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Abstract

Combinatorial patterns in syzygies

by

Thanh Quang Vu

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor David Eisenbud, Chair

Affine semigroup rings are the coordinate rings of not necessarily normal toric varieties.
They include the coordinate rings of the Segre-Veronese embeddings of projective spaces,
and special projections of those. The study of affine semigroup rings lies in the intersection
of commutative algebra, algebraic geometry and combinatorics. In this thesis, we study the
syzygies for certain classes of affine semigroup rings.

The Betti numbers of affine semigroup rings can be computed as the dimensions of
homology groups of certain simplicial complexes. Therefore, the study of the Betti numbers
of affine semigroup rings can be translated into some combinatorial problems. The idea of
using combinatorial topology to study syzygies originated from the work of Hochster, Reisner
and Stanley in the seventies and eighties and since then have been an active area of research
and proved to be useful in lots of cases.

In the first chapter, we introduce the problems concerned in our dissertation, and their
relations to topology of simplicial complexes and representation theory of symmetric groups.
We also include some background material from combinatorial commutative algebra, alge-
braic geometry, and representation theory.

In the second chapter, we use combinatorial and representation theoretic methods arising
from work of Karaguerian, Reiner and Wachs [30] to reduce the study of the syzygies of
Veronese varieties to the study of homology groups of matching complexes. In turn we use
combinatorial methods to show the vanishings of certain homology groups of these matching
complexes, giving a lower bound on the length of the linear part of the resolution of the
Veronese varieties. In the case of third Veronese embeddings, we carry out the computation
to prove the Ottaviani-Paoletti conjecture.

In the final chapter, we study a conjecture of Herzog and Srinivasan and a higher analog.
The conjecture says that the Betti numbers of affine monomial curves under translations are
eventually periodic. We prove the conjecture, and use it to study the analogous question for
higher dimensional affine semigroup rings under translations and some other consequences.
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Chapter 1

Introduction

1.1 Overview

The study of affine semigroup rings is important in numerous field of recent research: com-
binatorial commutative algebra, toric geometry, geometric modeling and algebraic statistics
[8], [11], [12], [34]. Of particular interest in these studies is the defining equations of affine
semigroup rings and their syzygies.

Syzygies of affine semigroup rings are the main objects of study in this dissertation. Our
research is motivated by the Ottaviani-Paoletti conjecture [35], and the Herzog-Srinivasan
conjecture. In this dissertation, we give approaches to allow one to attack the first conjecture.
We also settle the second conjecture and make further conjectures relating to this work.

The underlying theme for the connection to combinatorics is a result of Bruns and Herzog
[9], (which was motivated from work of Campillo and Marijuan [10]) where Betti numbers
of affine semigroup rings are computed as the dimensions of homology groups of squarefree
divisor simplicial complexes. Let us introduce some notation.

Let K be an arbitrary field. All simplicial homology have coefficients in K. Let V
be an additive semigroup generated by vectors v1, ...,vn ∈ Nm. The semigroup ring K[V ]
generated by V is a subring of K[t1, . . . , tm] generated by tvi = tvi11 · · · tvimm . The polynomial
ring R = K[x1, ..., xn] maps surjectively onto K[V ] by sending xi to tvi . Denote I(V ) be
the defining ideal of K[V ] in R. Note that R is multi-graded with the grading given by
deg xi = vi. Under this grading the Betti numbers of I(V ) are related to the homology of
squarefree divisor simplicial complexes as follows.

Definition 1.1 (Squarefree divisor simplicial complex). For each v ∈ V , let ∆v be the
simplicial complex on the vertices {1, ..., n} such that F ⊆ {1, ..., n} is a face of ∆v if and
only if

v −
∑
i∈F

vi ∈ V.
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Theorem 1.2 (Bruns-Herzog). For each i, and each element v ∈ V ,

βi,v(I(V )) = βi+1,v(R/I(V )) = dimK H̃i(∆v).

Proof. The Betti numbers of I(V ) are computed as homology of the complex obtained by
tensoring I(V ) with the Koszul complex K which is the resolution of the residue field K over
R. The v-graded components of the complex K ⊗ I(V ) can be expressed as

(K ⊗ I(V ))iv =
⊕

F∈∆v, |F |=i

k(−xF ).

The differentials of the complex K⊗I(V )v are the differentials of the simplicial complex ∆v.
The conclusion follows.

The rest of this chapter contains introduction to the two above-mentioned conjectures,
and some background materials from algebraic geometry, combinatorics and representation
theory of symmetric groups.

In Chapter 2, we present a new proof of a result of Athanasiadis [2] on the shellability of
skeleta of matching complexes, as well as geometric proof of the Ottaviani-Paoletti conjecture
in the case of fourth Veronese embedding of P3. Using computational results, we settle the
Ottaviani-Paoletti conjecture in the case of third Veronese embeddings of projective spaces.

In Chapter 3, we present a proof of the Herzog-Srinivasan conjecture on the periodicity
of Betti numbers of affine monomial curves under translation. To accomplish this goals, we
prove the analogous result for projective monomial curves, and then prove that the total Betti
numbers of affine and projective monomial curves are equal after a high enough translation.

1.2 Np property of algebraic varieties

Let X be a smooth projective variety over an algebraically closed field k of characteristic 0.
Let L be a very ample line bundle on X. Thus L defines an embedding

X ⊆ Pr = PH0(X,L)

where r = r(L) = h0(X,L)−1. Let S = SymH0(X,L) be the homogeneous coordinate ring
of Pr and let R = R(L) = ⊕H0(X,Lk) be the homogeneous coordinate ring of X embedded
by L, viewed as an S-module. Since the influential papers by Green [17], [18], the study
of syzygies of R as S-module have been extensively carried out. Green’s idea was that the
higher the degree of L, the simpler are the syzygies of R (at least from the begining of
the resolution). When X is a curve, this philosophy has proved to govern the shape of the
resolution of high degree embeddings of X. Green proved that, when degL = 2g + 1 + p,
where g is the genus of the curve X, then the embedding of X defined by L satisfies property
Np. That is R is normally generated, and all syzygies up to homological degree p are linear.
Following Green and Lazarsfeld [19], [20], we define:



CHAPTER 1. INTRODUCTION 3

Definition 1.3. The Green-Lazarsfeld index of a very ample line bundle L on a smooth
projective variety X is the largest integer p such that the embedding of X by L satisfies
property Np. We denote it by p(X,L).

When dimX ≥ 2, much less is known about the syzygies of embeddings of X, even in the
simplest case when X = Pn. Green proved that when L = O(d), then R satisfies property
Nd. Nevertheless, this is far from the actual Green-Lazarsfeld index of Veronese embeddings
as conjectured in:

Conjecture 1.4 (Ottaviani-Paoletti). The dth Veronese embeddings of projective spaces
satisfy property N3d−3.

For simplicity, for each p, q let

Kp,q(X,L) = {minimal generators of pth syzygies of R of degree p+ q}.

Ottaviani and Paoletti in [35] showed that K3d−2,2(Pn,O(d)) 6= 0 when n ≥ 2 and d ≥ 3. In
other words, the conjecture is sharp.

The Ottaviani-Paoletti conjecture is known for d = 2 by the work of Jósefiak-Pragacz-
Weyman [29] and also known for P1 and P2 by the work of Green [17] and Birkenhake [3].
The recent improvement of the conjecture by Bruns, Conca and Römer in [7] is that the dth
Veronese embeddings of projective spaces satisfy property Nd+1. In a preparation work, we
prove that they satisfy property N2d−2.

Since we know more about the syzygies of embeddings of curves, we could try to take
general hyperplane sections of the embeddings of Pn to bring it to the case of curves. Never-
theless, one immediately gets trouble as long as n ≥ 4 or d ≥ 5, as the curve obtained from
the process would have the degree of the embedding less than the degree of its canonical
divisor. Moreover, the curve would lie on a surface of general type, over which our knowledge
of their syzygies are very limited.

The conjecture would be related to an extension of the Green-Lazarsfeld gonality con-
jecture if we could compute the Clifford index of complete intersection curves in projective
spaces. Unfortunately, the computation of Clifford index of curves are a very delicate task
which we do not know how to deal with even in the case of complete intersection curves in
projective spaces.

Since the Green-Lazarsfeld index of Veronese embeddings have been determined for P2,
we may assume that n ≥ 3. When n ≥ 4, almost nothing was known. When n = 3, in the
same paper, Ottaviani and Paoletti showed that the third Veronese embedding of P3 satisfies
property N6. We will see that in the case of fourth Veronese embedding of P3, we are in the
situation that we have a canonical curve lying on a K3 surface. Recently, Green’s conjecture
has been proved in this case by Aprodu and Farkas [1]. This reduces the determination of
p(P3,O(4)) to the computation of the Clifford index of the curve which is the complete
intersection of two quartic surfaces in P3. We will define the Clifford index and compute it
in our situation in section 2.1.
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We will now introduce a different approach to Ottaviani-Paoletti conjecture using rep-
resentation theory and combinatorics. Note that representation theory comes into play
naturally in the land of syzygies of Segre-Veronese varieties. This fact has been exploited
and successfully used in certain problems, for example see [29], [32], [38], [41]. The idea of
using representation theory of general linear groups and symmetric groups to study syzygies
has been an active area of research in recent years. For more of this direction, we refer to the
book of Weyman [44], and the article of Raicu [37]. We will now switch the notation a little
bit to move to the world of representation theory of general linear groups. For unexplained
terminology, we refer to the book by Fulton and Harris [15].

Let k be a field of characteristic 0. Let V be a finite dimensional vector space over k of di-
mension n+1. The projective space P(V ) has coordinate ring naturally isomorphic to SymV .
For each natural number d, the d-th Veronese embedding of P(V ), which is naturally embed-
ded into the projective space P(Symd V ) has coordinate ring Ver(V, d) = ⊕∞k=0 Symkd V . For
each set of integers p, q, b, let Kd

p,q(V, b) be the associated Koszul cohomology group defined
as the homology of the 3-term complex

p+1∧
Symd V ⊗ Sym(q−1)d+b V →

p∧
Symd V ⊗ Symqd+b V

→
p−1∧

Symd V ⊗ Sym(q+1)d+b V.

Then Kd
p,q(V, b) is the space of minimal p-th syzygies of degree p + q of the GL(V )-module

Ver(V, d, b) = ⊕∞k=0 Symkd+b V. We write Kd
p,q(b) : Vect → Vect for the functor on finite di-

mensional k-vector spaces that assigns to a vector space V the corresponding syzygy module
Kd
p,q(V, b). In this notation, the Ottaviani-Paoletti conjecture is:

Kd
p,q(V, 0) = 0 for q ≥ 2 and p ≤ 3d− 3. (1.1)

Moreover, the Veronese modules Ver(V, d, b) are Cohen-Macaulay, the equation (1.1) can be
replaced by

Kd
p,2(V, 0) = 0 for p ≤ 3d− 3. (1.2)

Though we are mainly interested in the vanishings of the Koszul homology groups Kd
p,2(V, 0),

we will see later that, there is a long exact sequence which connects the Koszul homology
groups Kd

p,q(V, b); thus the understanding of the syzygies of the Veronese modules Ver(V, d, b)
are very useful in analyzing the syzygies of the Veronese varieties.

From the definition, it is clear thatKd
p,q(V, b) are GL(V )-representations, in particular, the

functors Kd
p,q(b) are polynomial functors and decompose into irreducible polynomial functors,

i.e. Schur functors. By a result of Karaguerian, Reiner and Wachs [30], these decomposi-
tions are closely related to decompositions of homology groups of matching complexes into
irreducible representations as representations of symmetric groups.

Definition 1.5 (Matching Complexes). Let d > 1 be a positive integer and A a finite set.
The matching complex Cd

A is the simplicial complex whose vertices are all the d-element
subsets of A and whose faces are {A1, . . . , Ar} so that A1, . . . , Ar are mutually disjoint.
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The symmetric group SA acts on Cd
A by permuting the elements of A making the ho-

mology groups of Cd
A representations of SA. For each partition λ, we denote by V λ the

irreducible representation of S|λ| corresponding to the partition λ, and Sλ the Schur functor
corresponding to the partition λ. For each vector space V , Sλ(V ) is an irreducible repre-
sentation of GL(V ). The relation between the syzygies of the Veronese embeddings and the
homology groups of matching complexes is given by the following theorem of Karaguezian,
Reiner and Wachs [30].

Theorem 1.6. Let p, q be non-negative integers, let d be a positive integer and let b be a non-
negative integer. Write N = (p+q)d+ b. Consider a partition λ of N . Then the multiplicity
of Sλ in Kd

p,q(b) coincides with the multiplicity of the irreducible SN representation V λ in

H̃p−1(Cd
N).

