.	Each	generation	an	individual’s	phenotypic	value	is	the	sum	of	allelic	effects	due	to	

tracked	loci,	a	Gaussian	deviation	due	to	the	polygenic	component,	and	a	Gaussian	

environmental	deviate.		Those	phenotypic	values	determines	a	vector	of	length	N	

consisting	of	each	individual’s	average	fitness	based	on	the	Gaussian	fitness	function,	with	

N	individual’s	chosen	with	replacement	from	that	vector	to	create	the	next	generation,	with	
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the	probability	of	being	chosen	proportional	to	average	fitness.		Between	generations,	the	

mean	of	the	population	then	shifts	due	to	changes	in	allele	frequencies	at	both	the	tracked	

loci	and	untracked	loci,	as	predicted	by	the	Breeder’s	equation:		h2poly	*	S.		In	this	context,		

h2poly	is	Va;poly/(	Va;poly	+	Ve)	and	S	is	the	observed	selective	differential	(i.e.,	the	mean	

phenotype	of	individuals	chosen	to	reproduce	minus	the	mean	of	the	population).	By	

modeling	adaptation	in	this	fashion,	the	population	approaches	the	new	optimum	due	to	

genetic	changes	at	both	tracked	and	untracked	loci.	This	model	thus	accommodates	

adaptation	at	both	the	explicitly	modeled	chromosome	arm	and	the	remainder	of	the	

genome.	

Under	our	model,	the	overall	rate	at	which	the	mean	phenotype	changes	in	the	

population	is	controlled	by	the	distance	to	the	new	phenotypic	optimum	and	the	variance	

in	fitness,	which	are	set	to	15	and	12,	respectively.		Parameters	scaling	results	in	Ve=0.5	and	

Vp=1.0	at	generation	zero,	with	a	new	optimum	that	is	15	phenotype	standard	deviations	

away	from	the	population	mean,	a	shift	in	optimum	that	was	chosen	to	match	experimental	

evolution	experiments	in	Drosophila	(vid.	Teotonio	and	Rose	2000).		The	simulation	was	

set	up	so	that	a	population	can	reach	a	new	optimum	phenotype	before	all	underlying	QTL	

are	fixed.	

Each	generation	we	simulated	migration	by	randomly	taking	M	pairs	of	gametes	in	

the	5*N	set	being	tracked	and	replacing	the	first	member	of	the	pair	with	the	second.		This	

corresponds	to	a	one-way	island	model	of	migration.		This	means	that	if	the	entire	

population	is	5*N	gametes	(where	5	is	the	number	of	populations),	each	generation	k	

gametes	are	chosen	and	they	essentially	overwrite	K	other	gametes.	That	is	to	say,	“one-

way”	means	gametes	are	not	exchanged	between	populations	and	“island”	means	migration	
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is	equally	likely	between	any	two	demes	in	any	direction.	We	iterated	this	entire	process	

for	G	generations	to	obtain	a	final	set	of	5*N	gametes.		Given	the	relatively	short	time	scale	

of	the	experimental	evolution	experiment,	and	the	relatively	modest	number	of	gametes,	

this	simulation	is	fairly	efficient	in	R	on	a	desktop	computer.		At	the	end	of	the	simulation	

we	took	a	set	of	100	(F)	3R	chromosomes	from	the	DGRP	(Mackay	et	al.	2012),	and	for	each	

polymorphic	position	in	the	real	DGRP	data	we	calculated	an	allele	frequency	at	that	site	

based	our	simulated	populations.	This	was	done	because,	as	with	our	previous	simulations,	

our	starting	haplotypes	were	based	on	lines	from	the	DGRP.	Performing	this	calculation	

required	a	function	that	maps	physical	position	in	bp	to	cM,	and	then	simply	iterates	over	

the	founder	states	at	each	of	the	5*N	gametes	for	each	SNP.		Despite	the	fact	that	poolseq	

estimates	allele	frequency	in	the	population	based	on	a	finite	sample	of	gametes,	with	the	

accuracy	of	that	estimate	a	function	of	coverage	depth	and	number	of	gametes	sampled	for	

the	Illumina	library,	we	used	the	exact	allele	frequency	estimates	calculated	using	the	

method	described	above	in	our	downstream	calculations.		Since	libraries	are	made	using	a	

large	number	of	individuals	(>200)	and	the	per	site	coverage	approaches	60X,	this	

simplification	is	likely	acceptable.	

Using	this	framework,	we	simulated	a	number	of	evolutionary	scenarios	that	

involved	varying	the	following:	migration	rates	(M),	number	of	selected	QTL,	effect	sizes	of	

selected	QTL,	and	starting	frequencies	of	selected	QTL.	Scenarios	were	simulated	using	

groups	of	five	populations	to	mimic	our	observed	fly	populations.	Each	scenario	was	

simulated	300	times.	All	simulations	ran	for	800	generations	(G)	and	all	simulated	

populations	consisted	of	2000	gametes	(N).		We	simulated	scenarios	with	0,	1	or	5	

migration	events	per	generation	(M).	We	ran	simulations	with	0	(i.e.,	a	control	with	only	
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random	genetic	drift),	3,	10	and	20	selected	QTL.	Selected	QTL	were	evenly	distributed	

across	the	chromosome	arm.	We	also	looked	at	the	effects	of	the	starting	frequency	of	

selected	QTL	(F)	by	running	simulations	where	all	selected	alleles	started	at	either	0.05	or	

0.5.	As	we	increased	the	number	of	QTL,	we	reduced	their	effect	sizes	(E)	so	that	the	sum	of	

squared	effect	sizes	was	held	constant.	This	was	done	to	prevent	changes	in	the	heritability	

of	the	character.		For	simulations	with	3	QTL,	effect	sizes	were	1,	2,	and	2.	For	simulations	

with	10	QTL,	they	were	1,	1,	1,	1,	1,	1,	1,	1,	0.71,	and	0.71.	And	lastly,	they	were	0.71,	0.71,	

0.71,	0.71,	0.71,	0.71,	0.71,	0.71,	0.71,	0.71,	0.71,	0.71,	0.71,	0.71,	0.71,	0.71,	0.5,	0.5,	0.5,	and	

0.5	for	simulations	with	20	QTL.	[See	Table	1.2	for	all	simulated	scenarios]	

Once	again,	we	calculated	average	heterozygosity	and	average	FST	across	all	

polymorphic	sites	to	compare	with	the	values	observed	in	the	B	populations.	We	then	again	

looked	at	heterozygosity	and	FST	over	100kb	windows	and	calculated	the	variance	between	

windows	as	a	means	of	comparing	spatial	variation	in	heterozygosity	and	FST	to	what	we	

observe	in	the	B	populations.	

Selection	detection	

	 To	test	for	footprints	of	selection	across	the	genome,	we	relied	on	a	hidden	Markov	

Model	developed	with	the	intention	to	detect	sweeps	in	pooled	sequence	data,	developed	

by	Boitard	et	al.	(2012),	implemented	in	the	Pool-HMM	software	package	(Boitard	et	al.	

2013).	Their	method	involves	estimating	the	allele	frequency	spectrum	(AFS)	across	

genomic	regions	and	detecting	distortions	relative	to	the	background	AFS,	which	are	

expected	to	occur	in	regions	subject	to	selection.		Though	it	is	worth	noting	that	while	this	

method	was	developed	primarily	to	detect	selective	sweeps,	it	could	be	instead	identifying	

signatures	of	any	process	that	produces	similar	perturbations	of	the	AFS.			
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Mpileups	for	individual	populations	were	used	as	test	inputs,	since	Pool-HMM	can	

only	process	data	from	one	population	at	a	time.	Scans	were	performed	along	each	of	the	

major	chromosome	arms	using	the	following	parameters:		-n	500	(number	of	chromosomes	

in	each	pool),	-pred	(predicts	the	hidden	state,	“Neutral”	(far	away	from	sweep	site)	,	

“Selected”		(close	to	sweep	site)	,	or	“Intermediate”	(between	Neutral	and	Selected)	of	each	

SNP),	-C	150	(maximum	coverage	allowed	for	sites	used	in	this	analysis),	-r		5	(where	1/r	is	

the	proportion	of	sites	that	are	used	to	estimate	the	background	AFS),	-theta	Ɵ	(average	Ɵ	

for	each	population	was	approximately	0.003	based	on	estimates	from	PoPoolation,	and	

increasing	or	decreasing	window	size	did	not	affect	this	result),	and	-k	10-10.	The	–k	

parameter	is	the	per	site	transition	probability	q	between	neutral	and	selected	states,	

which	is	an	important	tuning	parameter	for	the	hidden	Markov	model	underlying	this	test.	

As	q	increases,	less	evidence	is	required	for	a	transition	to	selection	and	more	sweep	

candidates	should	be	detected.	We	also	ran	tests	under	more	(q	=	10-11)	and	less	stringent	

(q	=	10-9)	conditions,	which	only	led	to	slight	differences	in	the	number	of	footprints	

detected	(Table	1.3).	A	confidence	index	was	calculated	for	each	selective	sweep	window	

detected	using	this	method	as	-log10(1-p),	where	p	is	the	maximum	of	the	posterior	

probability	of	hidden	state	"Selection"	within	the	window.	

	 We	applied	this	Pool-HMM	test	to	results	from	our	neutral	simulations	using	the	

settings	listed	above,	as	a	means	of	evaluating	our	false	positive	rate.	For	such	tests	of	

simulated	data,	we	used	100	kb	regions	extracted	from	different	runs	of	our	neutral	

simulations.	Essentially,	we	converted	output	from	the	simulations	to	mpileup	files.	

Sequence	and	coverage	variation	were	introduced	based	on	what	was	found	in	the	actual	

3R	sequences	from	the	B	populations.	In	addition	to	the	100	kb	regions	just	mentioned,	we	
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ran	tests	for	selection	on	results	for	the	entirety	of	3R	from	15	simulated	populations	each	

taken	from	a	different	evolutionary	scenario.	We	did	this	for	populations	taken	from	each	of	

following	scenarios:	neutral	evolution	with	migration	rates	M=0,	5	and	20;	3	selected	QTL’s	

with	low	starting	frequencies	with	M=0,	5	and	20;	3	selected	QTL’s	with	high	starting	

frequencies	with	M=0,	5	and	20;	10	selected	QTL’s	with	low	starting	frequencies	with	M=0,	

5	and	20;	10	selected	QTL’s	with	high	starting	frequencies	with	M=0,	5	and	20.	

RESULTS	

Genetic	variation	

	 Plotting	measures	of	genetic	variation,	heterozygosity	and	Watterson	theta	(Ɵ),	

across	100	kb	non-overlapping	windows	reveals	depressions	in	genetic	variation	across	all	

major	chromosomes	arms	in	the	B	populations	(Figure.	1.1,	see	Figure	S1.1	for	mean	

heterozygosity	and	Ɵ	across	all	5	populations).	This	pattern	is	robust	to	both	increased	

(150	kb)	and	decreased	(30	and	50	kb)	window	size	(Figure	S1.2-S1.4).	Many	depressions	

in	heterozygosity	are	consistent	across	the	5	replicate	populations,	which	may	be	indicative	

of	selection	on	standing	variation.	In	general,	there	is	a	great	deal	of	similarity	in	patterns	

of	heterozygosity	across	replicates	(Figure	S1.5	shows	pair-wise	comparisons	between	all	

replicates).	As	in	Burke	et	al.	(2010),	we	find	no	regions	where	genetic	variation	has	been	

completely	expunged	in	an	unambiguous	manner.	However,	there	are	regions	that	show	

very	low	levels	of	heterozygosity	(0.2)	and	theta	(Ɵ	<	0.001)	consistently	across	replicates	

(Table	S1.1	and	Table	S1.2).	In	addition,	the	vast	majority	of	these	regions	are	located	in	

chromosome	X.	Such	regions	may	arise	from	incomplete	selective	sweeps	or	balanced	

selective	equilibria	that	are	close	to	fixation	boundaries.	Nonetheless,	we	have	not	found	

cases	that	conform	to	the	pattern	of	heterozygosity	expected	with	hard	selective	sweeps	
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proceeding	all	the	way	to	fixation	(Burke	2012),	despite	almost	1,000	generations	of	

sustained	selection.	

	 We	used	average	heterozygosity	as	our	primary	measure	of	variation	when	

comparing	our	quantitative	results	from	the	actual	data	obtained	from	the	B	populations	to	

the	corresponding	results	obtained	from	the	different	evolutionary	scenarios	we	simulated.	

Average	heterozygosity	in	the	starting	base	population	used	in	our	simulations	(see	

Materials	and	Methods)	was	0.32.	Average	heterozygosity	across	3R	was	lower	in	the	five	

B-population	replicate	data	at	.28,	.29,	.28,	.27,	and	.27,	respectively.		We	find	lower	levels	

of	heterozygosity	after	800	generations	in	all	of	our	evolutionary	scenarios	(Table	1.1	and	

Table	1.2).	Spatial	variance	in	heterozygosity	along	the	chromosome	arm,	based	on	

calculations	from	50kb	windows,	were	as	follows	for	the	five	B	replicates:	.21,	.24,	.24,	.37,	

and	.37.		

	 In	our	simulations	performed	using	MimicrEE,	we	found	that	the	addition	of	

selection	does	result	in	greater	losses	in	heterozygosity	than	genetic	drift	alone,	as	

expected	(Table	1.1).	In	our	scenarios	where	the	A1	allele	is	dominant	and	beneficial	at	each	

selected	site,	we	found	that	increasing	the	number	of	selected	sites	produced	greater	

reductions	in	heterozygosity	(Table	1.1).	This	was	also	true	when	the	A2	allele	was	

dominant	or	if	we	used	a	selection	model	featuring	codominance.	In	terms	of	spatial	

variance	in	heterozygosity,	we	find	the	highest	levels	in	scenarios	featuring	strong	selection	

at	3	(0.055	to	0.060)	sites	or	weaker	selection	at	20	sites	(Table	1.1).		The	lowest	levels	of	

spatial	variance,	which	were	comparable	to	the	higher	end	of	what	was	observed	in	the	B	

populations,	were	found	in	scenarios	with	selection	at	10	sites	(0.0035	to	0.0040).		
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	 In	our	scenarios	with	overdominance,	we	found	that	increasing	the	number	of	sites	

under	selection	and	increasing	selection	coefficients	both	produce	greater	reductions	in	

heterozygosity	near	locations	undergoing	selection.	Heterozygosity	was	maintained	at	the	

selected	sites	themselves	and	selected	alleles	approach	predicted	equilibrium	frequencies	

based	on	our	settings,	but	heterozygosity	was	nonetheless	reduced	in	surrounding	regions.	

We	also	found	spatial	variance	in	heterozygosity	to	be	higher	than	what	we	typically	

observed	in	the	B	populations,	with	the	exception	of	scenarios	featuring	30	sites	with	small	

selection	coefficients	(.34)	(Table	1.1).				

	 In	our	simulations	with	migration,	we	once	again	found	that	the	addition	of	

selection	results	in	greater	reductions	in	heterozygosity	overall	(Table	1.2).	Increasing	the	

number	of	selected	QTLs	again	produced	a	greater	decrease	in	heterozygosity.	Increasing	

migrations	rates	resulted	in	more	variation	being	maintained,	as	did	increasing	the	starting	

frequencies	of	selected	QTLs;	however,	the	simulated	levels	of	genetic	variation	never	

achieved	the	levels	seen	in	the	actual	B	populations.		In	terms	of	genome-wide	variance	in	

heterozygosity,	allowing	migration	and	increasing	the	starting	frequencies	of	selected	QTLs	

produced	results	closer	to	those	observed	in	the	B	populations	(Table	1.2).		

FST	

	 Mean	FST	across	the	5	B	populations	was	0.08	across	all	chromosome	arms,	

including	3R	individually.	This	value	is	far	lower	than	what	we	would	predict	assuming	no	

migration	using	the	formula	FST	= 1 − (1 − *
+,
)$,	which	predicts	FST	should	be	around	0.33	

assuming	N	=	1,000	and	t	~	800	generations.	Substituting	our	observed	FST	into	this	

equation	and	instead	solving	for	N	suggests	that	in	order	to	produce	an	FST	estimate	of	0.08,	

assuming	no	migration	and	random	divergence,	we	would	have	to	have	an	effective	
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population	size	of	around	4,700.	To	assesses	how	much	migration	would	be	required	to	

produce	this	result,	assuming	random	divergence	and	populations	at	equilibrium,	we	used	

the	formula	FST		= 	 *
.,/0*

.	Solving	for	Nm,	the	number	of	migrants	per	generations,	suggests	

our	observed	FST	could	be	produced	if	there	were	2.88	successful	migrants	per	generation,	

each	and	every	generation,	if	the	assumptions	of	this	model	are	met.		

	 Our	observed	FST	was	also	far	lower	than	anything	produced	in	the	different	

evolutionary	scenarios	we	simulated	(Table	1.1	and	Table	1.2).	In	our	simulations	

performed	using	MimicrEE,	we	found	that	scenarios	where	A1	allele	was	dominant	and	

beneficial	at	each	selected	site	all	produced	greater	FST	estimates	than	were	produced	by	

drift	alone.	Scenarios	with	overdominance	and	low	selection	coefficients	produced	modest	

reductions	in	mean	FST,	but	never	to	the	level	observed	in	the	B	populations.	This	effect	was	

lost	when	selection	coefficients	were	increased,	once	again	giving	mean	FST	estimates	

greater	than	those	produced	by	drift	alone.	All	simulations	also	produced	much	greater	

variance	in	genome-wide	FST,	0.0028	at	the	lowest,	than	we	observe	in	the	B	populations	

(.0004),	for	the	single	chromosome	arm.		

	 In	our	simulations	featuring	migration,	increasing	the	number	of	QTL	under	

selection	and/or	altering	the	starting	frequencies	of	favored	genotypes	both	failed	to	have	

any	appreciable	effects	on	mean	FST	(Table	1.2).	Increasing	the	migration	rates	did	reduce	

FST	as	expected.	However,	even	with	migration	rates	as	great	as	5	gametes	per	generation,	

far	higher	than	we	consider	likely,	FST	estimates	failed	to	approach	the	values	observed	in	

the	actual	B	populations.	Increasing	migration	rates	also	reduced	variance	in	FST	along	the	

chromosome	arm,	but	once	again	not	to	the	levels	observed	in	the	B	populations	(Table	

1.2).		
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Footprints	of	selection	

	 We	used	the	pool-HMM	method	(Boitard	et	al.	2013)	to	detect	selective	sweeps	or	

changes	in	allele	frequency	due	to	selection	across	all	major	chromosome	arms	in	the	B	

populations.	When	applying	Pool-HMM	to	our	real	sequence	data,	we	detected	dozens	of	

signatures	of	selection	on	each	of	the	major	chromosome	arms	for	all	of	the	B	populations	

(Figure	1.2	and	Table	1.3).	Additionally,	nearly	twice	as	many	regions	were	detected	in	the	

B1	population	compared	to	the	other	four	replicates.	Of	the	hundreds	of	candidate	selected	

regions	detected,	there	were	~35	regions	that	overlapped	across	all	five	replicates	(Figure	

1.3).	However,	as	many	of	these	regions	were	in	excess	of	100kb,	these	results	do	not	

definitively	point	to	any	specific	genes	as	being	targets	of	selection.	

	 We	also	applied	pool-HMM	to	results	from	our	neutral	simulations,	both	those	

including	and	those	excluding	migration.	We	applied	the	test	to	regions	consisting	of	100kb	

sampled	from	our	neutral	simulations	using	the	same	settings	we	applied	to	the	data	from	

the	B	populations.	Using	these	settings,	we	found	very	few	instances	where	selection	was	

detected,	suggesting	a	low	false	positive	rate	(Table	S1.3).	For	instance,	we	only	found	2	

instances	where	selection	was	falsely	detected	after	applying	pool-HMM	to	300	100kb	

regions	sampled	from	our	neutral	simulations	with	no	migration.	This	was	also	true	for	300	

regions	sampled	from	neutral	simulations	with	M=1.	Lastly,	when	M=5	there	were	zero	

instances	where	selection	was	falsely	detected.		

	 We	also	ran	pool-HMM	on	results	from	the	entirety	of	3R	for	several	of	the	

simulated	neutral	and	selective	scenarios	we	tested.	We	did	this	for	one	simulated	

population	from	each	of	the	following	scenarios:	neutral	evolution	with	M=0,	5	and	20;	3	

selected	QTL’s	with	low	starting	frequencies	with	M=0,	5	and	20;	3	selected	QTL’s	with	high	
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starting	frequencies	with	M=0,	5	and	20;	10	selected	QTL’s	with	low	starting	frequencies	

with	M=0,	5	and	20;	10	selected	QTL’s	with	high	starting	frequencies	with	M=0,	5	and	20.	

Once	again,	few	regions	were	identified	as	being	under	selection	when	pool-HMM	was	

applied	to	results	from	our	neutral	simulations	relative	to	what	we	observe	in	the	B	

populations.		Seven	regions	in	total	were	detected	when	we	applied	it	to	results	from	a	

neutral	simulation	with	M=0,	2	regions	when	M=5,	and	0	when	M=20	(Figure	S1.6).	

	 	However,	we	found	pool-HMM’s	ability	to	detect	selected	QTL	to	be	highly	

dependent	on	the	starting	frequency	of	the	selected	QTL	and	on	assumed	migration	rates.	

When	starting	frequencies	are	low	(.05)	and	there	is	no	migration,	there	is	some	

correspondence	between	the	regions	identified	by	pool-HMM	and	the	locations	of	the	

actual	selected	QTL	with	pool-HMM	identifying	regions	overlapping	or	adjacent	to	selected	

QTL	(Figure	S1.7	and	Figure	S1.8).	However,	when	the	starting	frequencies	of	selected	QTL	

were	high	(.5),	this	correspondence	broke	down	(Figure	S1.9	and	Figure	S1.10).	For	

instance,	when	we	applied	pool-HMM	to	results	from	a	simulation	with	zero	migration	and	

10	selected	QTLs	starting	at	low	frequency,	11	regions	were	identified	as	being	under	

selection	by	pool-HMM	(Figure	S1.8).	Five	of	these	regions	directly	overlapped	with	the	

locations	of	our	selected	QTLs,	and	the	remaining	regions	were	adjacent	to	selected	QTL.	

However,	when	we	applied	pool-HMM	to	results	from	a	simulation	with	zero	migration	and	

10	selected	QTLs	starting	at	high	frequency,	only	3	regions	were	detected	(Figure	S1.10).	Of	

these	3	regions,	only	one	overlapped	with	the	location	of	a	selected	QTL.		

	 Migration	also	had	a	pronounced	effect	on	pool-HMM’s	ability	to	detected	selected	

QTL.	Across	all	the	scenarios	we	tested,	we	found	that	increased	migration	rates	resulted	in	

reductions	in	the	number	of	regions	identified	as	being	under	selection	(Figure	S1.6-S1.10).	
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As	mentioned	previously,	in	scenarios	with	10	selected	QTL’s	starting	at	low	frequencies,	

11	regions	were	detected	when	M=0.	However,	when	M=20	only	4	regions	were	detected	

and	only	one	of	those	overlapped	with	the	location	of	a	selected	QTL	(Figure	S1.8).	

Combining	high	migration	rates	and	high	starting	frequencies	further	impaired	pool-HMM	

ability	to	detect	selected	QTL.	For	instance,	when	M=5	for	simulations	with	10	QTL	starting	

at	high	frequencies,	pool-HMM	did	not	identify	any	regions	as	being	under	selection.		

	 In	summary,	we	found	that	both	migration	and	the	starting	frequency	of	selected	

alleles	affect	the	rate	and	accuracy	at	which	pool-HMM	identifies	regions	as	being	under	

selection.	Consequently,	the	overall	correspondence	between	regions	identified	by	pool-

HMM	and	the	location	of	selected	QTL	in	our	simulated	results	was	generally	poor.	Pool-

HMM	also	detected	far	fewer	regions	in	our	simulated	results	than	in	any	of	the	scans	of	

our	real	data	from	the	B	population.	This	suggests	there	may	be	some	other	evolutionary	

factor(s)	behind	the	allele	frequency	distributions	in	the	evolved	populations	other	than	

those	we	simulated	(selection	at	modest	number	of	sites,	migration,	and	drift).	It	is	not	

entirely	clear	what	this	factor	might	be	from	our	results.	For	instance,	this	discrepancy	

could	be	the	result	of	some	demographic	factor	acting	on	the	B	populations,	complex	

epistatic	interactions,	or	some	selective	scenario	not	tested.	Or	perhaps	a	combination	of	

the	three.		

DISCUSSION	

	 Applying	all	our	measures	of	genetic	variation	to	the	five	observed	Drosophila	

populations,	we	found	some	depressions	indicating	reduced	genetic	polymorphism.	But	

there	are	no	regions	where	it	was	completely	expunged.	When	comparing	these	results	to	

the	combined	DGRP	lines	we	used	as	base	populations	for	our	simulations,	we	found	levels	
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of	variation	in	our	populations	to	be	lower	on	average.	While	there	are	clearly	other	factors	

at	play,	this	disparity	could	also	be	due	in	large	part	to	the	nearly	1000	generations	of	

evolutionary	domestication	that	the	experimental	B	populations	have	been	subjected	to,	

domestication	that	has	featured	both	reduced	effective	population	sizes	as	well	as	long-

sustained	stable	patterns	of	selection.	This	hypothesis	is	supported	by	the	localized	

reductions	in	polymorphism	found	within	our	populations,	reductions	which	are	consistent	

with	adaptation	involving	allele	frequencies	moving	part-way	toward	fixation	(Burke	

2012).	Given	that	many	of	these	reductions	are	consistent	across	our	replicates	and	genetic	

variation	is	never	entirely	depleted,	it	also	seems	reasonable	to	infer	that	they	result	from	

selection	on	standing	genetic	variation.	

	Our	tests	for	selection	using	pool-HMM	are	also	suggestive	of	a	widespread	

response	to	selection	across	the	genome	in	our	populations.	However,	it	is	unclear	how	

many	of	these	regions	are	indicative	of	a	recent	response	to	selection,	or	selection	in	the	

wild	ancestral	population	sampled	by	Ives	in	1975.	We	find	a	number	of	regions	that	are	

consistently	implicated	across	all	replicates,	which	is	perhaps	indicative	of	a	parallel	

response	to	selection.	However,	further	complicating	matters,	our	tests	on	data	from	

simulated	populations	suggest	demographic	factors	and	the	starting	frequencies	of	selected	

variants	can	have	pronounced	effects	on	pool-HMM’s	ability	to	detect	regions	under	

selection.	The	role	of	the	former	in	particular	warrants	further	investigation.	We	found	that	

migration	produced	large	reductions	in	the	number	of	regions	identified	as	being	under	

selection	by	pool-HMM	across	all	scenarios	we	tested.	Given	the	number	of	regions	detected	

when	pool-HMM	is	applied	to	the	B	population	sequence	data,	it	seems	unlikely	that	

migration	between	B	populations	is	a	major	confounding	factor.	However,	it	is	entirely	
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possible	that	these	results	could	be	due	to	some	other	demographic	factor	or	combinations	

of	factors	not	explored	in	our	simulations.		

