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Abstract
The current study examined one way in which people learn
complex causal relations from covariation. When participants
were presented with covariation information between X and Y
and covariation information between Y and Z only, they were
willing to infer a causal relationship between X and Z, al-
though it is not warranted by the evidence. Furthermore, the
perceived strength of the terminal relationship was tied to the
perceived strength of the intermediate relationships, as ma-
nipulated through the order of evidence. These results imply
that people do not follow normative, contigency-based theo-
ries, but instead carry out a hypothesis-testing process and
combine piecemeal relationships into an overarching causal
induction.

Introduction
Learning causal relations between two events is a funda-
mental cognitive activity. Although there are many ways to
acquire causal knowledge (Ahn & Kalish, in press), the
current study examines one way of learning causal rela-
tions, namely, through covariation.

In a simple case of covariation involving two events, a
possible cause is either present (X) or absent (~X), and the
target effect to be explained is either present (Y) or absent
(~Y) as shown in Figure 1. One way to define covariation
between two factors is to calculate an index P =
P(Y|X)—P(Y|~X), the difference between the probability
that the effect occurs, given that the cause is present, and
the probability that the effect occurs, given that the cause is
absent (e.g., Cheng & Novick, 1992; Jenkins & Ward,
1965). In the example shown in Figure 1, P is 0.2. Nu-
merous studies have demonstrated positive correlations
between objective P and the perceived causal strengths
between events (e.g., Wasserman, Chatlosh, & Neunaber,
1983).

Y ~Y
X 6 4
~X 4 6
Figure 1. Example contingency between X and Y. Numbers
show example frequencies of each evidence type.

In addition to the simple causal relations examined in
these previous studies, people have knowledge about com-

plex causal mechanisms (e.g., Ahn, Kalish, Medin, & Gel-
man, 1995). For instance, in explaining why Kim had a
traffic accident, one might refer to a mechanism of drunk
driving rather than just the fact that there is a positive co-
variation between a traffic accident and drunk driving. Most
people understand the mechanism underlying the effect of
drunk driving on a traffic accident to be that when drunk, a
person’s motor responses are uncoordinated, in which case
a person might not stay in the road, and so on. The question
is, how do we acquire understanding of these causal
mechanisms?

In answering this question, it is important to understand
first how our knowledge about causal mechanisms might be
represented. One useful tool is conditional dependencies or
Bayesian networks1. The idea is that mechanisms can be
represented in terms of a complex web of covariation, or
more specifically, as a directed graph in which nodes repre-
senting variables are connected with arrows indicating
causal directions (Glymour, 1998; Glymour & Cheng,
1998; Pearl, 1996; Spirtes, Glymour, & Scheines,1993;
Waldmann & Martignon, 1998). For instance, a mechanism
underlying the covariation between drunk driving and a
traffic accident might be represented as follows:

drink alcoholàuncoordinated motor responsesà traffic accident

Glymour (1998) proposes that B is a mechanism for a
correlation between A and C, if, conditional on B, the cor-
relation of A and C goes to zero. In the above example, one
observes that as drunk driving increases, the number of

                                                
1 Although we agree that Bayesian networks are a useful tool for repre-
senting people’s causal mechanism knowledge, we do not endorse the
view that conditional dependencies are all there is to that knowledge. Ahn
and Kalish (in press) state that conditional dependencies are consistent
with causal mechanisms because people's ideas about mechanisms support
patterns of association. For instance, if someone believes that getting
sneezed on causes illness via the mechanism of the transmission of germs,
they should expect that the covariation between sneezing and illness is
conditional on the transmission of germs. However, Ahn and Kalish dis-
agree with Glymour (1998), who argues that patterns of covariation are
mechanisms, and not just evidence for them. That is, a pattern of covaria-
tion might be one useful piece of evidence for identifying a relation as
causal (i.e., addressing an epistemic question), but they are not what peo-
ple mean by causation (i.e., addressing a metaphysical question). The
current study addresses the epistemic question rather than the metaphysical
question. Thus, we do not focus on this debate and instead assume that
mechanisms can be represented in terms of conditional dependencies.



