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Abstract 

Averaging the estimates of a number of individuals has been 
shown to produce an estimate that is generally more accurate 
than those of the individuals themselves. Similarly, averaging 
responses from a single individual can also lead to a more 
accurate answer. How can we best combine estimates within 
and between individuals to create an accurate group estimate? 
We report empirical results from a general knowledge rank-
ordering experiment and demonstrate that individuals that 
provide more consistent answers across repeated elicitations 
are also more accurate. We develop a consistency weighting 
heuristic and show that repeated elicitations within an 
individual can be used to improve group accuracy. We also 
develop a Thurstonian cognitive model which assumes a 
direct link between the process that explains the accuracy of 
an individual and response consistency and show how the 
model can infer accurate group answers. 

Keywords: Bayesian Modeling; Rank Ordering; Knowledge; 
Recall; Wisdom of Crowds; Within; Expertise; Uncertainty; 
Coherence; Consistency. 

Introduction 
There has been a lot of interest recently regarding how the 

judgments of individuals can best be combined to make 
group estimates that are as accurate as possible. When there 
is a ground truth – one single, verifiable correct answer – 
the group average is often more accurate than most or all of 
its constituent individual judgments (Davis-Stober, 
Budescu, & Broomell, 2014; Wallsten, Budescu, Erev, & 
Diederich, 1997; Yaniv & Foster, 1997) even if the correct 
answer is unknowable at the time of questioning (Lee, 
Steyvers, de Young, & Miller, 2012). When repeated 
judgments are averaged within one individual as opposed to 
across individuals, a similar phenomenon occurs. For 
example, when a single person produces two estimates for 
the same underlying quantity, the average of the two 
estimates is generally less erroneous than the individual 
estimates (Vul & Pashler, 2008; Herzog & Hertwig, 2009; 
Ariely et al. 2000). A standard explanation for these 
averaging benefits is that random error associated with 
probabilistic mental representations and processes partially 
cancel out in the average. A larger averaging benefit is 
typically found when averaging judgments across as 
opposed to within subjects (Rauhaut & Lorenz, 2011; 

Müller-Trede, 2011) presumably because differences in 
mental representations and associated random error is larger 
across individuals. 

In order to improve the accuracy of the group average, 
many approaches have been developed to identify and 
upweight more expert or accurate judgments in the group 
average, including performance or contributor weighting 
(Budescu and Chen; Cooke, 1991; Bedford & Cooke, 2001; 
Aspinal, 2010), consensus (Shanteau et al. 2002; Wang et al. 
2011; Batchelder & Romney, 1988; Batchelder & Anders, 
2012; Lee, Steyvers, de Young & Miller, 2012; Lee, 
Steyvers, & Miller, 2014) as well as subjective confidence 
and metacognitive judgments (Koriat, 2012; Prelec, 2004).  

We will focus on the role of response agreement within 
subjects as an indicator for expert judgment. Previous 
research has shown that expert judgments tend to be more 
consistent over time (Einhorn, 1972, 1974) and that intra-
subject reliability can be used as a proxy for expertise 
(Shanteau, Weiss, Thomas, & Pounds, 2002; Weiss & 
Shanteau, 2003; Weiss, Brennan, Thomas, Kirlik, & Miller, 
2009). This work has focused on the idea of highly 
specialized expertise and across-question consistency for 
tasks such as perception and categorization (Weiss & 
Shanteau, 2003; Weiss, Brennan, Thomas, Kirlik, & Miller, 
2009). As opposed to previous research, we focus on tasks 
where expertise may be question-specific; subjects may 
have knowledge for some questions, but not for others, 
making their question level consistency more informative 
about their expertise than the overall domain consistency. 