Theorem 1.6 implies that the equation (1.2), and so the Ottaviani-Paoletti conjecture is
equivalent to:

Conjecture 1.7. The only non-zero homology groups of Cd
kd for k = 1, . . . , 3d− 1 is H̃k−2.

Besides the connection to the syzygies of Veronese embeddings, the study of connectivity
of matching complexes is also of interest among the combinatorialists (see [4], [40]), and
have connection to problems in group theory (see [31] and [39] and references therein). For
interesting aspects and some open questions related to matching complexes we refer to the
survey article by Wachs [43].

To compute the homology groups of the matching complexes inductively, the following
equivariant long-exact sequence originated from Bouc [5] is useful. Let A be a finite set with
|A| ≥ 2d. Let a ∈ A be an element of A. Let α be a d-element subset of A such that a ∈ α.
Let β = α \ {a}, and let C = A \ α, B = A \ {a}. Then we have the following long-exact
sequence of representations of SB.

· · · → Ind(H̃r(C
d
C)⊗ 1)→ H̃r(C

d
B)→ Res(H̃r(C

d
A))→ Ind(H̃r−1(Cd

C)⊗ 1)→ · · · (1.3)

where Ind is IndSBSC×Sβ , Res is ResSASB and 1 is the trivial representation.

By a result of Athanasiadis [2], which we will give a different proof in section 2.2, for
d ≤ 4 and N ≤ d(3d − 1) the matching complexes Cd

N has at most two non-zero homology
groups. In particular, the Euler characteristic of the matching complex Cd

N is equal to

χ(Cd
N) = (−1)iH̃i + (−1)i+1H̃i+1

for i = bN
d
c − 3. Morever, it can be computed as the alternating sum of the space of i-faces

of Cd
N . The space Fi−1(Cd

N) of i− 1-faces of Cd
N as representation of SN has character given

as follows.
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Proposition 1.8 (Shareshian-Wachs [39]). The character of Fi−1(Cd
N) is given by:

chFi−1(Cd
N) = ei[hd]hn−id,

where e (respectively h) denotes the elementary (resp. homogeneous) symmetric functions.

Note that for representations of the symmetric groups, the character maps the group
of virtual representations of SN isomorphically to the group of symmetric functions on N -
letters. This map is also a map of algebras when the group of virtual representations are
endowed with a multiplication induced by tensor product. The transition to the characters
makes the computation and notation easier.

Since the Veronese embeddings of projective spaces are the very natural embeddings, it
is generally believed that the spaces of minimal syzygies behave naturally in the following
sense. For each p, q, d, b, there is no common subrepresentation between Kd

p,q(V, b) and
Kd
p+1,q−1(V, b). Equivalently, for each i, d, n, there is no common subrepresentation between

H̃iC
d
n and H̃i+1C

d
n. Note that if this naturality property holds, then proving Ottaviani-

Paoletti conjecture would be easier, as by induction and the long exact sequence (1.3), we
know that there is at most two non-zero homology groups for Cd

kd when k is in the range
of our interest. Given the naturality, it suffices to show that the Euler characteristic of Cd

kd

corresponds to either an honest representation or negative of such an honest one. By the
character formula of Shareshian and Wachs, the Pieri’s rule [15], and the plethysm formula of
Doran [25], it seems to be an achievable goal. The naturality would also imply a conjecture of
Shareshian and Wachs [40] on the top dimensional homology group of matching complexes.
When d ≤ 4, the computation of the virtual character of the Euler characteristic of Cd

N in
our desired range is made possible by Sage [42]. These computational experiments support
the naturality property.

When d = 3, we prove the Ottaviani-Paoletti conjecture in section 2.3 basically by proving
that the naturality property holds in the range of our interest.

Theorem 1.9. The third Veronese embeddings of projective spaces satisfy property N6.

When d = 4, we actually prove that the naturality property fails making the Ottaviani-
Paoletti conjecture more appealing. Using geometric method, we prove in section 2.1 that
the fourth Veronese embedding of P3 satisfies property N9.

1.3 Betti numbers of monomial curves

Let K denote an arbitrary field. Let R be the polynomial ring K[x1, ..., xn]. Let a = (a1 <
· · · < an) be a sequence of positive integers. The sequence a gives rise to a monomial curve
C(a) whose parametrization is given by x1 = ta1 , ..., xn = tan . Let I(a) be the defining ideal
of C(a). For each positive integer j, let a + j be the sequence (a1 + j, ..., an + j). In chapter
3, we consider the behaviour of the Betti numbers of the defining ideals I(a + j) and their
homogenizations Ī(a + j) for positive integers j.
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For each finitely generated R-module M and each integer i, let

βi(M) = dimK TorRi (M,K)

be the i-th total Betti number of M . The following conjecture was communicated to us by
Herzog and Srinivasan.

Conjecture 1.10 (Herzog-Srinivasan). The Betti numbers of I(a+j) are eventually periodic
in j with period an − a1.

In general, the problem of finding defining equations of monomial curves is difficult. For
example, in [6], Bresinsky gave an example of a family of monomial curves in A4 whose
numbers of minimal generators of the defining ideals are unbounded. Recently, in the case
n ≤ 3, Conjecture 1.10 was proven by Jayanthan and Srinivasan in [26]. In the case when a
is an arithmetic sequence, Conjecture 1.10 was proven by Gimenez, Sengupta and Srinivasan
in [16]. In chapter 3, we prove the conjecture in full generality:

Theorem 1.11. The Betti numbers of I(a + j) are eventually periodic in j with period
an − a1.

To prove Theorem 1.11 we first prove the eventual periodicity in j for total Betti numbers
of the homogenization Ī(a + j), and then prove the equalities for total Betti numbers of
I(a + j) and Ī(a + j) when j � 0.

To simplify notation, for each i, 1 ≤ i ≤ n, let bi = an−ai. Note that if f is homogeneous
then f ∈ I(a) if and only if f ∈ I(a + j) for all j. Denote by J(a) the ideal generated by
homogeneous elements of I(a). In general, for each finitely generated graded R-module M ,
TorRi (M,K) is a finitely generated graded module for each i. Let

βij(M) = dimK TorRi (M,K)j

be the i-th graded Betti number of M in degree j. Moreover, let

regM = sup
i,j
{j − i : βij 6= 0}

be the Castelnuovo-Mumford regularity of M .
Let x0 be a homogenizing variable. In Proposition 3.3, we prove that when j > b1(n +

reg J(a)), each binomial in Ī(a + j) involving x0 has degree greater than n+ reg J(a). Thus
the Betti table of Ī(a+j) separates into two parts. One part is the Betti table of J(a) which
lies in degree at most n + reg J(a). The other part lies in degree larger than n + reg J(a).
We call the part of Betti table of Ī(a + j) lying in degree larger than n+ reg J(a) the high
degree part. We will prove that when j � 0, the Betti table of Ī(a+ j+ b1) is obtained from
the Betti table of Ī(a + j) by shifting the high degree part of Ī(a + j) (see Theorem 3.12).

Example 1.12. Let a = (1, 2, 3, 7, 10). A computation in Macaulay2 shows that the Betti
tables of Ī(a + 49) and Ī(a + 58) are as follows:
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0 1 2 3 0 1 2 3
2 1 − − − 2 1 − − −
3 6 8 1 − 3 6 8 1 −
4 − 2 4 1 4 − 2 4 1
5 − − − − 5 − − − −
6 − − − − 6 − − − −
7 2 1 − − 7 − − − −
8 1 11 13 3 8 2 1 − −
9 − − − 1 9 1 11 13 3

10 − − − 1

where the entry in the column-index i and row-index j of each table represents the Betti
number βi,i+j of the corresponding ideals. A dash represents 0.

The example shows that the separation of Betti tables of Ī(a + j) might occur much
earlier, i.e., j < b1(n+ reg J(a). Also, it is natural to expect that the periodicity of the Betti
table of Ī(a + j) begins as early as the separation of the Betti table occurs. Computational
experiments suggest that this is correct.

To prove the shifting behaviour of the Betti tables of Ī(a + j) as well as the equalities
of total Betti numbers of I(a + j) and Ī(a + j), we note that Ī(a + j) and I(a + j) are
defining ideals of certain semigroup rings. Moreover, by Theorem 1.2, Betti numbers of a
semigroup ring can be given in term of homology groups of certain simplicial complexes
associated to elements of the semigroup. Thus we reduce the problem to proving equalities
among homology groups of these simplicial complexes.

In our situation, Betti numbers of Ī(a+ j) can be expressed in terms of homology groups
of squarefree divisor simplicial complexes ∆l,r(j) (defined in section 3.1). In section 3.1, we
prove that if l > n + reg J(a) and ∆l,r(j) has non-trivial homology groups, then ∆l,r(j) is
a double cone. By a double cone, we mean the union of two cones. From that, we derive
the equalities of homology groups among these squarefree divisor simplicial complexes. The
following example illustrates the double cone structure on ∆l,r(j).

Example 1.13. Let a = (1, 2, 3, 7, 10). We consider the Betti numbers of Ī(a + 49). The
Betti table in Example 1.12 shows that β1,9(Ī(a + 49)) and β2,10(Ī(a + 49)) are nonzero.
A more precise computation in Macaulay2 with multi-grading shows that ∆9,73 and ∆10,83

contribute to the Betti numbers β1,9 and β2,10 of Ī(a + 49) respectively. The complex ∆9,73

is the simplicial complex on the vertices {0, ..., 5} with facets 0524, 053, 124, 134, which is
the double cone {05} ∗ {3, 24} ∪ {1} ∗ {24, 34}. Also, ∆10,83 is the simplicial complex on
the vertices {0, ..., 5} with facets 0514, 05123, 0534, 124, 134, which is the double cone {05} ∗
{14, 123, 34} ∪ {1} ∗ {24, 34}. The picture for these simplicial complexes are given in the
following where we have identified 0 and 5.
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In the following, we give a bound for the place when the periodicity of the Betti numbers
of I(a + j) happens.

Let d = gcd(b1, ..., bn−1) be the greastest common divisor of b1, ..., bn−1. Let c be the
conductor of the numerical semigroup generated by b1/d, ..., bn−1/d. Let B =

∑n
i=1 bi+n+d.

Let

N = max

{
b1(n+ reg J(a)), b1b2

(
dc+ b1

bn−1

+B

)}
. (1.4)

Fix j > N . Let k = an + j. Let e = d/ gcd(d, k). In the case l > n + reg J(a), we
prove that, for each pair (l, r) whose ∆l,r(j) has non-trivial homology groups then ∆l,r(j) =
∆l+e,r+eb1(j+ b1) proving that the Betti numbers of Ī(a + j) and Ī(a + j+ b1) are equal (see
section 3.2 for more details).

Denote by (a + j) the semigroup generated by a1 + j, ..., an + j. For each pair (l, r)
corresponding to an element of a + j (defined in section 3.1), m = lk − r is an element of
(a+j). In the case l > n+reg J(a), we prove that if ∆l,r(j) has non-trivial homology groups
then ∆m is obtained from ∆l,r(j) by the deletion of the vertex 0. The double cone structures
on ∆l,r(j) and ∆m show that they have the same homology groups, proving the equalities
of Betti numbers of I(a + j) and Ī(a + j) (see section 3.2 for more details). Consequently,
we prove that the Betti numbers of I(a + j) are periodic in j with period b1 when j > N .
The condition that j > N where N is technically defined in (1.4) will naturally arise in the
proofs throughout chapter 3.

In the case where a is a Bresinsky’s sequence, we prove in Proposition 3.27 that the
period b1 is exact.

Finally, we consider the analogous question for higher dimensional affine semigroup rings.



10

Chapter 2

Syzygies of Veronese varieties

2.1 Clifford index and canonical curves

In this section, we briefly introduce the notion of Clifford index and Green’s conjecture and
their connection to the Ottaviani-Paoletti conjecture. For more information, we refer to [14]
and [27].

Throughout this section, we assume that k is an algebraically closed field of characteristic
0. Let C be a smooth projective curve of genus g ≥ 4. A line bundle L on X is called special
if h1(L) 6= 0. The Clifford index of L is defined to be

Cliff L = degL − 2(h0(L)− 1) = g + 1− h0(L)− h1(L).

The second equality follows from the Riemann-Roch Theorem [22].

Definition 2.1. The Clifford index of a smooth projective curve C of genus g ≥ 4 is:

Cliff C = min{Cliff L|h0L ≥ 2 and h1L ≥ 2}.

A line bundle L is said to compute the Clifford index of C if Cliff L = Cliff C. Green’s
conjecture says that the Clifford index of C determines the Green-Lazarsfeld index of the
canonical line bundle of C:

Conjecture 2.2 (Green). Let C be a smooth nonhyperelliptic curve over a field of charac-
teristic 0. Then

p(C, ωC) = Cliff C − 1.