X ~X Y ~Y
Y 6 4 Z 6 4

~Y 4 6 ~Z 4 6
Figure 2. Example contingency between events X and Y and contingency between events Y and Z.

traffic accidents increases. Conditional on the number of
uncoordinated motor responses, however, the covariation
between drunk driving and traffic accidents would be
greatly reduced. Thus, uncoordinated motor responses serve
as a mechanism for this covariation.

Little is known about how people actually learn these
complex patterns of covariations. Waldmann and Mar-
tignon (1998), who make use of a Bayesian network to rep-
resent mechanism knowledge, admit that it is improbable
that humans learn such networks bottom-up, as instantiated
in some computational models (e.g., Spirtes et al., 1993).
For instance, Hashem and Cooper (1996) generated nine
sets of relatively simple causal networks (e.g., AàBàC, or
AßBàC) instantiated as diseases. Second and third year
medical students were instructed to ask for any conditional
probabilities among the three variables in each network,
and to estimate the causal strength between B and C after
receiving answers to their questions. Even from these sim-
ple causal networks, their estimates significantly deviated
from the normative answers. The results suggest that it is
unlikely that people can keep track of all conditional prob-
abilities necessary for acquiring causal networks.
 A simpler way of acquiring mechanism knowledge is
by combining piecemeal causal relations. In this study, we
attempt to show that upon learning that X sometimes causes
Y and Y sometimes causes Z, people conclude (albeit erro-
neously) that X sometimes cause Z. Such inference is non-
normative in that even if there is a contingency between X
and Y and a contingency between Y and Z, it does not
guarantee that there will be a positive contingency between
X and Z. A normative conclusion would be that no infer-
ence about the relationship between X and Z can be made.

Consider Figure 2 which shows 40 individual cases, 20
of which depict the covariation between X and Y and 20 of
which depict the covariation between Y and Z ( P = 0.2 in
both cases). Each of these 40 cases represents a different
observation. On the left, we know, for instance, that there
are six cases in which X and Y co-occurred, but we do not
know what might have happened about Z in these six cases.
Depending on this unknown information, the contingency

between X and Z can vary widely. To demonstrate this
point, the top half of Figure 3 shows three possible distribu-
tions of these patterns of co-occurrence within the different
levels of X and Y. For instance, in the six cases in Figure 3a.
where both X and Y occur (the upper left-hand cell of the
first contingency table), in two of the cases Z occurs and in
the other four Z does not occur. The resulting co-occurrence
patterns between X and Z are shown in the bottom half of
the figure. Note that, not only is the pattern of co-occurrence
between X and Y identical in each example, but the pattern
between Y and Z is also identical (i.e., P = 0.2). However,
the contingency between X and Z varies widely. Thus, a
normative answer given covariation information about X and
Y and covariation information about Y and Z only is that
contingency between X and Z cannot be determined.

We propose that people would not make such normative
judgments, and instead they would frequently assume that
they can estimate the relationship between X and Z only
from the covariation between X and Y (X-Y covariation)
and covariation between Y and Z (Y-Z covariation). The
reason for this is two-fold. First, as discussed earlier, keep-
ing track of multiple conditional dependencies seems to be
beyond the capacity of human cognition, but people have
complex causal mechanism knowledge that can be repre-
sented in terms of conditional dependencies. Thus, people
must have acquired this knowledge through other means.
Second, in real-life situations, constituent covariations are
oftentimes revealed in different cases. For instance, one
might observe that eating a lot of food high in fat increases
one’s cholesterol level, and one might also observe that
other people with high cholesterol die of a heart attack (not
knowing whether these people had high-fat diets when
alive). Therefore, it is adaptive, although non-normative, to
make unwarranted inferences about unobserved covariations
based on piecemeal covariations.