	 We	find	that,	after	almost	1,000	generations	of	laboratory	cultivation,	the	five	

replicate	B	populations	studied	here	are	not	generally	genetically	depauperate.	This	is	

somewhat	surprising,	given	the	moderate	Ne	estimates	of	Mueller	et	al.	(2013)	for	these	

populations:	generally	a	bit	less	than	1,000.		If	the	only	evolutionary	processes	acting	on	

these	populations	were	selective	sweeps,	background	selection,	and	genetic	drift,	then	it	

seems	odd	that	such	extensive	genetic	variation	is	maintained.	The	results	of	our	simulation	

add	to	this	mystery,	as	we	consistently	find	greater	simulated	reductions	in	average	

heterozygosity	than	that	shown	by	the	B	populations,	across	a	range	of	evolutionary	

scenarios	featuring	drift	and	selection.	Note	that	for	more	than	900	generations,	these	

populations	were	maintained	under	stable	conditions	with	respect	to	life	cycle,	

illumination,	density,	and	handling	vessel.		This	provided	an	excellent	opportunity	for	a	

selective	sweep	to	occur,	since	the	B	populations	were	maintained	for	a	long	time	in	a	

consistent	selection	regime,	much	longer	than	would	be	likely	to	arise	in	nature.		

	 That	being	said,	our	simulations	are	far	from	perfect.	Given	the	age	of	our	system,	we	

have	no	record	of	the	starting	genetic	make-up	of	our	populations.	The	populations	

featured	in	this	study	were	derived	from	a	single	population	that	had	been	maintained	for	

130	generations	under	laboratory	conditions.	This	population	was	in	turn	created	from	200	

gravid	females	collected	in	the	wild	brought	into	the	lab.	In	contrast,	the	base	population	

used	in	our	simulations	was	created	by	essentially	combining	a	hundred	inbred	lines	from	

the	DGRP.	This	difference	alone	represents	a	major	confounding	factor.	Additionally,	while	

we	feel	we	are	justified	in	excluding	the	potential	for	de	novo	beneficial	mutations	in	our	
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simulations,	given	the	values	of	our	actual	Ne	and	the	number	of	generations	under	

selection,	there	no	doubt	remains	value	in	exploring	a	wider	range	of	evolutionary	

scenarios.	However,	addressing	these	issues	satisfactorily	would	constitute	a	considerable	

undertaking,	well	beyond	the	scope	of	this	project.		

Laboratory	selection	experiments	with	Drosophila	have	provided	a	variety	of	results	

and	interpretations	concerning	the	underlying	mechanisms	of	adaptation.			For	instance,	

both	Turner	et	al.	(2011)	and	Zhou	et	al.	(2011)	report	patterns	of	locally-purged	genetic	

variation	in	evolved	populations	consistent	with	the	classic	signature	of	complete	selective	

sweeps.		But	we	do	not	find	any	regions	where	genetic	variation	is	locally	purged	in	the	

manner	associated	with	a	complete	selective	sweep,	as	heterozygosity	across	the	genome	in	

our	evolved	populations	never	unambiguously	achieves	zero	values	in	well-defined	local	

regions	of	the	genome.		Our	findings	are	more	consistent	with	those	of	Burke	et	al.	(2010),	

Orozco-terWengel	et	al.	(2012)	and	Tobler	et	al.	(2014);	the	patterns	of	adaptation	that	they	

found	were	attributed	to	selection	on	standing	genetic	variation,	without	complete	fixation	

of	favored	alleles.	

This	discrepancy	may	be	due	to	differences	in	experimental	methods.	For	instance,	

the	study	of	Turner	et	al.	(2011)	featured	an	artificial	selection	experiment	in	which	flies	

that	met	specific	body	size	criteria	were	selected	and	allowed	to	reproduce.	Their	breeding	

population	sizes	were	substantially	smaller	than	ours,	at	160	females	and	160	males.		This	

is	in	contrast	to	those	experimental	evolution	studies	where	there	is	no	direct	choice	of	

individuals	who	will	contribute	to	the	next	generation,	which	might	have	led	to	very	

different	patterns	of	evolution.	In	Zhou	et	al.	(2011),	the	study	populations	were	founded	

from	27	isogenic	lines.	Our	populations	were	not	created	by	crossing	of	inbred	lines.		The	
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populations	studied	by	Orozco-terWengel	et	al.		(2012)	and	Tobler	et	al.	(2014)	were	

founded	using113	isofemale	lines,	and	thus	should	have	had	far	more	genetic	variation	to	

begin	with	than	the	populations	studied	by	Zhou	et	al.	(2011),	perhaps	even	more	than	our	

founding	“Ives”	population,	which	was	started	with	about	200	fertilized	females	sampled	

from	the	wild	(Rose	1984).	

The	only	published	study	that	is	closely	comparable	to	this	one	is	that	of	Burke	et	al.	

(2010),	also	from	our	laboratory,	although	that	study	was	somewhat	impaired	by	the	use	of	

a	single	unpooled	replicate	population	alongside	two	sets	of	pools	of	five	replicate	

populations.	Nevertheless,	it	too	featured	long	sustained	selection,	founding	populations	

that	had	never	been	systematically	inbred,	and	five-fold	replication	of	the	selected	and	

ancestral	treatments.	A	failure	to	detect	completely	depressed	heterozygosity	in	the	five-

replicate	pools	of	that	study	could	be	attributed	to	differentiation	between	replicate	

populations	with	respect	to	selective	sweeps.	However,	the	single	unpooled	population	

(ACO1)	from	the	Burke	et	al.	study	also	did	not	show	clear	signatures	of	completed	selective	

sweeps,	despite	just	over	600	generations	of	sustained	selection.	

	 The	high	degree	of	similarity	in	patterns	of	variation	between	our	five	replicate	

populations	is	another	surprising	aspect	of	our	results.	We	found	that	our	observed	level	of	

FST	was	in	fact	much	lower	than	what	would	be	predicted	by	classical	theory	assuming	no	

migration	and	random	divergence	between	subpopulation.	To	produce	the	level	of	FST	we	

observe	using	this	model	would	require	an	effective	population	size	nearly	five	times	

greater	than	estimates	made	from	empirical	data	by	Mueller	et	al.	(2013),	and	as	such	we	

do	not	believe	this	discrepancy	can	be	reasonably	explained	away	by	issues	with	our	

population	size	estimates.	Our	attempts	to	predict	how	much	migration	would	be	required	
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to	produce	our	observed	FST,	assuming	random	divergence	and	populations	at	equilibrium	

suggest	that	~3	migrants	per	generation	would	be	sufficient.	However,	given	the	nature	of	

our	system	and	its	maintenance	protocols,	migration	rates	that	high	every	generation	seem	

unlikely.	It	is	also	worth	noting	we	have	no	guarantee	that	the	assumption	of	equilibrium	

conditions	has	been	met	in	our	populations,	which	could	confound	this	estimate	(Liang	et	

al.	2015).	And	this	lack	of	equilibrium	convergence	serves	as	a	possible	explanation	as	to	

why	migrations	rates	of	5	per	generation	did	not	produce	our	observed	FST	in	simulated	

scenarios.		

In	our	simulations,	increasing	the	number	of	selected	sites/QTLs	and	migration	

rates	both	failed	to	produce	comparable	FST	estimates	to	what	we	find	in	the	five	B	

populations.	Increasing	migration	rates	did	produce	reductions	in	FST,	and	it	is	likely	that	a	

drastic	increase	in	rates	of	simulated	migration	per	generation	would	produce	something	

comparable	to	our	observed	values.	However,	once	again,	migration	rates	that	high	every	

generation	do	not	seem	likely,	given	that	these	populations	are	maintained	independently	

and	all	migration	is	by	definition	accidental.	It	would	also	likely	result	in	too	much	genetic	

variation	being	maintained,	relative	to	the	patterns	in	our	genome-wide	data,	unless	

population	sizes	were	also	reduced.	Our	results	could	possibly	be	explained	by	parallel	

selection	at	a	large	number	of	loci,	but	more	work	would	be	required	to	test	this	hypothesis.	

And	our	initial	findings	suggest	even	this	explanation	may	not	be	adequate.		

	 Regarding	the	relative	importance	of	selective	sweeps,	our	results	are	not	

conclusive.	However,	the	high	levels	of	genetic	variation	maintained	in	these	populations	in	

the	face	of	relatively	small	population	sizes,	which	foster	genetic	drift	and	background	

selection	(Mueller	et	al.	2013),	together	with	the	long-sustained	selection	which	should	
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foster	reduced	genetic	variation	due	to	selective	sweeps,	seem	difficult	to	reconcile	with	the	

idea	of	adaptation	primarily	driven	by	hard	selective	sweeps.	If	one’s	imagination	extends	

so	far	as	to	suppose	that	such	selective	sweeps	arise	for	a	few	alleles	which	are	consistently	

favored	by	natural	selection	for	far	more	than	1,000	generations,	say	for	100,000	

generations,	then	our	experiment	does	not	test	for	the	existence	of	such	alleles.	We	doubt	

that	any	laboratory	experiment	with	outbred	metazoa	will	accomplish	such	a	test	in	this	

century	(Endler	1986).	
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Figure	1.1.	Genome-wide	patterns	of	genetic	variation	100kb	windows.	
Heterozygosity	and	Watterson	theta	(Ɵ)	plotted	across	100kb	non-overlapping	windows	
across	all	major	chromosome	arms	for	the	5	B	populations.	All	replicates	are	shown.		
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Figure	1.2.	All	selective	sweeps	detected.	Regions	across	all	major	chromosome	arms	in	
the	5	B	populations	showing	evidence	for	selection	based	on	our	analysis	using	Pool-Hmm.	
Each	panel	shows	results	from	a	different	B	population	replicate.	There	is	no	significance	to	
the	color	coding	outside	other	than	differentiating	adjacent	chromosome	arms.		
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Figure	1.3.	Overlapping	selective	sweeps.	Overlapping	regions	across	all	major	
chromosome	arms	showing	evidence	for	selection	across	all	5	B	populations	based	on	our	
analysis	using	Pool-Hmm.	Each	panel	shows	results	from	a	different	B	population	replicate	
as	these	regions	do	not	perfectly	overlap.	There	is	no	significance	to	the	color	coding	other	
than	differentiating	adjacent	chromosome	arms.	
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Table	1.1.	95%	confidence	intervals	for	average	FST	and	average	heterozygosity	for	
simulations	with	unconditionally	beneficial	alleles	and	overdominance.	Confidence	
intervals	for	each	scenario	are	based	on	the	distribution	of	these	values	taken	from	
100	simulation	runs	where	each	run	consists	of	5	simulated	populations.		

Heterozygo
us	Effect	

Number	of	
Sites	

Selection	
Coefficient	
(s)	

Mean	
Het	

Variance	Het	 Mean	
FST	

Variance		
FST	

B	
populations	

NA	 NA	 0.28	 0.0024	 0.08	 0.0004	

	 NA	 NA	 0.29	 0.0021	 	 	
	 NA	 NA	 0.28	 0.0024	 	 	
	 NA	 NA	 0.27	 0.0037	 	 	
	 NA	 NA	 0.27	 0.0037	 	 	
	 	 	 	 	 	 	
Neutral	 NA	 NA	 0.22		 0.0031	±	7.0	X	

10-5	
0.26		 0.0022	±	8.5	

X	10-5	
	 	 	 	 	 	 	
Overdomina
nce	

20	 0.03	 0.20		 0.0039	±	5.3	X	
10-5	

0.24		 0.0039	±	
0.0002	

	 	 0.065	 0.19		 0.0041	±	5.0	X	
10-5	

0.24		 0.0051	±	
0.0002	

	 	 0.1	 0.18		 0.0042	±	4.4	X	
10-5	

0.26		 0.0066	±	
0.0003	

	 	 0.03	<	s	<	0.1	 0.21		 0.0032	±	5.4	X	
10-5	

0.24		 0.0028	±	9.0	
X	10-5	

	 	 	 	 	 	 	
	 30	 0.03	 0.22		 0.0034	±	8.0	X	

10-5	
0.25		 0.0027	±	

0.0001	
	 	 0.065	 0.20		 0.0041	±	9.8	X	

10-5	
0.27		 0.0038	±	

0.0002	
	 	 0.1	 0.15		 0.0060	±	

0.0001	
0.42		 0.0108	±	

0.0005	
	 	 0.03	<	s	<0	.1	 0.19		 0.0040	±	6.5	X	

10-5	
0.27		 0.0045	±	

0.0002	
	 	 	 	 	 	 	
A1	
Dominant	

5	 0.065	 .20		 0.0060	±	
0.0002	

0.29		 0.0055	±	
0.0005	

	 10	 0.0325	 .21		 0.0035	±	7.6	X	
10-5	

0.28		 0.0033	±	
0.0001	

	 20	 0.01625	 .19		 0.0058		±	
0.0002	

0.32		 0.0055	±	
0.0002	

	 	 	 	 	 	 	
A2	
Dominant	

5	 0.065	 .20		 0.0055	±	
0.0002	

0.28		 0.0042	±	
0.0002	

	 10	 0.0325	 .20		 0.0037	±	6.1	X	
10-5	

0.27		 0.0033	±	
0.0001	

	 20	 0.01625	 .19		 0.0050		±	
0.0001	

0.30		 0.0045	±	
0.0002	

	 	 	 	 	 	 	
Codominant	 5	 0.065	 .20		 0.0060	±	

0.0002	
0.29		 0.0051	±	

0.0003	
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	 10	 0.0325	 .20		 0.0040	±	6.4	X	
10-5	

0.29		 0.0041	±	
0.0002	

	 20	 0.01625	 .18		 0.0061	±	
0.0002	

0.33		 0.0060	±	
0.0003	
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Table	1.2.	Average	genome	wide	FST	and	average	heterozygosity	for	B	populations	
and	simulations	with	selection	and	migration.	For	the	B	populations,	variance	in	
heterozygosity	and	FST	over	50kb	windows	is	shown.	For	each	simulated	scenarios,	
95%	confidence	intervals	for	variance	in	heterozygosity	and	FST	over	50kb	windows	
calculated	from	replicate	simulation	are	shown.		

Populations/Selection	
Scenario	

Migration	Rate		 Mean	Het	 Variance	Het	 Mean	
FST	

Variance		
FST	

B	populations	 NA	 0.28	 0.0024	 0.08	 0.0004	
	 NA	 0.29	 0.0021	 	 	
	 NA	 0.28	 0.0024	 	 	
	 NA	 0.27	 0.0037	 	 	
	 NA	 0.27	 0.0037	 	 	
	 	 	 	 	 	
Neutral	 M=0	 0.22		 0.0025	±	2.5	X	

10-5	
0.24		 0.0021	±	6.5	

X	10-5	
	 M=1	 0.22		 0.0024	±	2.6	X	

10-5	
0.22		 0.0020	±	6.2	

X	10-5	
	 M=5	 0.24		 0.0020	±	2.2	X	

10-5	
0.17		 0.0012	±	3.7	

X	10-5	
	 	 	 	 	 	
3	QTLs	with	0.05	
starting	freq.	

M=0	 0.19		 0.0037	±	5.3	X	
10-5	

0.24		 0.0027	±	
0.0001	

	 M=1	 0.20		 0.0034	±	4.8	X	
10-5	

0.22		 0.0023	±	8.6	
X	10-5	

	 M=5	 0.22		 0.0029	±	4.6	X	
10-5	

0.16		 0.0015	±	6.6	
X	10-5	

	 	 	 	 	 	
3	QTLs	with	0.5	
starting	freq.	

M=0	 0.21		 0.0025	±	2.8	X	
10-5	

0.24		 0.0023	±	6.6	
X	10-5	

	 M=1	 0.22		 0.0024	±	2.5	X	
10-5	

0.22		 0.0021	±	7.2	
X	10-5	

	 M=5	 0.24		 0.0020	±	2.2	X	
10-5	

0.16		 0.0013	±	4.3	
X	10-5	

	 	 	 	 	 	
10	QTLs	with	0.05	
starting	freq.	

M=0	 0.16		 0.0048	±	5.2	X	
10-5	

0.26		 0.0033	±	
0.0002	

	 M=1	 0.17		 0.0046	±	6.1	X	
10-5	

0.24		 0.0030	±	
0.0002	

	 M=5	 0.19		 0.0039	±	6.0	X	
10-5	

0.17		 0.0018	±	
0.0001	

	 	 	 	 	 	
10	QTLs	with	0.5	
starting	freq.	

M=0	 0.21		 0.0026	±	3.1	X	
10-5	

0.24		 0.0025	±	9.6	
X	10-5	

	 M=1	 0.21		 0.0025	±	2.7	X	
10-5	

0.22		 0.0022	±	9.3	
X	10-5	

	 M=5	 0.23		 0.0021	±	2.2	X	
10-5	

0.17		 0.0014	±	5.6	
X	10-5	

	 	 	 	 	 	
20	QTLs	with	0.05	
starting	freq.	

M=0	 0.16		 0.0050	±	5.5	X	
10-5	

0.27		 0.0044	±	
0.0002	
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	 M=1	 0.17		 0.0048	±	5.4	X	
10-5	

0.24		 0.0040	±	
0.0002	

	 M=5	 0.19		 0.0043	±	6.2	X	
10-5	

0.18		 0.0022	±	
0.0001	

	 	 	 	 	 	
20	QTLs	with	0.5	
starting	freq.	

M=0	 0.21		 0.0027	±	3.4	X	
10-5	

0.24		 0.0026	±	
0.0001	

	 M=1	 0.21		 0.0026	±	2.7	X	
10-5	

0.22		 0.0022	±	7.9	
X	10-5	

	 M=5	 0.23		 0.0021	±	2.3	X	
10-5	

0.17		 0.0015	±	5.9	
X	10-5	
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Table	1.3.	Number	of	regions	where	selection	was	detected	using	Pool-HMM	method	
with	different	per	site	transition	probabilities	(q).		
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Figure	S1.1.	Mean	genome-wide	patterns	of	genetic	variation	100kb	windows.	Mean	
heterozygosity	and	Watterson	theta	(Ɵ)	plotted	across	100kb	non-overlapping	windows	
across	all	major	chromosome	arms	for	the	5	B	populations.	
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Figure	S1.2.	Genome-wide	patterns	of	genetic	variation	30kb	windows.	
Heterozygosity	and	Watterson	theta	(Ɵ)	plotted	across	30kb	non-overlapping	windows	
across	all	major	chromosome	arms	for	the	5	B	populations.	
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Figure	S1.3.	Genome-wide	patterns	of	genetic	variation	50kb	windows.	
Heterozygosity	and	Watterson	theta	(Ɵ)	plotted	across	50kb	non-overlapping	windows	
across	all	major	chromosome	arms	for	the	5	B	populations.	
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Figure	S1.4.	Genome-wide	patterns	of	genetic	variation	150kb	windows.	
Heterozygosity	and	Watterson	theta	(Ɵ)	plotted	across	150kb	non-overlapping	windows	
across	all	major	chromosome	arms	for	the	5	B	populations.	
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Figure	S1.5.	Pair-wise	comparisons	of	heterozygosity.	Values	calculated	over	100kb	
windows	for	all	5	B	populations.	
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Figure	S1.6.	Pool-HMM	results	for	drift	simulation.	Pool-HMM	results	for	chromosome	
arm	3R	from	simulations	featuring	neutrally	evolving	populations.	Regions	where	selection	
was	detected	by	the	Pool-HMM	are	shown	in	blue.	Results	are	shown	for	a	population	with	
no	migration	(top),	a	population	from	a	group	of	5	where	there	were	5	migration	events	
per	generation,	and	a	population	from	a	group	of	5	where	there	were	20	migration	events	
per	generation.	
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Figure	S1.7.	Pool-HMM	results	3	selected	QTL	low	starting	frequency.	Pool-HMM	
results	for	chromosome	arm	3R	from	simulations	with	3	selected	QTL	starting	at	low	
frequencies	(0.05).	The	locations	of	the	selected	QTLs	are	indicated	by	red	lines,	and	
regions	where	selection	is	detected	by	Pool-HMM	are	in	blue.	Results	are	shown	for	a	
population	with	no	migration	(top),	a	population	from	a	group	of	5	where	there	were	5	
migration	events	per	generation	(middle),	and	a	population	from	a	group	of	5	where	there	
were	20	migration	events	per	generation	(bottom).	

	

	

	

	

	

	

	

	



 54 

	

Figure	S1.8.	Pool-HMM	results	10	selected	QTL	low	starting	frequency.	Pool-HMM	
results	for	simulations	with	10	selected	QTL	starting	at	low	frequencies	(0.05).	The	
locations	of	the	selected	QTLs	are	indicated	by	red	lines,	and	regions	where	selection	is	
detected	by	Pool-HMM	are	in	blue.	Results	are	shown	for	a	population	with	no	migration	
(top),	a	population	from	a	group	of	5	where	there	were	5	migration	events	per	generation	
(middle),	and	a	population	from	a	group	of	5	where	there	were	20	migration	events	per	
generation	(bottom).	
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Figure	S1.9.	Pool-HMM	results	3	selected	QTL	high	starting	frequency.	Pool-HMM	
results	chromosome	arm	3R	from	simulations	with	3	selected	QTL	starting	at	high	
frequencies	(0.5).	The	locations	of	the	selected	QTLs	are	indicated	by	red	lines,	and	regions	
where	selection	is	detected	by	Pool-HMM	are	in	blue.	Results	are	shown	for	a	population	
with	no	migration	(top),	a	population	from	a	group	of	5	where	there	were	5	migration	
events	per	generation	(middle),	and	a	population	from	a	group	of	5	where	there	were	20	
migration	events	per	generation	(bottom).	
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Figure	S1.10.	Pool-HMM	results	10	selected	QTL	high	starting	frequency.	Pool-HMM	
results	for	simulations	with	10	selected	QTL	starting	at	high	frequencies	(0.5).	The	
locations	of	the	selected	QTLs	are	indicated	by	red	lines,	and	regions	where	selection	is	
detected	by	Pool-HMM	are	in	blue.	Results	are	shown	for	a	population	with	no	migration	
(top),	a	population	from	a	group	of	5	where	there	were	5	migration	events	per	generation	
(middle),	and	a	population	from	a	group	of	5	where	there	were	20	migration	events	per	
generation	(bottom).	
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Table	S1.1.	100	kb	regions	that	consistently	have	values	of	Ɵ	less	than	0.001	across	
all	5	B	populations.	

Chromosome	 Start	of	
region	

2L	 50000	
2L	 21350000	
2L	 21750000	
2R	 19150000	
3L	 150000	
3R	 50000	
3R	 150000	
3R	 250000	
3R	 550000	
3R	 1450000	
3R	 8250000	
3R	 27850000	
X	 250000	
X	 350000	
X	 450000	
X	 550000	
X	 650000	
X	 750000	
X	 850000	
X	 950000	
X	 1050000	
X	 1150000	
X	 1250000	
X	 1350000	
X	 1450000	
X	 1550000	
X	 1650000	
X	 1750000	
X	 1850000	
X	 1950000	
X	 2050000	
X	 2150000	
X	 2250000	
X	 2350000	
X	 7350000	
X	 11450000	
X	 14150000	
X	 16350000	
X	 16450000	
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X	 16550000	
X	 16650000	
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Table	S2.2.	100	kb	regions	that	consistently	have	values	of	heterozygosity	less	than	
0.2	across	all	5	B	populations.	

Chromosome	 Start	of	
region	

2L	 2505390	
2L	 22705390	
2L	 22805390	
2R	 19110083	
2R	 20310083	
3L	 3719855	
3L	 9419855	
3L	 9819855	
3L	 24019855	
3R	 14200284	
3R	 14300284	
X	 120552	
X	 220552	
X	 320552	
X	 420552	
X	 520552	
X	 620552	
X	 720552	
X	 820552	
X	 920552	
X	 1020552	
X	 1120552	
X	 1220552	
X	 1320552	
X	 1420552	
X	 1520552	
X	 1620552	
X	 1720552	
X	 1820552	
X	 1920552	
X	 2020552	
X	 2120552	
X	 2220552	
X	 2320552	
X	 3720552	
X	 14120552	
X	 14620552	
X	 16420552	
X	 16620552	
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Table	S1.3.	Results	from	Pool-HMM	being	applied	to	100kb	windows	samples	from	
our	neutral	simulations.	Shows	the	total	number	of	instances	where	selection	was	
detected	across	all	100kb	regions	taken	from	each	set	of	neutral	simulations.	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Scenario	 Migration	
Rate		

Number	of	
Simulated	
Populations	

Total	Number	of	
Instances	where	
Selection	was	Detected	

Neutral	 M=0	 300		 2	

	 M=1	 300	 2	

	 M=5	 300	 0	
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CHAPTER	2	

Genomics	of	Parallel	Experimental	Evolution	in	Drosophila	

ABSTRACT	

	 What	are	the	genomic	foundations	of	adaptation	in	sexual	populations?	We	address	

this	question	using	fitness-character	and	whole-genome	sequence	data	from	30	Drosophila	

laboratory	populations.		These	30	populations	are	part	of	a	nearly	forty-year	laboratory	

radiation	featuring	three	selection	regimes,	each	shared	by	ten	populations	for	up	to	837	

generations,	with	moderately	large	effective	population	sizes.	Each	of	three	sets	of	ten	

populations	that	shared	a	selection	regime	consist	of	five	populations	that	have	long	been	

maintained	under	that	selection	regime,	paired	with	five	populations	that	had	only	recently	

been	subjected	to	that	selection	regime.	We	find	a	high	degree	of	evolutionary	parallelism	

in	fitness	phenotypes	when	most-recent	selection	regimes	are	shared,	as	in	previous	

studies	from	our	laboratory.		We	also	find	genomic	parallelism	with	respect	to	the	

frequencies	of	single-nucleotide	polymorphisms,	transposable	elements,	insertions,	and	

structural	variants,	which	was	expected.	Entirely	unexpected	was	a	high	degree	of	

parallelism	for	linkage	disequilibrium.	The	evolutionary	genetic	changes	among	these	

sexual	populations	are	rapid	and	genomically	extensive.	This	pattern	may	be	due	to	

segregating	functional	genetic	variation	that	is	abundantly	maintained	genome-wide	by	

selection,	variation	that	responds	immediately	to	changes	of	selection	regime.	
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INTRODUCTION	

	 Genome-wide	sequencing	of	experimentally-evolved	populations	has	emerged	as	a	

powerful	method	for	parsing	the	genetic	underpinnings	of	adaptation	(Burke	et	al.	2010;	

Turner	et	al.	2011;	Tenaillon	et	al.	2012;	Schlötterer	et	al.	2015).	An	emerging	pattern	in	

this	research	is	a	contrast	between	the	genomics	of	experimental	evolution	in	asexual	and	

sexual	populations.	Initial	adaptation	in	the	most	common	asexual	paradigm,	serially-

cultured	Escherichia	coli,	features	sequential	selective	sweeps	of	new	mutations,	at	least	

over	the	first	several	thousand	generations	of	laboratory	selection	(e.g.,	Barrick	et	al.	2009,	

Tenaillon	et	al.	2012,	Maddamsetti	et	al.	2015).	By	contrast,	initial	adaptation	in	the	most	

common	sexual	paradigm,	outbred	laboratory	Drosophila	melanogaster,	apparently	

depends	on	moderate	changes	in	the	allele	frequencies	of	standing	genetic	variation,	rather	

than	selective	sweeps,	at	least	for	as	many	as	600	generations	(Burke	et	al.	2010;	Turner	et	

al.	2011;	Burke	2012;	Orozco-ter	Wengel	et	al.	2012;	Tobler	et	al.	2014).	Here	we	present	

data	for	fitness	characters	and	whole-genome,	pooled,	DNA	sequences	of	30	Drosophila	

laboratory	populations	taken	from	a	large	laboratory	radiation	of	outbred	populations	

(Rose	et	al.	2004;	Mueller	et	al.	2013).	