One challenge for using intra-subject consistency as an 
indicator for expert judgment is that other factors can 
contribute to response agreement, including decision 
strategies and episodic recall (Vul & Pashler, 2008; 
Hourihan & Benjamin, 2010). For example, in Vul and 
Pashler's experiment, subjects were prompted for a second 
estimate either in the same experimental session or after a 
delay of three weeks. The intra-subject averages were most 
accurate after a delay of three weeks, suggesting that 
subjects were less likely to simply recall the first answer 
after a long delay. The requirement of a long temporal delay 
between repeated questions to avoid episodic recall might 
not be practical in scenarios where subject judgments need 
to be aggregated over a short interval.  
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In this paper, we focus on rank-ordering questions where 
the task is to rank-order a set items such as Presidents by 
terms in office or US cities by population size (Miller, 
Hemmer, Steyvers, Lee, 2009; Lee et al. 2012; Lee, 
Steyvers, Miller, 2014). In contrast to simple yes/no or 
percentage estimation question involving single quantities, 
rank-ordering questions involve the retrieval and 
coordination of many pieces of information, making it less 
likely that a subject can explicitly remember a previous 
response. In the absence of easily available episodic 
strategies, subjects can be asked for a second response 
almost immediately after their first, eliminating the need for 
multiple conditions and removing any question anchoring 
effects.  

Our contribution in this paper is threefold. First, we show 
that the crowd within an individual effect observed by Vul 
and Pashler exists for rank-ordering tasks, indicating that 
there is a degree of statistical independence between 
repeated elicitations for rank-ordering judgments. Second, 
we demonstrate that the agreement between the first and 
second response is related to each subjects’ response 
accuracy. We present a simple consistency weighting 
heuristic where rank-ordering judgments from individuals 
that are consistent across repeated questions are given larger 
weight in the group average. We demonstrate that this 
consistency weighting heuristic significantly improves 
group accuracy. Finally, we introduce a new repeated-
elicitation variant of a Thurstonian model for rank-ordering 
that has been explored elsewhere (see Steyvers et al., 2009 
& Lee et al., 2012). We compare the performance of the 
repeated-elicitation model and the original variant, and 
demonstrate that accounting for the variance in an 
individual’s responses improves overall group aggregation 
performance 

Experiment 

Method 
The experiment was composed of 8 rank ordering questions, 
and an additional 3 distracter questions; the distracter 
questions were included to increase the delay between 
subject responses. Increased delay between responses has 
been shown previously to increase response independence 
and effect size (see Vul & Pashler, 2008). Subjects were 120 
undergraduate students between the ages of 18 and 22 at the 
University of California, Irvine who were compensated with 
course credit. 

Selection for the non-distracter questions was based on 
difficulty, as determined by the accuracy of subjects in 
previous experiments (Steyvers et al., 2009; Miller et al., 
2011). Approximately one third of questions were selected 
for being easier (U.S. Holidays, U.S. Presidents, Book 
Release Dates), three for being moderately difficult 
(Country Landmasses, U.S. Cities, European Cities), and 
one two for being particularly difficult (10 Amendments, 
World Cities).  All were general knowledge questions that 
subjects were likely to have had exposure to. For the 

distracter questions, subjects were asked to rank teams for 
the NFL and NBA based on what they thought their final 
season standing would be. 

Subjects were given the eight knowledge questions in a 
random order, and items for each question were initially 
placed in random positions. Subjects were then given the 
distracter questions. Subjects were then prompted to give 
responses for the eight questions again, in the same order 
they appeared in the first elicitation, but with a new random 
initial placement of the items for each question. 

All questions had a ground truth obtained from Pocket 
World in Figures and various online sources. An interactive 
interface was presented via a web browser on computer 
screens. Subjects were instructed to order the presented 
items (e.g., “Order these books by their first release date, 
earliest to most recent”), and responded by dragging the 
individual items on the screen using the computer mouse 
and “snapping” them into the desired locations in the 
ordering, as in previous experiments. Transitions between 
question blocks were marked by a holding page reminding 
subjects of the instructions for the tasks. At no point were 
subjects informed that they would be answering the same 
questions twice. 