Specifically, we propose that people carry out a sort of
syllogistic reasoning in this situation (Goldvarg & Johnson-
Laird, 1999). Given that X causes Y and Y causes Z, people
would subsequently conclude that X causes Z. We also pro-
pose that the stronger the perceived intermediate

a. P = -0.2 b. P = 0 c. P = 1
X ~X X ~X X ~X

Y 6 (2 Z, 4 ~Z) 4 (4 Z) 6 (5 Z, 1 ~Z) 4 (1 Z, 3 ~Z) 6 (6 Z) 4 (4 ~Z)
~Y 4 (2 Z, 2 ~Z) 6 (2 Z, 4 ~Z) 4 (4 ~Z) 6 (4 Z, 2 ~Z) 4 (4 Z) 6 (6 ~Z)

Z 4 6 5 5 10 0
~Z 6 4 5 5 0 10

Figure 3. Example frequencies of co-occurrence between X and Z, holding constant the co-occurrence between X and Y, and
between Y and Z. Note: ∆P's show contingency between X and Z.



causal relations are, the stronger the perceived causal rela-
tionship between the two terminal events would be. Thus, if
causal relations between X and Y, and Y and Z are weak,
one would infer a weak causal relation between X and Z. If
so, any manipulation that increases the perceived interme-
diate causal strengths should also increase the perceived
causal strength between the terminal events. One such ma-
nipulation is presented in Dennis and Ahn (in press) who
manipulated the order of evidence supporting a positive
causal relationship versus evidence supporting a negative
causal relationship. Because the current study utilized the
same manipulation, we will first describe this study in de-
tail, and then return to the issue of deducing overarching
causal relations from piecemeal covariations.

Order manipulation
Consider four cells in Figure 1 again. Cells XY and ~X~Y
serve to confirm that a positive causal relationship exists
between X and Y. Henceforth, we will call these two cells
positive evidence. Cells X~Y and ~XY serve to confirm
that there is a negative causal relationship between X and Y
(negative evidence, henceforth). Participants in Dennis and
Ahn (in press) observed a sequence of trials, each of which
described presence or absence of two events, and judged the
causal strength between the two events at the end of the
sequence. Participants in one condition observed the bulk of
positive evidence followed by the bulk of negative evidence
(positive-first condition). In the other condition, participants
observed the bulk of negative evidence followed by the
bulk of positive evidence (negative-first condition). Al-
though the order was different, all participants observed an
identical covariation between X and Y, namely zero, in
their experiment. The three possible results from this ex-
periment were; (1) no effect of order, (2) a recency effect in
which the negative-first condition leads to more positive
causal estimates than the positive-first condition, and (3) a
primacy effect in which the positive-first condition leads to
more positive causal estimates than the negative-first con-
dition. Existing models of causal induction predict either no
effect (Cheng, 1997) or a recency effect (Rescorla & Wag-
ner, 1972; see Dennis & Ahn, in press for more details of
this prediction.) However, the results showed a strong pri-
macy effect. This result was obtained even with the pros-
pect of receiving reward for accurate judgments, indicating
that the results are unlikely to be due to a fatigue effect.

Dennis and Ahn (in press) proposed that the primacy
effect is obtained because causal learning occurs through a
process of belief formation and updating. In this view, the
information that a person receives at the beginning is used
to construct an initial hypothesis about possible causal rela-
tionships. This initial belief then helps to provide an anchor
point for future adjustments (Hogarth & Einhorn, 1992).
However, as shown by Tversky and Kahneman (1974),
people do not sufficiently adjust their initial anchor, result-
ing in the primacy effect.

Order effect in the two-step causal chain
In addition to showing that people frequently infer unwar-
ranted overarching causal relations from constituent co-
variations, the second goal of the current study is to exam-
ine whether the order effect is obtained when judging X to
Z causal strength based on X-Y covariation and Y-Z co-
variation. In the positive-first condition, participants ob-
served a bulk of positive evidence for X and Y, and for Y
and Z, followed by a bulk of negative evidence for X and
Y, and for Y and Z. In the negative-first condition, partici-
pants observed identical contingencies with the negative
evidence preceding the positive evidence. It is hypothesized
that compared to the negative-first condition, the positive-
first condition will lead to more positive causal estimates
for the relationship between X and Z.

Method

Overview of Methods
In general, there were four phases: instructions, a learning
phase, a test phase, and a follow-up phase. In the learning
phase participants observed a series of trials providing X-Y
covariation, and Y-Z covariation. The test phase required
that participants make judgments about the causal relation-
ship between events X and Z. The main experimental ma-
nipulations which occurred during the learning phase were
the order in which participants received a bulk of positive
or negative evidence for X-Y and Y-Z covariation. This
manipulation was a within-subject variable, so that each
participant actually saw two sets of learning and test phases.
In the follow-up phase, participants described their thought
processes. Each phase is explained below.