	 In	this	study,	our	primary	goal	is	to	establish	whether	the	emerging	contrast	

between	asexual	and	sexual	populations	is	sustained	over	a	wide	range	of	evolutionary	

durations,	from	dozens	to	nearly	1,000	generations	of	sustained	selection	regimes	in	sexual	

populations.	Our	second	goal	is	to	determine	the	degree	to	which	phenotypic	and	genomic	

parallelism	occurs	between	populations	that	share	recently-imposed	versus	long-sustained	

selection	regimes.			Our	third	goal	is	to	probe	the	evolutionary	genetic	mechanisms	

underlying	parallelism	within	each	set	of	ten	populations	that	share	a	recent	selection	
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regime.	The	terms	parallelism	and	convergence	are	often	confused	in	the	literature	(Fong	

et	al.	2005;	Arendt	and	Reznick	2007),	and	in	any	case	are	terms	of	shifting	usage.	One	such	

usage	is	that	“convergence”	refers	to	a	similar	phenotype	evolving	by	different	genetic	

mechanism	among	distantly	related	populations	and	species	(Arendt	and	Reznick	2007),	

while	“parallelism”	refers	to	the	emergence	of	similar	functional,	structural,	and	genomic	

features	of	populations	that	diverged	from	a	common	ancestor	(Elias	and	Tawfik	2012).	In	

this	usage,	our	experimental	system	is	well	qualified	to	examine	such	“parallelism,”	as	all	

30	study	populations	share	a	moderately	distant	ancestor	by	the	standards	of	experimental	

evolution:	the	Ives	population	(vid.	Ives	1970;	Rose	et	al.	2004;	Burke	et	al.	2016).		

	 There	have	been	a	number	of	experimental	evolution	studies	of	phenotypic	

convergence	or	parallelism	in	Drosophila	(Service	et	al.	1988;	Teotonio	and	Rose	2000;	

Matos	and	Avelar	2001;	Teotonio	and	Rose	2001;	Matos	et	al.	2002;	Matos	et	al.	2004;	

Teotonio	et	al.	2009).	Here	we	employ	Drosophila	stocks	that	feature	five-fold	replicated	

groups	of	outbred	populations	that	have	been	subjected	to	parallel	sequences	of	selection	

regimes	for	decades	(Rose	et	al.	2004;	Burke	et	al.	2016).	Three	selection	regimes	were	

repeatedly	imposed	on	these	five-population	groups,	here	called	“A-type”,	“B-type”,	and	“C-

type”	(Figure	2.1A).	These	selection	treatments	differ	chiefly	with	respect	to	the	length	of	

their	discrete	generations,	which	are	10,	14,	and	28	days,	respectively.	Fifteen	of	these	

populations	were	created	decades	ago	and	have	long	been	subjected	to	either	A,	B,	or	C-

type	selection	(the	ACO,	B,	and	CO	populations,	respectively).	Matched	to	them	are	15	

populations	recently	derived	from	five	common	ancestral	“O”	populations	and	since	

subjected	to	one	of	A,	B,	or	C-type	selection	(the	AO,	BO,	and	nCO	populations).	In	total,	this	

experimental	system	features	30	populations	subsequently	assessed	using	pooled	genome-
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wide	sequencing	and	focal	fitness	assays,	structured	as	three	groups	of	ten	populations	

each	sharing	the	same	recent	selection	history	(Figure	2.1B).		

MATERIALS	AND	METHODS	

Experimental	system		

	 The	laboratory	phylogeny	used	for	this	experiment	consisted	of	30	D.	melanogaster	

populations	that	underwent	selection	for	more	than	three	decades,	with	five	replicate	

populations	maintained	for	each	of	six	different	evolutionary	histories.	The	estimated	

effective	population	size	for	each	population	is	near	1000	for	populations	maintained	with	

reproduction	in	either	vials	or	cages	(Mueller	et	al.	2013).	For	the	30	populations	studied	

here,	we	had	three	selection	treatments	which	differed	chiefly	with	respect	to	the	length	of	

their	discrete	generations:	the	duration	from	egg-collection	that	began	each	generation	to	

the	egg-laying	that	started	the	following	generation.	A-type	selection	requires	rapid	larval	

development,	with	flies	newly	emerged	from	rearing	vials	transferred	to	population	cages	

for	egg-laying,	in	order	to	start	the	next	discrete	generation	at	about	10	days	of	age.	B-type	

selection	involves	population	maintenance	exclusively	in	rearing	vials,	with	laying	adults	

harvested	at	14	days	for	a	few	hours	of	egg-laying	to	start	the	next	discrete	generation.	C-

type	selection	is	like	A-type	selection,	except	that	adults	are	collected	at	14	days	from	egg,	

and	then	these	adults	are	kept	in	cages	for	12	days	with	unyeasted	plates	of	medium,	

followed	by	two	days	of	yeasted	plates	on	which	egg-laying	occurs.		

	 Fifteen	populations	of	A,	B,	and	C-type	populations	were	created	long	ago	with	

respect	to	generation	number:	five	“ACO”	populations	that	had	undergone	737	generations	

of	A-type	selection	at	the	time	of	the	experiments	reported	here;	five	“B”	populations	that	

had	undergone	837	generations	of	B-type	selection;	and	five	“CO”	populations	that	had	290	
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generations	of	C-type	selection.	Corresponding	to	them	are	15	populations	all	derived	from	

five	“O-type”	populations	(vid.	Rose,	1984)	that	were	cultured	from	eggs	laid	by	females	9-

10	weeks	old:	five	“AO”	populations	given	146	generations	of	A	selection;	five	“BO”	given	

121	generations	of	B	selection;	and	five	“nCO”	given	37	generations	of	C	selection.	Their	

derivation	is	described	in	detail	in	Burke	et	al.	(2016).	These	generation	numbers	for	the	

three	selection	regimes	are	all	calibrated	to	the	generation	at	which	flies	were	sampled	for	

pooled	DNA	sequencing.		

Phenotypic assay 

  The	flies	assayed	phenotypically	were	taken	from	the	same	generation	as	those	we	

used	for	pooled	DNA	sequencing.	Assays	of	fecundity	and	age-specific	survival	were	

conducted	in	cages	holding	adults	during	the	19	day	interval	between	day	9	(from	egg)	and	

day	28	(from	egg).	This	time	period	includes	the	longest	duration	that	any	adult	fly	is	

allowed	to	live	in	our	present	stock	system,	which	no	longer	includes	the	O	populations.	

Fitness	components	were	calculated	from	the	data	collected	from	the	assay	cages	during	

this	19	day	interval.	As	is	our	normal	practice,	all	phenotypic	assays	were	performed	after	

two	generations	of	common-garden	rearing	using	14-day	B-type	culture	(vid.	Rose	et	al.,	

2004).	

	 To	test	for	phenotypic	differentiation	between	newly	derived	and	long	standing	

replicates	of	the	same	treatment,	we	tested	effects	of	selection	on	fecundity	over	3-4	

consecutive	ages.	The	observations	consisted	of	fecundity	at	a	particular	age	(t)	but	within	

a	small	age	interval	(k=1,2,…,m).	Within	each	interval,	mortality	or	fecundity	rates	were	

modeled	by	a	straight	line	and	allowing	selection	regime	(j=	1	(ACO	or	B	or	CO),	2	(AO	or	

BO	or	nCO))	to	affect	the	intercept	of	that	line	but	not	the	slope.	However,	slopes	were	
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allowed	to	vary	between	intervals.	Populations	(i=	1,…,10)	were	assumed	to	contribute	

random	variation	to	these	measures.	With	this	notation	the	fecundity	at	age-t,	interval-k,	

selection	regime-j	and	population-i,	is	yijkt	and	is	described	by,		

 

		𝑦𝑖𝑗𝑘𝑡 = 𝛼 + 𝛽@ + 𝛿B𝛾B + (𝜔 + 𝜋@𝛿@)𝑡 + 𝛿@𝛿B𝜇B@ + 𝑐H + 𝜀HB@$            

 

where	ds = 0 if s=1 and 1 otherwise and ci, and eijkt are independent standard normal random 

variables with variance 𝜎𝑐2 and 𝜎P+ respectively. The effects of selection on the intercept are 

assessed by considering the magnitude and variance of both gj and µjk.  

DNA	extraction	and	sequencing	

	 Genomic	DNA	was	extracted	from	samples	of	120	female	flies	collected	from	each	of	

the	30	individual	populations	(ACO1-5,	AO1-5,	CO1-5,	nCO1-5,	B1-5,	BO1-5)	using	the	

Qiagen/Gentra	Puregene	kit,	following	the	manufacturer’s	protocol	for	bulk	DNA	

purification.	The	30	gDNA	pools	were	prepared	as	standard	200-300	bp	fragment	libraries	

for	Illumina	sequencing,	and	constructed	such	that	each	5	replicate	populations	of	a	

treatment	(e.g.,	ACO1-5)	were	given	unique	barcodes,	normalized,	and	pooled	together.	Each	

5-plex	library	was	run	on	individual	PE100	lanes	of	an	Illumina	HiSEQ	2000	at	the	UNC	

High	Throughput	Sequencing	Facility.	Resulting	data	were	100	bp	paired-end	reads.	Each	

population	was	sequenced	twice;	data	from	both	runs	were	combined	for	some	analyses	as	

described	below.	Combining	reads	from	two	independent	sequencing	runs	likely	alleviate	

the	effects	of	possible	bias	introduced	from	running	all	replicates	for	each	population	in	the	

same	lane.	Moreover,	preliminary	comparisons	between	analyses	resulting	from	only	the	
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first	run	and	analyses	from	the	combined	data	did	not	yield	substantive	differences	in	our	

results	(data	not	shown).	

Single	Nucleotide	Polymorphism	(SNP)	analysis	

Read	mapping	and	pre-processing	

	 We	first	trimmed	the	reads	to	remove	low	quality	bases	using	a	script	provided	in	

the	PoPoolation	software	package	(Kofler	et	al.	2011a).	We	then	mapped	reads	with	BWA	

(version	0.7.6)	(Li	and	Durbin	2009)	against	the	D.	melanogaster	reference	genome	

(release	5.51)	with	the	following	mapping	parameters:	-n	0.01	(error	rate),	-o	2	(gap	

opening),	-d	12	and	-e	12	(gap	length),	and	-l	150	to	effectively	disable	the	seed	option.	We	

then	converted	the	resulting	alignment	files	to	SAM	format	using	the	BWA	sampe	

command.	We	filtered	the	SAM	files	for	reads	mapped	in	proper	pairs	with	a	minimum	

mapping	quality	of	20	and	converted	them	to	the	BAM	format	using	SAMtools	(Li	et	al.	

2009).	The	rmdup	command	in	SAMtools	was	then	used	to	remove	potential	PCR	

duplicates.	The	two	BAM	files	from	each	population’s	two	sequencing	runs	were	merged	

using	BAMtools	to	maximize	coverage	(Barnett	et	al.	2011).	These	merged	BAM	files	were	

then	all	combined	in	the	mpileup	format	once	again	using	SAMtools.	Using	PoPoolation2	

(Kofler	et	al.	2011b),	the	resulting	mpileup	was	converted	to	a	“synchronized”	files,	which	

is	a	format	that	allele	counts	for	all	bases	in	the	reference	genome	and	for	all	populations	

being	analyzed.	We	used	RepeatMasker	4.0.3	(http://www.repeatmasker.org)	to	create	a	

gff	file	to	mask	low	complexity	regions	of	the	D.	melanogaster	genome	version	5.51.		

Heterozygosity	analysis	

	 We	calculated	and	plotted	heterozygosity	across	the	five	major	chromosome	arms	

to	see	if	we	could	find	any	evidence	of	selective	sweeps	and	to	determine	if	there	was	
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convergence	in	overall	patterns	of	variation.	To	do	this,	SNPs	were	first	called	across	all	30	

populations	used	in	this	study	from	our	synchronized	file.	SNPs	where	discarded	if	

coverage	in	any	of	the	populations	was	less	than	20X	or	greater	than	500X.	We	also	

required	a	minimum	minor	allele	frequency	of	2%	across	all	eight	populations.	Based	on	

these	parameters,	~1.01	million	SNPs	were	identified	across	the	major	chromosome	arms.	

The	average	SNP	coverage	at	each	across	our	30	populations	ranged	from	28X	to	108X,	

with	all	but	two	of	our	populations	(CO5	and	B3	at	28X	and	31X	respectively)	and	having	

coverage	greater	than	30X	(Table	S2.3	for	more	detailed	coverage	information).	A	SNP	

table	with	major	and	minor	allele	counts	for	each	SNP	in	each	population	was	then	

generated.	Using	these	counts,	heterozygosities	were	calculated	and	plotted	over	100kb	

non-overlapping	windows.	We	also	performed	t-tests	comparing	mean	genome-wide	

heterozygosities	between	different	groups	of	populations.		

	 We	also	took	steps	to	identify	potential	bias	in	our	SNP	calling	procedure	given	that	

average	coverage	varied	across	the	30	populations.	In	particular,	the	CO5	and	B3	sequence	

data	have	much	lower	average	coverage	than	the	other	populations.	To	test	for	possible	

bias,	we	repeated	our	SNP	calling	procedure	with	the	added	exception	that	a	minimum	

coverage	of	20	was	relaxed	to	10	for	the	CO5	and	B3	populations;	it	was	unchanged	for	the	

remaining	28	populations.	This	ultimately	resulted	in	an	additional	~300	thousand	SNPs	

being	identified,	suggesting	that	the	inclusion	of	these	low	coverage	populations	combined	

with	our	minimum	coverage	requirement	of	20	is	indeed	a	source	of	bias.	However,	as	

allele	frequency	estimates	suffer	at	low	coverages,	we	chose	to	be	more	conservative	and	

maintain	this	requirement	for	SNPs	included	in	our	analyses.	
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FST	estimates	

	 FST	estimates	for	replicate	populations	were	obtained	using	the	formula:	FST=	(HT-

HS)/HT	where	HT	is	heterozygosity	based	on	total	population	allele	frequencies,	and	HS	is	

the	average	subpopulation	heterozygosity	in	each	of	the	replicate	populations	(Hedrick,	

2009).	FST	estimates	were	made	at	every	polymorphic	site	in	the	data	set	for	a	given	set	of	

replicate	populations.	This	was	done	to	quantify	the	level	of	similarity	between	replicates	

of	our	6	sets	of	populations.	The	mean	genome	wide	FST	for	the	6	sets	of	populations	are	

reported	in	supplementary	table	S7.	

SNP	differentiation	

	 PoPoolation2	was	used	to	obtain	measures	of	SNP	differentiation	between	newly	

derived	and	long	standing	populations	within	and	between	treatments	(Kofler	et	al.	

2011b).	More	specifically,	we	used	this	software	package	to	perform	Cochran-Mantel-

Haenzsel	tests	of	differentiation	to	compare	SNP	frequencies	between	our	various	groups	

of	replicate	populations.	The	specific	comparisons	performed	were	as	follows:	ACO	vs	AO,	

ACO	vs	B,	AO	vs	BO,	ACO	vs	CO,	AO	vs	nCO,	B	vs	BO,	B	vs.	CO,	BO	vs	nCO,	CO	vs.	nCO,	A	vs	C	

(all	A-types	versus	all	C-types),	A	vs	B,	and	B	vs	C.	For	each	comparison,	relevant	

populations	were	paired	by	their	replicate	number	(e.g.	ACO1	with	AO1,	ACO2	with	AO2,	

and	so	on),	which	reflects	patterns	ancestry	in	the	case	of	all	but	the	five	B	populations.		

	 The	CMH	test	was	performed	at	each	site	polymorphic	across	our	30	populations.	

Results	for	all	positions	not	found	in	our	SNP	table	were	then	discarded;	thus	all	positions	

failing	to	meet	our	SNP	calling	criteria	as	stated	above	were	removed.	To	generate	null	

distributions	for	p-values	generated	by	each	comparisons	(i.e.,	distributions	of	these	p-

values	associated	with	a	null	expectation	of	genetic	drift	rather	than	selection),	we	used	a	
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permutation	approach.	For	a	given	comparison,	the	relevant	populations	were	randomly	

assigned	to	one	of	two	groups	and	the	CMH	test	was	then	performed	at	each	polymorphic	

position	in	the	shuffled	data	set.	This	was	done	a	1000	times	and	the	smallest	p-value	was	

recorded.	The	quantile	function	in	R	was	then	used	to	define	thresholds	that	define	the	

genome-wide	false-positive	rate,	per	site,	at	5%.	This	was	done	for	each	the	12	

comparisons	we	performed.	

	 To	give	a	concrete	example	of	the	permutation	procedure,	we	will	focus	on	the	

ACO1-5	vs	CO1-5	comparison.	For	a	given	permutation,	5	of	the	10	populations	were	

randomly	assigned	to	group	X	and	the	remaining	to	group	Y.	A	permuted	data	set	could	

look	something	like	group	X	=	CO1,	ACO2,	ACO3,	CO3,	CO4	and	group	Y	=	CO5,	ACO1,	ACO4,	

ACO5,	CO2.	When	the	CMH	test	is	run,	the	populations	would	be	paired	based	on	their	order	

in	groups	X	and	Y	(eg.	CO1-CO5,	ACO2-ACO1,	ACO3-ACO4,	etc.).	Given	that	the	pairings	matter	

and	we	have	10	populations,	this	gives	3,628,800	possible	permutations.	For	each	of	the	

shuffled	data	sets,	the	CMH	test	was	performed	between	groups	X	and	Y	at	each	

polymorphic	position	and	the	smallest	p-value	generated	across	the	entire	genome	was	

recorded.	Once	we	had	a	list	of	the	smallest	p-values	generated	across	1000	permutations,	

we	used	the	quantile	function	in	R	to	define	thresholds	that	give	a	genome-wide	false-

positive	rate,	per	site,	of	5%.	That	is,	our	test	gives	us	a	Type	I	error	rate	of	0.05	for	each	

and	every	site	considered	significantly	differentiated.	Note	that	this	test	is	not	designed	to	

minimize	Type	II	errors	across	the	genome,	making	it	undoubtedly	statistically	

conservative.	
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Linkage	Disequilibrium	(LD)	analysis		

	 We	calculated	linkage	disequilibrium	using	LDx,	a	method	which	uses	an	

approximate	maximum	likelihood	approach	to	estimate	LD	(r2)	from	pooled	resequencing	

data	(Feder	et	al.	2012),	using	HPC	resources	provided	by	the	Texas	Advanced	Computing	

Center	(TACC)	at	the	University	of	Texas	at	Austin.	To	view	the	complete	scripts	used	for	

this	analysis,	see	https://github.com/k8hertweck/flyPopGenomics.	To	prepare	data	for	

analysis	in	LDx,	we	called	SNPs	on	each	merged	bam	file	using	mpileup	and	filtered	the	

output	using	default	options	(samtools	mpileup	-uIf	dmel.RELEASE5	*.bam	|	bcftools	view	-

v	snps	|	vcfutils.pl	varFilter	>	*.flt.vcf).	We	than	ran	LDx	using	default	options,	except	for	

adjusting	the	insert	size	to	200	and	minimum	read	depth	to	20	(perl	LDx.pl	-l	20	-h	100	-s	

200	-q	20	-a	0.1	-i	11	*.sam	*.flt.vcf	>	*.flt.out).	Because	LDx	compares	SNPs	within	read	

pairs,	we	only	report	LD	calculations	for	distances	of	200	bp	or	less.	Distances	less	than	11	

bp	were	also	discarded	because	of	small	sample	sizes.	

	 To	evaluate	differences	in	patterns	of	LD	decay	between	our	populations,	we	fit	the	

data	to	a	biexponential	model	in	R	using	the	“SSbiexp”	function	and	the	“nlme”	package	

(Pinheiro	et	al.	2015).	Data	from	each	chromosome	(2,	3	and	X)	was	handled	

independently.	We	chose	to	use	a	biexponential	model	after	evaluating	quadratic,	cubic,	

and	quartic	models.	To	do	this,	we	split	the	data	into	a	training	set	(80%	of	the	data)	and	a	

test	set	(remaining	20%).	We	then	calculated	the	mean	squared	error	(MSE)	for	each	model	

and	found	that	the	biexponential	model	had	the	lowest	MSE.		

	 We	initially	partitioned	variation	in	LD	into	the	fixed	effects	of	selection	regime	and	

whether	or	not	the	populations	were	long	standing	(ACO,B,	or	CO)	or	newly	derived	(AO,	

BO,	nCO)	and	the	random	effects	of	population.	However,	we	found	that	whether	or	not	the	
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populations	were	long	standing	or	newly	derived	did	not	have	an	effect	on	parameter	

estimates.	So	this	was	dropped	from	the	model.	The	random	effects	over	populations	are	

due	to	both	sampling	and	genetically-based	differences	that	arise	due	to	genetic	drift.	We	

tested	models	with	population	variation	in	subsets	of	parameters	and	with	a	constant	

within-population	variation.	The	model	chosen	had	the	lowest	Akaike	and	Bayesian	

information	criterion	(Pinheiro	and	Bates	2000).		

	 For	each	chromosome,	we	constructed	confidence	intervals	based	on	model	

predictions	with	a	coverage	level	that	applied	to	all	observed	points.	For	each	population	

we	had	maximum	likelihood	parameters	estimates	and	their	covariance	matrix	estimates,	

which	were	assumed	to	have	normal	distributions.	From	these	distributions,	we	drew	

samples	of	the	parameter	vectors,𝜇QH,	(i=	1,…,m).	For	each	sampled	parameter	vector,	we	

made	predictions	𝑓(𝜇QH, 𝑡),	for	all	values	of	t.	From	these	m	predictions,	we	generated	order	

statistics,	𝑓B(𝜇QH, 𝑡),	where	𝑓*(𝜇QH, 𝑡)	is	the	smallest	predicted	value	at	t	and	𝑓/(𝜇QH, 𝑡)	is	the	

largest.	If	there	are	k-points	that	we	want	to	include	in	a	simultaneous	interval,	then	from	

the	Bonferroni	inequality	(Miller	1966)	the	confidence	level	is	elevated	to	1-0.05/k.	From	

the	order	statistics,	we	then	used	𝑓S(𝜇QH, 𝑡)	as	the	lower	confidence	limit	and	𝑓T(𝜇QH, 𝑡)	as	the	

upper	confidence	limit	where,	l	=	round	(m0.05/(2k))	and	u=(m+1-l).	For	our	purposes,	m=	

10,000	and	k=	38.	We	have	LD	estimates	for	distances	of	10	to	200bp,	but	here	we	only	

used	distances	that	were	multiples	of	5.		

RESULTS	

Phenotypic	analysis	

	 We	performed	assays	of	fecundity	and	survival	during	the	same	generations	as	

those	used	to	collect	samples	for	DNA	sequencing,	testing	for	functional	parallelism	
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between	long-standing	and	newly-derived	populations	(kx,	Figure	2.1C-E;		for	lx,	mx	see	

Figure	S2.1,	see	supplementary	Tables	S2.1	and	S2.2		for	p-values).	We	found	statistically	

significant	phenotypic	differentiation	between	groups	of	populations	sharing	their	most	

recent	selection	regime	for	just	one	fitness-character:		newly-derived	nCO	populations	had	

superior	reproductive	output	to	long-standing	CO	populations	during	a	single	time	interval	

(Figure.	2.1E).	Overall,	the	fitness-character	results	show	a	lack	of	evolutionary	

differentiation	between	long-standing	and	newly-derived	populations	sharing	the	same	

distal	selection	regime.	This	rapid	loss	of	differentiation	is	consistent	with	previous	

Drosophila	studies	on	the	experimental	evolution	of	functional	characters	(Teótonio	and	

Rose	2000;	Rose	et	al.	2004;	Fragata	et	al.	2014).		

Patterns	of	genetic	variation	

	 Given	the	lack	of	phenotypic	differentiation	with	shared	recent	selection	regimes,	

we	aimed	to	identify	potential	underlying	genomic	factors	that	similarly	lack	

differentiation.	Our	average	sequencing	coverage	varied	between	populations,	but	was	≥	

50X	for	all	populations	except	CO5	(25X)	and	B3	(29X)	(Table	S2.3).	Genomic	analysis	

focused	on	single	nucleotide	polymorphism	(SNP)	variation.	We	identify	~1.01million	SNPs	

across	the	major	chromosome	arms.			

	 Extensive	heterozygosity	is	maintained	in	our	populations,	despite	hundreds	of	

generations	in	the	laboratory,	as	previously	found	by	Burke	et	al.	(2010)	for	the	five	ACO	

populations	and	the	five	CO	populations.	In	terms	of	heterozygosity	calculated	from	our	

SNP	data,	we	find	few	large	regions	where	genetic	variation	has	been	depleted	when	

heterozygosity	is	calculated	over	100kb	windows	(Figure	2.2).	Regions	where	

heterozygosity	has	been	reduced	to	low	levels	are	predominately	found	in	the	A-type	
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populations.	This	result	is	robust	to	reductions	in	window	size	(see	Figures	S2.2	and	S2.3	

for	50k	and	30kb	results).	Mean	heterozygosity	is	also	lower	in	populations	subjected	to	A-

type	selection	(Table	S2.4),	which	could	be	due	to	more	intense	A-type	selection.	For	

heterozygosity	calculated	from	our	SNP	data,	these	differences	were	found	to	be	

statistically	significant	based	on	t-tests	comparing	mean	genome	wide	heterozygosity	

between	groups	of	populations	(see	Table	S2.5	for	p-values).	We	find	that	more	variation	is	

maintained	in	C-type	populations	than	both	A-type	and	B-type	populations,	with	more	in	B-

type	populations	than	A-type.	

	 As	for	patterns	of	similarity	in	variation	across	replicates,	we	find	a	high	degree	of	

similarity	between	replicate	populations	with	parallel	evolutionary	histories,	as	indicated	

by	mean	genome	wide	FST	estimates	that	are	all	less	than	0.10	from	SNP	data	(Table	S2.6).		