Let us come back to the Ottaviani-Paoletti conjecture in the case of P3 and L = O(4). Let
S ∈ |L| be a general hyperplane section of the embedding of P3 by L, then by the adjunction
formula [22], we see that KS = 0. In particular, S is a K3 surface. Let C ∈ |OS(1)| be a
general hyperplane section of S, then by adjunction formula again, we see that we have a
canonical curve lying on a K3 surface. Throughout the process, the Green-Lazarsfeld index
stay the same, as all the embeddings are Cohen-Macaulay. Moreover, we have
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Theorem 2.3 (Aprodu-Farkas [1]). Green’s conjecture holds for every smooth curve lying
on an arbitrary K3 surface.

Therefore, p(P3,O(4)) = Cliff C − 1. Thus it suffices to determine the Clifford index of a
curve which is a complete intersection of two general quartic hypersurfaces in P3. Moreover,
we have:

Theorem 2.4 (Green-Lazarsfeld [21]). Let L be a base point free line bundle on a K3
surface S with L2 > 0. Then Cliff C is constant for all smooth irreducible C ∈ |L|, and if
Cliff C < bg−1

2
c, then there exists a line bundle M on S such that MC = M ⊗OC computes

the Clifford index of C for all smooth irreducible C ∈ |L|.

Now let us determine the genus of C. Since the embedding of C is obtained by taking
two general hyperplane sections of the fourth Veronese embedding of P3, it is embedded into
P32. Moreover, the embedding of C is the canonical embedding, so g = 33. (This can also
be found by using adjunction formula). Moreover, by Ottaviani and Paoletti, Cliff C ≤ 10,
therefore we are in the second situation of Theorem 2.4. In other words, there exists a line
bundle M on S such that MC = M ⊗OC computes the Clifford index of C. Note that S is
a general quartic hypersurface, in this case, we have

Theorem 2.5 (Noether-Lefschetz [33]). If S ⊂ P3 is a general surface of degree d ≥ 4, then
the restriction map PicP3 → PicS is an isomorphism.

We are now ready for a proof of the Ottaviani-Paoletti conjecture in the case of P3 and
O(4):

Theorem 2.6. The fourth Veronese embedding of P3 satisfies property N9.

Proof. By Noether-Lefschetz Theorem PicS ∼= Z` where ` is the class of the hyperplane
section of P3. By Green-Lazarsfeld Theorem and the fact that Cliff C < bg−1

2
c, we have

`C = ` ⊗ OC computes the Clifford index of C. Moreover `C corresponds to a g3
16 on C.

Therefore,
Cliff C = Cliff `C = 16− 2 · 3 = 10.

The theorem follows from Aprodu-Farkas Theorem.

2.2 Shellability of skeleta of matching complexes

In this section, we prove the vanishings of certain homology groups of matching complexes
by showing that certain skeleta of matching complexes are shellable. Let us first recall the
notion of shellability of simplicial complexes.

Definition 2.7. Let ∆ be a pure simplicial complex with the set of facets F . A total ordering
> on F is said to be a shelling of ∆ if for every facet F which is not smallest with respect
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to >, we have F ∩ F<F is a pure simplicial complex of codimension 1 in F , where F<F is
the simplicial complex whose facets are the facets of ∆ which is smaller than F with respect
to >. When ∆ has a shelling, we say that ∆ is shellable.

The shellability of a simplicial complex has a strong consequence on the homology groups
of the simplicial complex itself.

Proposition 2.8. If ∆ is a shellable simplicial complex of pure dimension n, then H̃i(∆) = 0
for all i 6= n.

From the definition of the matching complex, it is easy to see that Cd
N is a pure simplicial

complex of dimension bN/dc − 1. By Proposition 2.8, the shellability of k-skeleton of Cd
N

implies that H̃i(C
d
N) = 0 for all i < k. In other words, to show that Cd

N has trivial homology
groups H̃i for all i < k, one can try to prove that k-skeleton of Cd

N is shellable. That is the
main goal of this section.

The following notation will be used throughout the section.
For a finite ordered set S, we denote minS the smallest element in S. When A =

{1, ..., n}, for any t, we order the t-element subsets of A lexicographically. Suppose B =
{β1, . . . , βt} is an ordered set. When we wish to indicate that the elements of B are in the
order β1 < · · · < βt, then we write B = β1 · · · βt without commas and parenthesis. For
example, if F = {a1, . . . , ak+1} is a k-face of Cd

A, then writing F = a1 · · · ak+1 signifies that
a1 < a2 < · · · < ak+1 in lexicographic ordering.

Let F = a1 · · · ak+1 and G = b1 · · · bk+1 be two k-faces of Cd
A. We say that F is larger

than G in lexicographic ordering, denoted by F > G, if ai > bi for the first index i where
ai 6= bi.

Finally, assume that F = a1a2 · · · ak+1 is a face of Cd
A. Let x be the smallest element in

the complement of a1 ∪ · · · ∪ ak+1. We set c(F ) = a1 ∪ {x}.
For example, set n = 5 and d = 2. Then 134 > 123 as 3-element subsets of A =

{1, 2, . . . , 5}. In the matching complex C2
A, the 1-face 13 24 is larger than the 1-face 12 45

in the lexicographic ordering. And finally, when F = 13 24, we have c(F ) = 123.
Note that a graph (pure 1-dimensional simplicial complex) is shellable if and only if

it is connected. Therefore, the 1-skeleton of the matching complex Cd
n is shellable when

n ≥ 2d+ 1.

Lemma 2.9. Assume that k ≥ 2 and that the (k − 1)-skeleton of Cd
n is shellable. The

k-skeleton of Cd
n+d+1 is shellable.

Proof. Let A = {1, . . . , n+d+1}. Fix a shelling �1 of (k−1)-skeleton of Cd
n as in the assump-

tion. For any n-element subset B of A, we denote �B the shelling of (k − 1)-skeleton of Cd
B

coming from �1 corresponding to the order-preserving bijection between B and {1, . . . , n}.
We define an ordering � of the k-faces of Cd

A as follows. Let F = a1 · · · ak+1 and G =
b1 · · · bk+1 be two k-faces of Cd

A. Then F � G if and only if

1. 1 /∈ a1, and F > G in the lexicographic ordering; or
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2. 1 ∈ a1, 1 ∈ b1, and c(F ) > c(G); or

3. 1 ∈ a1, 1 ∈ b1, c(F ) = c(G) and a1 > b1; or

4. 1 ∈ a1, 1 ∈ b1, c(F ) = c(G), a1 = b1, and a2 · · · ak+1 �B b2 · · · bk+1, where B is the
complement of c(F ).

We will now show that this is a shelling of the k-skeleton of Cd
A. Let F = a1 · · · ak+1 be a

k-face of Cd
A. Furthermore, assume that F is not smallest with respect to the �-order. Let

F be the simplicial complex whose facets are all the k-faces of Cd
A that are less than F in

the �-order. Let H = F ∩G be a facet of F ∩ F .We need to show that H has codimension
1 in F .

Moreover assume that G = b1 · · · bk+1.
Case 1: 1 /∈ a1. Assume that ai /∈ H for some i. Let b1 be any d-element subset contain-

ing 1 of the complement of a1∪· · ·∪ai−1∪ai+1∪· · ·∪ak+1. Let F ′ = b1a1 · · · ai−1ai+1 · · · ak+1,
then F � F ′, and F ∩ F ′ = F \ {ai}. Since H is a facet of F ∩ F , we have H = F \ {ai}
having codimension 1 in F .

Case 2: 1 ∈ a1 and c(F ) > c(G). Assume that c(F ) = a1 ∪ {x} and c(G) = b1 ∪ {y}.
There are two subcases:

Subcase 2a: a1 = b1. Since c(F ) > c(G), we have x > y, this implies that y ∈ ai for
some i > 1. Since y ∈ c(G), this implies that ai 6= bj for any j. In other words, ai /∈ H. Let
a′i = ai \{y}∪{x}. Let F ′ = {a1, . . . , ai−1, a

′
i, ai+1, . . . , ak+1}. Then c(F ′) = a1∪{y} < c(F ).

Moreover F ∩ F ′ = F \ {ai} which is of codimension 1. Since ai /∈ H, and H is a facet of
F ∩ F , H = F ∩ F ′ is of codimension 1 in F .

Subcase 2b: a1 6= b1. In this case, as 1 ∈ a1 and 1 /∈ bi for any i > 1, we have a1 /∈ H.
If a1 is not the smallest d-element subset of c(F ), let a′1 be the smallest such element. Let
F ′ = a′1a2 · · · ak+1. We have F � F ′ and F ∩ F ′ = a2 · · · ak+1 which is of codimension 1 in
F . Therefore, we may assume that a1 is the smallest d-element subset of c(F ). This implies
that x is larger than any element in a1. Let z be the smallest element in b1 \ a1. Since
c(F ) > c(G), this implies that z < x. Therefore, z must belong to ai for some i ≥ 2, and
ai /∈ H. Again, let a′i = ai \ {z} ∪ {x}. Let F ′ = {a1, . . . , ai−1, a

′
i, ai+1, . . . , ak+1}, then we

have c(F ′) = a1 ∪ {z} < c(F ), and F ∩ F ′ = F \ {ai} ) H, which is a contradiction.
Case 3: 1 ∈ a1, c(F ) = c(G) and a1 > b1. In this case a1 /∈ H. Since c(F ) = c(G), this

implies that if we let F ′ = b1a2 · · · ak+1, then F � F ′ and F ∩ F ′ = a2 · · · ak+1 which is of
codimension 1. Therefore, H is of codimension 1 in F .

Case 4: 1 ∈ a1, c(F ) = c(G) and a1 = b1. In this case, by the shelling on the complement
of c(F ), H also has codimension 1 in F .

As an application, we give another proof of a theorem of Athanasiadis [2].

Theorem 2.10. The k-skeleton of Cd
n is shellable when k ≤ n+1

d+1
− 1.

Proof. For any n ≥ 2d + 1, the 1-skeleton of Cd
n is shellable. By Lemma 2.9, for any

n ≥ kd+k−1, the k−1-skeleton of Cd
n is shellable. This finishes the proof of the theorem.
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2.3 Third Veronese embeddings of projective spaces

In this section, using the long exact sequence (1.3), Theorem 2.10, and the computation of
the Euler characteristic of the matching complex C3

N for N ≤ 24, we establish the Ottaviani-
Paoletti conjecture for third Veronese embeddings of projective spaces.

The following notation will be used throughout this section and the forth coming section.
We denote the partition λ with row lengths λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0 by the sequence
(λ1, λ2, . . . , λk) and we use the same notation for the representation V λ. To simplify notation,
we omit the subscript and superscript when we use the operators Ind and Res. It is clear
from the context and the equivariant long exact sequence what the induction and restriction
are. From section 1.2, we see that in the range of our interest

χ(Cd
N) = (−1)iH̃i + (−1)i+1H̃i+1

for some i. Writing χ(Cd
N) = A−B where A and B are representations of SN , we have when

i is even, H̃i = A + C and H̃i+1 = B + C; when i is odd, H̃i = B + C and H̃i+1 = A + C
for some representation C. We say that A and B are the expected values of H̃i and H̃i+1 of
Cd
N . Note that A or B might be zero.

Throughout this section d = 3. For simplicity, we sometimes write CN for C3
N . In this

case, the long exact sequence (1.3) is:

· · · → Ind H̃iC
3
n−3 → H̃iC

3
n−1 → Res H̃iC

3
n → Ind H̃i−1C

3
n−3 → · · · (2.1)

From the definition of the matching complexes, and the long exact sequence (2.1), it is not
hard to see the following.

Proposition 2.11. The homology groups of C3
n with n ≤ 15 are the expected ones.

Proposition 2.12. The homology groups of C3
16 are the expected ones.

Proof. By Theorem 2.10, we have H̃iC
3
16 = 0 for i 6= 3, 4. Applying the equivariant long

exact sequence (2.1) with n = 16 and Proposition 2.11, we have an exact sequence

0→ Res H̃4C
3
16 → Ind H̃3C

3
13 → H̃3C

3
15 → Res H̃3C

3
16 → Ind H̃2C

3
13 → 0. (2.2)

From the computation of the Euler characteristic of C3
16, we get the expected values of

H̃3C16 and H̃4C16, called A and B. We have H̃4C16 = B + C and H̃3C16 = A + C for some
representation C. By Proposition 2.11, the exact sequence (2.2) becomes

0→ ResC → X → X → ResC → 0

where

X = Ind H̃3C13 − ResB = (4, 3, 3, 3, 2)⊕ (5, 3, 3, 3, 1)⊕ (5, 4, 3, 2, 1)⊕ (5, 5, 3, 1, 1)

⊕ (6, 3, 3, 2, 1)⊕ (6, 4, 3, 1, 1)⊕ (6, 5, 2, 1, 1)⊕ (7, 3, 3, 1, 1)⊕ (7, 4, 2, 1, 1)

⊕ (7, 5, 1, 1, 1)⊕ (8, 3, 2, 1, 1)⊕ (8, 4, 1, 1, 1)⊕ (9, 3, 1, 1, 1)⊕ (10, 2, 1, 1, 1).