The Instruction and the learning phases were presented
on iMac computers, using Microsoft PowerPoint 98 ®. The
test and follow-up phases were presented as a paper-and-
pencil task. Participants were 39 undergraduates at Vander-
bilt University.

Procedure
Instruction phase In order to make participants get ac-
quainted with the format of events, participants first re-
ceived ten example learning trials with animations in which
a person either does or does not eat a fictional plant called
Ablex, and the same person subsequently does or does not
exhibit a fictional physical reaction called Burlosis. The
face of the person in each trial varied in order to have par-
ticipants familiarized with the fact that each trial dealt with
different cases.

Afterwards, participants were told to estimate "the ex-
tent to which Ablex plants cause Burlosis" on a scale from
-100 (i.e., Ablex plants may prevent Burlosis) to 100 (i.e.,
Ablex may be a strong cause of Burlosis). Participants re-
ceived instructions about the scale and examples of some of
the scores. In addition, participants were instructed that



X Y  Y Z  Y ~Z  ~X ~Y  ~Y ~Z  X Y  Y Z  ~X ~Y  ~Y ~Z  X ~Y  X Y  Y Z  ~X ~Y  ~Y ~Z
~X Y  X Y  Y Z  ~Y Z  ~X ~Y  ~Y ~Z  X Y  Y Z  ~X ~Y  ~Y ~Z (Block2) Y ~Z  X ~Y  ~X Y
X Y  Y Z  Y ~Z  ~X Y  ~Y Z  Y ~Z  X ~Y  ~Y Z  ~X Y  X ~Y  ~X ~Y  ~Y ~Z  ~Y Z
Figure 4. The sequence used for the positive-first condition. Note: The sequence should be read from left to right. The trials
in outline are negative evidence. (Block 2) indicates where the positive block ends.

"You may also decide that you cannot determine an esti-
mate, given the information presented. In this case, you
should give an estimate of 'NA'." Participants wrote down
their estimate from the practice trials on the sheet provided.

Learning Phase Upon completing the practice trials, par-
ticipants were told that in the actual experimental trials,
they would see descriptions of three events; the possible
application of a fictitious fertilizer, the possible increase in
the level of a fictitious chemical in the soil, and the possible
blooming of a fictitious flower. During each learning phase,
they were told what these three events were; they were pre-
sented with animations that would accompany each event.
(See the material section.)

Participants were specifically told that they will have
only two pieces of information available during learning
(e.g., "whether it [i.e., the plot] had increased levels of the
chemical compound alizene and whether the plant Lanya
subsequently bloomed on it, or whether it received the fer-
tilizer Yerban and whether it subsequently had increased
levels of alizene"). They were also explicitly told that they
would never receive information about both the fertilizer
and the plant. This instruction was added to prevent any
false memory of having observed the covariation between
the fertilizer and the plant. That is, if participants did not
select "NA" in estimating the causal strength between the
fertilizer and the plant, it cannot be due to the fact that they
misremembered what covariation information they had
seen. In addition, we attempted to reduce participants' cog-
nitive load during the learning phase by instructing them
what their task is in advance. Thus, participants were told
that their task was, for instance, "to judge the causal rela-
tionship between Yerban and Lanya." After these instruc-
tions, participants were presented with 40 learning trials.
(See the material section for more detail.)

Test Phase After observing the entire sequence of trials in a
learning phase, participants provided causal strength ratings
for the effect of the fertilizer on the plant's blooming. Fol-
lowing Wasserman, Elek, Chatlosh, and Baker (1993), par-
ticipants were asked, for instance: “To what extent does the
fertilizer Yerban cause the plant Lanya to bloom?” Partici-
pants wrote a number between -100 and 100. They were
also reminded to write "NA" if they "cannot determine an
answer from the evidence given."