Given	the	range	of	these	values	(0.041-0.087),	we	suggest	that	Wright	(1978)	would	have	

described	the	variation	between	replicates	within	each	selective	treatment	as	“small”.		This	

pattern	is	recapitulated	by	visual	examination	of	heterozygosity	for	replicate	populations	

(Figure	S2.4).	We	also	display	this	finding	by	plotting	the	variance	in	allele	frequencies,	per	

SNP,	for	each	of	the	selection	treatments	(Figure	S2.5).		Observed	variances	in	raw	SNP	

frequencies	are	very	low	across	all	treatments,	implicating	parallel	evolution	of	standing	

variants	among	the	five	replicates	of	each	treatment.		While	we	do	not	find	any	evidence	for	

widespread	reductions	in	SNP	heterozygosity	across	our	100	kb	windows,	there	are	a	

number	of	local	depressions	in	heterozygosity	in	all	of	our	populations.	We	also	find	many	

localized	depressions	in	SNP	heterozygosity,	defined	as	100kb	windows	with	

heterozygosity	less	than	0.2,	which	are	consistent	across	given	groups	of	replicate	

populations	(Tables	S2.7-S2.12).	More	regions	like	this	are	found	in	our	populations	
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subjected	to	A-type	selection	(ACO:	105	regions,	AO:	161	regions),	than	populations	

subjected	to	B-type	(B:	59,	BO:	11)	and	C-type	selection	(CO:	5,	nCO:	8).	This	is	suggestive	

of	selection	acting	at	parallel	at	sites	within	these	regions	(vid.	Oleksyk	et	al.	2010).	This	

result	is	consistent	with	other	Drosophila	work	showing	that	adaptation	in	experimentally-

evolved	populations	is	driven	by	selection	on	standing	genetic	variation	(Burke	et	al.	2010;	

Turner	et	al.	2011;	Orozco-ter	Wengel	et	al.	2012;	Tobler	et	al.	2014).		

	 Previous	work	with	these	populations	sequenced	only	ACO	and	CO	populations,	and	

pooled	DNA	across	replicates	such	that	direct	observations	of	parallelism	within	

evolutionary	histories	at	the	nucleotide	level	were	not	possible	(Burke	et	al.	2010).		Burke	

et	al.	(2010)	did	sequence	a	single	replicate	population	(ACO1)	and	allele	frequencies	in	this	

single	replicate	were	highly	similar	to	allele	frequencies	in	the	entire	pool	of	ACO	flies.		The	

present	work	corroborates	this	observation	and	expands	upon	it	considerably.		While	

widespread	migration	between	replicates	of	each	selection	treatment	would	also	produce	

the	patterns	we	observe	here,	we	contend	that	evolutionary	parallelism	at	the	SNP	level	is	

the	more	likely	underlying	scenario.		For	further	discussion	of	how	our	results	compare	to	

those	from	Burke	et	al.	(2010),	see	Figure	S2.6.	

SNP	differentiation		

	 To	formally	and	systematically	assess	levels	of	differentiation	between	the	six	

groups	of	five-fold	replicated	populations,	we	performed	Cochran-Mantel-Haenszel	(CMH)	

tests	comparing	SNP	frequencies	between	and	among	groups	that	shared	distal	selection	

regimes.	We	find	lower	levels	of	differentiation	among	newly-derived	and	long-standing	

populations	recently	subjected	to	the	same	type	of	selection,	versus	comparisons	involving	
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populations	recently	subjected	to	different	types	of	selection	as	indicated	by	more	

significantly	differentiated	variants	in	the	latter	(Figures	S2.3	and	S2.4,	and	Figure	S2.7).		

	 We	performed	nine	statistically-conservative	comparisons	of	SNP	differentiation	

between	populations	that	did	not	share	recent	selection	regimes.		In	six	of	these	tests,	

dozens	to	hundreds	of	significant	differentiated	SNPs	are	found	(Figure	2.3,	Figure.	S2.7,	

Table	2.1).	The	two	comparisons	between	groups	of	five	B-type	and	five	C-type	groups	did	

not	yield	significantly	differentiated	SNPs.	We	do,	however,	find	significantly	differentiated	

SNPs	when	we	compare	all	10	B-type	populations	with	all	10	C-type	populations	(Figure	

2.3).	By	contrast,	across	the	three	comparisons	of	populations	that	shared	a	recent	

selection	regime	(ACO	vs.	AO;	B	vs.	BO;	CO	vs.	nCO),	but	had	different	evolutionary	

histories,	we	detect	no	significantly	differentiated	SNPs	(Figure	2.4).		

	 In	our	between-treatment	comparisons,	we	find	more	significantly	differentiated	

SNPs	in	our	comparisons	between	long-standing	populations	(e.g.	ACO	vs	CO)	versus	

comparisons	between	newly-derived	populations	(e.g.	AO	vs	nCO)	(Figure	S2.7	and	Table	

2.1).	This	finding	is	consistent	with	previous	simulations	of	experimental	evolution	in	

sexual	populations,	which	suggest	that	increasing	number	of	generations	under	selection	

increases	the	power	to	detect	SNPs	underlying	responses	to	directional	selection	(Baldwin-

Brown	et	al.	2014;	Kofler	and	Schlötterer	2014).		

	 When	we	increase	replication	by	treating	our	longstanding	and	newly-derived	

populations	that	share	a	recent	section	regime	as	equivalent	replicates	(e.g.	all	ten	A-types,	

merging	ACO	with	AO	populations),	we	detect	more	significantly	differentiated	SNPs.	This	

finding	is	again	consistent	with	previous	simulations	of	experimental	evolution,	which	

demonstrate	a	strong	impact	of	varying	the	number	of	evolving	replicates	on	the	
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experimental	detection	of	SNPs	underlying	responses	to	directional	selection	(Baldwin-

Brown	et	al.	2014;	Kofler	and	Schlötterer	2014).	It	is	also	consistent	with	the	results	of	a	

similar	analysis	of	yeast	experimental	evolution	(Burke	et	al.	2014).	

Linkage	disequilibrium	

	 A	key	question	in	studies	of	sexual	laboratory	populations	with	low	to	moderate	

effective	population	sizes	is	level	of	linkage	disequilibrium	(LD).	If	there	are	high	levels	of	

LD,	the	number	of	genomic	sites	targeted	by	selection	may	be	far	smaller	than	the	number	

of	SNPs	exhibiting	statistically	significant	differentiation.	We	characterized	linkage	in	our	

populations	using	LDx	(Feder	et	al.	2012)	and	fit	these	estimates	to	a	biexponential	model.	

Populations	subjected	to	different	selection	regimes	had	statistically	distinct	patterns	of	LD	

decay,	but	newly-derived	and	long-standing	populations	subjected	to	the	same	selection	

did	not	(Figure	2.5).	Furthermore,	LD	was	higher	in	A-type	populations	compared	to	B	and	

C-type	populations.	This	pattern	cannot	be	explained	by	number	of	generations,	because	

long-standing	ACO	populations	had	many	more	generations	for	recombination	to	break	

down	LD	compared	to	C-type	and	BO	populations.	In	fact,	LD	was	lowest	in	the	C-type	

populations,	which	have	the	fewest	generations	under	laboratory	cultivation.	It	appears	

that	LD	(like	SNP,	TE,	and	SV	frequency	differentiation)	is	highly	parallel,	depending	

primarily	on	recent	selection	history.	LD	patterns	may	be	determined	by	relative	

intensities	of	selection	at	loci	across	the	entire	genome.	In	particular,	consistently	higher	

levels	of	LD	in	the	A-type	populations	may	be	due	to	more	intense	selection,	as	suggested	

by	the	low	number	of	individuals	surviving	to	reproduction	during	this	type	of	selection's	

initial	generations.	However,	formal	simulation	would	be	required	to	support	this	
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conjecture,	as	we	lack	the	haplotype	sequencing	data	required	to	characterize	long	range	

LD	(cf.	Franssen	et	al.	2015).	

DISCUSSION	

	 The	results	of	our	functional	and	genomic	analyses	show	that	experimental	

evolution	of	moderately	outbred	Drosophila	involves	reproducible	and	extensive	changes	

across	the	fruit	fly	genome.	Marked	functional	and	genomic	differentiation	between	newly-

derived	populations	that	do	not	share	recent	selection	regimes	is	comparable	to	that	found	

between	long-standing	populations	that	do	not	share	selection	regimes,	despite	large	

disparities	in	number	of	generations	under	divergent	selection.		This	finding	supports	the	

contention	that	convergent,	or	“parallel”	depending	on	favored	usage,	evolution	can	result	

from	polymorphisms	that	were	shared	in	an	ancestral	population	(cf.	Stern,	2013),	as	all	

selected	lines	in	this	study	were	derived	from	a	common	ancestral	population	(Rose	et	al.	

2004;	Burke	et	al.	2016).	

	 This	consistent	pattern	across	six	evolutionary	histories	supports	the	hypothesis	

that	outbred	sexual	populations	rapidly	respond	to	selection	in	a	reproducible	manner,	

because	they	maintain	functional	genetic	variation	at	many	sites	across	their	genomes.	We	

observe	clear	evolutionary	differentiation	in	response	to	selection	that	is	not	associated	

with	complete	local	elimination	of	genetic	variation	near	sites	of	genomic	change.	This	

provides	evidence	that	evolutionary	change	in	sexual	populations	is	not	driven	by	hard	

selective	sweeps	on	newly	arisen	beneficial	mutations	of	large	effect	(Maynard	Smith	and	

Haigh	1974;	Burke	2012),	even	over	periods	of	more	than	800	generations.		These	

dynamics	differ	from	those	observed	in	long-term	evolution	experiments	with	E.	coli,	which	

are	dominated	by	hard	selective	sweeps,	clonal	interference,	and	clonal	replacement	(e.g.	
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Maddamsetti	et	al.	2015),	and	which	also	find	different	alleles	driving	change	in	different	

replicate	populations	(Woods	et	al.	2006,	Tenaillon	et	al.	2012).	Similar	results	to	ours	have	

surfaced	repeatedly	in	genomic	studies	of	Drosophila	lab	evolution	(Turner	et	al.	2011,	

Orozco-ter	Wengel	et	al.	2012;	Tobler	et	al.	2014),	though	those	studies	featured	notably	

less	replication	than	our	study,	fewer	generations	of	selection,	and	notably	less-extensive	

genomic	responses	to	selection.	We	suggest	that	the	genomic	foundations	for	the	

experimental	evolution	of	outbred	sexual	populations	are	different	in	kind	from	those	of	

strictly	clonal	paradigms	of	experimental	evolution	(cf.	Barrick	et	al.	2009,	Tenaillon	et	al.	

2012;	Maddamsetti	et	al.	2015),	in	which	selective	sweeps	by	newly-arisen	mutants	are	the	

chief	determinants	of	adaptation.	The	scale	of	our	study	underscores	the	following	

conclusions	about	the	evolution	of	outbred	sexual	populations:	(i)	their	evolution	can	be	

fast;	(ii)	their	evolution	can	be	repeatable	from	nucleotide	to	fitness,	thanks	to	standing	

genetic	variation;	(iii)	their	adaptation	does	not	wait	for	new	functional	mutations	and	

subsequent	hard	selective	sweeps.	

	 It	might	be	proposed	that	a	single	haplotype	is	the	target	of	selection	for	each	of	the	

A,	B,	and	C	selection	regimes.	But	if	that	were	the	case,	the	rapid	convergence	on	A,	B,	and	C	

phenotypes	and	genotypes	by	the	recently	derived	A,	B,	and	C	lines	(AO,	BO,	and	nCO,	

respectively)	suggests	that	the	selection	coefficients	associated	with	these	three	selection	

regimes	are	large	in	magnitude.	That	in	turn	requires	that	the	15	populations	long-

subjected	to	these	three	selection	regimes	(ACO,	B,	and	CO)	should	be	approaching	fixation	

at	many	sites	across	the	genome,	a	pattern	that	is	not	apparent	in	the	heterozygosity	data	

for	the	B	and	CO	populations,	at	least.	Therefore,	we	suggest	that	our	results	indicate	that	

most	of	the	genomic	sites	under	selection	in	our	study	are	undergoing	a	shift	between	
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stable	balanced	polymorphisms,	not	selective	sweeps	toward	fixation	of	a	single	genome-

wide	haplotype.	

	 Any	laboratory	evolution	study	faces	the	challenging	question	of	its	applicability	to	

the	evolution	of	real-world	populations	in	nature.	Our	point	of	view	on	this	question	is	that	

we	do	not	think	that	it	is	likely	that	sexual	populations	in	nature	generally	undergo	stable	

selection	regimes	for	up	to	1,000	generations.	Thus	our	study	is	not	intended	to	directly	

model	what	occurs	in	natural	populations.	Instead,	our	study	is	intended	to	use	extreme	

and	unusual	evolutionary	histories	to	test	competing	evolutionary	genetic	hypotheses.	

Most	such	hypotheses	are	hard	to	test	using	the	shifting,	short-term,	and	ambiguous	data	

available	from	most	studies	of	evolution	in	nature.	Our	strategy	has	long	been	based	on	

strong-inference	experimentation	(cf.	Platt,	1966),	which	requires	laboratory	control	of	

culture	regimes	over	long	periods,	as	in	the	classic	LTEE	study	of	Lenski	et	al.	(1991).	Thus,	

for	example,	if	hard	selective	sweeps	were	the	predominant	mode	of	adaptation	to	the	

selection	regimes	we	used,	then	the	15	populations	that	featured	up	to	1,000	generations	of	

sustained	selection	should	have	produced	numerous	genomic	regions	with	negligible	

heterozygosity.	As	we	did	not	observe	such	patterns,	we	consider	this	a	refutation	of	the	

hypothesis	that	adaptation	predominantly	proceeds	by	hard	selective	sweeps	in	sexual	

populations.	
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Figure	2.1.		Experimental	design,	fecundity,	and	survival.	(A)	protocols	for	selection	
regimes,	(B)	evolutionary	history	of	experimental	populations	and	number	of	generations	
under	selection	regime	for	six	groups	of	five-fold	replicated	populations.	(C-E)	comparison	
of	kx	(kx	=	lx	mx,	where	lx	is	probability	of	survival	to	age	x	and	mx	is	fecundity	at	age	x)	
between	long-standing	and	newly	derived	populations	over	a	19	day	interval.	

	

	

	

	

	



 85 

	

Figure	2.2.	Genome-wide	heterozygosity	100kb	windows.	Heterozygosity	calculated	
from	SNP	data	plotted	across	100kb	non-overlapping	windows	across	all	major	
chromosome	arms	for	ACO1-5	(A),	AO1-5	(B),	B1-5	(C),	BO1-5	(D),	CO1-5	(E),	nCO1-5	(F).	Each	
panel	shows	results	from	all	five	replicate	populations	plotted	individually.		
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Figure	2.3.	CMH	test	results	for	between	selection	regime	comparisons.	Results	from	
CMH	tests	comparing	SNP	frequencies	between	populations	that	are	from	different	
selection	treatments.	For	these	comparisons,	we	grouped	populations	based	purely	on	
their	most	recent	selection	regime.	For	example,	we	compared	all	ten	A-types	(ACO	and	AO	
populations)	with	all	ten	B-types	(B	and	BO	populations).	Results	are	plotted	as	–log(p-
values)	across	all	major	chromosome	arms.	Significance	thresholds	for	each	comparison	
are	derived	from	permutation	tests	and	are	indicated	by	a	red	line.		
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Figure	2.4.	CMH	test	results	for	within	selection	regime	comparisons.	Results	from	
CMH	tests	comparing	SNP	frequencies	between	populations	that	share	a	recent	selection	
regime.	Results	are	plotted	as	–log	(p-values)	across	all	major	chromosome	arms.	
Significance	thresholds	for	each	comparison	are	derived	from	permutation	tests	and	are	
indicated	by	a	red	line.		
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Figure	2.5.	LD	results.	Mean	linkage	disequilibrium	(r2)	estimates	from	LDx	for	
chromosomes	X,	2,	and	3,	plotted	against	distance	from	a	focal	SNP	for	six	groups	of	
populations.	Closed	circles	are	estimates	for	long-standing	populations	(ACO,	B,	and	CO);	
open	circles	are	estimates	for	newly	derived	populations	(AO,	BO,	and	nCO).	A,	B,	and	C-
type	populations	are	blue,	red,	and	green	respectively.	Colored	lines	represent	
simultaneous	confidence	intervals	based	on	predictions	from	the	biexponential	model	to	
which	the	data	were	fitted.	

	

	

	



 89 

Table	2.1.	Counts	of	significantly	differentiated	SNPs	from	CMH	tests	comparing	
frequencies	between	and	among	selective	regimes.		

Comparison Significance 
Threshold* 

Number of 
Significant SNPs 

ACO vs CO 5.67 x 10-145 412 

AO vs nCO 1.64 x 10-166 143 

A vs C 8.21 x 10-167 10109 

ACO vs B 1.25 x 10-158 1146 

AO vs BO 2.77 x 10-149 42 

A vs B 8.56 x 10-189 4152 

CO vs B 1.11 x 10-183 0 

nCO vs BO 1.78 x 10-120 0 

B vs C 6.40 x 10-159 64 

ACO vs AO 2.91 x 10-230 0 

B vs BO 2.18 x 10-201 0 

CO vs nCO 1.70 x 10-126 0 

*Significance	thresholds	for	each	test	were	determined	based	on	our	permutation	approach	
to	correcting	for	multiple	comparisons.	
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Figure	S2.1:	Fecundity	and	survivorship	for	all	30	Drosophila	populations.	Fecundity	
(mx)	is	measured	as	average	eggs	laid	per	surviving	female	and	survivorship	(lx)	is	
measured	as	percent	of	each	population	alive	at	a	given	day.		
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Figure	S2.2.	Genome-wide	heterozygosity	50kb	windows.		Heterozygosity	calculated	
from	SNP	data	plotted	across	50kb	non-overlapping	windows	across	all	major	chromosome	
arms	for	ACO1-5	(A),	AO1-5	(B),	B1-5	(C),	BO1-5	(D),	CO1-5	(E),	nCO1-5	(F).	Each	panel	
shows	results	from	all	five	replicate	populations	plotted	individually.		
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Figure	S2.3.	Genome-wide	heterozygosity	30kb	windows.		Heterozygosity	calculated	
from	SNP	data	plotted	across	30kb	non-overlapping	windows	across	all	major	chromosome	
arms	for	ACO1-5	(A),	AO1-5	(B),	B1-5	(C),	BO1-5	(D),	CO1-5	(E),	nCO1-5	(F).	Each	panel	
shows	results	from	all	five	replicate	populations	plotted	individually.		
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Figure	S2.4.	Chromosome	3R	heterozygosity	for	CO	replicates.	Heterozygosity	across	
chromosome	arm	3R	calculated	from	SNP	data	plotted	across	100kb	windows	for	the	5	CO	
replicates.	Each	color	corresponds	to	an	individual	replicate.		
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Figure	S2.5.	Variance	in	SNP	frequencies	across	a	single	chromosome	arm	2L.		We	
present	the	variance	among	five	allele	frequency	estimates	(of	the	major	allele)	at	every	
SNP	position	in	each	selection	treatment.		The	maximum	variance	possible	is	0.3	(e.g.	if	two	
of	the	five	replicates	were	fixed	for	one	allele	and	three	were	fixed	for	the	other),	and	our	
observed	variances	are	far	lower	than	this.	This	pattern	of	low	per-SNP	variance	is	
preserved	across	all	the	major	chromosome	arms	of	Drosophila,	though	we	present	results	
from	2L	only	for	conciseness.			
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Figure	S2.6.	Comparison	of	differentiation	results	between	Burke	et	al.	2010	and	the	
current	study.	Burke	et	al.	(2010)	pooled	genomic	data	across	all	five	ACO	populations	
and	all	five	CO	populations,	and	conducted	Fisher’s	Exact	Tests	on	the	allele	counts	from	
these	pools.		The	p-values	from	these	tests	were	–log10	transformed	and	evaluated	on	
sliding	windows	of	100KB	every	2KB	along	each	chromosome.		The	quantile	score	that	only	
5%	of	the	transformed	p-values	exceeded	was	recorded	for	each	window	and	here	we	call	
this	the	“FET	score”	for	clarity.		We	employed	the	same	methods	as	Burke	et	al.	(2010)	by	
pooling	replicates,	applying	Fisher’s	Exact	Tests,	and	evaluating	the	same	genomic	
windows.		FET	scores	from	each	study	are	plotted	against	one	another	for	each	major	
chromosome	arm.		FET	scores	are	far	higher	in	the	current	study	because	coverage	was	
higher	(in	Burke	et	al.	2010,	the	ACO	and	CO	populations	had	a	mean	coverage	of	20X	each	
while	here	we	observe	mean	coverage	to	be	427	for	the	ACOs	and	346	for	the	COs),	
increasing	power.		However,	the	two	studies	independently	implicate	many	of	the	same	
windows	as	having	elevated	FET	scores,	and	thus	the	same	genes	underlying	
differentiation,	particularly	for	chromosomes	2	and	3.		
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Figure	S2.7.	Results	from	5	X	5	CMH	tests	between	populations	subjected	to	different	
selection	regimes.	Results	are	plotted	as	–log	(p-values)	across	all	major	chromosome	
arms.	Significant	thresholds	for	each	comparison	are	derived	from	permutation	tests	and	
are	indicated	by	a	red	line.		
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Supplementary	Methods:	Tables	S2.1	and	S2.2	

We	tested	for	convergence	between	paired	selection	treatments	(i.e.	CO	vs.	nCO,	AO	

vs.	ACO,	and	B	vs.	BO)	for	effects	of	selection	on	fecundity	and	survivorship	over	3-4	

consecutive	ages.	The	observation	consisted	of	fecundity	or	survivorship	at	a	particular	age	

(t)	but	within	a	small	age	interval	(k=	1,2,…,m).	These	age	intervals	were	chosen	to	span	the	

ages,	such	that	all	comparison	populations	still	had	live	flies.	Within	each	interval,	fecundity	

rates	or	survivorship	were	modeled	by	a	straight	line	and	allowing	selection	regime	(j=	1	

(ACO	or	CO	or	B),	j=2	(AO	or	nCO	or	BO))	to	affect	the	intercept	of	that	line	but	not	the	

slope.	However,	slopes	were	allowed	to	vary	between	intervals.	Populations	(i=	1,…,10)	

were	assumed	to	contribute	random	variation	to	these	measures.	With	this	notation,	the	

fecundity	at	age-t,	interval-k,	selection	regime-j	and	population-i,	is	yijkt	and	is	describe	by,	

𝑦𝑖𝑗𝑘𝑡 =𝛼+𝛽𝑘 +𝛿𝑗𝛾𝑗 + 𝜔+𝜋𝑘𝛿𝑘 𝑡+𝛿𝑘𝛿𝑗𝜇𝑗𝑘 +𝑐𝑖 +𝜀𝑖𝑗𝑘𝑡  

where	ds=0	if	s=1	and	1	otherwise,	and	ci	and	eijkt	are	independent	standard	normal	random	

variables	with	variance	sc2	and	se2	respectively.	The	effects	of	selection	on	the	intercept	are	

assessed	by	considering	the	magnitude	and	variance	of	both	gj	and	µjk.	

 To	test	for	divergence,	the	six	selection	regimes	were	reclassified	to	three	different	

categories:	AO	and	ACO	to	A;	CO	and	nCO	to	C;	B	and	BO	to	B.	The	same	equation	was	used	

as	listed	above	to	assess	the	effects	of	the	three	selection	treatments.	For	both	the	

convergence	and	divergence	analysis,	we	used	the	Bonferroni	correction	to	adjust	the	

significance	level	for	each	pair-wise	comparison	made	by	dividing	the	significance	level	by	

the	number	of	age	interval	used	in	the	analysis	(0.05	/	n,	where	n	is	the	number	of	age	

intervals	used).	
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Table	S2.1:	Listed	p-values	testing	for	parallel	evolution	between	our	treatments.	
Intervals	were	used	to	break	up	the	data	into	smaller	portions	for	better	analysis	of	
the	entire	curve.	Bonferroni	correction	was	applied	to	each	pair-wise	comparison	to	
determine	significance	by	dividing	the	p-value	by	the	number	of	intervals	used	in	
each	analysis.	Bolded	and	italicized	values	are	significant.	Non-significant	values	are	
congruent	with	parallel	evolution.	

Interval	 ACO	vs	AO	 B	vs	BO	 CO	vs	nCO	

	 Fecundity	 Survivorship	 Fecundity	 Survivorship	 Fecundity	 Survivorship	

1	 0.29911	 0.84882	 0.18093	 0.78532	 0.18303	 0.46469	

2	 0.29469	 0.66125	 0.96273	 0.27102	 0.47664	 0.18277	

3	 0.30375	 0.53089	 0.80526	 0.16135	 0.65612	 0.08773	

4	 0.53059	 0.22566	 0.79165	 0.04422	 0.00724	 0.01746	

5	 0.73621	 0.12249	 	 	 	 	

6	 0.82034	 0.05594	 	 	 	 	
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Table	S2.2:	Listed	p-values	testing	for	divergent	evolution	between	our	treatment	
types.	Intervals	were	used	to	break	up	the	data	into	smaller	portions	for	better	
analysis	of	the	entire	curve.	Bonferroni	correction	was	applied	to	each	pair-wise	
comparison	to	determine	significance	by	dividing	the	p-value	by	the	number	of	
intervals	used	in	each	analysis.	Bolded	and	italicized	values	are	significant.	
Significant	values	are	congruent	with	divergent	evolution.	

Interval	 A	type	vs	B	type	 A	type	vs	C	type	 B	type	vs	C	type	

	 Fecundity	 Survivorship	 Fecundity	 Survivorship	 Fecundity	 Survivorship	

1	 0.69848	 0.07481	 0.93819	 0.06117	 0.64227	 0.92072	

2	 0.44601	 0.01816	 0.04757	 0.00702	 0.20379	 0.69047	

3	 0.85409	 2.427x10-5	 0.72101	 1.399x10-6	 0.89306	 0.31616	

4	 0.64908	 2.579x10-11	 1.066x10-14	 2.538x10-13	 8.782x10-12	 0.02891	
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Table	S2.3.	Average	SNP	coverage	across	the	genome	for	all	populations	used	in	this	
study.		

Population Replicate Average Read Coverage 

CO 1 47 

2 90 

3 107 

4 73 

5 28 

ACO 1 82 

2 99 

3 104 

4 88 

5 52 

AO 1 60 

2 108 

3 76 

4 85 

5 94 

nCO 1 100 

2 59 

3 62 

4 95 

5 52 

B 1 74 

2 56 

3 31 

4 93 

5 65 

BO 1 84 
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2 48 

3 47 

4 67 

5 56 
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Table	S2.4.	Mean	genome-wide	heterozygosities	calculated	from	SNP	data	

	 ACO	 AO	 B	 BO	 CO	 nCO	

Replicate	1	 0.192	 0.165	 0.206	 0.233	 0.270	 0.277	

Replicate	2	 0.182	 0.160	 0.229	 0.238	 0.267	 0.274	

Replicate	3	 0.176	 0.178	 0.216	 0.241	 0.269	 0.270	

Replicate	4		 0.216	 0.153	 0.216	 0.241	 0.260	 0.275	

Replicate	5	 0.176	 0.157	 0.215	 0.236	 0.260	 0.275	

Mean	 0.189	 0.162	 0.216	 0.238	 0.265	 0.274	
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Table	S2.5.	T-test	results	comparing	mean	genome	wide	heterozygosity	calculated	
from	SNP	data	between	different	groups	of	populations.	