Results 
Assessing Accuracy Performance was measured relative to 
the ground truth using Kendall’s tau distance τ. This metric 
is used to count the number of pair-wise disagreements 
between the reconstructed and correct ordering (lower is 
better). The larger the distance, the more dissimilar the two 
orderings are. Values of τ range from: 0 ≤ τ ≤ N(N-1)/2, 
where N is the number of items in the order (ten for all of 
our questions). A value of zero means the ordering is 
exactly right, a value of one means that the ordering is 
correct except for two neighboring items being transposed, 
and so on up to the maximum possible value of forty-five 
(indicating that the list is completely reversed). An average 
score of 22.5 is expected for random performance. 
Averaged Responses We first evaluated whether or not 
averaging the responses within each individual reduced the 
error relative to the individual responses, indicating 
statistically independent error of the sort observed in the 
simple recall tasks of Vul and Pashler (2008). Table 1 
shows the median Kendall’s tau distance for individual 
rank-ordering problems for the first and second response as 
well as the combined first and second response using the 
Borda aggregation method (see modeling section for Borda 
details). Subjects’ error on the first and second responses 
were not significantly different, on average, and varied 
according to question difficulty. The averaged first and 
second responses of each subject (combined column in 
Table 1) was less erroneous than the first and second 
responses – t(120)=2.16, p<.05 and t(120)=2.87, p<.01 
respectively – replicating the findings of Vul and Pashler 
(2008) for rank ordering tasks.  
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Response Consistency and Accuracy If subject response 
consistency is correlated to the precision of an individual’s 
knowledge, then multiple independent responses should be 
further apart from each other the less knowledgeable a 
subject is. We quantified (inverse) response consistency as 
the Kendall’s tau distance between subjects’ responses. 
Subjects with a larger distance between their first and 
second judgment should show a higher tau distance to the 
ground truth. Figure 1 illustrates this relationship separately 
for the first and second response. The correlation between 
each subject’s response disagreement, and the error of their 
first and second responses, is ρ=.51 and ρ=.55 respectively.  
This correlation is observed not only across all questions, 
but also for each individual question. The correlation 
between response disagreement and accuracy appears to 
scale linearly with overall subject accuracy for the problem.  

Modeling 
While averaging across a given individual’s responses 
yields answers that are more accurate, the improvement is 
far smaller than averaging two responses across subjects 
(Miller et al., 2011). Given a large number of subjects, it is 
unclear whether repeated elicitations would improve group 
responses aggregation if they are merely treated as extra 
subjects. Can within-subject response consistency be 
integrated into a between-subject aggregation model to 
improve overall accuracy? To test this, we evaluate two 
models – a heuristic approach based on Borda aggregation 
method and a Thurstonian cognitive model of subject 
behavior. 

Borda Aggregation 
In order to assess if incorporating within-subject response 
consistency can improve between-subject estimates for rank 
ordering tasks, we used a modified version of Borda count 
aggregation that incorporates subject weighting. Borda 
aggregation is a representative aggregation heuristic that has 
been used widely elsewhere (see Miller et al., 2009). In 
traditional Borda count aggregation, all items are assigned 

points based upon their location in a given response: 1 point 
for being in position 1, 2 points for being in position 2, up to 
10 points for a list of 10 items. In a standard Borda 
aggregation method, the points are added across all rank-
orderings provided by subjects and the items are ordered 
according to the sum totals for each item. In our modified 
Borda aggregation method, we add a weighting factor for 
each individual subject in order to upweight subjects that are 
more consistent. Specifically, we calculate the point total 
݇ ௞for each itemݏ ∈ ሼ1,… ,  :by {ܭ

௞ݏ ൌ෍ ௝ݓ௝,௞ݎ
ே

௝ୀଵ
 

where ݎ௝,௞ is the rank of item k for subject j∈ ሼ1,… ,ܰ}, and  
 ௝ is the weight given to subject j. As in a standard Bordaݓ
method, the sums of these points for each item are then 
ranked from smallest to largest to determine the final Borda 
aggregate rank ordering  

For an unweighted aggregate rank-ordering, the subject 
weights were set to the same value for all participants. We 
used this as the baseline for comparison. For the aggregate 
rank-ordering weighted by response consistency, we use the 
inverse of the tau disagreement between the first and second 
rank-ordering:  

௝ݓ ൌ 1 ൫ ௝߬ ൅ 1൯⁄  
where we add one to the distance in order to avoid zero 
division. Therefore, the rank-orderings of participants with 
larger response consistency have a stronger influence on the 
aggregate rank ordering. 