Follow-up Phase When participants were done with the
learning and test phases for two sets of materials, they were
asked to rate how much thought they put into each judg-
ment on a 5-point scale where 1 indicated "no" and 5 indi-

cated "very much." Finally, they were asked to write about
their "thought process in performing the experimental task"
such as "Were there any strategies in particular you used
while observing the experimental trial? How did you inter-
pret each type of evidence?"

Design and Materials
During the learning phase, participants received 40 trials, in
which 20 provided X-Y covariation information and 20
provided Y-Z covariation information. For both, P was
0.2 as in Figure 2.

Two experimental conditions were defined by the order
in which covariation information was presented during the
learning phase. In order to construct the experimental se-
quences, two different blocks (positive and negative blocks)
were created. The positive block had 24 trials, 20 of which
were positive evidence (i.e., X Y, Y Z, ~X ~Y, or ~Y ~Z).
The negative block had 16 trials, 12 of which were negative
evidence (i.e., X ~Y, ~X Y, Y~Z, or ~Y Z). Within each
block (positive or negative), the trials were randomly or-
dered except that X Y was always followed by Y Z, and ~X
~Y was always followed by ~Y ~Z2. This random order was
fixed across participants.

The two different experimental conditions were con-
structed by manipulating the order of these two blocks, so
that, in the positive-first order condition, the positive block
came before the negative block. This pattern is shown in
Figure 4 where the positive and the negative blocks are
separated (Block 2). Although lines separate the positive
and the negative blocks in this figure, the entire sequence
was presented to the participants without any indication of
blocks. In the negative-first order condition, the negative
block came before the positive block, which can be seen by
switching the two blocks in Figure 4. Each participant went
through both experimental conditions; the order of condi-
tions was counterbalanced across participants.

The actual events used for X was the application of a
fertilizer called Yerban or Zertax, Y was a change in level
of a chemical called Alizene or Banizon, and Z was the
blooming of a plant called Lanya or Hyaleth. We used an-
imations to show spraying of fertilizer, increasing chemical
level, and blooming plant. These animations were intended
to keep participants' attention and to reduce their cognitive
load by visualizing the events, so that participants would
not make NA responses simply because they were over-

                                                
2 This constraint could not have limited our interpretation of the effect of
order because the same constraint was used for both order conditions. In
another experiment where this constraint was not imposed, the number of
NA responses was approximately the same as in the current experiment.



whelmed with too many combinations of presence and ab-
sence of events. Finally, each trial had a unique plot number
displayed at the top of the screen, so that it was clear that
each observation was separate.

To summarize, after receiving general instructions,
each participant observed a series of trials about covariation
between X and Y, and covariation between Y and Z in ei-
ther the positive-first or the negative-first order, and made a
causal strength judgment about X and Z. Afterwards, they
observed another series of trials about three new events in
the other condition, and then made a second judgment. Fi-
nally, they wrote about their thought processes.

Results
We first examined the number of NA responses. In order to
be truly valid NA responses, a participant should have
given NA responses in both the positive-first and the nega-
tive-first conditions. Only one out of 39 participants did so.
This participant's explanation also agreed with the true jus-
tification for doing so, "It was very difficult to reason with-
out seeing all three factors together.…"

Overall, 20.5% of responses across the two conditions
were NA responses. There are a number of reasons to be-
lieve that these NA responses were unlikely to indicate a
response of “indeterminate,” but rather were a way to indi-
cate a lack of causal relation between the two events. First,
as reported earlier, only one of these subjects gave NA re-
sponses in both conditions. Second, the other participants'
reasons for giving an NA response are consistent with this
interpretation. For instance, one participant stated, "… no
causal relationship, or lack thereof, could be estimated be-
cause every relationship that was shown had another that
contradicted it…"; another participant stated, "…There
seemed to be no relationship between any…" Third, most
interestingly, there were more NA responses from the
negative-first condition (35.9% of participants) than from
the positive-first condition (7.7% of participants), 2(1,
N=39) = 8.1, p < .01, McNemar's test (McNemar, 1947). As
we shall see below, those who did not give NA responses
gave lower estimates in the negative-first condition than in
the positive-first condition. Thus, more NA responses in the
negative-first condition seemed to reflect participants' belief
in weaker causal strengths.