	

Comparison	 P-value	

ACO	vs	AO	 0.02059	

ACO	vs	B	 0.01625	

ACO	vs	BO	 0.002188	

ACO	vs	CO	 0.0002364	

ACO	vs	nCO	 0.0002474	

AO	vs	B	 1.629	X	10-05	

AO	vs	BO	 1.686	X	10-05	

AO	vs	CO	 7.286	X	10-07	

AO	vs	nCO	 4.282	X	10-06	

B	vs	BO	 0.00216	

B	vs	CO	 1.057	X	10-05	

B	vs	nCO	 2.348	X	10-05	

BO	vs	CO	 2.442	X	10-05	

BO	vs	nCO	 1.341	X	10-05	

CO	vs	nCO	 0.0125	
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Table	S2.6.	Mean	genome	wide	FST	across	replicates	for	a	given	group	of	replicate	
populations	calculated	from	SNP	data.		

Populations  Mean FST  

ACO1-5 0.062 

AO1-5 0.087 

B1-5 0.065 

BO1-5 0.058 

CO1-5 0.041 

nCO1-5 0.028 
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Table	S2.7.	100	kb	regions	that	consistently	have	values	of	heterozygosity	less	than	
0.1	across	all	5	ACO	populations.	

Chromosome Start of 
Region 

ACO1 
Het 

ACO2 
Het 

ACO3 
Het 

ACO4 
Het 

ACO5 
Het 

2L 2405390 0.03 0.05 0.12 0.07 0.02 

2L 2505390 0.02 0.04 0.03 0.06 0.01 

2L 2605390 0.04 0.03 0.08 0.06 0.06 

2L 4305390 0.09 0.07 0.03 0.08 0.07 

2L 4405390 0.12 0.10 0.08 0.13 0.07 

2L 5305390 0.12 0.11 0.05 0.14 0.11 

2L 5805390 0.04 0.03 0.04 0.14 0.01 

2L 5905390 0.03 0.02 0.02 0.11 0.01 

2L 6005390 0.02 0.06 0.07 0.14 0.03 

2L 6705390 0.03 0.04 0.05 0.10 0.04 

2L 6805390 0.05 0.06 0.06 0.09 0.04 

2L 9905390 0.12 0.08 0.13 0.14 0.13 

2L 11605390 0.05 0.05 0.01 0.12 0.05 

2L 11705390 0.01 0.03 0.01 0.09 0.02 

2L 11805390 0.01 0.01 0.01 0.08 0.01 

2L 11905390 0.01 0.02 0.01 0.09 0.01 

2L 12005390 0.07 0.08 0.06 0.14 0.07 

2L 21405390 0.12 0.14 0.10 0.11 0.11 

2R 1518404 0.08 0.10 0.14 0.06 0.09 

2R 4318404 0.10 0.09 0.07 0.10 0.07 

2R 4418404 0.01 0.03 0.04 0.07 0.05 
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2R 4518404 0.12 0.13 0.12 0.15 0.14 

2R 7318404 0.06 0.07 0.11 0.09 0.08 

2R 8818404 0.05 0.08 0.13 0.13 0.11 

2R 8918404 0.08 0.13 0.09 0.15 0.13 

2R 11318404 0.02 0.06 0.03 0.10 0.03 

2R 11418404 0.03 0.08 0.03 0.09 0.03 

2R 14318404 0.08 0.05 0.04 0.13 0.03 

2R 14418404 0.07 0.04 0.04 0.14 0.01 

2R 18718404 0.14 0.12 0.15 0.14 0.12 

2R 18818404 0.10 0.07 0.10 0.10 0.08 

2R 19118404 0.02 0.05 0.06 0.04 0.04 

2R 19218404 0.07 0.07 0.04 0.05 0.04 

2R 19318404 0.12 0.09 0.10 0.09 0.13 

2R 20118404 0.02 0.07 0.02 0.10 0.06 

2R 20218404 0.02 0.03 0.02 0.05 0.04 

2R 20318404 0.01 0.02 0.02 0.04 0.02 

2R 20418404 0.04 0.04 0.04 0.04 0.02 

2R 20518404 0.08 0.06 0.06 0.06 0.05 

2R 20618404 0.08 0.06 0.06 0.06 0.05 

3L 3734721 0.12 0.11 0.08 0.10 0.12 

3L 7934721 0.07 0.04 0.05 0.10 0.09 

3L 8034721 0.08 0.05 0.08 0.10 0.08 

3L 8134721 0.06 0.06 0.11 0.12 0.05 

3L 8234721 0.05 0.08 0.13 0.14 0.05 

3L 9734721 0.10 0.06 0.03 0.07 0.03 

3L 9834721 0.10 0.06 0.01 0.08 0.02 
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3L 9934721 0.14 0.10 0.04 0.11 0.05 

3L 16134721 0.07 0.08 0.06 0.09 0.01 

3L 16234721 0.06 0.07 0.04 0.06 0.06 

3L 16334721 0.13 0.15 0.08 0.09 0.13 

3L 17034721 0.03 0.03 0.04 0.05 0.04 

3L 17134721 0.04 0.06 0.06 0.09 0.06 

3L 17234721 0.09 0.11 0.12 0.14 0.09 

3L 17434721 0.10 0.05 0.14 0.14 0.04 

3L 17534721 0.08 0.05 0.07 0.11 0.06 

3L 17634721 0.03 0.15 0.03 0.11 0.09 

3L 18134721 0.08 0.08 0.09 0.12 0.09 

3L 18234721 0.05 0.04 0.07 0.05 0.04 

3L 18334721 0.07 0.09 0.13 0.07 0.06 

3L 18434721 0.07 0.13 0.12 0.08 0.08 

3L 19134721 0.15 0.14 0.12 0.13 0.14 

3L 19234721 0.10 0.08 0.10 0.07 0.07 

3R 14003326 0.06 0.06 0.05 0.13 0.07 

3R 24803326 0.06 0.08 0.14 0.07 0.10 

3R 24903326 0.04 0.03 0.06 0.09 0.03 

3R 26203326 0.11 0.10 0.07 0.12 0.09 

3R 26303326 0.02 0.05 0.02 0.06 0.02 

3R 26403326 0.02 0.02 0.04 0.07 0.02 

3R 26503326 0.10 0.09 0.12 0.12 0.10 

X 519797 0.01 0.03 0.01 0.13 0.01 

X 1219797 0.02 0.04 0.02 0.15 0.02 

X 1819797 0.02 0.03 0.02 0.08 0.02 
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X 1919797 0.01 0.03 0.01 0.14 0.01 

X 2219797 0.02 0.04 0.02 0.14 0.02 

X 2319797 0.02 0.04 0.02 0.14 0.02 

X 2419797 0.02 0.04 0.02 0.14 0.02 

X 2519797 0.01 0.03 0.01 0.14 0.01 

X 2619797 0.01 0.03 0.01 0.13 0.01 

X 2719797 0.04 0.05 0.03 0.14 0.06 

X 3719797 0.02 0.02 0.01 0.10 0.01 

X 3819797 0.02 0.02 0.04 0.11 0.02 

X 8119797 0.10 0.04 0.04 0.12 0.05 

X 9919797 0.10 0.15 0.08 0.14 0.05 

X 10819797 0.09 0.09 0.12 0.15 0.08 

X 14119797 0.12 0.04 0.08 0.07 0.10 

X 14219797 0.08 0.05 0.03 0.05 0.10 

X 14319797 0.12 0.10 0.03 0.11 0.10 

X 15219797 0.03 0.10 0.03 0.14 0.13 

X 15319797 0.04 0.06 0.02 0.09 0.07 

X 18319797 0.08 0.03 0.13 0.07 0.08 

X 18419797 0.09 0.04 0.05 0.10 0.08 

X 18519797 0.05 0.04 0.03 0.11 0.04 

X 18619797 0.02 0.03 0.02 0.14 0.02 

X 18819797 0.02 0.02 0.02 0.14 0.06 

X 18919797 0.05 0.03 0.02 0.12 0.06 

X 19019797 0.06 0.05 0.02 0.13 0.05 

X 19119797 0.03 0.05 0.02 0.12 0.03 

X 19219797 0.06 0.08 0.06 0.14 0.04 
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X 19719797 0.11 0.04 0.15 0.13 0.03 

X 19919797 0.11 0.05 0.14 0.14 0.07 

X 20019797 0.08 0.05 0.09 0.12 0.04 

X 20119797 0.08 0.07 0.07 0.12 0.03 

X 20619797 0.07 0.08 0.03 0.11 0.12 

X 20719797 0.05 0.03 0.05 0.12 0.03 
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Table	S2.8.	100	kb	regions	that	consistently	have	values	of	heterozygosity	less	than	
0.1	across	all	5	AO	populations.	

Chromosome Start of Region AO1 
Het 

AO2 
Het 

AO3 
Het 

AO4 
Het 

AO5 
Het 

2L 1205390 0.10 0.02 0.10 0.09 0.13 

2L 1305390 0.13 0.05 0.09 0.09 0.12 

2L 1505390 0.10 0.01 0.05 0.05 0.13 

2L 1605390 0.06 0.03 0.03 0.08 0.11 

2L 1705390 0.06 0.06 0.04 0.10 0.10 

2L 1805390 0.03 0.04 0.03 0.06 0.11 

2L 2205390 0.03 0.05 0.10 0.05 0.02 

2L 2305390 0.02 0.02 0.05 0.02 0.02 

2L 2405390 0.04 0.02 0.01 0.07 0.02 

2L 2505390 0.04 0.01 0.01 0.06 0.01 

2L 2605390 0.06 0.02 0.03 0.05 0.04 

2L 3105390 0.08 0.14 0.13 0.11 0.12 

2L 3705390 0.13 0.06 0.10 0.12 0.14 

2L 4305390 0.06 0.01 0.02 0.07 0.02 

2L 4405390 0.06 0.10 0.10 0.10 0.10 

2L 5605390 0.04 0.06 0.10 0.15 0.12 

2L 5705390 0.01 0.04 0.10 0.10 0.05 

2L 5805390 0.01 0.02 0.08 0.06 0.02 

2L 5905390 0.01 0.02 0.04 0.03 0.01 

2L 6005390 0.02 0.03 0.02 0.05 0.06 

2L 6505390 0.10 0.09 0.12 0.07 0.10 

2L 6605390 0.01 0.05 0.05 0.01 0.04 

2L 6705390 0.01 0.07 0.02 0.01 0.09 
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2L 7405390 0.10 0.05 0.13 0.07 0.12 

2L 7605390 0.04 0.08 0.08 0.13 0.14 

2L 9905390 0.11 0.09 0.09 0.13 0.10 

2L 11605390 0.02 0.04 0.07 0.01 0.01 

2L 11705390 0.01 0.02 0.05 0.01 0.01 

2L 11805390 0.01 0.07 0.01 0.01 0.01 

2L 11905390 0.01 0.10 0.01 0.01 0.01 

2L 12005390 0.07 0.14 0.07 0.05 0.07 

2L 12105390 0.15 0.14 0.13 0.12 0.14 

2L 16505390 0.15 0.06 0.09 0.08 0.11 

2L 21305390 0.09 0.10 0.09 0.07 0.12 

2L 21405390 0.13 0.13 0.10 0.07 0.11 

2R 4318404 0.08 0.09 0.07 0.09 0.08 

2R 4418404 0.01 0.03 0.04 0.01 0.06 

2R 8818404 0.13 0.13 0.12 0.10 0.07 

2R 8918404 0.12 0.15 0.09 0.12 0.08 

2R 9018404 0.08 0.11 0.10 0.12 0.08 

2R 9118404 0.08 0.10 0.13 0.13 0.09 

2R 11218404 0.07 0.05 0.10 0.08 0.13 

2R 11318404 0.03 0.03 0.03 0.04 0.05 

2R 11418404 0.07 0.01 0.01 0.02 0.03 

2R 11518404 0.15 0.02 0.03 0.02 0.04 

2R 14318404 0.03 0.04 0.05 0.07 0.04 

2R 14418404 0.01 0.05 0.04 0.05 0.02 

2R 14518404 0.09 0.14 0.12 0.09 0.07 

2R 15218404 0.12 0.09 0.09 0.07 0.12 
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2R 15318404 0.08 0.05 0.06 0.04 0.04 

2R 15418404 0.06 0.03 0.06 0.05 0.03 

2R 15518404 0.03 0.08 0.05 0.07 0.08 

2R 17618404 0.08 0.12 0.11 0.11 0.07 

2R 17718404 0.12 0.07 0.08 0.08 0.05 

2R 17818404 0.13 0.11 0.13 0.08 0.09 

2R 18718404 0.06 0.09 0.10 0.07 0.08 

2R 18818404 0.05 0.06 0.07 0.10 0.07 

2R 18918404 0.10 0.06 0.13 0.12 0.08 

2R 19018404 0.09 0.08 0.14 0.08 0.10 

2R 19118404 0.01 0.05 0.03 0.02 0.06 

2R 19218404 0.01 0.01 0.01 0.06 0.01 

2R 19318404 0.01 0.04 0.06 0.10 0.07 

2R 19418404 0.10 0.13 0.14 0.14 0.15 

2R 19918404 0.08 0.09 0.13 0.12 0.11 

2R 20018404 0.05 0.05 0.05 0.04 0.08 

2R 20118404 0.01 0.01 0.07 0.02 0.02 

2R 20218404 0.02 0.03 0.10 0.02 0.03 

2R 20318404 0.08 0.03 0.08 0.01 0.02 

2R 20418404 0.15 0.02 0.05 0.04 0.03 

2R 20518404 0.15 0.02 0.05 0.07 0.06 

2R 20618404 0.12 0.02 0.06 0.07 0.06 

3L 3734721 0.07 0.09 0.11 0.11 0.09 

3L 8034721 0.09 0.05 0.12 0.13 0.04 

3L 8234721 0.09 0.02 0.10 0.10 0.01 

3L 9734721 0.06 0.03 0.05 0.10 0.04 
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3L 10334721 0.13 0.07 0.10 0.12 0.10 

3L 11034721 0.09 0.14 0.14 0.12 0.08 

3L 14634721 0.04 0.14 0.06 0.08 0.08 

3L 16134721 0.01 0.09 0.13 0.01 0.08 

3L 16234721 0.01 0.08 0.02 0.06 0.06 

3L 17034721 0.03 0.02 0.05 0.01 0.02 

3L 17134721 0.02 0.02 0.02 0.01 0.02 

3L 17234721 0.04 0.03 0.09 0.01 0.02 

3L 17334721 0.05 0.02 0.14 0.03 0.01 

3L 17434721 0.05 0.02 0.14 0.04 0.02 

3L 17534721 0.06 0.06 0.08 0.03 0.02 

3L 17634721 0.09 0.09 0.02 0.01 0.02 

3L 17734721 0.14 0.11 0.01 0.02 0.03 

3L 18134721 0.10 0.09 0.12 0.01 0.03 

3L 18234721 0.02 0.03 0.12 0.05 0.03 

3L 18334721 0.02 0.04 0.12 0.10 0.08 

3L 18434721 0.02 0.03 0.10 0.13 0.11 

3L 18534721 0.05 0.09 0.12 0.14 0.14 

3L 21234721 0.10 0.11 0.13 0.12 0.13 

3L 21434721 0.12 0.14 0.14 0.14 0.14 

3L 21534721 0.11 0.15 0.14 0.14 0.14 

3L 21634721 0.13 0.15 0.15 0.12 0.13 

3L 21734721 0.12 0.07 0.13 0.03 0.06 

3L 24034721 0.13 0.13 0.15 0.14 0.15 

3R 4303326 0.11 0.13 0.11 0.10 0.12 

3R 4403326 0.07 0.15 0.13 0.06 0.15 
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3R 8703326 0.06 0.07 0.09 0.03 0.12 

3R 10003326 0.09 0.09 0.13 0.06 0.05 

3R 10103326 0.13 0.06 0.13 0.08 0.02 

3R 14003326 0.06 0.04 0.09 0.06 0.10 

3R 14103326 0.08 0.05 0.14 0.09 0.13 

3R 14203326 0.12 0.09 0.11 0.14 0.12 

3R 14503326 0.09 0.12 0.15 0.10 0.11 

3R 17403326 0.06 0.11 0.12 0.07 0.10 

3R 17903326 0.14 0.12 0.10 0.13 0.13 

3R 19903326 0.14 0.08 0.09 0.04 0.10 

3R 20003326 0.14 0.09 0.12 0.05 0.13 

3R 24803326 0.07 0.05 0.14 0.01 0.06 

3R 24903326 0.02 0.01 0.04 0.02 0.01 

3R 26203326 0.09 0.08 0.07 0.10 0.06 

3R 26303326 0.01 0.01 0.01 0.03 0.01 

3R 26403326 0.01 0.01 0.01 0.01 0.01 

3R 26503326 0.08 0.09 0.08 0.07 0.07 

3R 27603326 0.07 0.08 0.03 0.06 0.08 

X 1819797 0.02 0.02 0.02 0.02 0.02 

X 1919797 0.03 0.01 0.01 0.02 0.01 

X 2019797 0.02 0.01 0.01 0.01 0.00 

X 2119797 0.10 0.02 0.02 0.08 0.01 

X 2519797 0.14 0.01 0.01 0.12 0.01 

X 2619797 0.11 0.01 0.01 0.10 0.01 

X 2719797 0.05 0.05 0.05 0.03 0.02 

X 2819797 0.09 0.11 0.14 0.04 0.04 
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X 3719797 0.01 0.03 0.12 0.01 0.02 

X 3819797 0.01 0.10 0.08 0.01 0.04 

X 6819797 0.05 0.05 0.12 0.02 0.14 

X 7919797 0.08 0.14 0.14 0.03 0.03 

X 8019797 0.07 0.09 0.07 0.02 0.03 

X 8119797 0.05 0.06 0.02 0.01 0.07 

X 8219797 0.07 0.10 0.06 0.03 0.14 

X 8619797 0.11 0.02 0.11 0.12 0.01 

X 8719797 0.05 0.06 0.15 0.04 0.04 

X 9019797 0.07 0.10 0.09 0.01 0.04 

X 10219797 0.07 0.08 0.13 0.07 0.12 

X 10519797 0.03 0.11 0.11 0.06 0.10 

X 13419797 0.11 0.04 0.14 0.13 0.12 

X 13519797 0.05 0.04 0.11 0.09 0.12 

X 14119797 0.06 0.08 0.02 0.01 0.05 

X 14219797 0.04 0.06 0.01 0.02 0.03 

X 14319797 0.12 0.09 0.01 0.10 0.05 

X 15119797 0.03 0.06 0.02 0.12 0.12 

X 15219797 0.02 0.05 0.02 0.05 0.06 

X 15319797 0.02 0.08 0.02 0.03 0.03 

X 16219797 0.15 0.03 0.10 0.11 0.04 

X 18419797 0.12 0.07 0.10 0.09 0.02 

X 18519797 0.07 0.04 0.05 0.05 0.02 

X 18619797 0.02 0.03 0.03 0.05 0.01 

X 18719797 0.07 0.05 0.07 0.05 0.02 

X 18819797 0.09 0.04 0.06 0.04 0.01 
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X 18919797 0.09 0.01 0.01 0.13 0.02 

X 19019797 0.06 0.03 0.01 0.14 0.03 

X 19119797 0.01 0.04 0.02 0.03 0.03 

X 19219797 0.04 0.06 0.06 0.07 0.02 

X 20119797 0.11 0.12 0.02 0.07 0.04 

X 20219797 0.14 0.12 0.02 0.10 0.02 

X 20619797 0.03 0.14 0.06 0.14 0.03 

X 21719797 0.05 0.02 0.14 0.04 0.02 
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Table	S2.9.	100	kb	regions	that	consistently	have	values	of	heterozygosity	less	than	
0.1	across	all	5	B	populations.	

Chromosome Start of Region B1 Het B2 Het B3 Het B4 Het B5 Het 

2L 2505390 0.04 0.06 0.02 0.09 0.07 

2L 2605390 0.09 0.09 0.07 0.09 0.12 

2L 17505390 0.03 0.14 0.15 0.05 0.15 

2L 21405390 0.08 0.10 0.11 0.09 0.10 

2L 21505390 0.06 0.07 0.07 0.11 0.08 

2L 21605390 0.05 0.06 0.09 0.13 0.06 

2L 21705390 0.07 0.08 0.10 0.11 0.08 

2L 22105390 0.09 0.14 0.14 0.09 0.12 

2L 22205390 0.08 0.14 0.13 0.09 0.11 

2L 22605390 0.07 0.12 0.13 0.06 0.10 

2L 22705390 0.06 0.11 0.12 0.05 0.08 

2L 22805390 0.06 0.12 0.10 0.06 0.08 

2R 318404 0.11 0.15 0.13 0.10 0.13 

2R 8218404 0.12 0.13 0.09 0.13 0.06 

2R 8718404 0.13 0.09 0.09 0.15 0.09 

2R 19118404 0.06 0.05 0.07 0.02 0.02 

2R 19218404 0.10 0.07 0.07 0.02 0.02 

2R 20218404 0.09 0.15 0.08 0.09 0.13 

2R 20318404 0.04 0.08 0.07 0.04 0.08 

3L 3434721 0.12 0.12 0.10 0.09 0.07 

3L 3534721 0.08 0.08 0.08 0.03 0.06 

3L 3634721 0.07 0.08 0.09 0.03 0.06 

3L 3734721 0.08 0.08 0.13 0.06 0.07 

3L 9334721 0.14 0.14 0.06 0.04 0.04 
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3L 9434721 0.04 0.12 0.03 0.05 0.04 

X 119797 0.01 0.07 0.01 0.01 0.01 

X 219797 0.01 0.07 0.01 0.01 0.01 

X 319797 0.01 0.08 0.01 0.01 0.01 

X 419797 0.01 0.11 0.01 0.01 0.01 

X 519797 0.01 0.12 0.01 0.01 0.01 

X 619797 0.01 0.15 0.01 0.01 0.01 

X 1219797 0.02 0.14 0.03 0.03 0.02 

X 1319797 0.01 0.12 0.01 0.01 0.01 

X 1419797 0.01 0.12 0.01 0.02 0.02 

X 1519797 0.01 0.10 0.01 0.01 0.02 

X 1619797 0.01 0.10 0.01 0.01 0.01 

X 1719797 0.01 0.08 0.01 0.01 0.01 

X 1819797 0.01 0.07 0.01 0.01 0.01 

X 1919797 0.01 0.14 0.01 0.01 0.01 

X 2019797 0.01 0.14 0.01 0.01 0.01 

X 2119797 0.02 0.09 0.02 0.02 0.02 

X 2219797 0.01 0.09 0.04 0.02 0.05 

X 2319797 0.02 0.09 0.06 0.01 0.07 

X 2419797 0.14 0.15 0.09 0.11 0.13 

X 6619797 0.14 0.12 0.11 0.11 0.10 

X 6719797 0.08 0.13 0.05 0.06 0.06 

X 11819797 0.04 0.10 0.12 0.12 0.09 

X 14119797 0.04 0.09 0.02 0.03 0.11 

X 14219797 0.02 0.13 0.02 0.02 0.12 

X 14319797 0.04 0.15 0.09 0.11 0.10 
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X 14619797 0.04 0.14 0.12 0.09 0.14 

X 14719797 0.12 0.11 0.06 0.03 0.04 

X 16419797 0.03 0.07 0.07 0.03 0.07 

X 16519797 0.02 0.07 0.02 0.03 0.04 

X 16619797 0.03 0.05 0.02 0.02 0.06 

X 16719797 0.11 0.10 0.02 0.05 0.05 

X 18219797 0.05 0.03 0.09 0.03 0.06 

X 21619797 0.05 0.05 0.05 0.04 0.04 

X 21719797 0.00 0.01 0.00 0.00 0.01 
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Table	S2.10.	100	kb	regions	that	consistently	have	values	of	heterozygosity	less	than	
0.1	across	all	5	BO	populations.	

Chromosome Start of Region BO1 
Het 

BO2 
Het 

BO3 
Het 

BO4 
Het 

BO5 
Het 

2L 2505390 0.07 0.11 0.13 0.12 0.09 

2L 21505390 0.10 0.10 0.11 0.09 0.10 

2L 21605390 0.13 0.14 0.12 0.12 0.08 

3L 3434721 0.12 0.09 0.06 0.07 0.12 

3L 3534721 0.14 0.05 0.10 0.10 0.12 

3L 3634721 0.11 0.05 0.11 0.11 0.11 

3L 3734721 0.08 0.14 0.11 0.15 0.08 

3L 9834721 0.09 0.14 0.04 0.11 0.11 

3R 24803326 0.09 0.11 0.07 0.13 0.12 

3R 27603326 0.10 0.13 0.13 0.13 0.10 

X 1819797 0.15 0.11 0.13 0.13 0.13 
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Table	S2.11.	100	kb	regions	that	consistently	have	values	of	heterozygosity	less	than	
0.1	across	all	5	CO	populations.	

Chromosome Start of 
Region 

CO1 
Het 

CO2 
Het 

CO3 
Het 

CO4 
Het 

CO5 
Het 

3L 20134721 0.13 0.07 0.06 0.07 0.04 

X 16219797 0.15 0.09 0.09 0.11 0.09 

X 16319797 0.15 0.08 0.09 0.12 0.08 

X 21619797 0.09 0.07 0.05 0.10 0.05 

X 21719797 0.08 0.05 0.03 0.07 0.00 
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Table	S2.12.	100	kb	regions	that	consistently	have	values	of	heterozygosity	less	than	
0.1	across	all	5	nCO	populations.	

