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A B S T R A C T   

Aging entails a multifaceted complex of changes in macro- and micro-structural properties of human brain gray 
matter (GM) and white matter (WM) tissues, as well as in intellectual abilities. To better capture tissue-specific 
brain aging, we combined volume and distribution properties of diffusivity indices to derive subject-specific age 
scores for each tissue. We compared age-related variance between WM and GM age scores in younger and older 
adults and tested whether tissue-specific age scores could explain different effects of aging on fluid (Gf) and 
crystalized (Gc) intelligence in younger and older adults. Chronological age was strongly associated with GM (R2 

= 0.73) and WM (R2 = 0.57) age scores. The GM age score accounted for significantly more variance in chro-
nological age in younger relative to older adults (p < 0.001), whereas the WM age score accounted for signifi-
cantly more variance in chronological age in older compared to younger adults (p < 0.025). Consistent with 
existing literature, younger adults outperformed older adults in Gf while older adults outperformed younger 
adults in Gc. The GM age score was negatively associated with Gf in younger adults (p < 0.02), whereas the WM 
age score was negatively associated with Gc in older adults (p < 0.02). Our results provide evidence for dif-
ferences in the effects of age on GM and WM in younger versus older adults that may contribute to age-related 
differences in Gf and Gc.   

1. Introduction 

The brain is comprised of gray matter (GM: hosting neuronal cell 
bodies) and white matter (WM: hosting axonal connections) that are 
differentially affected by aging (Kochunov et al., 2007; Levakov et al., 
2020). For both tissue types, aging is associated with reductions in 
volume (Ge et al., 2002b; Madan and Kensinger, 2018) and alterations in 
macromolecule density (Ge et al., 2002a) and microstructure (Benedetti 
et al., 2006; Bennett et al., 2010; Bennett and Rypma, 2013). GM volume 
often shows a monotonic decline across the adult lifespan, whereas WM 
volume decreases only after age 40 (Ge et al., 2002b; Sowell et al., 
2003). Diffusion tensor imaging (DTI) studies have revealed decreases in 
measures that capture the degree of restricted diffusion (i.e., fractional 
anisotropy, FA) across the adult lifespan in WM (Kennedy and Raz, 
2009; Michielse et al., 2010), but increases in FA in deep brain GM 
structures (Pfefferbaum et al., 2010). Other DTI measures of 

microstructural properties such as axial diffusivity (AD) and radial 
diffusivity (RD) are also differentially sensitive to the effects of age on 
WM and GM structures (Pfefferbaum et al., 2010; Sexton et al., 2014). 
Prior work has investigated the associations between GM properties (e. 
g., volume, myelination, and diffusivity) with WM microstructure across 
the life span (Grydeland et al., 2013; Kochunov et al., 2011; Nazeri et al., 
2015), yet less attention has been paid to means for assessing age-related 
differences between GM and WM when volume and tissue-wide distri-
bution of microstructural measures are considered at the same time. 

A handful of studies have assessed the effects of aging on GM and 
WM tissues in the same cohort (Chiapponi et al., 2013; Farokhian et al., 
2017) which may have implication for age-related differences in 
behavior (Anatürk et al., 2018). GM and WM volume have been asso-
ciated with the magnitude of diffusivity in WM (e.g., AD and RD) across 
the adult life span though they had weaker associations with WM 
anisotropy (Pareek et al., 2018; Rathee et al., 2016). These effects may 
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highlight differences in processes that contribute to age-related differ-
ences in volumetric and diffusivity indices. Thus, a more complete un-
derstanding of GM and WM aging calls for approaches that combine age- 
related effects on both macro-structural (volume) and micro-structural 
(diffusivity) properties in each tissue type, while enabling a direct 
comparison between age-related differences in WM and GM. Here we 
used a combined set of volumetric and diffusivity measures to study 
differences in the effects of age on GM and WM tissues in younger versus 
older adults. 

Whole-brain distribution of diffusivity measures are useful for 
characterizing global effects of aging on the brain while voxel-wise or 
ROI analyses offer an opportunity to localize the effect of aging on brain 
tissues. Considering the heterogeneity of aging effects across brain re-
gions and across individuals (Raz et al., 2005), we studied whole-brain 
volumetric and microstructural measures of GM and WM across par-
ticipants (Benedetti et al., 2006; Bennett et al., 2010; Ge et al., 2002b; 
Salminen et al., 2016) that reflected contributions from all tissue sub- 
regions while not being constrained by selection of individual regions 
within GM and WM. Because of the non-Gaussian distribution of diffu-
sivity measures, whole-brain mean measures may be insufficient to 
capture the shape of distributions (Charlton et al., 2006). In this respect, 
differences in higher moments of whole-brain distribution of diffusivity 
measures, such as increased FA skewness in WM, have been effective in 
characterizing relevant neurological disorders (Benson et al., 2007; de la 
Plata et al., 2011; Della Nave et al., 2007). In the present study we used 
mean, variance, and skewness of brain-wide distribution properties of 
GM and WM (Charlton et al., 2010; Müller et al., 2006) for FA, AD, and 
RD indices to estimate effects of age on GM and WM. 