Figure 2 shows the aggregation results. As we found 
previously (Miller et al., 2009), unweighted Borda 

Table 1: Subject response error (Kendall’s tau) 
across individual rank-ordering problems. 

Problems 1st 2nd Combined 

Landmass 9 10 8 

Holidays 7 8 7 

Presidents 7 7 6 

Books 11 11 10 

Euro Cities 15 16 14 

US Cities 16 14 14 

World Cities 21 21 20 

10 Amendments 16 15 15 

AVERAGE 12.5 12.7 11.9 

 
 
Figure 1: Correlation between response disagreement 
and accuracy for the first answer (top panel) and 
second answer (lower panel).  
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aggregation outperforms the average subject for all eight 
questions. Additionally, the weighted Borda model performs 
as well as or better than the unweighted model for all but 
two of the questions. The weighted Borda model performed 
worse for the Presidents question because most subjects 
performed so well that weighting over-penalized the many 
subjects with near-correct responses. Similarly, the model 
performed poorly on the European Cities question because 
there were so few subjects that performed well. Aggregation 
for the unweighted Borda model was performed across both 
trials so as not to give the weighted model the advantage of 
extra subject responses. This superior performance in 
reconstructing the ground truth ordering demonstrates that 
response consistency can be used to improve group 
accuracy for rank ordering tasks. Next we explore whether a 
cognitive model of the rank-ordering task can better 
describe subject behavior and more accurately reconstruct 
the ground truth.  

Thurstonian Model 
Given that subject response consistency is clearly related to 
accuracy in rank-ordering tasks, what kind of mechanism 
might be responsible for this observed behavior? We 
developed a probabilistic model based upon a Thurstonian 
approach. In a Thurstonian representation, the latent ground 
truth ordering for a specific problem is represented by 
coordinates on an interval scale. As Figure 3a illustrates, 
each item k is represented as a latent coordinate k on an 
interval dimension. Note that this represents not the actual 
ground truth but the latent truth as perceived by a group of 
individuals. The one-dimensional representation of items is 
appropriate as all problems in our study involve one-
dimensional relative judgments (e.g. the size of items and 
the timing of events).  

Each individual i is assumed to have access to all of the 
ground truth latent coordinates , but without precise 
knowledge about their exact locations. This uncertainty is 
represented with normal distributions that are centered on 
the shared latent ground truth locations and with a subject-
level i that represents the uncertainty of the individual 
about the item locations. Note that for a given subject, all 
items have the same standard deviation which is a strong 
assumption but simplifies the model considerably.  

As Figure 3b shows, the subject draws mental samples 
from these item distributions. Repeated elicitations are 
modeled simply by repeating the sampling process which 
leads to a new set of samples. The rank-ordering produced 
by a subject is then based on the order of the mental 
samples.  

As illustrated in Figure 3c, different subjects can have 
different uncertainty i, and this influences not only the 
response accuracy but also the response consistency. For 
example, the larger uncertainty associated with the subject 
illustrated in Figure 3c leads to more transposition errors in 
the mental samples associated with a given response – it 
becomes more likely that samples of nearby distributions 
are out of order (relative to the latent ground truth) which 

lowers accuracy. In addition, the larger uncertainty also 
leads to increased differences in orderings between different 
responses. Therefore, the model assumes an inherent 
connection between response consistency and accuracy – 
they are both driven by a latent parameter i that represents 
the (inverse) expertise level of a subject for a particular 

 
 

Figure 2: Aggregation performance of unweighted and 
weighted Borda aggregation across first and second 
responses, compared to the average subject 
performance.

 

 
 
Figure 3: Illustration of the Thurstonian Model for 
repeated elicitations. (a) The latent ground truth is 
represented as a set of coordinates on an interval scale 
(b) Uncertainty about the latent ground truth is 
represented by Gaussian noise and responses are created 
by sampling latent values from each item distribution (c) 
Example of a subject with larger uncertainty about the 
ground truth and larger variability in the item samples 
across the first and second response 
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question.  
 This multiple-elicitation model is different from previous 

Thurstonian models that we have presented, where subjects 
only give a single response per question (Steyvers et al., 
2009; Miller & Steyvers, 2011). This extended model 
allows us to examine whether accuracy and response 
consistency can be described with the same underlying 
mechanism.   