	

	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chromosome Start of 
Region 

nCO1 
Het 

nCO2 
Het 

nCO3 
Het 

nCO4 
Het 

nCO5 Het 

3L 20134721 0.11 0.09 0.07 0.07 0.10 

3L 20234721 0.12 0.10 0.07 0.06 0.08 

3L 20334721 0.13 0.10 0.11 0.05 0.07 

3L 20434721 0.13 0.10 0.13 0.08 0.09 

3L 20534721 0.14 0.11 0.13 0.10 0.13 

X 16519797 0.12 0.14 0.10 0.15 0.15 

X 21619797 0.05 0.06 0.06 0.07 0.10 

X 21719797 0.04 0.07 0.02 0.05 0.11 
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CHAPTER	3	

Effects	of	Evolutionary	History	on	Genome-wide	Convergence	in	Drosophila	

Populations	

Abstract	

Previous	E&R	studies	using	the	Rose	lab’s	experimental	system	suggests	that	the	response	

to	selection	is	highly	repeatable	at	both	the	phenotypic	and	genomic	levels,	and	that	

evolutionary	history	has	little	impact.	However,	other	studies	suggest	that	even	when	the	

response	to	selection	is	repeatable	phenotypically,	evolutionary	history	can	have	

significant	impacts	at	the	genomic	level.	Here	we	test	two	hypotheses	that	may	explain	this	

discrepancy.	Hypothesis	1:	Evolutionary	history	matters	in	populations	where	past	

generations	were	subjected	to	very	intense	selective	pressures.	Hypothesis	2:	Previous	

intense	selection	does	not	produce	historical	effects,	but	other	evolutionary	mechanisms	

may.	We	test	these	hypotheses	using	D.	melanogaster	populations	that	were	subjected	to	

260	generations	of	intense	selection	for	desiccation	resistance	and	have	since	been	under	

relaxed	selection	for	the	past	230	generations.	Our	genomic	analysis	found	no	signs	of	

genetic	fixation,	and	only	limited	evidence	of	genetic	differentiation	between	the	previously	

desiccation	selected	population	and	their	controls.	Given	other	studies	using	these	

populations	found	that	relaxed	selection	has	erased	the	extreme	phenotypic	differentiation	

previously	found	between	these	populations	and	their	controls,	we	conclude	that	

evolutionary	history	does	not	generically	play	a	major	role	in	shaping	trajectories	of	

adaptation	during	Drosophila	experimental	evolution.	
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INTRODUCTION	

	 The	combination	of	experimental	evolution	and	next	generation	sequencing	has	

become	established	as	a	powerful	means	for	studying	the	genetics	of	adaptation	and	testing	

major	tenets	of	population	genetic	theory	(Long	et	al.	2015;	Schlötterer	et	al.	2015).	Studies	

featuring	populations	of	fruit	flies,	Drosophila	melanogaster,	suggest	that	adaptation	in	

sexually	reproducing	populations	is	fueled	by	selection	on	standing	genetic	variation,	and	

is	largely	characterized	by	a	lack	of	genetic	fixation	(Teotónio	et	al.	2009;	Burke	et	al.	2010;	

Turner	et	al.	2011;	Orozco-terWengel	et	al.	2012;	Tobler	et	al.	2014;	Huang	et	al.	2014;	

Franssen	et	al.	2015).	The	apparent	lack	of	fixation	is	even	seen	in	long-term	experiments	

nearing	a	thousand	generations	of	selection	(Phillips	et	al.	2016).	Moreover,	work	with	

outcrossing	populations	of	Saccharomyces	cerevisiae	has	shown	that	adaptation	is	still	

primarily	driven	by	standing	genetic	variation	even	at	much	larger	effective	population	

sizes	than	what	is	currently	seen	in	experiments	featuring	D.	melanogaster	(Burke	et	al.	

2014).		

	 In	accordance	with	these	findings,	evolution	in	outbred	populations	is	rapid	and	

highly	repeatable	when	newly	derived	D.	melanogaster	populations	are	subjected	to	the	

same	selection	regimes	as	long-standing	populations	(Burke	et	al.	2016;	Graves	et	al.	

2017).	It	takes	only	dozens	of	generations	for	newly	derived	populations	to	converge	on	

long-standing	populations	at	both	the	genomic	and	phenotypic	levels,	even	when	long-

standing	populations	have	previously	undergone	hundreds	of	generations	of	selection	

(Burke	et	al.	2016;	Graves	et	al.	2017).	These	findings	suggest	that	phenotypes	and	

patterns	of	genetic	variation	are	primarily	shaped	by	most	recent	selection	regime,	and	
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that	evolutionary	history,	prior	to	the	recent	selection	regime,	has	little	discernible	impact.	

However,	this	runs	contrary	to	evidence	from	experimental	evolution	work	using	

Drosophila	suboscura	derived	from	wild	populations	at	contrasting	European	latitudes	

(Simões	et	al.	2017).	Their	findings	indicate	that	evolution	is	predictable	at	the	phenotypic	

level,	but	differences	in	where	source	populations	originate	can	have	significant	effects	on	

outcomes	at	the	genetic	level,	suggesting	that	evolutionary	history	does	play	a	role	when	it	

comes	to	repeatability	at	the	genomic	level.	The	idea	that	the	degree	to	which	populations	

return	to	ancestral	phenotypic	values	and	allele	frequencies	is	at	least	in	part	contingent	on	

evolutionary	history	is	also	supported	by	reverse	experimental	evolution	studies	(Teotónio	

and	Rose	2000;	Teotónio	et	al.	2009).	However,	it	should	be	noted	that	the	authors	of	these	

reverse	experimental	evolution	studies	were	unable	to	rule	out	the	possibility	that	

complete	reversion	would	have	occurred	in	all	populations	if	given	more	time.		

	 A	possible	resolution	to	why	evolutionary	history	appears	to	play	a	role	in	some	

experiments	but	not	others	follows	from	Graves	et	al.	(2017).	In	addition	to	the	

aforementioned	results,	the	authors	found	evidence	that	more	intense	selection	regimes	

lead	to	significantly	greater	losses	of	genetic	variation	compared	to	milder	selection	

regimes.	While	they	did	not	observe	widespread	fixation	within	any	of	the	populations	

studied,	fixation	seemed	possible	provided	a	sufficiently	intense	selection	regime.	

Therefore,	the	finding	that	phenotypes	and	patterns	of	genetic	variation	are	almost	

exclusively	shaped	by	most	recent	selection	regime	in	Burke	et	al.	(2016)	and	Graves	et	al.	

(2017)	could	be	due	to	the	fact	that	none	of	the	populations	studied	were	exposed	to	

sufficiently	intense	selection	regimes	in	their	evolutionary	histories.		Presumably,	strong	

selective	pressures	could	potentially	result	in	widespread	fixation	of	alleles	favored	by	
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such	selection.	In	these	cases,	given	that	adaptation	in	sexual	experimental	evolution	is	

primarily	fueled	by	standing	genetic	variation,	the	widespread	fixation	could	have	

significant	impact	on	how	experimental	populations	respond	to	new	selective	pressures,	

and	their	ability	to	revert	to	ancestral	states	when	moved	back	to	ancestral	conditions.	

	 Here	we	test	two	hypotheses.	Hypothesis	1:		evolutionary	history	matters	in	

populations	where	past	generations	were	subjected	to	very	intense	selective	pressures.	

Hypothesis	2:	previous	intense	selection	does	not	produce	historical	effects,	in	the	absence	

of	other	factors	such	as	inbreeding	or	chromosomal	rearrangement.		

We	test	these	hypotheses	using	a	group	of	D.	melanogaster	populations	that	were	

historically	subjected	to	intense	selection	for	desiccation	resistance,	TDO	1-5,	and	their	

controls,	TSO	1-5.	These	populations	were	known	as	D	and	C	respectively	during	active	

selection	and	were	first	described	in	Rose	et	al.	(1992).		The	D	populations	were	intensely	

selected	for	desiccation	resistance	for	about	260	generations,	and	afterward	were	renamed	

as	TDO,	and	maintained	on	a	21	day	(T	for	“Three-week”)	relaxed	culture	selection	for	the	

past	~230	generations.		The	C	populations	were	moderately	selected	for	starvation	

resistance	for	about	260	generations	in	parallel	with	the	D	populations,	serving	as	controls	

for	the	D	populations,	and	were	later	renamed	as	TSO,	and	maintained	under	the	same	

culture	selection	regime	as	the	TDO	populations.	The	extreme	functional	differentiation	

(i.e.	carbohydrate	content,	water	loss	rates,	and	water	content)	previously	seen	between	

these	two	groups	was	achieved	using	environments	so	inimical	to	survival	that	only	a	small	

percentage	(10-20%)	of	each	generation	survives	selection	(Rose	et	al.	1992;	Gibbes	et	al.	

1997;	Djawdan	et	al.	1998;	Archer	et	al.	2003).	We	have	called	this	intense	selection	
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paradigm	“culling	selection”	in	the	past,	and	it	represents	one	of	the	most	extreme	

protocols	used	in	Drosophila	experimental	evolution	(Rose	et	al.	1990).		

Findings	from	Phillips	et	al.	(in	review)	show	that	there	is	currently	no	significant	

differentiation	in	relation	to	starvation	and	desiccation	resistance	between	the	TSO	and	

TDO,	but	there	are	significant	differences	in	mean	longevity	(Figure	3.1).	Thus,	relaxed	

selection	has	erased	the	extreme	differences	in	starvation	and	desiccation	resistance	

observed	during	selection	(Djawdan	et	al.	1998;	Archer	et	al.	2003;	Phelan	et	al.	2003),	but	

there	is	still	evidence	of	previously	observed	longevity	differences	(Rose	et	al.	1992).		

(Figure	3.1).	Here	we	pair	these	findings	with	an	examination	of	patterns	of	genomic	

differentiation	between	the	two	group	to	test	our	hypotheses.	With	Hypothesis	1,	large	

impacts	of	evolutionary	history	are	in	fact	due	to	exposure	to	intense	selection.	If	this	

hypothesis	is	correct,	we	would	expect	to	find	significant	genomic	differentiation	between	

the	TDO	and	TSO	populations	even	after	~230	generations	of	relaxed	selection	in	the	

former.	If	Hypothesis	2	is	correct,	we	should	not	find	such	differentiation.	

Materials	and	Methods	

Populations	

	 This	experiment	used	large,	outbred	lab	populations	of	Drosophila	melanogaster	

derived	from	a	population	sampled	by	P.T.	Ives	from	South	Amherst,	Massachusetts	(Ives,	

1970).	The	experimental	stocks	used	in	this	study	were	derived	from	a	set	of	5	populations	

that	had	been	selected	for	late	reproduction	(O1-5).	The	O1-5	populations	were	derived	from	

the	Ives	stock	in	February	1980	(Rose	et	al.	1984).	In	1988,	two	sets	of	populations	were	
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derived	from	the	O1-5	populations.	One	set	(D1-5)	were	selected	for	desiccation	resistance	

while	the	other	set	(C1-5)	were	maintained	to	control	for	desiccation	resistance	selection.		

The	C1-5	populations	were	handled	like	the	D1-5	populations,	except	flies	were	given	

nonnutritive	agar	instead	of	desiccant	(Rose	et	al.	1992).	In	2005,	these	populations	were	

relaxed	from	selection	and	kept	on	a	21-day	culture	regime	to	the	present	day.	Under	this	

new	regime,	the	D	populations	have	been	renamed	to	TDO,	and	the	C	populations	to	TSO.	In	

total,	the	TDO	populations	underwent	~260	generations	of	selection	for	desiccation	

resistance,	and	~230	generations	of	relaxed	selection.			

	 Populations	were	reared	on	a	banana-molasses	diet	for	stock	maintenance	and	for	

experimental	assays.	The	banana-molasses	media	is	composed	of	the	following	ingredients	

per	1L	distilled	H20:	13g	ApexÒ	Drosophila	agar	type	II,	120g	peeled,	ripe	banana,	40mL	

light	KaroÒ	corn	syrup,	40mL	dark	KaroÒ	corn	syrup,	50mL	EdenÒorganic	barley	malt	

syrup,	32g	Red	StarÒ	active	dry	yeast,	2g	Sigma-AldrichÒ	Methyl	4-hydroxybenzoate	(anti-

fungal),	and	42	mL	EtOH.	Stocks	are	maintained	on	a	24-hour	light	cycle	and	kept	at	room	

temperature	(24oC	±	1oC).	

DNA	extraction	and	sequencing	

	 Genomic	DNA	was	extracted	from	samples	of	200	female	flies	collected	from	each	of	

the	10	individual	populations	(TSO1-5	and	TDO1-5)	using	the	Qiagen©/Gentra	Puregene©	kit,	

following	the	manufacturer’s	protocol	for	bulk	DNA	purification.	The	30	gDNA	pools	were	

prepared	as	standard	200-300	bp	fragment	libraries	for	Illumina	sequencing,	and	

constructed	such	that	each	5	replicate	populations	of	a	treatment	(e.g.,	TSO1-5)	were	given	

unique	barcodes,	normalized,	and	pooled	together.	Libraries	were	run	across	PE100	lanes	
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of	an	Illumina	HiSEQ	2000	at	the	UCI	Genomics	Highthroughput	Sequencing	Facility.	

Resulting	data	were	100	bp	paired-end	reads.	Each	population	was	sequenced	twice;	data	

from	both	runs	were	combined	for	some	analyses	as	described	below.	Combining	reads	

from	two	independent	sequencing	runs	likely	alleviate	the	effects	of	possible	bias	

introduced	from	running	all	replicates	for	each	population	in	the	same	lane.	

Genomic	Analysis	

Mapping	of	reads	

	 Reads	were	mapped	to	the	D.	melanogaster	reference	genome	(version	6.14)	using	

bwa	mem	with	default	settings	(BWA	version	0.7.8)	(Lir	and	Durbin	2009).	The	resulting	

SAM	files	were	filtered	for	reads	mapped	in	proper	pairs	with	a	minimum	mapping	quality	

of	20,	and	converted	to	the	BAM	format	using	the	view	and	sort	commands	in	SAMtools	(Li	

et	al.	2009).	The	rmdup	command	in	SAMtools	was	then	used	to	remove	potential	PCR	

duplicates.	As	each	population	was	sequenced	twice,	there	were	two	bam	files	

corresponding	to	each	population	at	this	stage.	BAMtools	was	used	to	combine	pairs	

corresponding	to	the	same	populations	(Barnett	et	al.	2011).	Average	coverage	was	above	

70X	for	all	populations	except	TSO3,	which	was	67X	(Table	S3.1).	Next,	SAMtools	was	used	

to	combine	the	10	bam	files	into	a	single	mpileup	file.	Using	the	PoPoolation2	software	

package	(Kofler	et	al.	2011),	these	files	were	converted	to	“synchronized”	files,	which	is	a	

format	that	allele	counts	for	all	bases	in	the	reference	genome	and	for	all	populations	being	

analyzed.	We	then	used	RepeatMasker	4.0.3	(http://www.repeatmasker.org)	to	create	a	gff	

file	detailing	low	complexity	regions	in	the	D.	melanogaster	reference	genome.	The	regions	

were	then	masked	in	our	sync	file	once	again	using	PoPoolation2.	
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SNP	Variation	

	 A	SNP	table	was	created	using	the	sync	file	mentioned	above.	We	only	considered	

sites	where	coverage	was	between	30X	and	200X,	and	for	a	site	to	be	considered	

polymorphic	we	required	a	minimum	minor	allele	frequency	of	2%	across	all	10	

populations.	All	sites	failing	to	meet	these	criteria	were	discarded.	To	assess	broad	patterns	

of	SNP	variation	in	TSO	and	TDO	populations,	heterozygosity	was	calculated	and	plotted	

over	150kb	non-overlapping	windows	directly	from	the	major	and	minor	counts	in	our	SNP	

table.	A	t-test	was	also	performed	to	compare	mean	heterozygosity	between	the	two	groups	

of	populations.	To	assess	how	closely	replicate	populations	resembled	one	another,	FST	

estimates	were	also	obtained	using	the	formula:	FST=	(HT-HS)/HT	where	HT	is	heterozygosity	

based	on	total	population	allele	frequencies,	and	HS	is	the	average	subpopulation	

heterozygosity	in	each	of	the	replicate	populations	(Hedrick	2009).		FST	estimates	were	

made	at	every	polymorphic	site	in	the	data	set	for	a	given	set	of	replicate	populations.		

SNP	Differentiation	

We	used	two	different	methods	to	assess	SNP	differentiation	in	the	TSO	and	TDO	

populations.	First,	we	used	the	CMH	test	as	implemented	in	the	PoPoolation2	software	

package	to	compare	SNP	frequencies	between	the	TSO	and	TDO	populations.	As	the	

findings	of	Wiberg	et	al.	(2017)	indicate	that	coverage	variation	can	impact	statistical	

results,	we	subsampled	to	a	uniform	coverage	of	50X	across	the	genome	for	each	

population	using	scripts	provided	in	the	PoPoolation2	software	package.	During	this	

process,	all	positions	with	coverage	less	than	50X	or	greater	than	200X	were	discarded.	The	

subsampling	procedure	involved	calculating	the	exact	fraction	of	the	allele	frequencies	at	
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each	site,	and	linearly	scaling	them	to	our	target	coverage	of	50X.	In	addition	to	these	

coverage	requirements,	we	only	considered	sites	polymorphic	if	they	had	a	minor	allele	

frequency	of	2%	across	all	ten	populations.	In	total,	the	resulting	subsampled	sync	file	

contained	~1.2	million	SNPs	spread	across	the	major	chromosome	arms.	CMH	tests	were	

then	performed	at	every	polymorphic	site	between	the	TSO	and	TDO	populations.	To	

correct	for	multiple	comparisons,	we	used	the	permutation	approach	featured	in	Graves	et	

al.	(2017).	Briefly,	populations	were	randomly	assigned	to	one	of	two	groups	and	the	CMH	

test	was	then	performed	at	each	polymorphic	position	in	the	shuffled	data	set	to	generate	

null	distributions	of	p-values.	This	was	done	a	1000	times,	and	each	time	the	smallest	p-

value	generated	was	recorded.	The	quantile	function	in	R	was	then	used	to	define	

thresholds	that	define	the	genome-wide	false-positive	rate,	per	site,	at	5%.		

	 In	addition	to	the	CMH	test,	we	also	used	the	quasibinomial	GLM	approach	

recommended	by	Wiberg	et	al.	(2017).	Their	findings	suggest	this	approach	has	lower	false	

positive	and	higher	true	positive	rates	than	the	CMH	test.	However,	it	should	be	noted	that	

the	permutation	derived	significance	threshold	used	in	our	CMH	tests	are	more	stringent	

than	anything	featured	in	their	analysis.	The	test	was	implemented	using	scripts	provided	

by	Wiberg	et	al.	(2017).	A	.sync	file	was	once	again	the	primary	input	file,	and	we	used	the	

same	SNP	calling	criteria	outlined	above	(minimum	coverage	of	50X	per	population,	

maximum	of	200X	per	population,	and	a	minimum	minor	allele	frequency	of	2%	across	all	

10	populations).	Coverage	was	once	again	scaled	to	50X	to	minimize	the	effect	of	coverage	

variation	on	our	results.	As	counts	of	zero	can	lead	to	problems	when	implementing	this	

approach,	a	count	of	1	was	added	to	each	allele	whenever	a	zero	was	encountered.	In	terms	

of	establishing	significance	thresholds,	another	reported	benefit	of	quasibinomal	GLMs	is	
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that	they	produce	the	expected	uniform	distribution	of	p-values	under	the	null	hypothesis	

which	allows	for	standard	method	of	correcting	for	multiple	comparisons	(Wiberg	et	al.	

2017).	As	a	result,	to	correct	for	multiple	comparisons	we	used	two	common	approaches,	

the	Bonferroni	correction	and	the	q-value	method	(Storey	and	Tibshirani	2003;	Storey	et	

al.	2015).	We	chose	to	use	the	Bonferroni	correction	and	the	q-value	methods	as	Wiberg	et	

al.	(2017)	found	them	to	be	the	most	and	least	conservative	approach,	respectively.		

Results		

Heterozygosity	and	FST	

	 We	do	not	see	any	large	regions	where	heterozygosity	has	been	completely	

expunged,	and	this	result	is	robust	to	reductions	in	window	size	(Figure	3.2,	Figures	S3.1	

and	S3.2).	However,	there	are	some	notable	depressions	consistent	across	replicates	that	

may	be	indicative	of	soft	sweeps.	Mean	heterozygosity	in	the	TSO	populations	ranges	from	

0.24	to	0.26,	and	0.26	to	0.27	in	the	TDO	populations	(Table	S3.2).	Based	on	a	t-test	

comparing	the	two	sets	of	means,	heterozygosity	is	significantly	higher	in	the	TDO	

populations	(p-value	=	0.001).	Mean	FST	in	the	TSO	populations	is	0.04	and	0.07	in	the	TDO	

populations,	which	indicates	there	is	a	high	degree	of	similarity	between	replicates.			

SNP	differentiation	

	 We	find	little	evidence	of	SNP	(single	nucleotide	polymorphism)	differentiation	

between	the	TDO	and	TSO	populations	(Figure	3.3).	Based	on	our	Cochran-Mantel-

Haenszel	(CMH)	test	results,	we	find	a	total	of	17	sites	with	p-values	that	exceed	our	

permutation	derived	significance	threshold	(Figure	3.3A).	These	17	sites	correspond	to	
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three	regions,	two	on	chromosome	3L	and	one	on	the	X	chromosome.	However,	we	find	no	

signs	of	significant	SNP	differentiation	using	the	quasibinomial	GLM	method.	This	is	true	

using	both	the	Bonferroni	correction,	and	the	less	conservative	q-value	approach	to	correct	

for	multiple	comparisons	(Figure	3.3B-C).		

Within	the	significantly	differentiated	regions	detected	using	the	CMH	test,	we	find	a	

total	of	seven	genes	(Table	3.1).		Six	of	the	seven	genes	are	located	on	chromosome	arm	3L,	

while	the	remaining	gene	is	located	on	chromosome	X.		For	genes	CR42860,	CR45802,	and	

CR34047,	there	is	little	to	no	information	about	their	molecular	and	biological	functions.	

Gene	CG42355	is	associated	with	sperm	chromatin	condensation,	but	not	much	else	is	

presently	known.		Genes	sallimus	(sls)	and	zormin	have	been	well	documented	to	be	

associated	with	the	development	of	the	striated	muscle	sarcomeres	(Bullard	et	al.	2005;	

Burkart	et	al.	2007;	Orfanos	et	al.	2015).	Sls	expression	is	necessary	for	myoblast	fusion,	

and	the	inevitable	development	of	myoblasts	into	muscle	fibres.	Sallimus,	protein	derived	

from	the	sls	gene,	aides	in	aligning	thin	filaments	side-by-side	and	in	anti-parallel	direction,	

which	nucleates	Z-disc	formation	in	developing	myofibrils	(Bullard	et	al.	2005.	Sallimus	

also	binds	to	thin	filaments	(i.e.	actin),	aiding	in	balancing	the	two	halves	of	the	sarcomere.		

Protein	zormin	can	be	also	be	found	near	the	Z-disc	and	M-line	of	the	muscles	(Orfanos	et	

al.	2015).	These	filaments	connect	the	Z-disc	with	the	ends	of	the	thick	filaments.	The	size	

of	these	proteins,	and	the	extensibility	of	their	binding,	affects	the	elasticity	and	stiffness	of	

muscles	(Burkart	et	al.	2007).	These	properties	dictate	muscle	contraction,	stiffness,	and	

performance.	The	final	gene,	CG32649,	located	on	the	X	chromosome	is	associated	with	

ubiquinone	biosynthesis	and	mitochondrial	electron	transport.		There	are	two	human	

orthologs,	COQ8A	and	COQ8B,	linked	to	CG32649.		Mutations	at	these	two	ADCK	genes	can	
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lead	to	primary	coenzyme	Q-10	deficiency	and	nephrotic	syndrome,	respectively	(Mollet	et	

al.	2008;	Ashraf	et	al.	2013).	

DISCUSSION	

	 Our	genomic	results	combined	with	the	phenotypic	results	presented	in	Phillips	et	

al.	(in	review)	indicate	that	~230	generations	of	relaxed	selection	were	enough	for	the	

previously	desiccation	selected	TDO	populations	to	largely	converge	on	the	TSO	controls	at	

both	the	phenotypic	and	genomic	levels.		The	TDO	populations	do	not	show	any	signs	of	

significantly	enhanced	survival	in	desiccating	environments	compared	to	the	TSO	

populations,	despite	extreme	differences	in	desiccation	resistance	prior	to	the	relaxation	of	

selection	(Rose	et	al.	1992;	Gibbs	et	al.	1997;	Djawdan	et	al.	1998;	Archer	et	al.	2007).	

There	is	also	no	longer	any	evidence	of	increased	starvation	resistance	in	the	TDO	

populations,	which	was	a	trait	previously	found	to	be	correlated	with	enhanced	desiccation	

resistance	(Djawdan	et	al.	1998).		

	 As	shown	in	Phillips	et	al.	(in	review),	there	are	still	clear	signs	of	phenotypic	

differentiation	with	regards	to	longevity	between	the	TDO	and	TSO	populations.	This	arises	

notwithstanding	the	absence	of	extensive	genomic	differentiation	detected	between	these	

two	sets	of	populations.	One	possible	explanation	for	this	comes	from	the	somewhat	

limited	replication	featured	in	this	study.			If	we	consider	the	genomic	analysis	of	

differentiation	between	A	and	C	populations	of	Graves	et	al.	(2017),	we	find	that	there	is	a	

general	reduction	in	the	ability	of	genomic	analysis	to	detect	differentiation	when	only	ten	

populations	total	are	compared	as	two	groups	of	five.	In	Graves	et	al.	(2017)	thousands	of	

differentiated	sites	were	detected	when	comparing	all	ten	A-type	populations	to	all	ten	C-
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type	populations,	compared	to	hundreds	of	sites	when	groups	of	five	were	compared	to	

one	another.	This	finding	is	also	supported	by	theoretical	studies	examining	the	power	of	

evolve	and	re-sequence	studies	to	detect	causal	variants	(Balwdin-Brown	et	al.	2014;	

Kofler	and	Schlötterer	2014).	As	we	are	limited	to	five	replicates	per	treatment	in	this	

study,	it	is	possible	that	we	simply	do	not	have	the	statistical	power	to	detect	the	genomic	

differentiation	underlying	this	residual	phenotypic	differentiation.			

	 Although	our	selection	protocol	for	desiccation	resistance	is	relatively	extreme,	

compared	to	other	selection	regimes	we	have	used	we	do	not	find	any	clear	evidence	of	it	

having	a	lasting	impact	on	levels	of	genetic	variation	(Rose	et	al.	2004).	Our	genomic	

analysis	did	not	yield	any	evidence	of	widespread	fixation	in	the	TDO	populations.	As	such,	

the	findings	of	our	genomic	analyses	suggest	that	even	when	a	moderately	outbred	

experimental	population’s	evolutionary	history	involves	prolonged	periods	of	intense	

selection,	it	does	not	have	lasting	or	irreversible	effects	on	patterns	of	genetic	variation.	

This	runs	contrary	to	the	findings	of	Simões	et	al.	(2017),	and	even	past	studies	using	other	

populations	related	to	the	TDO	and	TSO	populations	(Teotónio	and	Rose	2000;	Teotónio	et	

al.	2009).	However,	it	should	be	pointed	out	that	none	of	those	studies	involved	

evolutionary	histories	of	the	duration	used	here.	Our	present	findings	are	more	in	line	with	

those	of	Graves	et	al.	(2017),	where	most	recent	selection	regime	was	the	primary	force	

shaping	patterns	of	genetic	variation.		

	 Our	findings	also	suggest	that	~230	generations	of	relaxed	selection	were	enough	to	

erase	any	signs	of	widespread	genetic	differentiation	between	the	TDO	and	TSO	

populations.	CMH	tests	comparing	SNP	frequencies	between	the	two	groups	of	populations	
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did	yield	some	significantly	differentiated	sites.	However,	this	was	limited	to	17	sites	as	

compared	to	the	dozens	to	thousands	of	differentiated	sites	typically	detected	in	Drosophila	

experimental	evolution	studies	(Burke	et	al.	2010;	Turner	et	al.	2011;	Orozco-terWengel	et	

al.	2012;	Tobler	et	al.	2014;	Huang	et	al.	2014;	Franssen	et	al.	2015).	There	were	a	total	of	7	

genes	associated	with	these	sites,	but	none	of	these	candidate	genes	had	clear	connections	

to	desiccation	resistance	(See	Results	for	details).	Additionally,	the	quasibinomial	GLM	

approach	to	detecting	significantly	differentiated	SNP’s	advocated	by	Wiberg	et	al.	(2017)	

did	not	detect	any	significant	SNP	differentiation	between	the	TDO	and	TSO	populations.	