Since there is no representation of S16 whose restriction can be mapped injectively into X,
we see that C = 0. The proposition follows.
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Proposition 2.13. The homology groups of C3
17 are the expected ones.

Proof. By Theorem 2.10, we have H̃iC
3
17 = 0 for i 6= 3, 4. It remains to prove that H̃3C17 =

0. Applying the equivariant long exact sequence (2.1) with n = 17 we have H̃3C16 maps
surjectively onto Res H̃3C17. Moreover, by Proposition 2.12, we have

H̃3C16 = (5, 5, 3, 3)⊕ (5, 5, 5, 1)⊕ (6, 5, 3, 2)⊕ (6, 5, 4, 1)⊕ (6, 6, 2, 2)⊕ (6, 6, 4)⊕ (7, 3, 3, 3)

⊕ (7, 4, 3, 2)⊕ 2(7, 5, 3, 1)⊕ (7, 5, 4)⊕ (7, 6, 2, 1)⊕ (7, 6, 3)⊕ (7, 7, 1, 1)⊕ (8, 4, 3, 1)

⊕ (8, 5, 2, 1)⊕ (8, 5, 3)⊕ (8, 6, 2)⊕ (9, 3, 3, 1)⊕ (9, 5, 1, 1).

Therefore H̃3C17 = 0, the proposition follows.

Proposition 2.14. The homology groups of C3
18 are the expected ones.

Proof. By Theorem 2.10, we have H̃iC18 = 0 for i 6= 3, 4. It suffices to prove that H̃3C18 = 0.
By Proposition 2.13 and the long exact sequence (2.1) applied to n = 18, we have H̃3C17

maps surjectively onto Res H̃3C18. Since H̃3C17 = 0, the proposition follows.

Proposition 2.15. The homology groups of C3
19 are the expected ones.

Proof. By Theorem 2.10, we have H̃iC19 = 0 for i 6= 4, 5. Applying the equivariant long
exact sequence (2.1) with n = 19, Proposition 2.12 and Proposition 2.14, we have an exact
sequence

0→ Res H̃5C
3
19 → Ind H̃4C

3
16 → H̃4C

3
18 → Res H̃4C

3
19 → Ind H̃3C

3
16 → 0. (2.3)

From the computation of the Euler characteristic of C19, we get the expected values of
H̃4C19 and H̃5C19, called A and B. We have H̃5C19 = B + C and H̃4C19 = A + C for some
representation C, and an exact sequence

0→ ResC → X → X → ResC → 0

where

X = (4, 3, 3, 3, 3, 2)⊕ (5, 3, 3, 3, 3, 1)⊕ (5, 4, 3, 3, 2, 1)⊕ (5, 5, 3, 3, 1, 1)⊕ (5, 5, 4, 2, 1, 1)

⊕ (6, 3, 3, 3, 2, 1)⊕ (6, 4, 3, 3, 1, 1)⊕ (6, 5, 3, 2, 1, 1)⊕ (6, 5, 4, 1, 1, 1)⊕ (7, 3, 3, 3, 1, 1)

⊕ (7, 4, 3, 2, 1, 1)⊕ 2(7, 5, 3, 1, 1, 1)⊕ (7, 6, 2, 1, 1, 1)⊕ (8, 3, 3, 2, 1, 1)⊕ (8, 4, 3, 1, 1, 1)

⊕ (8, 5, 2, 1, 1, 1)⊕ (8, 6, 1, 1, 1, 1)⊕ (9, 3, 3, 1, 1, 1)⊕ (9, 4, 2, 1, 1, 1)⊕ (9, 5, 1, 1, 1, 1)

⊕ (10, 3, 2, 1, 1, 1)⊕ (10, 4, 1, 1, 1, 1)⊕ (11, 3, 1, 1, 1, 1)⊕ (12, 2, 1, 1, 1, 1).

Since there is no representation of S19 whose restriction can be mapped injectively into X,
we see that C = 0. The proposition follows.

Proposition 2.16. The homology groups of C3
20 are the expected ones.
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Proof. Applying the equivariant long exact sequence (2.1) with n = 20, Proposition 2.15 and
Proposition 2.14, we have exact sequences

0→ Res H̃iC
3
20 → 0

for i 6= 4, 5 and an exact sequence

0→ H̃5C
3
19 → Res H̃5C

3
20 → Ind H̃4C

3
17 → H̃4C

3
19 → Res H̃4C

3
20 → 0. (2.4)

Therefore, H̃iC
3
20 = 0 for i 6= 4, 5. From the computation of the Euler characteristics of C20,

we get the expected value of H̃4C20 is A = (8, 8, 4)⊕ (8, 6, 6). Let M = Sλ(V )⊕Sµ(V ) where
λ = (8, 8, 4) and µ = (8, 6, 6). By Theorem 1.6, K4,2(2) = 0 and K5,1(V, 2) = M + N for
some representation N . Moreover, using Macaulay2 to compute the dimensions of minimal
linear syzygies of the module ⊕∞k=0 Sym3k+2(V ) with dimV = 4, we get dimK6,0(V, 2) =
14003. Since ⊕∞k=0 Sym3k+2(V ) is a Cohen-Macaulay module of codimension 16 with h-vector
(10, 16, 1),

dimK5,1(V, 2) = 14003− 10 ·
(

16

6

)
+ 16 ·

(
16

5

)
−
(

16

4

)
= 1991.

Since dimM = 1991, we have K5,1(V, 2) ∼= M and so N = 0. By Theorem 1.6, H̃4C
3
20 = A.

The proposition follows.

Proposition 2.17. The homology groups of C3
21 are the expected ones.

Proof. By Theorem 2.10, H̃iC
3
21 = 0 for i 6= 4, 5. It suffices to show that H̃4C21 = 0.

Applying the long exact sequence (2.1) with n = 21 we have H̃4C20 maps surjectively onto
Res H̃4C21. The proposition follows from Proposition 2.16.

Proposition 2.18. The homology groups of C3
22 are the expected ones.

Proof. Applying the equivariant long exact sequence (2.1) with n = 22 we have exact se-
quences

0→ Res H̃iC
3
22 → 0

for i 6= 5, 6 and an exact sequence

0→ ResH6C
3
22 → IndH5C

3
19 → H̃5C

3
21 → ResH5C

3
22 → Ind H̃4C

3
19 → 0. (2.5)

Therefore, H̃iC
3
22 = 0 for i 6= 5, 6. From the computation of the Euler characteristic of

C22, we get the expected values of H̃5C22 and H̃6C22, called A and B. In other words,
H̃6C22 = B + C and H̃5C22 = A + C for some representation C. By Proposition 2.15 and
Proposition 2.17, the exact sequence (2.5) becomes

0→ ResC → X → X → ResC → 0
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where

X = IndH5C19 − ResB = (4, 3, 3, 3, 3, 3, 2)⊕ (5, 3, 3, 3, 3, 3, 1)⊕ (5, 4, 3, 3, 3, 2, 1)

⊕ (5, 5, 3, 3, 3, 1, 1)⊕ (5, 5, 4, 3, 2, 1, 1)⊕ (5, 5, 5, 3, 1, 1, 1)⊕ (6, 3, 3, 3, 3, 2, 1)

⊕ (6, 4, 3, 3, 3, 1, 1)⊕ (6, 5, 3, 3, 2, 1, 1)⊕ (6, 5, 4, 3, 1, 1, 1)⊕ (6, 5, 5, 2, 1, 1, 1)

⊕ (7, 3, 3, 3, 3, 1, 1)⊕ (7, 4, 3, 3, 2, 1, 1)⊕ 2(7, 5, 3, 3, 1, 1, 1)⊕ (7, 5, 4, 2, 1, 1, 1)

⊕ (7, 5, 5, 1, 1, 1, 1)⊕ (7, 6, 3, 2, 1, 1, 1)⊕ (7, 6, 4, 1, 1, 1, 1)⊕ (7, 7, 3, 1, 1, 1, 1)

⊕ (8, 3, 3, 3, 2, 1, 1)⊕ (8, 4, 3, 3, 1, 1, 1)⊕ (8, 5, 3, 2, 1, 1, 1)⊕ (8, 5, 4, 1, 1, 1, 1)

⊕ (8, 6, 3, 1, 1, 1, 1)⊕ (8, 7, 2, 1, 1, 1, 1)⊕ (9, 3, 3, 3, 1, 1, 1)⊕ (9, 4, 3, 2, 1, 1, 1)

⊕ 2(9, 5, 3, 1, 1, 1, 1)⊕ (9, 6, 2, 1, 1, 1, 1)⊕ (9, 7, 1, 1, 1, 1, 1)⊕ (10, 3, 3, 2, 1, 1, 1)

⊕ (10, 4, 3, 1, 1, 1, 1)⊕ (10, 5, 2, 1, 1, 1, 1)⊕ (10, 6, 1, 1, 1, 1, 1)⊕ (11, 3, 3, 1, 1, 1, 1)

⊕ (11, 4, 2, 1, 1, 1, 1)⊕ (11, 5, 1, 1, 1, 1, 1)⊕ (12, 3, 2, 1, 1, 1, 1)⊕ (12, 4, 1, 1, 1, 1, 1)

⊕ (13, 3, 1, 1, 1, 1, 1)⊕ (14, 2, 1, 1, 1, 1, 1).

Since there is no representation of S22 whose restriction can be mapped injectively into X,
we see that C = 0. The proposition follows.

Proposition 2.19. The homology groups of C3
23 are the expected ones.

Proof. Applying the equivariant long exact sequence (2.1) with n = 23 we have exact se-
quences

0→ Res H̃iC
3
23 → 0

for i 6= 5, 6, and an exact sequence

0→ H6C
3
22 → ResH6C

3
23 → Ind H̃5C

3
20 → H̃5C

3
22 → Res H̃5C

3
23 → Ind H̃4C

3
20 → 0. (2.6)

Therefore, H̃iC
3
23 = 0 for i 6= 5, 6. From the computation of the Euler characteristic of C23,

the expected value of H̃5C23 is

A = (8, 6, 6, 3)⊕ (8, 7, 6, 2)⊕ (8, 8, 4, 3)⊕ (8, 8, 5, 2)⊕ (8, 8, 6, 1)⊕ (9, 6, 6, 2)

⊕ (9, 7, 6, 1)⊕ (9, 8, 4, 2)⊕ (9, 8, 5, 1)⊕ (9, 8, 6)⊕ (10, 6, 6, 1)⊕ (10, 8, 4, 1)

Let M be the corresponding representation of GL(V ) with dimV = 4. By Theorem 1.6,
K6,1

∼= M ⊕ N for some representation N . Moreover, using Macaulay2 to compute the
dimensions of minimal linear syzygies of the module⊕∞k=0 Sym3k+2(V ) with dimV = 4, we get
dimK7,0(V, 2) = 5400. Since ⊕∞k=0 Sym3k+2(V ) is a Cohen-Macaulay module of codimension
16 with h-vector (10, 16, 1) and H̃4C

3
23 = 0, we have

dimK6,1(V, 2) = 10 ·
(

16

7

)
− 16 ·

(
16

6

)
+

(
16

5

)
− 5400 = 14760.

Finally, note that dimM = 14760, thus N = 0. The proposition follows.
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We are ready for the proof of Theorem 1.9. We restate it here for convenience.

Theorem 2.20. The third Veronese embeddings of projective spaces satisfy property N6.

Proof. It remains to prove that the only non-zero homology groups of the matching complex
C3

24 is H̃6C
3
24. Applying the equivariant long exact sequence (2.1) with n = 24 we have exact

sequences
0→ Res H̃iC

3
24 → 0

for i 6= 5, 6, and an exact sequence

0→ H̃6C
3
23 → Res H̃6C

3
24 → Ind H̃5C

3
21 → H̃5C

3
23 → Res H̃5C

3
24 → 0.

Therefore, H̃iC
3
24 = 0 for i 6= 5, 6 and H̃5C

3
23 maps surjectively onto Res H̃5C

3
24. Moreover,

by a result of Ottaviani and Paoletti [35], the third Veronese embedding of P3 satisfies
property N6. By Theorem 1.6, H̃5C

3
24 does not contain any irreducible representations whose

corresponding partitions have at most 4 rows. By Proposition 2.19, H̃5C
3
23 contains only

irreducible representations whose corresponding partitions have at most 4 rows, thus H̃5C
3
24

is zero.

Note that if we use the following set of equivariant long exact sequences we can prove
Theorem 1.9 without knowing the homology groups of C3

23. The idea for constructing such
long exact sequences also come from Bouc [5] (see also [28]). Assume that d ≥ 3, and n ≥ 3d
(the sequences will be different in the case d = 2). Let a, b be two fixed element of [n], for
example a = 1 and b = 2. We have the following filtration of Cd

n.