Variations in intellectual abilities across the adult lifespan have been 
observed since the inception of psychometric assessment (Foster and 
Taylor, 1920). At the population level, aging has been associated with 
monotonic declines in novel problem-solving and reasoning abilities 
(fluid intelligence, Gf), and stability or improvement in general world 
knowledge and vocabulary (crystalized intelligence, Gc) (Salthouse, 
2004). In addition, structural properties of GM and WM have been 
associated with individual differences in intelligence (Chen et al., 2020; 
Nestor et al., 2015). These results suggest potential differences in the 
neurobiological substrates that contribute to the effects of aging on fluid 
and crystalized abilities (Colom et al., 2009; de Mooij et al., 2018; 
Góngora et al., 2020; Ohtani et al., 2017; Penke et al., 2012; Wickett 
et al., 2000), which may be related to different effects of aging on GM 
and WM. Thus, as a secondary aim, we explored tissue specific contri-
butions to age-related individual differences in Gf and Gc (Colom et al., 
2010). 

Here we provide a novel assessment of aging of brain tissues by 
examining the degree to which a combination of volume and distribu-
tion properties of diffusivity measures of WM and GM predicted chro-
nological age in younger and older adults. Previous research has 
highlighted differences in myelination growth and degenerative pro-
cesses before and after age 40 (Ge et al., 2002b; Sowell et al., 2003), 
suggesting non-identical age effects on GM and WM (Abe et al., 2008; 
Bender et al., 2016; Pfefferbaum and Sullivan, 2015; Raz et al., 2005). 
Thus, we hypothesized that WM and GM are differently affected by 
aging in younger versus older adults and that these differences may 
contribute to age-related differences in Gf and Gc (Cole et al., 2017a). 
We computed the age score of WM and age score of GM and compared 
the extent to which they are associated with chronological age in 
younger versus older adults (n = 97). We explored the degree to which 
estimates of GM and WM age scores predicted Gf and Gc abilities in a 
subgroup of younger (n = 20) and older (n = 19) participants, and 
assessed the specificity of the associations with Gf and Gc to sub-regions 
of WM and GM. 

2. Results 

2.1. GM and WM age scores 

We calculated subject-specific estimates of volume and distribution 
properties (mean, variance, and skewness) of FA, AD, and RD, separately 
for whole-brain WM (Fig. 1A–C) and whole-brain GM (Fig. 1D–F) in 97 
adults (age: M = 43.74, SD = 19.65). For GM, a stepwise regression of 
chronological age on the 10 volumetric and diffusivity predictors (see 
Methods) resulted in the selection of volume, FA (variance), AD (mean, 
skewness), and RD (mean, variance) as significant predictors of chro-
nological age. For WM, a stepwise regression of chronological age on the 
10 volumetric and diffusivity predictors resulted in the selection of FA 
(skewness), AD (mean), and RD (variance) as significant predictors of 
chronological age. For each participant, GM and WM age scores were 
calculated using regression coefficients obtained for the tissue-specific 
predictors while omitting the participant from the model (Fig. 1G, see 
Methods). Between iterations of omitting each participant, the 
maximum coefficient of variation for the GM parameters estimates was 
5.3% whereas for WM it was 2.7%. The GM age score accounted for 73% 
of chronological age variance, whereas the WM age score accounted for 
57% of chronological age variance across the adult lifespan (Fig. 2A, B). 
For GM, the standard deviation of the difference between the age score 
and chronological age was 10.1 years whereas for WM it was 12.9 years. 
Replacing the stepwise regression with a lasso regression for variable 
selection resulted in almost identical age scores (see Methods and Sup-
plementary Results and Supplementary Fig. 1). 