Taken	together,	these	findings	indicate	that	~230	generations	of	relaxed	selection	were	

enough	to	eliminate	most	signs	of	meaningful	SNP	differentiation	between	the	TDO	

populations	and	their	controls,	further	suggesting	that	evolutionary	history	does	not	play	a	

significant	role	in	Drosophila	experimental	evolution	over	sufficiently	long	periods.	

	 Our	findings	about	the	role	of	evolutionary	history	in	shaping	patterns	of	genetic	

variation	are	not	entirely	conclusive	however.	For	instance,	while	we	have	phenotypic	data	

for	the	TDO	populations	prior	to	the	relaxation	of	selection,	we	do	not	have	any	genomic	

data	from	this	period.	As	such,	we	cannot	directly	show	that	relaxing	selection	resulted	in	

significant	shifts	in	patterns	of	genetic	variation.	We	also	cannot	directly	compare	current	

levels	of	SNP	differentiation	between	the	TDO	and	TSO	populations	to	what	they	were	

during	the	height	of	TDO	selection	for	desiccation	resistance.	However,	assuming	past	

experimental	evolution	studies	featuring	genome-wide	comparisons	between	

experimentally	evolved	Drosophila	populations	are	broadly	applicable,	these	results	

nevertheless	suggest	patterns	of	genetic	variation	and	differentiation	in	Drosophila	

experimental	evolution	are	not	dramatically	impacted	by	evolutionary	history.		



 137 

	 Cumulatively,	our	findings	suggest	that	extreme	selection	does	not	have	major	long-

lasting	impacts	on	genomic	and	phenotypic	differentiation	in	Drosophila	experimental	

evolution.	We	are	able	to	detect	some	signs	of	genetic	differentiation	and	residual	

differences	in	mean	longevity	when	comparing	the	TDO	and	TSO	populations,	but	nothing	

on	the	order	of	what	is	usually	found	between	selected	and	control	populations	in	

Drosophila	experimental	evolution	Burke	et	al.	2010;	Turner	et	al.	2011;	Orozco-terWengel	

et	al.	2012;	Tobler	et	al.	2014;	Huang	et	al.	2014;	Franssen	et	al.	2015).	And	there	is	no	

reason	to	believe	these	differences	would	dramatically	impact	how	these	populations	

respond	to	future	selection.	As	such,	we	conclude	that	evolutionary	history	does	not	play	a	

major	role	in	trajectories	of	adaptation	during	Drosophila	experimental	evolution,	if	the	

duration	of	these	experiments	is	sufficiently	long	and	populations	are	not	inbred	at	any	

point.		
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Figure	3.1.	Historical	and	current	starvation	resistance,	desiccation	resistance	and	
mean	longevity	data	from	females	in	the	desiccation	selected	and	control	lines.	(a)	
Difference	in	average	longevity	between	the	selected	and	control	populations.	Differences	
are	significant	in	both	comparisons	shown.	Difference	in	mean	longevity	was	highest	early	
in	desiccation	selection	(Rose	et	al.	1992),	and	then	decreases	to	near	zero	toward	the	end	
of	selection	(Archer	et	al.	2003).	(b)	Difference	in	mean	survival	when	flies	were	subjected	
to	starvation	conditions.	No	significant	difference	between	TSO	and	TDO	populations,	but	
starvation	resistance	was	significantly	different	during	selection	with	the	greatest	
differences	being	found	at	generation	130	(Djawdan	et	al.	1998;	Phelan	et	al.	2003).	(c)	
Difference	in	mean	survival	when	flies	were	subjected	to	desiccation	conditions.	No	
significant	difference	between	TSO	and	TDO	populations,	but	desiccation	resistance	was	
significantly	different	during	selection	with	the	greatest	differences	being	found	at	
generation	130	(Archer	et	al.	2003).	Error	bars	are	mean	±	1	SEM.	
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Figure	3.2.	Genome-wide	heterozygosity	150kb	windows.		Heterozygosity	in	the	TSO	
(a)	and	TDO	(b)	populations	plotted	over	150-kb	windows	across	all	major	chromosome	
arms.	All	replicates	are	shown	for	each	population.		
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Figure	3.3.	CMH	and	quasibinomial	GLM	comparison	of	SNP	frequencies	between	
TDO	and	TSO	populations.	Results	from	statistical	test	comparing	SNP	frequencies	in	the	
TDO	and	TSO	populations.	(a)	Results	from	CMH	tests	plotted	along	all	major	chromosome	
arms	as	–log(p-values).	Our	permutation	derived	significance	threshold	is	shown	in	red.	(b)	
Results	from	quasibinomial	GLM	approach	plotted	as		-log(p-values),	and	our	Bonferroni	
corrected	significance	threshold	is	shown	in	red.	(c)	Results	from	quasibinomial	GLM	
converted	to	q-values,	and	plotted	–log(q-values).	A	0.05	false	discovery	rate	threshold	was	
used,	as	shown	in	red.		
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Table	3.1.	Genes	located	in	regions	found	to	be	significantly	differentiated	based	on	
our	CMH	test	comparing	SNP	frequencies	in	the	TDO	and	TSO	populations.		

	

	

	

	

	

	

Gene	 Location	 Association	 Molecular	
Function		

Biological	Process	

CG42355	 3L:	2037371-2038224.	 Unknown	 Unknown	 	Sperm	chromatin	condensation.	

sls	
(Sallimus)	

3L:	2039681-2115611	 Protein	
necessary	for	
myoblast	fusion;	
determinant	of	
resting	elasticity	
of	striated	
muscle	
sarcomeres	
(myofibril	
stiffness);	
regulates	
mitochondrial	
respiration	in	
sarcomere	

Structural	
constituent	of	
muscle;	Actin	
binding;	Protein	
binding.	

Chromosome	organization;	skeletal	
muscle	organ	development;	regulation	of	
immune	system	process;	mesoderm	
development;	chromosome	
condensation;	locomotion;	somatic	
muscle	development;	myotube	
differentiation;	visceral	muscle	
development;	striated	muscle	tissue	
development;	regulation	of	multicellular	
organismal	process.	

CR42860	 3L:	2088166-2089626	 Unknown	 Unknown	 Unknown	

Zormin	 3L:	2117466-2151700	 Found	in	the	Z-
disc	and	the	M-
line	of	muscles.	
Affects	elasticity	
and	stiffness	of	
sarcomeres.		

Protein	
binding;	actin	
binding	

		

CR45802	 3L:	2118498-2119567	 Unknown	 Unknown	 Unknown	

CR34047	 3L:	5098376-5099795	 Unknown	 Unknown	 Unknown	

CG32649	 X:	12898768-12901114	 Ubiquinone	
biosynthesis;	
CoQ8A	and	
CoQ8B	human	
orthologs	

Protein	kinase	
activity.	

Mitochondrial	electron	transport,	
ubiquinol	to	cytochrome	c.	
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Figure	S3.1.	Genome-wide	heterozygosity	100kb	windows.			Heterozygosity	in	the	TSO	
(A)	and	TDO	(B)	populations	plotted	over	100-kb	windows	across	all	major	chromosome	
arms.	All	replicates	are	shown	for	each	population.		
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Figure	S3.2.	Genome-wide	heterozygosity	50kb	windows.		Heterozygosity	in	the	TSO	
(A)	and	TDO	(B)	populations	plotted	over	50-kb	windows	across	all	major	chromosome	
arms.	All	replicates	are	shown	for	each	population.		
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Table	S3.1.	Average	read	coverage	across	the	genome	for	all	populations	used	in	this	
study.		

	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Population Replicate Average Read Coverage 
TSO 1 87 

2 83 
3 78 
4 80 
5 70 

TDO 1 96 
2 81 
3 67 
4 87 
5 78 
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Table	S3.2.	Mean	genome-wide	heterozygosities	calculated	from	SNP	data	
	

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

	 TSO	 TDO	
Replicate	1	 0.24	 0.27	
Replicate	2	 0.25	 0.27	
Replicate	3	 0.24	 0.26	
Replicate	4		 0.25	 0.26	
Replicate	5	 0.26	 0.27	
Mean	 0.25	 0.27	
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CHAPTER	4	

The	Relationship	Between	Effective	Population	Size	and	Power	to	Detect	Causal	

Variants	in	Drosophila	Experimental	Evolution	

ABSTRACT	

	 As	the	number	of	E&R	studies	aimed	at	understanding	the	genetic	architecture	of	

complex	traits	in	sexually	reproducing	populations	grows,	it	is	increasingly	important	to	

understand	how	experimental	designs	impact	strength	of	inference.	At	present,	empirical	

and	theoretical	studies	have	shown	that	a	high	degree	of	replication	is	essential,	and	

experiments	using	sexually	reproducing	populations	need	not	be	longer	than	~40	

generations	in	duration.	Here	we	empirically	asses	the	importance	of	another	potentially	

important	experimental	parameter,	effective	population	size	(Ne).	We	hypothesize	that	E&R	

studies	featuring	sexual	populations	with	low	Ne	will	have	limited	power	to	detect	causal	

variants	due	to	the	increased	strength	of	genetic	drift.	We	test	this	hypothesis	by	analyzing	

DNA	sequence	data	from	two	experiments	featuring	selection	for	starvation	resistance	in	

Drosophila	melanogaster.		One	experiment	was	conducted	using	starvation	selected	and	

control	populations	with	Ne	of	~1000,	while	the	other	was	conducted	with	starvation	

selected	and	control	populations	where	the	census	size	massively	compressed.	We	find	that	

at	low	Ne,	genetic	drift	indeed	plays	a	larger	role	in	shaping	patterns	of	genetic	variation	

than	what	was	seen	in	any	of	our	previous	work.	Genome-wide	comparisons	of	SNP	

frequencies	in	the	high	Ne	experiment	resulted	in	the	identification	of	hundreds	of	

candidate	sites,	while	comparisons	in	the	low	Ne	experiment	failed	to	detect	any	candidate	

sites.	It	is	also	worth	noting	that	both	of	these	experiments	feature	over	twice	the	level	of	

replication	seen	in	most	published	E&R	studies.	As	such,	we	find	support	for	our	

hypothesis	and	conclude	that	Ne	is	indeed	a	major	determinant	of	statistical	power	in	E&R	

studies.		
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INTRODUCTION	

	 As	the	number	of	Evolve	and	Resequence	(E&R)	studies	aimed	at	understanding	the	

genetic	architecture	of	complex	traits	in	sexually	reproducing	populations	grows,	it	is	

increasingly	important	to	understand	how	experimental	designs	impact	strength	of	

inference.	At	present,	replication	has	been	shown	to	affect	the	ability	to	detect	significantly	

differentiated	regions	of	the	genome	(Burke	et	al.	2014;	Graves	et	al.	2017).	In	accordance	

with	theoretical	studies	examining	the	power	of	E&R	studies	to	detect	casual	variants	

(Baldwin-Brown	et	al.	2014;	Kofler	and	Schlötterer	2014),	Graves	et	al.	(2017)	and	Burke	

et	al.	(2014)	found	that	reducing	the	number	of	replicates	used	in	their	analyses	reduced	

the	number	of	differentiated	sites	detected,	and	the	ability	to	dissect	genomic	regions	

responding	to	selection.	Graves	et	al.	(2017)	also	suggest	that	selection	experiments	in	

moderately	outbred	populations	need	not	be	more	than	~40	generations	in	duration,	given	

the	rate	at	which	newly	derived	experimental	populations	converged	on	long-standing	

counterparts	when	subjected	to	the	same	selection	regimes	in	their	study.	Here	we	seek	to	

empirically	assess	the	importance	of	another	key	experimental	parameter	that	may	impact	

the	ability	of	E&R	studies	to	detect	causal	variants,	effective	population	size	(Ne).		

	 E&R	featuring	sexually	reproducing	populations	studies	have	consistently	found	

that	adaptation	is	primarily	fueled	by	selection	on	standing	genetic	variation	(Teotonio	et	

al	2009;	Burke	et	al.	2010;	Turner	et	al.	2011;	Orzoco-terWengel	et	al.	2012;	Tobler	et	al.	

2014,	Franssen	et	al	2014,	Huang	et	al	2014;	Burke	et	al.	2014;	Graves	et	al.	2017).	As	

reductions	in	Ne	are	associated	with	increased	levels	of	genetic	drift	and	reduced	levels	of	

genetic	variation,	small	populations	are	theoretically	expected	to	show	a	reduced	response	
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to	selection	(Allendorf	and	Luikart	2007;	Frankham	2005;	Robertson	1960).	Selection	

experiments	have	shown	that	this	is	indeed	that	case	for	phenotypes:	reduced	Ne	has	been	

shown	to	limit	the	phenotypic	response	to	directional	selection	(Madalena	and	Robertson	

1974;	Marden	et	al.	1997;	Weber	and	Diggins	1990).	Given	that	adaptation	in	E&R	studies	

with	sexually	reproducing	populations	is	primarily	fueled	by	standing	genetic	variation,	it	

stands	to	reason	that	this	reduced	phenotypic	response	to	selection	at	low	Ne	is	due	to	

genetic	drift	overwhelming	selection.		

	 E&R	studies	featuring	sexual	populations	typically	aim	to	detect	causal	genetic	

variants	by	the	detection	of	either	consistent	patterns	of	genomic	differentiation	between	

groups	of	replicate	populations	subjected	to	different	selection	regimes,	or	consistent	

patterns	of	allele	frequency	change	across	generations	in	a	single	group	of	populations	

subjected	to	the	same	selection	regime	(Schlötterer	et	al.	2015;	Long	et	al.	2015).	If	the	

reduced	adaptive	response	to	selection	at	low	Ne	is	indeed	due	to	genetic	drift	

overwhelming	the	selection,	detecting	causal	variants	in	E&R	studies	featuring	populations	

with	low	Ne	could	pose	a	major	statistical	challenge.	Instead	of	the	highly	parallel	genomic	

response	to	selection	across	replicates	that	has	come	to	characterize	E&R	studies	with	

sexual	populations	(e.g.	Burke	et	al.,	2014;	Graves	et	al.,	2017),	drift	causing	random	

reductions	in	the	frequency	or	outright	loses	of	beneficial	alleles	in	some	replicates	should	

disrupt	statistical	consistency	across	replicates.	High	levels	of	genetic	drift	at	low	Ne	could	

also	produce	large	allele	frequency	changes	at	neutral	sites	that	are	consistent	across	

replicates	by	chance,	given	the	many	statistical	tests	performed	in	genome-wide	analyses,	

which	would	be	difficult	to	distinguish	from	the	action	of	selection	on	a	per	site	basis.	

Therefore,	we	hypothesize	that	E&R	studies	featuring	sexual	populations	with	low	Ne.	will	
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have	limited	power	to	detect	causal	variants,	even	if	there	is	clear	phenotypic	

differentiation,	as	well	as	sufficient	replication	and	generations	under	selection.		

	 Here	we	seek	to	test	this	hypothesis	using	genome-wide	analysis	of	two	

experiments	featuring	selection	for	starvation	resistance	in	Drosophila	melanogaster.	One	

of	these	experiments	was	conducted	using	Ne	values	of	about	1,000,	with	ten	control	

populations	and	ten	selected	populations	(Kezos	et	al.,	in	prep.).	The	other	experiment	was	

conducted	with	nine	control	populations	and	nine	selected	populations	in	which	Ne	had	

been	intentionally	compressed	(Santos,	2018).		

	 The	ten	starvation-selected	“SCO”	populations	featured	in	Kezos	et	al.	(in	prep)	have	

been	undergoing	selection	since	August	2010.		This	intense	selection	regime	rapidly	

produced	changes	in	body	shape,	body	size,	and	stress	resistance.	The	C-type	populations	

(CO1-5	and	nCO1-5)	featured	in	Graves	et	al.	(2017)	serve	as	the	controls	for	these	

populations.	The	small	Ne	populations,	“pSB”	and	“pCB”,	were	derived	from	the	five	“B”	

populations	that	have	been	maintained	in	the	Rose	lab	since	1980	(Rose	1984).	The	B	

populations	are	maintained	at	a	census	size	of	~2000	individuals.	By	contrast,	census	size	

was	reduced	to	~50	individuals	in	the	pSB	and	pCB	populations.	The	pSB	populations	were	

subjected	to	selection	for	starvation	resistance	for	~50	generations,	while	the	pCB	were	

maintained	in	parallel	as	controls.	The	response	to	starvation	selection	in	these	

populations	has	been	characterized	by	Santos	(2018).	Santos	(2018)	found	that	there	were	

significant	increases	in	starvation	resistance	in	the	pSB	populations	relative	to	the	pCB	

populations,	but	the	response	to	selection	was	significantly	less	than	what	was	seen	in	

populations	maintained	at	higher	Ne	that	were	also	subjected	to	same	starvation	selection	

protocol	(Figure	4.1).	To	test	our	hypothesis,	we	assess	our	ability	to	detect	significantly	
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differentiated	genomic	regions	between	the	pSB	and	pCB	populations	using	standard	E&R	

approaches,	with	the	genomic	data	from	the	SCO	selection	experiment	serving	as	a	

contrasting	point	of	reference	with	large	Ne.			

MATERIALS	AND	METHODS	

Populations	

	 The	pSB	(pSB1a-e-pSB5a-e)	and	pCB	(pCB1a-e-pCB5a-e)	populations	were	derived	from	

five	experimental	populations	of	D.	melanogaster,	B1-B5,	maintained	in	the	Rose	lab	since	

1980	(Rose	1984).	The	B	populations	are	vial	adapted	and	maintained	on	a	14-day	life	

cycle.	Each	of	the	B	population	consists	of	~2000	individuals	and	has	an	Ne	of	~1000	based	

on	estimates	from	demographic	data	(Mueller	et	al.	2013).	A	total	of	10	populations	were	

derived	from	each	of	the	B	population	replicates,	5	pSB	and	5	pCB	per	replicate.	The	pSB	

populations	were	subjected	to	selection	for	starvation	resistance,	while	the	pCB	

populations	were	maintained	in	parallel	as	controls.	The	pSB	and	pCB	populations	were	

maintained	at	a	census	size	of	~50	individuals.	At	the	time	of	derivation,	the	B	populations	

had	undergone	~795	generations	of	selection.	

	 Starvation	selection	in	the	pSB	populations	consists	of	5	steps.	First,	eggs	from	each	

of	the	starvation	selected	populations	are	collected	and	placed	into	a	banana-based	food	

medium	and	allowed	to	mature	into	adulthood	over	14	days.	On	day	14,	the	flies	are	

anesthetized	using	CO2	and	redistributed	into	vials	of	approximately	50	individuals	each.		

These	vials	contain	a	high	yeast	banana-based	food	medium.	After	3	days,	the	starvation	

selected	populations	(pSB)	are	placed	in	vials	that	contain	an	agar	media,	while	the	control	

populations	are	placed	in	vails	containing	the	standard	banana-based	food	medium.	Agar	is	

used	for	starvation	conditions	because	it	supplies	water	but	does	not	provide	any	



 155 

nutritional	value.	For	each	of	the	starvation-selected	populations,	the	number	of	flies	in	

each	vial	is	checked	every	4	hours	until	80%	of	individuals	are	dead.	The	surviving	20%	are	

then	used	to	breed	the	next	generation.	Following	the	starvation-selection	phase,	all	flies	

are	fed	with	high-yeasted	banana	medium	for	3	days,	and	then	their	eggs	are	collected	to	

found	the	next	generation.	

	 The	SCO-a1-5	and	SCO-b1-5	populations	(28-day	generation	cycle)	are	ten	populations	

intensely	selected	for	starvation	resistance.	These	populations	were	derived	from	the	CO1-5	

populations	in	August	2010,	using	the	protocols	published	in	Phelan	et	al.	(2003).	Briefly,	

after	a	two-week	development	period,	flies	are	fed	a	high-yeast	diet	for	three	days	before	

receiving	a	nonnutritive	agar	during	the	starvation	period.		Selected	populations	are	then	

exposed	to	a	nonnutritive	agar	until	a	75-80%	mortality	threshold	has	been	achieved.		A	

three-day	high	yeast	diet	period	follows	the	starvation	period,	and	eggs	are	collected	for	

the	next	generation.	At	the	time	of	sequencing,	the	SCO	populations	had	been	subjected	to	

~75	generations	of	selection.		

	DNA	Extraction	and	Sequencing	for	the	Small	Ne	Populations	

	 DNA	was	extracted	and	sequenced	for	9	of	the	pSB	and	9	of	the	pCB	populations	

(Table	S4.1).	At	the	time	of	sequencing,	the	pSB	and	pCB	populations	had	undergone	~50	

generations	of	selection.		DNA	was	extracted	from	samples	of	200	female	flies	collected	

from	each	of	the	18	populations	chosen	using	Qiagen©/Gentra	Puregene©	kits,	following	

the	manufacturer’s	protocol	for	bulk	DNA	purification.	The	18	gDNA	pools	were	prepared	

as	standard	200-300	bp	fragment	libraries	for	Illumina	sequencing,	and	constructed	such	

that	each	replicate	populations	of	a	treatment	were	given	unique	barcodes,	normalized,	

and	pooled	together.	Libraries	were	run	across	PE100	lanes	of	an	Illumina	HiSEQ	2000	at	
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the	UCI	Genomics	Highthroughput	Sequencing	Facility.	Resulting	data	were	100	bp	paired-

end	reads.	Each	population	was	sequenced	across	three	lanes;	data	from	the	three	runs	

were	combined	for	genomic	analyses	as	described	below.	Samples	were	sequenced	across	

three	lanes	to	alleviate	the	effects	of	bias	introduced	from	running	entire	sets	of	replicates	

on	different	lanes.		

DNA	Extraction	and	Sequencing	for	the	SCO	Populations	

	 Genomic	DNA	was	extracted	from	samples	of	200	female	flies	collected	from	each	of	

the	10	individual	populations	(SCO1a,b-SCO5a,b)	using	the	Qiagen/Gentra	Puregene	kit,	

following	the	manufacturer’s	protocol	for	bulk	DNA	purification.	The	30	gDNA	pools	were	

prepared	as	standard	200-300	bp	fragment	libraries	for	Illumina	sequencing,	and	

constructed	such	that	each	5	replicate	populations	of	a	treatment	were	given	unique	

barcodes,	normalized,	and	pooled	together.	Libraries	were	run	across	PE100	lanes	of	an	

Illumina	HiSEQ	2000	at	the	UCI	Genomics	Highthroughput	Sequencing	Facility.	Resulting	

data	were	100	bp	paired-end	reads.		

Read	Mapping	for	Small	Ne	and	B	populations	

	 In	addition	to	the	pSB	and	pCB	data,	we	also	used	data	from	their	ancestral	

populations	(B1-5)	published	in	Phillips	et	al.	(2016).	Samples	used	to	generate	the	Phillips	

et	al.	(2016)	data	set	were	collected	at	generation	~785,	which	is	~10	generations	before	

the	pSB	and	pCB	populations	were	derived.	Fastq	files	from	the	three	sets	of	populations	

were	mapped	to	the	D.	melanogaster	reference	genome	(version	6.14)	using	bwa	mem	with	

default	settings	(BWA	version	0.7.8,	Li	and	Durbin	2009).	The	resulting	SAM	files	were	

filtered	for	reads	mapped	in	proper	pairs	with	a	minimum	mapping	quality	of	20,	and	

converted	to	the	BAM	format	using	the	view	and	sort	commands	in	SAMtools	(Li	et	al.	
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2009).	The	rmdup	command	in	SAMtools	was	then	used	to	remove	potential	PCR	

duplicates.	As	each	population	was	sequenced	across	three	lanes,	there	were	three	bam	

files	corresponding	to	each	population	at	this	stage.	BAMtools	was	used	to	combine	files	

corresponding	to	the	same	populations	(Barnett	et	al.	2011).	Average	coverage	was	above	

50X	for	all	populations	except	for	a	single	pCB	population,	which	was	48X	(Table	S4.1).	

Next,	SAMtools	was	used	to	combine	the	23	bam	files	into	a	single	mpileup	file.	Using	the	

PoPoolation2	software	package	(Kofler	et	al.	2011),	these	files	were	converted	to	

“synchronized”	files,	which	is	a	format	that	allele	counts	for	all	bases	in	the	reference	

genome	and	for	all	populations	being	analyzed.	RepeatMasker	4.0.3	

(http://www.repeatmasker.org)	was	then	used	to	create	a	gff	file	detailing	low	complexity	

regions	in	the	D.	melanogaster	reference	genome.	The	regions	were	then	masked	in	our	

sync	file	once	again	using	PoPoolation2.	

Read	Mapping	for	SCO	and	C-type	Populations	

In	addition	to	the	SCO	DNA	data	described	above,	we	also	incorporated	sequence	

data	from	the	C-type	populations	from	the	Graves	et	al.	(2017)	data	set.	We	mapped	reads	

with	BWA	(version	0.7.8)	(Li	and	Durbin	2009)	against	the	D.	melanogaster	reference	

genome	(version	6.14)	using	bwa	mem	with	default	settings.	We	filtered	and	sorted	the	

resulting	SAM	files	for	reads	mapped	in	proper	pairs	with	a	minimum	mapping	quality	of	

20	and	converted	them	to	the	BAM	using	the	view	and	sort	commands	in	SAMtools	(Li	et	al.	

2009).	The	rmdup	command	in	SAMtools	was	then	used	to	remove	potential	PCR	

duplicates.	Average	coverage	was	above	40X	or	greater	for	all	populations	except	SCO3a	and	

SCO5b	which	were	29X	and	26X	respectively	(Table	S4.2).	Next,	the	steps	were	repeated	

using	the	raw	fastq	files	for	the	C-type	populations,	CO1-5	and	nCO1-5,	used	in	our	Graves	et	
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al.	(2017)	publication.	This	ultimately	resulted	in	the	creation	of	another	10	bam	files.	Bam	

files	for	all	20	populations	were	then	combined	into	a	single	mpileup	file	using	SAMtools.	

This	mpileup	file	was	then	converted	to	a	“synchronized”	file	using	the	PoPoolation2	

software	package	(Kofler	et	al.	2011).	This	file	displays	allele	counts	for	all	positions	in	the	

reference	genome	for	all	populations	in	a	succinct	tab	delimited	format.	RepeatMasker	4.0.3	

(http://www.repeatmasker.org)	to	create	a	gff	file	containing	simple	sequence	repeats	

found	in	the	D.	melanogaster	genome	version	6.14.	These	regions	were	then	masked	in	the	

sync	file.		