Cd
n−2 ⊂ ∆0 ⊂ ∆1 ⊂ Cd

n

where
∆1 = Cd

n \ {f : ax, by ∈ f for some x, y}.

and
∆0 = Cd

n \ {f : ax or by ∈ f for some x, y}.

Since Cd
n/∆1

∼= {axbyg}, ∆1/∆0
∼= {axg or byg} and ∆0/C

d
n−2 = {abzg}, we have the

following equivariant long exact sequences of representations of Sn−2

· · · → H̃i(∆1)→ Res H̃i(C
d
n)→ Ind Ind H̃i−2C

d
n−2d → H̃i−1(∆1)→ · · · (2.7)

· · · → H̃i(∆0)→ H̃i(∆1)→ 2 Ind H̃i−1C
d
n−d−1 → H̃i−1(∆0)→ · · · (2.8)

· · · → H̃i(Cn−2)→ H̃i(∆0)→ Ind H̃i−1(Cn−d)→ H̃i−1Cn−2 → · · · (2.9)

where for simplicity we have omitted the subscripts in the operators Ind and Res. It is clear
from the sequences what the inductions and restrictions are.
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2.4 Fourth Veronese embeddings of projective spaces

In this section, using the long exact sequence (1.3) we prove that the naturality property fails
for general matching complexes. Using an idea similar to section 2.3, one might hope to be
able to settle the Ottaviani-Paoletti conjecture by induction, and computation of the Euler
characteristic of matching complexes C4

N for N ≤ 44, which is still doable by our machine.
Nevertheless, one should also note that, in Proposition 2.16 and Proposition 2.19, we need to
compute certain Betti numbers to determine the exact values of the corresponding homology
groups. The computation of the Betti numbers is however out of reach of computer very
quickly. This fact prevents us from determining the precise values of certain homology groups
of C4

N by merely these machineries. Also, the failure of the naturality property for general
matching complexes make the situation more complicated. We also want to note that the
series of exact sequences (2.7)-(2.9) introduced in the last paragraph of the previous section
does not help very much in understanding the homology of C4

N .

Proposition 2.21. The naturality property fails for general matching complexes C4
N .

Proof. If the naturality fails for C4
n for some n ≤ 25, then we are done. Assume that the

naturality holds for all C4
n for n ≤ 25. Applying the equivariant long exact sequence (1.3)

with n = 26, we have an exact sequence

0→ H̃5C25 → Res H̃5C26 → Ind H̃4C22 → H̃4C25 → Res H̃4C26 → Ind H̃3C22 → 0.

In particular, Res H̃4C26 maps surjectively onto Ind H̃3C22. Moreover, from the computation
of the Euler characteristic of C4

26, we get the expected value A of H̃4C26. Since ResA does
not map surjectively onto Ind H̃3C22, we must have H̃4C26 = A + C for some non-zero
representation C. In other words, C is a common representation of H̃4C26 and H̃5C26.
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Chapter 3

Shifted families of affine semigroup
rings

3.1 Double cone structure on simplicial complexes

∆l,r(j)

In this section, we prove the double cone structure of the squarefree divisor simplicial com-
plexes ∆l,r(j) defined below.

The following notation from section 1.3 and facts will be used throughout the chapter.

• For each i = 1, ..., n, let bi = an − ai. In particular, bn = 0.

• Let d be the greatest common divisor of b1, ..., bn−1.

• Let c be the conductor of the semigroup generated by b1/d, ..., bn−1/d.

• Let B =
∑n

i=1 bi + n+ d.

Let

N = max

{
b1(n+ reg J(a)), b1b2

(
dc+ b1

bn−1

+B

)}
. (3.1)

Fix j > N . Let k = an + j. Let e = d/ gcd(d, k). Note that d|b1, so e = d/ gcd(d, k+ b1).
Since k > N , it follows that k satisfies

k/b1 > n+ reg J(a), (3.2)

and
k

b1b2

>
dc+ b1

bn−1

+B. (3.3)
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We will use the following notation when dealing with faces of simplicial complexes on
the vertices {0, ..., n}. If F ⊆ {0, ..., n}, let |F | be the cardinality of F . Moreover, for
i ∈ {0, ..., n}, let

δiF =

{
0 if i /∈ F,
1 if i ∈ F.

Finally, the following representation of a natural number will be used frequently in the
paper. Let u be a natural number such that u is divisible by d and u ≥ dc. We can write
u = tb1 + v for some non-negative integer numbers t and v such that dc ≤ v < dc + b1.
Because d|b1, it follows that d|v. Since v/d ≥ c, the conductor of the numerical semigroup
generated by b1/d, ..., bn−1/d, we can write

v/d = w1(b1/d) + ...+ wn−1(bn−1/d),

for non-negative integers w1, ..., wn−1. If we denote by b = (b1, ..., bn−1)t and w = (w1, ..., wn−1)t

the column vectors with coordinates b1, ..., bn−1 and w1, ..., wn−1 respectively, then we have
the following representation of u = tb1 + v as

u = tb1 + w · b, (3.4)

where w · b =
∑n−1

i=1 wibi is the usual dot product of these two vectors. With this represen-
tation, if we denote by |w| =

∑n−1
i=1 wi then

t <
u

b1

and |w| < dc+ b1

bn−1

. (3.5)

Note that Ī(a + j) is the defining ideal of the semigroup ring K[a + j] where a + j is the
additive semigroup generated by vectors w0 = (k, 0),w1 = (b1, k − b1), ...,wn = (0, k). Note
that |wi| = k for all i = 0, ..., n. Thus each element v of the semigroup a + j corresponds
uniquely to a pair (l, r) where l = |v|/k and r is the first coordinate of v. The definition of
squarefree divisor simplicial complex in Definition 1.1 translates to

Definition 3.1. For each pair of natural numbers (l, r), let ∆l,r(j) be the simplicial complex
on the vertices {0, ..., n} such that F ⊆ {0, ..., n} is a face of ∆l,r(j) if and only if the equation

y0k +
n∑
i=1

yibi = r

has a non-negative integer solution y = (y0, ..., yn) such that |y| =
∑n

i=0 yi = l and F ⊆
supp y = {i : yi > 0}.

By Theorem 1.2, if we consider S = K[x0, . . . , xn] with standard grading deg xi = 1 then
the graded Betti numbers of Ī(a + j) are given by
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Proposition 3.2. For each i and each l, we have

βil(Ī(a + j)) = dimK TorSi (Ī(a + j), K)l =
∑
r≥0

dimK H̃i(∆l,r(j)).

An easy consequence of inequality (3.2) is the separation of the Betti table of Ī(a + j)
when j > N .

Proposition 3.3. Assume that j > N . Any minimal binomial generator of Ī(a+j) involving
x0 has degree greater than n + reg J(a). In particular, any syzygy of Ī(a + j) of degree at
most n+ reg J(a) is a syzygy of J(a).

Proof. Assume that f = xu00 x
u1
1 ...x

un
n − x

v1
1 ...x

vn
n is a minimal binomial generator of Ī(a + j).

We have
u0k + u1b1 + ...+ unbn = v1b1 + ...+ vnbn.

Since u0 > 0, it follows that v1b1 + ...+ vnbn ≥ k. By inequality (3.2),

deg f =
n∑
i=1

vi ≥ k/b1 > n+ reg J(a).

The second part follows immediately.

In the remaining of the section, we fix j > N , and simply denote by ∆l,r the simplicial
complex ∆l,r(j). We will prove that in the case l > n + reg J(a) and ∆l,r has non-trivial
homology groups, ∆l,r is a double cone, the union of a cone over the vertices {0, n} and
another cone over the vertex 1.

Our first technical lemma says that the range for r so that ∆l,r has non-trivial homology
groups is quite small.

Lemma 3.4. Assume that j > N . For any l > n + reg J(a), if ∆l,r(j) has non-trivial
homology groups then ek ≤ r < ek + dc + B and l ≥ r/b1. In particular, any solution
y = (y0, ..., yn) of the equation y0k + y1b1 + ...+ ynbn = r with y0 > 0 satisfies y0 = e.

Proof. Since l > n + reg J(a), if ∆l,r has non-trivial homology groups then it supports a
nonzero syzygies of Ī(a+j) in degree larger than n+reg J(a). By Proposition 3.3, ∆l,r must
have at least a facet containing 0. By Definition 3.1, the equation

y0k + y1b1 + ...+ ynbn = r (3.6)

has a non-negative integer solution y = (y0, ..., yn) such that y0 > 0. Moreover, for ∆l,r to
have non-trivial homology groups, it must have at least a facet that does not contain {0}.
Again, by Definition 3.1, the equation (3.6) has a solution z = (z0, ..., zn) such that z0 = 0
and

∑n
i=1 zi = l. This implies that d|r and l ≥ r/b1. Therefore, we must have d|y0k or e|y0.

Thus, r ≥ y0k ≥ ek.
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Now assume that r ≥ ek+ dc+B. Since r− ek−
∑n−1

i=1 bi > dc, as in (3.4), we can write

r = ek +
n−1∑
i=1

bi + tb1 + w · b (3.7)

with

|w| < dc+ b1

bn−1

and t <
r − ek
b1

. (3.8)

By inequality (3.3), it follows that

dc+ b1

bn−1

+B +
r − ek
b1

<
k

b1b2

+
r − ek
b1

≤ r

b1

≤ l.

Together with (3.8), this implies

|w|+ e+ n+ t < l.

Therefore, the equation (3.6) has a solution u = (u0, ..., un) such that u0 = e, u1 =
t+ 1 + w1, ui = wi + 1 for i = 2, ..., n− 1 and un = 1 + l − (t+ e+ n+ |w|). In particular,
ui > 0 for all i; consequently, by Definition 3.1, ∆l,r is the simplex {0, ..., n} which has trivial
homology groups. This is a contradiction.

Finally, any solution y = (y0, ..., yn) of the equation (3.6) with y0 > 0 satisfies

y0 ≤
r

k
<
ek + dc+B

k
< e+ 1.

Since e|y0, it follows that y0 = e.

The following theorem is the main technical result of the chapter where we prove that if
l > n+ reg J(a) and ∆l,r(j) has non-trivial homology groups then ∆l,r(j) has a structure of
a double cone.

Theorem 3.5 (Double cone structure). Assume that j > N , l > n + reg J(a) and ∆l,r(j)
has non-trivial homology groups. Given a facet F of ∆l,r(j), one either has 0 /∈ F and 1 ∈ F ,
or 0 ∈ F and n ∈ F .

Proof. Assume that there exists a facet F of ∆l,r such that 0, 1 /∈ F . By Definition 3.1, the
equation

y1b1 + ...+ ynbn = r (3.9)

has a solution y = (y1, ..., yn) such that supp y = F , y1 = 0 and
∑n

i=1 yi = l. Thus l ≥ r
b2

.
As in (3.4), we can write

r =
∑
i∈F

bi + tb1 + w · b
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with

|w| < dc+ b1

bn−1

and t <
r

b1

.

Together with inequality (3.3), this implies

|w|+ n+ t <
dc+ b1

bn−1

+B +
r

b1

<
k

b1b2

+
r

b1

≤ r

b1b2

+
r

b1

≤ r

b2

≤ l.

Note that t > 0, since b1 + ... + bn−1 + dc + b1 < k ≤ r. Therefore, there is a solution
z = (z1, ..., zn) of the equation (3.9) such that z1 = t + w1, zi = δiF + wi for i = 2, ..., n− 1,
and zn = l − (|w|+ t+ |F |). In particular, supp z ) supp y which is a contradiction.

Now assume that F is a facet of ∆l,r such that 0 ∈ F and n /∈ F . By Definition 3.1 and
Lemma 3.4, the equation

ek + y1b1 + ...+ ynbn = r

has a solution y = (y1, ..., yn) such that yn = 0 and
∑n−1

i=1 yi = l − e. Moreover, by Lemma
3.4, we have l ≥ r

b1
. By inequality (3.3), it follows that(

r

b1

− e
)
bn−1 ≥

(
k

b1

− e
)
bn−1 >

((
dc+ b1

bn−1

+B

)
b2 − e

)
bn−1 ≥ dc+B.

Therefore,

r = ek +
n∑
i=1

yibi ≥ ek +

(
r

b1

− e
)
bn−1 > ek + dc+B,

which is a contradiction to Lemma 3.4.

One of the surprising consequences of the double cone structure is the following charac-
terization of minimal inhomogeneous generators of I(a + j) when j � 0.

Corollary 3.6. Assume that j > N . Let e = d/ gcd(d, an + j). Any minimal binomial
inhomogeneous generator of I(a + j) is of the form

xu1f − gxvn

where u, v > 0, f and g are monomials in the variables x2, ..., xn−1, and moreover, u+deg f =
v + deg g + e.