We apply Bayesian estimation techniques to infer the 
group representation from individual orderings. Figure 4 
shows the Thurstonian model for a single question across 
subjects using graphical model notation (see Koller, 
Friedman, Getoor, & Taskar, 2007; Shiffrin, Lee, Kim, & 
Wagenmakers, 2008, for statistical and psychological 
introductions). Each node represents a model variable, and 
the graph structure is used to indicate the conditional 
dependencies between these variables. Stochastic and 
deterministic variables are indicated by single-and double-
bordered nodes (, , x and y respectively), and observed 
data are represented by a shaded node (y). The plate 
represents independent replications of the graph structure, 
which corresponds to multiple elicitations from each 
individual i and across individuals for each question j.  

To explain how these data are generated, the model 
begins with the underlying ground truth location of the 
items, given by the vector . The latent ground truth  is 
given a flat prior such that all item locations are equally 
likely a priori. Each individual has an associated uncertainty 
parameter j ~ Gamma(0, 1/) where  is a hyper-
parameter that determines the variability of the expertise 
levels across individuals. We set  = 3 in the current model. 

To determine the order of items for the ith repetition, the 
jth individual samples a location xijk for each item k where 
xijk ~ Normal(k,j). The sample xijk represents the realized 
mental representation for the individual at that particular 
time. The ordering for each individual is determined by the 

ordering of all of their mental samples yij = Rank(xij).    
While the generative model is relatively straightforward, 

the inference is challenging because the observed data yij is 
a deterministic ranking. We utilized MCMC procedures 
originally developed by Yao and Böckenholt (1999), which 
allowed us to estimate the posterior distribution over the 
latent variables xijk, j, and  given the observed orderings 
yij. We use Gibbs sampling to update the mental samples xijk, 
and Metropolis-Hastings updates for j and . 

Figure 5 shows the accuracy of three aggregation models, 
and demonstrates that the repeated elicitation Thurstonian 
model performed best overall. It outperformed the weighted 
Borda model and also outperformed a Thurstonian model 
that is given both the first and second response of 
participants but treats the second responses as coming from 
a new set of participants. Additionally, the repeated 
elicitation Thurstonian model matched or exceeded other 
models’ performance for each individual question. 

The advantage of the repeated elicitation Thurstonian 
model over the Thurstonian model where the first and 
second responses are not linked to the same subject is not 
due to the fact that it has access to additional response 
information (it uses the same set of subject responses), but 
because the model simultaneously infers a subject’s 
uncertainty based upon their disagreement with other 
subjects and their disagreement with themselves. In this 
way, we have some confidence in the Thurstonian 
representation of individual-level uncertainty for subject 
item recall, both as a generative model and as a means of 
yielding more accurate group estimates for rank ordering 
tasks.  

Conclusions 
In this paper, we have shown that repeated elicitations for 
general knowledge rank-ordering tasks exhibit statistically 
independent error, and the variance of that error is 
correlated to the accuracy of subject responses for easy and 
difficult questions. Additionally, we have shown that this 
response consistency can be used to improve group 

 
 
Figure 5: Aggregation performance of weighted Borda, 
traditional Thurstonian, and repeated Thurstonian 
models. 

 
 
Figure 4: Graphical model of the Thurstonian model for 
repeated elicitations. 
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aggregate accuracy in reconstructing the ground truth 
answer for rank ordering knowledge tasks. These findings 
might also be applicable to tasks that do not have a known 
ground truth, as we have discussed elsewhere (Lee et al., 
2012). Finally, we introduced a cognitive model of rank-
order judgement wherein a subject-level uncertainty 
parameter accounted for both subject response accuracy and 
response consistency, and found that it was best able to 
capture subject behavior and reconstruct the original ground 
truth ordering for each of our questions. This lends credence 
to the idea of a combined probabilistic mechanism for 
consistency and accuracy underlying the subject behavior 
observed in these complex knowledge recall tasks. 
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