Single	Nucleotide	Polymorphism	(SNP)	Variation	for	the	Small	Ne	and	B	Populations	

	 A	SNP	table	was	created	using	the	sync	file	mentioned	above.	We	only	considered	

sites	where	coverage	was	between	30X	and	200X,	and	for	a	site	to	be	considered	

polymorphic	we	required	a	minimum	minor	allele	frequency	of	2%	across	all	23	

populations.	All	sites	failing	to	meet	these	criteria	were	discarded.	To	assess	broad	patterns	

of	SNP	variation	in	B,	pSB,	and	pCB	populations,	heterozygosity	was	calculated	and	plotted	

over	150kb	non-overlapping	windows	directly	from	the	major	and	minor	counts	in	our	SNP	

table.	To	assess	how	closely	replicate	populations	resembled	one	another,	FST	estimates	

were	also	obtained	using	the	formula:	FST=	(HT-HS)/HT	where	HT	is	heterozygosity	based	on	

total	population	allele	frequencies,	and	HS	is	the	average	subpopulation	heterozygosity	in	

each	of	the	replicate	populations	(Hedrick	2009).	FST	estimates	were	made	at	every	

polymorphic	site	in	the	data	set	for	a	given	set	of	replicates.		

SNP	Differentiation	

	 The	Cochran-Mantel-Haenzel	(CMH)	test	as	implemented	in	the	PoPoolation2	

software	package	was	our	primary	means	of	assessing	SNP	differentiation	between	the	pSB	
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and	pCB	populations.	CMH	test	were	performed	at	all	positions	meeting	the	SNP	calling	

criteria	stated	above.	When	performing	CMH	tests,	populations	were	paired	based	on	

evolutionary	history	(e.g.	pSB1b	with	pCB1b,	pSB1e	with	pCB1e,	etc.).	To	correct	for	multiple	

comparisons,	we	used	the	permutation	approach	featured	in	Graves	et	al.	(2017).	Briefly,	

populations	were	randomly	assigned	to	one	of	two	groups	and	the	CMH	test	was	then	

performed	at	each	polymorphic	position	in	the	shuffled	data	set	to	generate	null	

distributions	of	p-values.	This	was	done	1000	times,	and	each	time	the	smallest	p-value	

generated	was	recorded.	The	quantile	function	in	R	was	then	used	to	define	thresholds	that	

define	the	genome-wide	false-positive	rate,	per	site,	at	5%.	CMH	tests	were	also	performed	

comparing	SNP	frequencies	in	the	B	populations	to	the	pSB,	and	pCB	populations.	These	

comparisons	were	done	only	using	the	“e”	replicates	of	the	pSB	and	pCB	populations,	once	

again	populations	were	paired	based	on	evolutionary	history	when	performing	the	CMH	

tests.		

	 The	quasibionomial	GLM	approach	advocated	by	Wiberg	et	al.	(2017)	was	also	used	

to	asses	SNP	differentiation	using	the	scripts	they	have	made	publicly	available.	As	

recommended	by	Wiberg	et	al.	(2017),	coverage	at	each	position	in	our	sync	file	was	scaled	

to	the	effective	sample	size	(neff)	(Feder	et	al.	2012;	Kolaczwoski	et	al.	2011).	As	counts	of	

zero	can	lead	to	problems	when	implementing	this	approach,	a	count	of	1	was	added	to	

each	allele	that	otherwise	had	a	count	of	0.	This	approach	was	used	to	compare	SNP	

frequencies	between	the	pSB	and	pCB	populations,	and	populations	were	once	again	paired	

based	on	evolutionary	history.	In	terms	of	establishing	significance	thresholds,	the	

quasibionomial	GLM	approach	produces	the	expected	uniform	distribution	of	p-values	

under	the	null	hypothesis	and	allows	for	standard	methods	of	correction	for	multiple	
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comparisons	(Wiberg	et	al.	2017).	Thus,	we	corrected	for	multiple	comparisons	using	the	

Bonferroni	method	instead	of	the	permutation	method	used	in	our	CMH	tests.		

	 Lastly,	we	compared	the	9	of	the	10	SCO	populations	to	9	of	the	10	C-type	

populations	featured	in	Graves	et	al.	(2017)	using	both	the	CMH	test	and	quasibionomial	

GLM	approach.	Tests	were	performed	using	the	same	methods	used	for	the	pCB	versus	pSB	

comparisons	with	the	exception	of	SNP	identification	criteria.	In	this	data	set,	we	used	a	

minimum	coverage	requirement	of	15X	instead	of	30X	due	to	limited	coverage	in	specific	

SCO	and	C-type	populations	(Table	S4.2).			

RESULTS	

Heterozygosity	and	FST	

	 As	previously	documented	in	Philips	et	al.	(2016)	and	Graves	et	al.	(2017),	we	have	

not	found	any	evidence	of	large	scale	depletions	in	heterozygosity	in	the	B	populations	

(Figure	4.2).	And	this	pattern	is	largely	robust	to	reductions	in	window	size	(Figures	S4.1-

S4.2).		In	the	pSB	and	pCB	populations,	we	find	more	of	these	depressions	and	this	pattern	

appears	even	more	clearly	at	smaller	window	sizes	(Figure	4.2,	Figure	S4.1,	Figure	S4.2).	

On	average	across	the	B	populations,	we	find	~213	50kb	windows	with	heterozygosity	

estimates	<	0.1.	By	comparison,	we	find	336	and	264	such	windows	on	average	in	the	pSB	

and	pCB	populations	respectively.		

	 Mean	genome-wide	heterozygosity	is	0.23,	0.22	and,	0.21	among	the	B,	pSB,	and	pCB	

populations,	respectively	(Figure	S4.3,	Table	S4.3).	Based	on	a	one-way	ANOVA,	there	is	

significant	difference	in	mean	heterozygosity	based	on	selection	regime	(p-value	=	0.03).	

Based	on	a	Tukey’s	range	test,	there	is	a	significant	difference	between	the	pCB	and	B	

groups	(p-value	=	0.02),	but	no	significant	differences	between	the	pSB	and	B	groups	(p-
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value	=	0.35)	or	between	the	pSB	and	pCB	groups	(p-value	=	0.21).	Lastly,	based	on	the	

formula	𝐻𝑡 = 𝐻𝑜	(1 −	 *
+,
)$ ,	we	would	expect	heterozygosity	after	50	generations	(t)	to	be	

0.14	in	the	reduced	Ne	populations	due	to	drift	alone	given	the	mean	level	of	heterozygosity	

in	the	ancestral	B	populations	(Ho)	and	our	census	population	size	(N).	This	estimate	is	

lower	than	what	we	observe	in	both	the	pCB	and	pSB	populations,	even	though	our	use	of	

the	census	population	size	in	this	calculation	is	conservative.		

	 Mean	genome-wide	Fst	was	0.21	and	0.25	in	the	pSB	and	pCB	populations	

respectively,	and	0.11	in	the	B	populations.	This	indicates	that	there	is	a	greater	level	of	

similarity	between	the	B	population	replicates,	than	between	the	pSB	or	pCB	replicates,	a	

clear	signature	of	increased	genetic	drift	in	the	“p”	replicate	populations.		

SNP	Differentiation	

	 CMH	tests	comparing	SNP	frequencies	between	the	pSB	and	pCB	did	not	identify	any	

significantly	differentiated	sites	(Figure	4.3A).	In	contrast,	when	we	compared	SNP	

frequencies	between	9	of	the	10	SCO	populations,	and	9	of	the	10	C-type	populations	

featured	in	Kezos	et	al.	(in	prep.),	we	identified	a	total	of	806	differentiated	SNPs	(Figure	

4.3B).	But,	unlike	the	pSB	and	pCB	populations,	the	SCO	and	C-type	populations	are	

maintained	at	much	higher	census	sizes	(~2000	individuals	per	population).	Our	findings	

using	the	quasibionomial	GLM	approach	qualitatively	paralleled	these	CMH	results.	We	find	

no	evidence	of	significant	SNP	differentiation	between	the	pSB	and	pCB	populations	

(Figure	4.4A),	but	we	identified	a	total	of	306	significantly	differentiated	sites	between	the	

SCO	and	C-type	populations	(Figure	4.4B).	This	pattern	also	holds	true	when	we	correct	for	

multiple	comparisons	using	the	less	stringent	q-value	method	(Figure	S4.4).		
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DISCUSSION	

	 	Our	failure	to	find	any	significant	differences	in	mean	heterozygosity	between	the	

pSB	and	pCB	populations	suggest	that	patterns	of	genetic	variation	are	being	primarily	

shaped	by	genetic	drift,	not	selection.	However,	we	found	more	genetic	variation	in	the	pSB	

and	pCB	populations	than	we	would	expect	based	on	conventional	population	genetic	

theory.	This	finding	is	similar	to	that	previously	found	for	the	B	populations	in	Phillips	et	al.	

(2016).	This	suggests	that,	even	at	low	Ne,	there	may	be	mechanisms	at	play	promoting	the	

maintenance	of	genetic	variation	across	the	genome.	A	possible	explanation	for	this	comes	

from	Michalak	et	al.	(2017),	who	found	that	selection	for	increased	lifespan	resulted	in	

increased	nucleotide	diversity	in	selected	lines	compared	to	controls.	They	argue	that	this	

apparent	increase	in	balancing	selection	is	consistent	with	the	antagonistic	pleiotropy	

theory	of	aging,	but	it	is	perhaps	applicable	to	starvation	selection	as	well.		

	 Although	at	the	genome-wide	scale	mean	levels	of	genetic	variation	are	comparable	

between	the	B	populations	and	pCB/pSB	populations,	we	do	find	more	regions	at	or	near	

fixation	in	the	latter.	So,	while	reductions	in	population	size	in	the	pSB	and	pCB	population	

may	not	have	dramatically	affected	levels	of	genetic	variation	at	the	genome-wide	scale,	it	

appears	to	have	resulted	in	a	greater	number	of	regional	depressions.	This	finding	could	

explain	why,	unlike	the	bulk	of	E&R	studies	using	D.	melanogaster,	Turner	et	al.	(2011)	

found	instances	of	fixation	in	response	to	selection	on	body	size.	In	the	study	of	Turner	et	

al.	(2011),	for	each	generation	the	most	extreme	160	males	and	160	females	in	terms	of	

body	size	were	used	to	breed	the	next	generation.	Given	such	low	census	sizes,	their	

hypothesis	that	they	observed	instances	of	selection	driving	specific	alleles	to	fixation	could	

be	incorrect.	Their	cases	of	fixation	could	instead	be	a	result	of	low	Ne.	
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	 The	idea	that	genetic	drift	is	playing	a	large	role	in	shaping	patterns	of	variation	in	

these	small	populations	is	also	supported	by	our	FST	results.	Past	studies	E&R	studies	using	

the	moderately	outbred	D.	melanogaster	population	maintained	in	the	Rose	lab	have	

consistently	found	a	high	degree	of	similarity	between	replicate	populations	subjected	to	

the	same	selection	regime,	as	indicated	by	low	mean	genome-wide	FST	among	replicate	

populations	that	share	a	common	regime	(Phillips	et	al.	2016,	Graves	et	al.	2017,	Phillips	et	

al.	in	review,	Kezos	et	al.	in	prep).	In	those	studies,	the	high	degree	of	similarity	between	

replicates	was	attributed	to	highly	parallel	genome-wide	responses	to	selection.	In	contrast	

to	these	findings,	here	we	observe	less	similarity	between	replicates	in	the	pSB	and	pCB	

populations	as	revealed	by	elevated	levels	of	FST,	suggesting	that	within	a	given	replicate	

selection	is	not	the	predominant	force	shaping	genetic	variation.		

	 	Santos	(2018)	found	that	while	the	pSB	populations	show	a	reduced	phenotypic	

response	to	starvation	selection,	compared	to	starvation-selected	populations	maintained	

at	a	higher	Ne,	they	do	still	respond	to	selection	(Figure	4.1).	But	despite	this	observed	

phenotypic	response	to	selection,	our	analysis	did	not	identify	any	SNPs	that	were	

significantly	differentiated	between	the	pSB	and	pCB	populations.	This	is	also	in	contrast	to	

the	findings	of	Kezos	et	al.	(in	prep)	where	comparisons	between	the	starvation	selected	

SCO	populations	and	their	C-type	controls	resulted	in	the	identification	of	hundreds	of	

differentiated	candidate	SNPs.	Unlike	the	pSB	and	pCB	populations,	the	SCO	and	C-type	

populations	featured	in	Kezos	et	al.	(in	prep.)	were	maintained	at	census	sites	in	excess	of	

2000	individuals	per	replicate.	It	is	also	worth	noting	that,	despite	featuring	over	twice	the	

level	of	replication	seen	in	many	published	E&R	studies	that	have	identified	dozens	to	

hundreds	of	candidate	SNPs,	we	nonetheless	failed	to	identify	any	consistently	
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differentiated	sites	between	the	pSB	and	pCB	populations	(Burke	et	al.	2010;	Orzoco-

terWengel	et	al.	2012;	Tobler	et	al.	2014,	Franssen	et	al.	2014,	Huang	et	al	2014).	Taking	all	

these	results	together,	we	conclude	that	Ne	is	indeed	a	major	determinant	of	statistical	power	

in	E&R	studies,	corroborating	our	central	hypothesis.	

	 To	summarize,	the	present	findings	support	our	hypothesis	that	E&R	studies	

featuring	populations	with	low	Ne	will	have	limited	power	to	detect	genetic	variants	

underlying	any	observed	phenotypic	response	to	selection.	We	find	evidence	that	at	low	Ne,	

genetic	drift	plays	a	larger	role	in	shaping	patterns	of	genetic	variation	than	seen	in	our	

previous	work.	The	reduced	parallelism	across	replicates	that	results	then	in	turn	reduces	

our	power	to	identify	candidate	SNPs,	despite	high	replication	and	a	clear	phenotypic	

response	to	selection.	Much	like	replication,	we	conclude	that	Ne	is	an	important	

experimental	parameter	to	maximize	in	E&R	studies	aimed	at	deciphering	the	genetic	

architecture	of	complex	phenotypes.			
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Figure	4.1.	Starvation	selection	results.	Results	from	Santos	(2018)	contrasting	rates	of	
initial	response	to	starvation	selection	in	12	large	Ne	(SGB)	compared	to	the	response	to	
selection	in	the	pSB	(termed	SPB	in	their	paper).		
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Figure	4.2.	Genome-wide	heterozygosity	150-kb	windows.	Heterozygosity	in	the	B	
populations	(A),	pCB	populations	(B),	and	pSB	(C)	populations	plotted	over	150-kb	
windows	across	all	major	chromosome	arms.	All	replicates	are	shown	for	each	population.		
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Figure	4.3.	CMH	test	results.	Results	from	CMH	tests	comparing	SNP	frequencies	in	the	
pSB	and	pCB	populations	(A),	and	the	starvation	resistant	populations	(SCO)	and	control	
populations	(C-type)	featured	in	Kezos	et	al.	(in	prep).	To	be	consistent,	only	9	of	the	10	
SCO	and	9	of	the	10	C-type	populations	were	used	in	the	latter	comparison.	Permutation	
derived	significance	thresholds	are	indicated	by	the	red	lines.		
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Figure	4.4.	Quasibinomial	GLM	results.	Results	from	quasibinomial	GLM	approach	
comparing	SNP	frequencies	in	the	pSB	and	pCB	populations	(A),	and	the	starvation	
resistant	populations	(SCO)	and	control	populations	(C-type)	featured	in	Kezos	et	al.	(in	
prep)	(B).	To	be	consistent,	only	9	of	the	10	SCO	and	9	of	the	10	C-type	populations	were	
used	in	the	latter	comparison.	Bonferroni	corrected	significance	thresholds	are	shown	in	
red.		
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Figure	S4.1.	Genome-wide	heterozygosity	100-kb	windows.	Heterozygosity	in	the	B	
populations	(A),	pCB	populations	(B),	and	pSB	(C)	populations	plotted	over	100-kb	
windows	across	all	major	chromosome	arms.	All	replicates	are	shown	for	each	population.		
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Figure	S4.2.	Genome-wide	heterozygosity	50-kb	windows.	Heterozygosity	in	the	B	
populations	(A),	pCB	populations	(B),	and	pSB	(C)	populations	plotted	over	50-kb	windows	
across	all	major	chromosome	arms.	All	replicates	are	shown	for	each	population.		
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Figure	S4.3.	Mean	genome-wide	heterozygosity.	Boxplot	of	mean	genome-wide	
heterozygosity	in	the	B,	pCB,	and	pSB	populations.		

	

	

	

	

	

	

	

	

	

	

	



 175 

 

Figure	S4.4.	Additional	Quasibinomial	GLM	results.		Results	from	quasibinomial	GLM	
approach	comparing	SNP	frequencies	in	the	pSB	and	pCB	populations	(A),	and	the	
starvation	resistant	populations	(SCO)	and	control	populations	(C-type)	featured	in	Kezos	
et	al.	(in	prep)	(B).	To	be	consistent,	only	9	of	the	10	SCO	and	9	of	the	10	C-type	populations	
were	used	in	the	latter	comparison.	Results	are	plotted	as	-log(q-values)	and	a	0.05	false	
discovery	rate	threshold	was	used,	as	shown	in	red.		
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Table	S4.1.	Average	read	coverage	across	the	genome	for	all	populations	used	in	this	
study	

Treatment	 Replicate		 Mean	
Coverage	

B	 1	 58	
	 2	 62	
	 3	 55	
	 4	 61	
	 5	 67	
	 	 	
pCB	 1b	 57	

	 1e	 50	
	 2b	 57	
	 2e	 61	
	 3e	 59	
	 4b	 60	
	 4e	 63	
	 5b	 56	
	 5e	 48	
	 	 	
pSB	 1b	 58	
	 1e	 56	
	 2b	 52	
	 2e	 69	
	 3e	 55	
	 4b	 53	
	 4e	 53	
	 5b	 56	
	 5e	 57	
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Table	S4.2.	Average	read	coverage	across	the	genome	for	all	populations	used	in	this	
study	

	
Population Replicate Average Read Coverage 
SCOa 1 46 

2 43 
3 29 
4 72 
5 62 

SCOb 1 49 
2 45 
3 54 
4 60 
5 26 

CO 1 53 
2 104 
3 120 
4 83 
5 28 

nCO 1 109 
2 65 
3 66 
4 103 
5 56 
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Table	S4.3.	Mean	genome-wide	heterozygosity	calculated	from	SNP	data	for	B,	pCB,	
and	pSB	populations	

Treatment	 Replicate		 Mean	
Heterozygosity	

B	 1	 0.23	
	 2	 0.24	
	 3	 0.24	
	 4	 0.24	
	 5	 0.23	
	 	 	
pCB	 1b	 0.21	

	 1e	 0.18	
	 2b	 0.20	
	 2e	 0.23	
	 3e	 0.20	
	 4b	 0.22	
	 4e	 0.20	
	 5b	 0.21	
	 5e	 0.22	
	 	 	
pSB	 1b	 0.24	
	 1e	 0.21	
	 2b	 0.24	
	 2e	 0.25	
	 3e	 0.20	
	 4b	 0.22	
	 4e	 0.18	
	 5b	 0.24	
	 5e	 0.22	
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CONCLUSIONS	

	 Early	evolve	and	resequence	(“E&R”)	studies	featuring	sexually	reproducing	

populations	were	typically	limited	in	both	duration	and	replication.	As	such,	while	

pioneering	studies	using	the	approach	suggested	that	there	were	fundamental	differences	

in	adaptation	between	sexual	and	asexual	populations,	many	of	these	differences	could	

have	been	accounted	for	by	experimental	limitations.	For	instance,	early	studies	indicated	

that	adaptation	in	asexual	populations	was	driven	by	beneficial	de	novo	mutations	and	

characterized	by	hard	sweeps,	while	adaptation	in	sexual	populations	was	primarily	fueled	

by	standing	genetic	variation	and	therefore	characterized	as	based	on	“soft	sweep”	events	

(Burke	2012).	However,	it	is	possible	such	discrepancies	were	due	to	the	problem	that	

sexual	E&R	studies	are	often	limited	in	duration,	replication,	and	population	size	(e.g.	

Burke	et	al.	2010;	Turner	et	al.	2011;	Orozco-terWengel	et	al.	2012,	Tobler	et	al.	2014,	

Huang	et	al.	2014;	Franssen	et	al.	2015)	compared	to	asexual	E&R	studies	(Barrick	et	al.	

2009;	Tenaillon	et	al.	2012;	Maddamsetti	et	al.	2015).	As	a	whole,	this	dissertation	sought	

to	address	some	of	these	concerns.	In	addition,	it	offers	new	insights	into	adaptation	in	

sexual	populations	using	the	dozens	of	experimentally	evolved	populations	Drosophila	

melanogaster	maintained	in	the	Rose	Lab	at	the	University	of	California,	Irvine.		

	 Chapter	1	of	my	thesis	involved	a	group	of	population	subjected	to	the	same	

laboratory	domestication	regime	for	nearly	~1000	generations.	As	such,	it	provides	a	

reasonable	opportunity	to	characterize	the	long-response	to	selection	in	sexual	

populations.	I	found	that	even	after	1000	generations	of	selection	in	moderately	outbred	

populations,	there	was	no	evidence	of	hard	sweeps	involving	de	novo	and	associated	

haplotypes	fixing	in	the	populations.		In	fact,	population	genetic	simulations	indicated	there	
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that	there	was	more	genetic	variation	being	maintained	in	these	populations	than	

predicted	by	conventional	genetic	theory.	This	led	to	two	conclusions.	First	that,	even	on	

longer	time	scale,	adaptation	in	sexual	E&R	studies	is	still	primarily	driven	by	standing	

genetic	variation.	Second,	there	are	mechanisms	in	play	favoring	the	genome-wide	

maintenance	of	genetic	variation.	The	former	conclusion	is	strongly	supported	by	work	in	

outcrossing	yeast	populations,	where	even	at	very	at	much	higher	population	sizes	and	

hundreds	of	generations	of	selection,	adaptation	is	still	primarily	fueled	by	standing	genetic	

variation	(Burke	et	al.	2014).	The	latter	is	somewhat	supported	by	work	from	Michalak	et	

al.	(2017),	where	it	was	reported	that	selection	for	increased	longevity	resulted	in	

increased	nucleotide	diversity.	The	authors	argue	that	this	is	consistent	with	the	

antagonistic	pleiotropy	theory	of	aging,	an	idea	that	is	also	potentially	applicable	in	other	

contexts.			

	 Chapter	2	of	my	thesis	studied	newly-derived	(dozens	of	generations	under	

selection)	and	long-standing	(hundreds	of	generations	under	selection)	populations	

subjected	to	the	same	selection	regimes,	in	order	to	compare	long	versus	short-term	

responses	to	selection.		It	took	as	little	as	~40	generations	for	newly	derived	populations	to	

converge	on	long	standing	populations	phenotypically	(see	Burke	et	al.	2016	for	a	more	

detailed	phenotypic	characterization	than	presented	in	Chapter	2).	Similarly,	I	found	

similarly	rapid	convergence	genomically,	with	respect	to	SNPs.	(See	Graves	et	al.	2017	for	

transposable	element	and	structural	variant	analyses.)	These	findings	led	to	the	following	

conclusions	regarding	evolution	in	outbred	sexual	populations:	(i)	adaptation	can	be	fast	

and	repeatable	at	both	phenotypic	and	genetic	levels	due	to	standing	genetic	variation;	(ii)	

adaptation	does	not	wait	for	new	functional	mutations	and	subsequent	hard	sweeps;	(iii)	
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E&R	studies	using	sexual	outbred	populations	do	not	need	to	run	for	hundreds	of	

generations	to	provide	useful	insights.		

	 Chapter	3	of	my	thesis	used	data	from	populations	previously	subjected	to	intense	

selection	for	desiccation	resistance	in	order	to	study	the	role	of	evolutionary	history	in	

sexual	E&R	studies.	Here	I	tested	the	following	hypotheses:	Hypothesis	1:	evolutionary	

history	matters	in	populations	where	past	generations	were	subjected	to	very	intense	

selective	pressures;	Hypothesis	2:	previous	intense	selection	does	not	produce	historical	

effects,	in	the	absence	of	other	factors	such	as	inbreeding	or	chromosomal	rearrangement.	

My	analyses	found	no	evidence	of	genetic	fixation	in	intensely	selected	populations,	and	

very	limited	genetic	differentiation	between	these	populations	and	their	long-standing	

controls	after	long-term	relaxation	of	selection.	The	lack	of	present	differentiation	between	

previously	desiccation-selected	populations	and	their	controls	was	also	reflected	across	an	

array	of	phenotypic	characters	(Phillips	et	al.	in	review).	Taken	together,	these	findings	

support	Hypothesis	2.		I	conclude	extreme	selection	does	not	have	major	long-lasting	

impacts	on	genomic	or	phenotypic	differentiation	in	Drosophila	experimental	evolution.	

This	conclusion	is	also	supported	by	the	findings	of	Burke	et	al.	(2016)	and	Graves	et	al.	

(2017),	where	most	recent	selection	regime	was	found	the	primary	determinant	of	

patterns	of	genetic	variation	and	phenotypic	measure.	

	 Lastly,	Chapter	4	of	my	thesis	sought	to	empirically	test	how	population	size	impacts	

the	power	to	detect	causal	variants	in	sexual	E&R	studies	using	findings	from	two	

starvation	selection	experiments:	one	with	moderately	outbred	populations,	and	the	other	

with	populations	where	population	size	was	deliberately	compressed.	Specifically,	I	test	the	

hypothesis	that	due	to	the	increased	prominence	of	genetic	drift,	E&R	studies	featuring	
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populations	with	low	effective	population	sizes	(Ne)	will	have	limited	power	to	detect	

casual	variants,	even	if	there	is	clear	phenotypic	differentiation,	as	well	as	sufficient	

replication	and	generations	under	selection.		Here	I	find	that	while	more	genetic	variation	

is	still	being	maintained	in	population	where	Ne	was	deliberately	compressed	than	

population	genetic	theory	would	predict,	patterns	of	differentiation	between	replicate	

populations	as	indicated	by	Fst	estimates	indicate	drift	is	playing	a	more	prominent	role	

when	compared	to	studies	using	populations	with	larger	Ne	(Phillips	et	al.	2016;	Graves	et	

al.	2017).	I	also	found	that	SNP	frequency	comparisons	between	starvation-selected	

populations	and	controls	maintained	at	a	larger	Ne	resulted	in	the	identification	of	

hundreds	of	candidate	sites,	comparisons	between	selected	and	control	population	

maintained	at	low	Ne	failed	to	detect	any	candidate	sites.	Given	that	both	experiments	ran	

for	dozens	of	generations	and	featured	twice	the	level	of	replication	seen	in	sexual	E&R	

studies	that	successfully	identified	candidate	sites	(Burke	et	al.	2010;	Orzoco-terWengel	et	

al.	2012;	Tobler	et	al.	2014,	Franssen	et	al.	2014,	Huang	et	al	2014),	these	findings	support	

our	hypothesis	that	E&R	studies	featuring	populations	with	low	Ne	will	have	limited	power	

to	detect	genetic	variants	underlying	phenotypic	responses	to	selection.	As	such,	I	

conclude,	much	like	replication,	Ne	is	an	important	experimental	parameter	to	maximize	in	

E&R	studies	aimed	at	deciphering	the	genetic	architecture	of	complex	phenotypes.			
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