Proof. By Lemma 3.4 and the double cone structure, any minimal binomial homogeneous
generator of Ī(a + j) involving an x0 has the form

xu1f − xe0gxvn

where u, v > 0 and f, g are monomials in x2, ..., xn−1. The corollary follows since any
minimal binomial inhomogeneous generator of I(a + j) is obtained from dehomogenization
of a binomial homogeneous generator of Ī(a + j) involving an x0.
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3.2 Periodicity of Betti numbers of monomial curves

In this section we prove the Herzog-Srinivasan conjecture. It is accomplished by Theorem
3.12 where we prove that when j > N , the Betti table of Ī(a + j + b1) is obtained from the
Betti table of Ī(a+j) by shifting the high degree part by e rows and Theorem 3.21 where we
prove that total Betti numbers of I(a + j) and those of Ī(a + j) are equal. As in section 3.1,
we fix j > N and denote by ∆l,r(j) the squarefree divisor simplicial complexes associated to
elements of the semigroup a + j and ∆l,r(j + b1) the squarefree divisor simplicial complexes
associated to elements of the semigroup a + j + b1.

As an appliciation of the double cone structure, we will prove that if l > n + reg J(a)
and ∆l,r has non-trivial homology groups, then ∆l,r(j) = ∆l+e,r+eb1(j + b1) as simplicial
complexes. First we prove that if l > n + reg J(a) and ∆l,r(j) has non-trivial homology
groups then l is controlled in a small range by r.

Lemma 3.7. Assume that j > N . If l > n+ reg J(a) and ∆l,r(j) has non-trivial homology
groups, then

l <
r

b1

+
dc+ b1

bn−1

+ n.

Proof. In order for ∆l,r(j) to have non-trivial homology groups, there must exist at least a
facet F of ∆l,r(j) such that n /∈ F . By Theorem 3.5, this implies that 0 /∈ F . Therefore, by
Definition 3.1, the equation

y1b1 + ...+ ynbn = r (3.10)

has a solution y = (y1, ..., yn) such that supp y = F , yn = 0,
∑n−1

i=1 yi = l. As in (3.4), we
can write

r =
∑
i∈F

bi + tb1 + w · b,

with

|w| < dc+ b1

bn−1

and t <
r

b1

.

Therefore, if l ≥ r
b1

+ dc+b1
bn−1

+ n then t + |w| + n < l. In particular, the equation (3.10) has

a solution z1 = t + w1, zi = δiF + wi for 2 ≤ i ≤ n − 1 and zn = l − t − |w| − |F | > 0. By
Definition 3.1, F ∪ {n} ⊆ supp z is a face of ∆l,r(j), which is a contradiction.

The following two lemmas are the first indication of a relation between ∆l,r(j) and
∆l+e,r+eb1(j + b1).

Lemma 3.8. Assume that j > N . If l > n+ reg J(a) and ∆l,r(j) has non-trivial homology
groups, then

∆l,r(j) ⊆ ∆l+e,r+eb1(j + b1).
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Proof. Let F be a facet of ∆l,r(j). We need to prove that F ∈ ∆l+e,r+eb1(j + b1). If 0 /∈ F
then by Definition 3.1, the equation

y1b1 + ...+ ynbn = r

has a solution y = (y1, ..., yn) such that supp y = F and
∑n

i=1 yi = l. Therefore, the equation

y1b1 + ...+ ynbn = r + eb1

has a solution z = (y1 + e, y2, ..., yn) such that supp z ⊇ F and
∑n

i=1 zi = l+ e. By Definition
3.1, F ∈ ∆l+e,r+eb1(j + b1).

If 0 ∈ F , then by Definition 3.1 and Lemma 3.4, the equation

y0k + y1b1 + ...+ ynbn = r

has a solution y = (e, y1, ..., yn) such that supp y = F and
∑n

i=0 yi = l. Thus the equation

y0(k + b1) + y1b1 + ...+ ynbn = r + eb1

has a solution z = (e, y1, ..., yn−1, yn + e) such that supp z ⊇ F and
∑n

i=0 zi = l + e. By
Definition 3.1, F ∈ ∆l+e,r+eb1(j + b1).

Similarly, we have

Lemma 3.9. Assume that j > N . If l > n + reg J(a) and ∆l,r(j + b1) has non-trivial
homology groups, then

∆l−e,r−eb1(j) ⊆ ∆l,r(j + b1).

Proof. Let F be a facet of ∆l−e,r−eb1(j). We need to prove that F ∈ ∆l,r(j + b1). If 0 /∈ F
then by Definition 3.1, the equation

y1b1 + ...+ ynbn = r − eb1

has a solution y = (y1, ..., yn) such that supp y = F and
∑n

i=1 yi = l − e. Therefore, the
equation

y1b1 + ...+ ynbn = r

has a solution z = (y1 + e, y2, ..., yn) such that supp z ⊇ F and
∑n

i=1 zi = l. By Definition
3.1, F ∈ ∆l,r(j + b1).

If 0 ∈ F then by Definition 3.1, the equation

y0k + y1b1 + ...+ ynbn = r − eb1

has a solution y = (y0, ..., yn) such that supp y = F and
∑n

i=0 yi = l − e. Since ∆l,r(j + b1)
has non-trivial homology group, the proof of Lemma 3.4 shows that d|r, thus e|y0. Also, by
Lemma 3.4, r < e(k + b1) + dc + B, thus y0k ≤ r − eb1 < ek + dc + B. This implies that
y0 = e. Therefore, the equation

y0(k + b1) + y1b1 + ...+ ynbn = r

has a solution z = (e, y1, ..., yn−1, yn+e) such that supp z ⊇ F and
∑n

i=0 zi = l. By Definition
3.1, F ∈ ∆l,r(j + b1).
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Proposition 3.10. Assume that j > N . If l > n + reg J(a) and ∆l,r(j) has non-trivial
homology groups, then

∆l,r(j) = ∆l+e,r+eb1(j + b1).

Proof. By Lemma 3.8, it suffices to show that for any facet F of ∆l+e,r+eb1(j + b1), we have
F ∈ ∆l,r(j).

If 0 /∈ F , then by Definition 3.1, the equation

y1b1 + ...+ ynbn = r + eb1

has a solution y = (y1, ..., yn) such that supp y = F and
∑n

i=1 yi = l+e. Assume that y1 ≤ e,
then

r =
n∑
i=1

yibi − eb1 ≤
n∑
i=2

yibi < (l + e)b2.

By Lemma 3.7 and inequality (3.3), it follows that

r < (l + e)b2 <

(
r

b1

+
dc+ b1

bn−1

+ n+ e

)
b2 <

(
r

b1

+
r

b1b2

)
b2 ≤ r.

This is a contradiction. Therefore, we must have y1 > e. This implies that the equation

y1b1 + ...+ ynbn = r

has the solution z = (y1 − e, ..., yn) such that supp z = supp y = F and
∑n

i=1 zi = l. By
Definition 3.1, F ∈ ∆l,r(j).

If 0 ∈ F , then by Definition 3.1 and Lemma 3.4, the equation

e(k + b1) + y1b1 + ...+ ynbn = r + eb1

has a solution y = (y1, ..., yn) such that {0} ∪ supp y = F and e +
∑n

i=1 yi = l + e. Assume
that yn ≤ e. This implies that

∑n−1
i=1 yi ≥ l − e. By Lemma 3.4, and inequality (3.3), it

follows that

r − ek =
n−1∑
i=1

yibi ≥ (l − e)bn−1 ≥
(
r

b1

− e
)
bn−1

> b2(dc+ b1 +Bbn−1)− ebn−1 > dc+B.

In other words, r > ek + dc + B. By Lemma 3.4, ∆l,r(j) has trivial homology, which is a
contradiction. Thus, yn > e. In particular, the equation

ek + y1b1 + ...+ ynbn = r

has the solution z = (y1, ..., yn−1, yn− e) such that supp z = supp y = F and e+
∑n

i=1 zi = l.
Therefore, by Definition 3.1, F ∈ ∆l,r(j).
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Proposition 3.11. Assume that j > N . If l > n+ reg J(a) and ∆l,r(j + b1) has non-trivial
homology groups, then

∆l,r(j + b1) = ∆l−e,r−eb1(j).

Proof. The proof is similar to that of Proposition 3.10.

The equality of the simplicial complexes ∆l,r(j) and ∆l+e,r+eb1(j + b1) shows that the
Betti table of Ī(a + j + b1) is obtained from the Betti table of Ī(a + j) by shifing the high
degree part by e rows as follows.

Theorem 3.12. Assume that j > N . If l ≤ n+ reg J(a), then

βi,l(Ī(a + j) = βi,l(Ī(a + j + b1).

If l > n+ reg J(a), then

βi,l(Ī(a + j)) = βi,l+e(Ī(a + j + b1)).

Proof. First part follows since syzygies of Ī(a + j) and Ī(a + j + b1) of degrees at most
n+ reg J(a) are the syzygies of J(a) by Proposition 3.3.

Assume that l > n + reg J(a). By Proposition 3.10, if ∆l,r(j) has non-trivial homology
groups, then ∆l,r(j) = ∆l+e,r+eb1(j + b1). Thus, by Proposition 3.2, it follows that

βi,l(Ī(a + j)) =
∑
r≥0

dimK H̃i(∆l,r(j))

≤
∑
r≥0

dimK H̃i(∆l+e,r+eb1(j + b1))

≤ βi,l+e(Ī(a + j + b1)).

Moreover, by Proposition 3.11, if ∆l+e,r(j + b1) has non-trivial homology groups, then
∆l+e,r(j+ b1) = ∆l,r−eb1(j). By Lemma 3.4, if ∆l+e,r(j+ b1) has non-trivial homology groups
then r ≥ ek + eb1. Thus, by Proposition 3.2, it follows that

βi,l+e(Ī(a + j + b1)) =
∑

r≥ek+eb1

dimK H̃i(∆l+e,r(j + b1))

≤
∑

r≥ek+eb1

dimK H̃i(∆l,r−eb1(j))

≤ βi,l(Ī(a + j)).

Therefore, βi,l(Ī(a + j)) = βi,l+e(Ī(a + j + b1)).

Remark 3.13. Note that to establish results in this section and section 3.1, we only require
that inequality (3.2) and inequality (3.3) hold true for k. Since these inequalities are still
valid when we replace k by k− an, the periodicity of Betti numbers of Ī(a + j) happens when
j > N − an.
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As a corollary, we have

Corollary 3.14. If j > N , then

reg Ī(a + j + b1) = reg Ī(a + j) + e.

In particular, reg Ī(a + j) is quasi-linear in j when j > N .

Proof. By Theorem 3.12, it suffices to show that there is at least one minimal binomial
generator of Ī(a + j) involving x0. This is always the case, since I(a + j) always contains at
least one inhomogeneous minimal generator.

In the remaining of the section, we establish the equality of total Betti numbers of Ī(a+j)
and I(a+j). We simply denote ∆l,r(j) by ∆l,r. Denote by (a+j) the semigroup generated by
k−b1, ..., k−bn−1, k. The ideal I(a+j) is the defining ideal of the semigroup ring K[(a+j)].
In this setting, Definition 1.1 gives

Definition 3.15. For each m ∈ (a + j), let ∆m be the simplicial complex on the vertices
{1, ..., n} such that F ⊆ {1, ..., n} is a face of ∆m if and only if the equation

n∑
i=1

yi(k − bi) = m (3.11)

has a non-negative integer solution y = (y1, ..., yn) such that F ⊆ supp y = {i : yi > 0}.

In considering the Betti numbers of I(a + j), we will use the following grading coming
from the semigroup (a + j).

Definition 3.16 ((a + j)-grading). The (a + j)-grading on R = K[x1, ..., xn] is given by
deg xi = ai + j = k − bi.

The ideal I(a + j) is homogeneous when R is endowed with (a + j)-grading, Theorem
1.2 gives

Proposition 3.17. For each i and each m, we have

βim(I(a + j)) = dimK TorRi (I(a + j), K)m = dimK H̃i(∆m),

where TorRi (I(a + j), K)m is the (a + j)-degree m part of TorRi (I(a + j), K).

Note that for each pair (l, r) corresponding to an element of a + j, lk − r is an element
of (a + j). To prove the equality of total Betti numbers of I(a + j) and of Ī(a + j), we prove
the equality of homology groups of ∆lk−r and of ∆l,r(j). More precisely, applying the double
cone structure theorem, we will prove that for each l > n+reg J(a), if ∆l,r(j) has non-trivial
homology groups then ∆lk−r is obtained from ∆l,r(j) by deleting the vertex 0. The double
cone structure again applies to prove that ∆l,r(j) and ∆m have the same homology groups.