Finally, we examined the mean estimates for each con-
dition. The mean rating in the positive-first condition were
32.5 whereas that in the negative-first condition was only
5.8. For a statistical analysis, we excluded data of those
who gave at least one NA response in either condition.
With the remaining 23 participants, a dependent t-test
showed that the mean rating in the positive-first condition
(22.6) was reliably higher than that in the negative-first
condition (4.1), t(22) = 3.71, p = .001. Thus, although par-
ticipants saw identical contingencies between X and Y, and
between Y and Z, their estimated causal strength between X
and Z was stronger when they first saw positive evidence

for these two contingencies than when they first saw nega-
tive evidence.

Discussion
The experiment reported here suggests that people are
willing to make overarching causal inductions from con-
stituent covariations. The bulk of participants in our ex-
periment were willing to infer a causal relationship between
the two terminal events in a proposed causal chain, even
though they did not see the actual covariation between the
two events. Of those people who were not so willing to
make that inference, the majority seemed not to understand
the normatively correct reason for a response of “indeter-
minate,” instead using such a response as a proxy for a per-
ceived lack of causal relationship. This willingness to make
overarching inductions seems to be a sensible thing to do,
given that people rarely have the luxury in the real world of
observing a complete set of covariation patterns between
multiple events.

When people make these overarching inductions, they
seem to first infer that X causes Y and Y causes Z. Based
on these inferences, they conclude that X causes Z. Some
participants' explanations for their responses supports this.
For example, one participant wrote, "I tried to find the pat-
terns; for example, that A caused B, and B caused C, so A
probably causes C" Another wrote, "I tried to see the rela-
tionship between the plant and the compound, and com-
pound and fertilizer separately first. From there I tried to
determine whether or not the presence or absence of fertil-
izer yielded the presence of absence of plant…." In other
words, it appears that people may try to integrate the rela-
tive strengths of the intermediate relationships to estimate
the strength of the relationship between the terminal events.

In this study, we used three events that may have re-
flected prior knowledge about the function of chemical fer-
tilizers. Participants could have judged the strength of the
causal relationships based solely on this prior knowledge.
But such an interpretation is unlikely, given that the events
we used were fictitious ones (and thus, there could not have
been prior knowledge about causal strengths among these
events), and furthermore, people’s causal strength estimates
were susceptible to manipulation of the order of evidence.
Finally, preliminary results from a new study show that the
same effects occur using very abstract events (e.g. squares
changing shape or triangles changing color).

Extending Dennis and Ahn (in press), we found an
order effect in situations involving three events. As we sug-
gested, we think this order effect occurs because of an an-
choring-and-adjustment process. One participant's descrip-
tion precisely illustrates this process: "If a particular pattern
kept coming, but one or two trials deviated from the pattern,
I would excuse them as flukes." In this case, the adjust-
ments to the initial anchor was not strong enough, leading
to biased final estimates of causal strength.

These results also have implications for current, nor-



mative theories of causal learning (Cheng, 1997; Glymour,
1998; Glymour & Cheng, 1998). These theories propose
that people’s estimates of causal power match those pre-
dicted by contigency indices calculated from observed con-
ditional probabilities. However, in the current experiment
no such index can be calculated, given the lack of observed
co-occurrence between the terminal events. Yet people still
were willing to provide judgments of causal strength, sug-
gesting that the normative contigency-based theories are
inadequate descriptions of human causal learning.

In contrast, the results are consistent with a causal
power view of causal learning. According to this view,
people infer causal relationships based on the proposed
transfer of some sort of causal force or energy between one
object and another. Specifically, the mechanism by which
one event brings about another is proposed to be the main
focus of causal reasoning (Ahn, et al., 1995; Bullock, Gel-
man, & Baillargeon, 1982; Harré, 1988). In the case of our
experimental results, the presence of a putative mechanism
(i.e. the change in soil chemistry) seems to outweigh the
absence of the covariation information necessary to draw
accurate causal inferences. Furthermore, the perceived
strength of the target relationship was tied to the perceived
strength of the mechanism, as evidenced by the primacy
effect obtained. That is, the current results demonstrate
people’s reliance on mechanism information in the acquisi-
tion of new causal learning.
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