Similar to Proposition 3.3, we first establish the separation in the Betti table of I(a + j).
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Proposition 3.18. Assume that j > N . Any minimal binomial inhogeneous generator of
I(a + j) has (a + j)-degree larger than k(n+ reg J(a)). In particular, any syzygy of I(a + j)
of (a + j)-degree at most k(n+ reg J(a)) is a syzygy of J(a).

Proof. By Theorem 3.12 and Remark 3.13, each inhomogeneous generator of I(a + j) has
degree at least n+ reg J(a) + e. Thus its (a + j)-degree is at least

(n+ e+ reg J(a))(k − b1) > k(n+ reg J(a))

since k = an + j > b1 +N , and by the choice of N in (3.1),

e(k − b1) ≥ eN > b1(n+ reg J(a)).

The second statement follows immediately.

The following technical lemma says that for each pair (l, r) for which l > n + reg J(a)
and ∆l,r(j) has non trivial homology groups, the corresponding simplicial complex ∆lk−r is
obtained from ∆l,r(j) by the deletion of the vertex 0. From Theorem 3.5, we see that ∆l,r(j)
and ∆lk−r have the same homology groups.

Lemma 3.19. Assume that j > N , l > n + reg J(a) and ∆l,r(j) has non-trivial homology
groups. Let m = lk − r. If (y1, ..., yn) is a non-negative integer solution of (3.11) then∑n

i=1 yi = l− e or
∑n

i=1 yi = l. In particular, ∆m is obtained from ∆l,r(j) by the deletion of
the vertex 0.

Proof. Note that
∑n

i=1 yi(k − bi) = lk − r is equivalent to(
n∑
i=1

yi − l

)
k =

n∑
i=1

yibi − r.

Since the right hand side is divisible by d, the left hand side is divisible by d. Therefore∑n
i=1 yi− l is divisible by e. Thus it suffices to show that

∑n
i=1 yi ≥ l−e and

∑n
i=1 yi < l+e.

By inequality (3.3), it follows that

n∑
i=1

yi ≥
lk − r
k
≥ lk − ek −B − dc

k
> l − e− 1.

Moreover, from the equation
∑n

i=1 yi(k − bi) = lk − r, it follows that

n∑
i=1

yi ≤
lk − r
k − b1

.

To prove that lk−r
k−b1 < l + e is equivalent to prove that

lb1 + eb1 < r + ek.
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This follows from Lemma 3.7, and inequality (3.3) since

lb1 + eb1 < r +

(
dc+ b1

bn−1

+ n+ e

)
b1 < r +

k

b1b2

b1 ≤ r + ek.

Let ∆ be the simplicial complex obtained by deleting the vertex 0 of the simplicial
complex ∆l,r. From Definition 3.1 and Definition 3.15, ∆ ⊆ ∆m. It suffices to show that
∆m ⊆ ∆. Let F be any facet of ∆m. By Definition 3.15, there exists a solution (y1, ..., yn) of
the equation

∑n
i=1 yi(k − bi) = m such that supp y = F . We have two cases:

If
∑n

i=1 yi = l, then y is also a solution of the equation
∑n

i=1 yibi = r. By Definition 3.1,
F is a face of ∆l,r which is also a face of ∆.

If
∑n

i=1 yi = l− e, then z = (e, y1, ..., yn) is a solution of the equation y0k+
∑n

i=1 yibi = r
such that

∑n
i=0 zi = l. By Definition 3.1, F ∪ {0} is a face of ∆l,r, thus F is a face of ∆.

Lemma 3.20. Assume that j > N , l1, l2 > n + reg J(a) and ∆l1,r1, ∆l2,r2 have non-trivial
homology groups. If (l1, r1) 6= (l2, r2), then l1k − r1 6= l2k − r2.

Proof. Assume that l1k − r1 = l2k − r2. It follows that k|r1 − r2. Moreover, by Lemma 3.4,
we have

ek ≤ r1, r2 ≤ ek + dc+B.

Together with inequality (3.3) this implies

|r1 − r2| ≤ dc+B < k.

Thus r1 = r2 and l1 = l2.

Theorem 3.21. Assume that j > N . For each i, βi(Ī(a + j)) = βi(I(a + j)).

Proof. Since I(a + j) is the dehomogenization of Ī(a + j), βi(Ī(a + j)) ≥ βi(I(a + j)).
Moreover, by Theorem 3.5 and Lemma 3.19, we have if l > n+reg J(a) and ∆l,r has non-

trivial homology groups then ∆l,r and ∆lk−r have isomorphic homology groups. Together
with Proposition 3.17 and Proposition 3.2, we have for each i,

βi(I(a + j)) =
∑
m≥0

dimK H̃i(∆m)

=
∑

m≤k(n+reg J(a))

dimK H̃i(∆m) +
∑

m>k(n+reg J(a))

dimK H̃i(∆m)

≥
∑

l≤n+reg J(a)

dimK H̃i(∆l,r) +
∑

l>n+reg J(a)

dimK H̃i(∆l,r)

=
∑
l,r

dimK H̃i(∆l,r) = βi(Ī(a + j))

Therefore, βi(Ī(a + j)) = βi(I(a + j)).
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We are now ready for a proof of the Herzog-Srinivasan conjecture. For convenience we
restate it here.

Theorem 3.22. The Betti numbers of I(a + j) are eventually periodic in j with period
an − a1.

Proof. Fix j > N . By Theorem 3.21, for each i, βi(I(a + j)) = βi(Ī(a + j)). By Theorem
3.12, βi(Ī(a + j)) = βi(Ī(a + j + b1)). Thus the Betti numbers of I(a + j) are equal to the
corresponding Betti numbers of I(a + j + b1).

As a corollary of Theorem 3.22, the Betti numbers of any monomial curve I(a) is bounded
by a function of n and b1 = an − a1.

Corollary 3.23. There exists a function B(n, b) such that for any monomial curve I(a)
whose corresponding sequence a = (a1, ..., an) satisfies an − a1 ≤ b, we have

βi(I(a)) ≤ B(n, b)

for any i.

Proof. For each n and b there are only finitely many sequences of differences (b1, ..., bn−1)
such that bn−1 < · · · < b1 ≤ b. By Theorem 3.22, the Betti numbers of I(a) is bounded by
the maximum of the Betti numbers of I((j, j+ bn−1, ..., j+ b1)) for 1 ≤ j ≤ N . The corollary
follows.

3.3 Periodicity in the case of Bresinsky’s sequences

Applying the results in previous sections, in this section we will analyze the number of
minimal generators of I(a + j) where a is a Bresinsky’s sequence. The main result of this
section is Proposition 3.27 where we prove that the period b1 of the eventual periodicity of
I(a + j) is exact in the case of Bresinsky’s sequences.

It is worth noting that, the period of the periodicity of all the Betti numbers coincide with
that of the number of minimal generators. From the description of the minimal generators
of monomial curves [23], [36], the period b1 are also exact in these cases.

Recall from [6] the following definition of sequences of integers. For each h, let ah =
((2h−1)2h, (2h−1)(2h+ 1), 2h(2h+ 1), 2h(2h+ 1) + 2h−1) be a Bresinsky sequence. Since
the minimal homogeneous generators of I(ah + j) are the same when j � 0, it suffices to
consider the number of minimal inhomogeneous generators of I(ah + j) when j � 0. For an
ideal I, we denote by µ′(I) the number of minimal inhomogeneous generators of I.

Fix h ≥ 2. We simply denote ah by a. In this case, we have b1 = 6h − 1, b2 = 4h,
b3 = 2h− 1 and B = 12h+ 3. Note that R = K[x1, x2, x3, x4].

Lemma 3.24. If j ≥ 4b1b2(b2 + 1) then µ′(I(a + j)) = µ′(I(a + j + b1)) ≤ 6h+ 1.
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Proof. We first compute the number N in equation (3.1) in this situation. Note that x2x3−
x1x4 ∈ J(a), therefore, any minimal binomial generator of J(a) must be of the form xα1x

β
3 −

xγ2x
δ
4, where the non-negative integers β, γ, δ satisfy

βb2 = γb1 + δb3.

Equivalently,
(β − δ)4h = (γ + δ)(2h− 1).

Since (4h, 2h− 1) = 1, one deduces that there exists l such that

β = (2h− 1)l + δ

γ = 4hl − δ
α = (2h+ 1)l − δ.

From this, one deduces easily that

J(a) = (x2x3 − x1x4, x
4h
3 − x2h−1

2 x2h+1
4 , x1x

4h−1
3 − x2h

2 x
2h
4 , ..., x

2h+1
1 x2h−1

3 − x4h
2 ).

By Buchberger’s algorithm, [13], these elements form a Gröbner basis for J(a) with respect
to grevlex order. Thus the initial ideal of J(a) is

in(J(a)) = (x2x3, x
4h
3 , x1x

4h−1
3 , ..., x2h

1 x
2h
3 , x

4h
2 ).

Since
(x2x3) : x4h

3 = (x2),

(x2x3, x
4h
3 , ..., x

i
1x

4h−i
3 ) : xi+1

1 x4h−i−1
3 = (x2, x3)

for all i = 0, ..., 2h− 1, and

(x2x3, x
4h
3 , ..., x

2h
1 x

2h
3 ) : x4h

2 = (x3),

in(J(a)) has linear quotient. By [24], reg in(J(a)) = 4h. Moreover, by [13],

reg J(a) ≤ reg in(J(a)) = 4h;

therefore, reg J(a) = 4h.
Note that the conductor of the numerical semigroup generated by b1, b2, b3 is c = 4h(2h−

1)− 4h− (2h− 1) + 1. Therefore,

N = max{b1(4 + reg J(a)), b1b2(
c+ b1

b3

+B)} < 4b1b2(b2 + 1).

By Theorem 3.22 and the fact that minimal homogeneous generators of I(a + j) and I(a +
j + b1) are the same, µ′(I(a + j)) = µ′(a + j + b1) when j ≥ 4b1b2(b2 + 1).



CHAPTER 3. SHIFTED FAMILIES OF AFFINE SEMIGROUP RINGS 34

Fix j ≥ 4b1b2(b2 + 1). We simply denote by ∆l,r the simplicial complexes associated to
elements of the semigroup a + j. By Corollary 3.6, and the fact that x1x4 − x2x3 ∈ J(a),
any minimal binomial inhomogeneous generator of I(a + j) is of the form

xu11 x
u2
2 − xu33 x

u1+u2−1−u3
4 , or xv11 x

v3
3 − xv22 x

v1+v3−1−v2
4 .

Moreover, for each u3, and each v2, there can be at most one minimal binomial generator
of I(a + j) of the two forms above. By Theorem 3.21 and Definition 3.1, these minimal
binomial inhomgeneous generators correpond to ∆l,r where r is of the form a4 + j + 4hv2 or
a4 + j + (2h− 1)u3.

Assume that either v2 ≥ 2h or u3 ≥ 4h + 1, then r − (a4 + j + 4h + 2h− 1) ≥ c. Using
representation as in (3.4), we can write

r = a4 + j + tb1 + b2 + b3 + w2b2 + w3b3 (3.12)

for some non-negative integer w2, w3 such that c ≤ w2b2 + w3b3 < c + b1. From equation
(3.12), it follows that

3 + t+ w2 + w3 ≤
r − a4 − j

b1

+
c+ b1

b3

+ 3 <
r

b1

≤ l

since (c + b1)/b3 < b2 + 4 and a4 + j > b1(b2 + 7). By Definition 3.1, {0, 2, 3, 4} is a face of
∆l,r. Moreover, b1 = b2 + b3, thus equation (3.12) can be rewritten as

r = a4 + j + tb1 + b1 + w2b2 + w3b3.

By Definition 3.1, {0, 1, 4} is a face of ∆l,r. Thus ∆l,r is connected, so ∆l,r does not support
any minimal generator of Ī(a + j). Thus u3 ≤ 4h and v2 ≤ 2h− 1.

We keep notation as in the proof of Lemma 3.24. For each u3 and each v2, the following
lemma gives the explicit form of minimal inhomogeneous generators of I(a + j).

Lemma 3.25. Let j = (6h − 1)m + s for some m and s such that 0 ≤ s ≤ 6h − 2. Let
s = (2h − 1)a − 4hb be the unique representation of s in term of 2h − 1 and 4h such that
0 ≤ a ≤ 4h and 0 ≤ b ≤ 2h − 1 and (a, b) 6= (4h, 2h − 1). If j ≥ 4b1b2(b2 + 1) then the
minimal inhomogeneous generators of I(a + j) are among the following forms

f 2
v2

= xv2+m+1−b
1 xa+b+2h−v2

3 − xv22 x
m+2h+a−v2
4

g2
v2

= xv2+m+2h−b
1 xa+b+1−4h−v2

3 − xv22 x
m−2h+a−v2
4

f 3
u3

= xm−6h+a+1+u3
1 x10h−2−a−b−u3

2 − xu33 x
m+4h−2−b−u3
4

g3
u3

= xm−2h+1+a+u3
1 x4h−1−a−b−u3

2 − xu33 x
m+2h−1−b−u3
4

where 0 ≤ v2 ≤ 2h− 1, and 0 ≤ u3 ≤ 4h.
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Proof. Assume that f = xv11 x
v3
3 − xv22 x

v1+v3−1−v2
4 is a minimal generator of I(a + j). By

Theorem 3.21 and Definition 3.15,

(6h− 1)m+ s+ 2h(2h+ 1) + 2h− 1 + 4hv2 = (6h− 1)v1 + (2h− 1)v3.

Equivalently,

s = (2h− 1)(v1 + v3 − (m+ 2h+ 1)) + 4h(v1 − v2 −m− 1). (3.13)

If f is a minimal generator of I(a + j) then v1 + v3 is as small as possible so that the
equation (3.13) has non-negative integer solutions in v1 and v3. Moreover, by Lemma 3.4,
v1 + v3 − (m+ 2h+ 1) > −(2h+ 1). Therefore, either

v1 + v3 − (m+ 2h+ 1) = a, and v1 − v2 −m− 1 = −b

or
v1 + v3 − (m+ 2h+ 1) = −(2h− 1− b), and v1 − v2 −m− 1 = 4h− a.

The first case gives the family f 2
v2

, while the second case gives the family g2
v2

.
Assume that g = xu11 x

u2
2 −xu33 x

u1+u2−1−u3
4 is a minimal generator of I(a+j). By Theorem

3.21 and Definition 3.15,

(6h− 1)m+ s+ 2h(2h+ 1) + 2h− 1 + (2h− 1)u3 = (6h− 1)u1 + 4hu2.

Equivalently,

s = (2h− 1)(u1 − u3 − (m− 2h+ 1)) + 4h(u1 + u2 −m− 2h). (3.14)

If g is a minimal generator of I(a + j) then u1 + u2 is as small as possible so that the
equation (3.14) has non-negative integer solutions in u1 and u2. Moreover, by Lemma 3.4,
u1 + u2 − (m+ 2h) > −2h. Therefore, either

u1 − u3 − (m− 2h+ 1) = a, and u1 + u2 −m− 2h = −b

or
u1 − u3 − (m− 2h+ 1) = −(2h− 1− b), and u1 + u2 −m− 2h = 4h− a.

The first case gives the family g3
u3

, while the second case gives the family f 3
u3

.

Lemma 3.26. If j ≥ 4b1b2(b2 + 1) and j = 4h mod 6h− 1 then µ′(I(a + j)) = 6h− 1.

Proof. We keep the notation as in Lemma 3.25. When s = 4h, then a = 4h and b = 2h− 2.
In this case, g3

i /∈ R for any i ≥ 0 and f 2
v2
− x4h

4 g
2
v2
∈ J(a), thus f 2

v2
are not minimal for all

v2 ≥ 0. Moreover,

g2
0 = xm+2

1 x2h−1
3 − xm+2h

4 , and f 3
0 = xm−2h+1

1 x4h
2 − xm+2h

4
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thus at most one of them can be in a minimal set of generators of I(a + j). Similarly,

g2
2h−1 = xm+2h+1

1 − x2h−1
2 xm+1

4 , and f 3
4h = xm+2h+1

1 − x4h
3 x

m−2h
4

thus at most one of them can be in a minimal set of generators of I(a + j).
Therefore, the set of minimal inhomogeneous generator of I(a + j) can be chosen from

f 3
u3

for u3 = 1, ..., 4h and g2
v2

for v2 = 0, ..., 2h− 2. This implies that µ′(I(a + j)) ≤ 6h− 1.
Moreover, for each r of the form r = a4 + j + 4hv2 or r = a4 + j + (2h − 1)u3 where
0 ≤ v2 ≤ 2h− 2 and 1 ≤ u3 ≤ 4h, we will prove that ∆m+2h+1,r is disconnected. The lemma
then follows from the Proposition 3.2 and Theorem 3.21.

In the following we consider ∆m+2h+1,r for r = a4 + j + 4hv2 or r = a4 + j + (2h− 1)u3.
For simplicity, in each case, we simply denote ∆m+2h+1,r by ∆. Since b2 + b3 = b1, if {2, 3}
is a face of ∆, then {1, 4} is also a face of ∆. Moreover, if r 6= a4 + j + b2b3, then b1 does
not divide r, therefore {1, 4} is not a facet of ∆.

If v2 = 0, then

r = a4 + j = (m+ 2)b1 + (2h− 1)b3 = (m− 2h+ 1)b1 + 4hb2.

By Definition 3.1, {0, 4}, {1, 2} and {1, 3} are faces of ∆. Also, {0, 4} is the only facet of ∆
contaning 0. It suffices to show that if y = (y1, y2) is a non-negative integer solution of

y1b1 + y2b2 = (m− 2h+ 1)b1 + 4hb2 (3.15)

or y = (y1, y3) is a non-negative integer solution of

y1b1 + y3b3 = (m+ 2)b1 + (2h− 1)b3 (3.16)

then y1 + y2 ≥ m + 2h + 1 and y1 + y3 ≥ m + 2h + 1 respectively. Moreover, if (y1, y2) is a
non-negative integer solution of (3.15), then y1 = m−2h+1−b2t and y2 = 4h+b1t for some
integer t. Thus t ≥ 0, therefore y1 + y2 ≥ m+ 2h+ 1. Similarly, if (y1, y3) is a non-negative
integer solution of (3.16), then y1 = m + 2 − b3t and y3 = 2h − 1 + b1t for some integer t.
Thus t ≥ 0, therefore y1 + y3 ≥ m+ 2h+ 1.

If 1 ≤ v2 ≤ 2h− 2, then

r = a4 + j + 4hv2 = (m+ v2 + 2)b1 + (2h− 1− v2)b3.

By Definition 3.1, {0, 4, 2} and {1, 3} are faces of ∆. Also, {0, 4, 2} is the only facet of ∆
containing 0. It suffices to show that {1, 2} is not a face of ∆. If

y1b1 + y2b2 = r = (m+ 2h+ 1)b1 − (2h− 1− v2)b2 (3.17)

then y1 = m+2h+1−b2t and y2 = −(2h−1−v2)+b1t for some integer t. Thus for any non-
negative integer solution y = (y1, y2) of equation (3.18), t ≥ 1, thus y1 +y2 ≥ m+2h+1+b3.
Therefore {1, 2} is not a face of ∆.
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If 1 ≤ u3 ≤ 4h− 1, then

r = a4 + j + (2h− 1)u3 = (m+ u3 + 1− 2h)b1 + (4h− u3)b2.

By Definition 3.1, {0, 4, 3} and {1, 2} are faces of ∆. Also, {0, 4, 3} is the only facet of ∆
containing 0. It suffices to show that {1, 3} is not a face of ∆. If

y1b1 + y3b3 = r = (m+ 2h+ 1)b1 − (4h− u3)b3 (3.18)

then y1 = m+ 2h+ 1− b3t and y2 = −(4h− u3) + b1t for some integer t. Thus for any non-
negative integer solution y = (y1, y2) of equation (3.18), t ≥ 1, thus y1 +y2 ≥ m+2h+1+b2.
Therefore {1, 3} is not a face of ∆.

Finally, if u3 = 4h, then

r = a4 + j + (2h− 1)b2 = (m+ 2h+ 1)b1 = a4 + j + 4hb3.

By Definition 3.1, {0, 2, 4}, {0, 3, 4} and {1} are faces of ∆. Also, {0, 2, 4} and {0, 3, 4} are
the only facets of ∆ contaning 0. Also, if

y1b1 + y2b2 + y3b3 = (m+ 2h+ 1)b1 (3.19)

then y1 + y2 + y3 ≥ m+ 2h+ 1 and equality happens if and only if y2 = y3 = 0. Therefore,
{1} is a facet of ∆.

Proposition 3.27. If j ≥ 4b1b2(b2 + 1) then µ′(I(ah + j)) ≤ 6h − 1. Moreover, equality
happens if and only if j = 4h mod 6h− 1. In particular, the period of the periodicity of the
Betti numbers of I(ah + j) in j is exactly 6h− 1.

Proof. We keep the notation as in Lemma 3.25. We have the following cases.
If a + b < 4h − 1, then g2

i /∈ R for any i ≥ 0. Moreover, f 2
0 − xa+b+1

4 g3
0 ∈ J(a), thus f 2

0

is not minimal. Also, f 2
2h−1 − xa+b+1

3 g3
4h−1−a−b ∈ J(a), thus f 2

2h−1 is not minimal. Finally,
note that g3

i /∈ R for i > 4h− 1− a− b, and f 3
4h−a−b − x3x

2h−2
4 g3

4h−1−a−b ∈ J(a) which is not
minimal. Thus µ′(I(a + j)) ≤ 6h− 2.

If a+b = 4h−1, then g2
0 = g3

0 is the only element in the family g2 belongs to I(a+j) and
f 2
v2
−xv22 x

4h−v2
4 g2

0 ∈ J(a), thus no element in the family f 2 are minimal. Thus µ′(I(a + j)) ≤
4h+ 1.

If 4h−1 < a+b ≤ 6h−3, then g3
i /∈ R for any i ≥ 0. Moreover, f 3

0−x
6h−2−(a+b)
4 g2

0 ∈ J(a),

thus f 3
0 is not minimal. Also, f 3

4h − x
6h−2−(a+b)
2 g2

a+b+1−4h ∈ J(a), thus f 3
4h is not minimal.

Finally, note that g2
i /∈ R for i > a + b + 1 − 4h, and f 2

a+b+2−4h − x2x
4h−1
4 ga+b+1−4h ∈ J(a)

which is not minimal. Thus µ′(I(a + j)) ≤ 6h− 2.
Finally, if a+ b = 6h− 2, then a = 4h and b = 2h− 2 and then s = 4h. By Lemma 3.26,

µ′(I(a + j)) = 6h− 1.
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3.4 Higher dimensional affine semigroup rings

Finally, we consider an analogous question for higher dimensional semigroup rings. Let V =
v1, ...,vn be a collection of vectors in Nk, and v ∈ Nk is a fixed directional vectors. For each
collection V , let k[V ] be the semigroup ring generated by v1, ...,vn. Let I(V ) be the defining
ideal of k[V ]. For each integer t, let V + tv be the collection of vectors v1 + tv, ...,vn + tv.
From the one dimensional case, it is natural to ask if the number of minimal generators of
I(V + tv) are eventually periodic in t. In Example 3.29, we give a collection of vectors V in
N2 and a directional vector v ∈ N2 with the property µ(I(V + tv) = 12t + 2; in particular,
they are not eventually periodic. Nevertheless, the behaviour of I(V + tv) for t � 0 are
quite structured. Lots of calculations in Macaulay2 suggest us to formulate the following:

Conjecture 3.28. For each collection of vectors V , and each directional vector v, there
exists a constant k such that for each i, there exist constants ai, bi such that

βi(I(V + jv + tkv)) = ait+ bi

for j � 0.

Example 3.29. Let S = {(3, 4), (4, 5), (5, 7), (6, 8)}. Let v = (1, 1). Then we have

µ(I(S + 12tv)) = 12t+ 2

for t ≥ 1.

Proof. Let

A =

(
3 + 12t 4 + 12t 5 + 12t 6 + 12t
4 + 12t 5 + 12t 7 + 12t 8 + 12t

)
Then a minimal generator of I(S + 12tv) is a binomial xu+ − xu− such that Au+ = Au−.
Moreover, kerA can be described by parameters z1 and z2 as follows

−z1 − (1 + 3t)z2

z1 + (3t− 1)z2

z1 − (9t+ 1)z2

−z1 + (9t+ 2)z2


Assume that our Z basis for the solution set always have x1 nonnegative. Chosing z2 = 0,
we have solution (1,−1,−1, 1). Chosing z2 = −1, then z1 can take values from (3t − 1) to
−9t−1. We then have 12t+2 solutions. We will show that these solutions span the solution
set, and that they are minimal. Note that except the first generator, x1x4 − x2x3, all other
generators is of the form fi = xi1x

12k+2−i
3 − xi−2

2 x12k+3−i
4 for i = 2, ..., 12k + 2, they all have

degree 12k + 2, and the positive parts of fi, i.e. xi2x
12k+1−i
4 cover all possible choices. This

implies that they are minimal.
Assume that a generetor f corresponds to some z1, z2. It suffices to consider the case

z2 > 0 and z2 < −1.
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If z2 < −1 then deg f ≥ 2(12k + 2), thus we can find an fi whose positive part is less
than that of f . In other words, f is not minimal.

If z2 > 0, then the positive part of f is larger than x12t+3
4 . In other words, f can be

factored through x12t+1
4 − x2

1x
12k
3 , thus f is not minimal.
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