A notable difference between the tissue-specific age scores was the 
inclusion of volume for predicting the GM age score but not for pre-
dicting the WM age score. We directly tested the contribution of volume 
only to the effects of age on WM and GM. We found that the GM age 
score obtained by using volume as the only predictor explained 31% of 
the variance in chronological age, whereas the WM age score obtained 
based on volume as the only predictor, explained 5% of the variance in 
chronological age. Inclusion of diffusivity-related regressors for esti-
mating the GM age score accounted for significantly higher proportions 
of variance in chronological age than when only GM volume was used as 
a predictor (R2 = 0.73 vs. R2 = 0.31, F(5, 90) = 28.29, p < 0.0001). This 
observation suggested that distribution properties of diffusivity indices 
of GM are sensitive to aspects of aging that are not captured by con-
ventional volumetric measures. By contrast, distribution properties of 
diffusivity indices captured most of age-related differences in WM. The 
data suggest that distribution properties of diffusivity measures are 
significant predictors of age-related differences in both GM and WM. 

2.2. GM and WM age in younger and older adults 

For GM and WM, we separately assessed age-related differences in 
younger and older adults. The patterns of age-related differences in the 
adult life span suggested that WM and GM may differ in the extent to 
which they are affected by aging in younger versus older adults (Fig. 2A, 
B). To assess this more directly, we defined younger and older age 
groups with a threshold of 40 years of age (Ge et al., 2002a; Sowell et al., 
2003) and calculated GM and WM age scores for each age group 
(Fig. 1G). In each age group, we assessed the extent that GM and WM age 
scores accounted for variance in chronological age. For younger adults, 
the WM age score accounted for significantly less variance in chrono-
logical age than the GM age score (R2 = 0.24 vs. R2 = 0.45; p < 0.003, 
two-tailed, pcorrected < 0.05; Fig. 2C, Supplementary Fig. 2A). In contrast, 
for older adults, the GM age score accounted for significantly less vari-
ance in chronological age than the WM age score (R2 = 0.22 vs. R2 =

0.36; p < 0.02, two-tailed, pcorrected < 0.05; Fig. 2C, Supplementary 
Fig. 2B). In addition, for each tissue type, we assessed the extent that age 
scores accounted for variance in chronological age in younger and older 
adults. We found that the GM age score accounted for significantly more 
variance in chronological age in younger than older adults (R2 = 0.45 vs. 
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Fig. 1. Histograms of gray matter and white matter diffusion indices. The subject-level histograms (160 bins) of voxel-wise DTI measures including fractional 
anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) for white matter (A–C) and gray matter (D–F). Average histograms for younger (<40 years old) and 
older (>40 years old) participants are also shown in solid green and dashed red lines, respectively. (G) Age-score estimation procedure. Left of the dotted line. For 
each tissue type, volume and distribution properties of diffusivity indices were extracted, and stepwise regression was applied to select the most relevant predictors of 
chronological age across all participants. Right side of the dotted line. Each participant was removed from the sample and multivariate regression of chronological 
age on the selected predictors was applied to estimate regression coefficients. The estimates of regression coefficients were used to derive a tissue-specific age score 
for the removed participant. These steps (right of the dotted line) were repeated for all participants. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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R2 = 0.22; p < 0.001, two-tailed, pcorrected < 0.05; Supplementary 
Fig. 2C). Meanwhile, the WM age score accounted for significantly more 
variance in chronological age in older than younger adults (R2 = 0.36 vs. 
R2 = 0.24; p < 0.025, two-tailed, pcorrected < 0.05; Supplementary 
Fig. 2D). These results support the position that the effect of aging on 
different brain tissues is different for younger and older adults and 
suggest a shift from larger age-related differences in GM in younger 

adults to larger age-related differences in WM in older adults. Notably, 
estimates of motion were not significantly different between the two age 
groups (t(94) = 1.18, p = 0.24, see Methods). 

2.3. Aging in GM and WM substructures 

We explored which GM and WM subs-regions showed the highest 

Fig. 2. Contributions of gray matter (GM) and white matter (WM) to predicting age-related differences in the brain. (A–B) The scatter plots show the GM and WM age 
scores (estimated using multivariate models, Fig. 1G) against the chronological age. Logarithmic, exponential, and quadratic fits (each with 3 parameters) were 
separately tested for the GM and WM age scores. A logarithmic function appeared to better fit the WM age scores (RMSE = 8.84) than quadratic (RMSE = 8.89) or 
exponential (RMSE = 9.25) fits, while exponential (RMSE = 9.95) and quadratic (RMSE = 9.95) functions appeared to better fit the GM age scores than a logarithmic 
fit (RMSE = 10.65). (C) R2 of correlation between chronological and age scores obtained for GM and WM sub-regions for the younger and older adults. Each datapoint 
represents one region of interest. In younger adults, whole brain GM-age scores (thick dark-gray line) accounted for more of the variance in chronological age than 
whole brain WM-age scores (thick light-gray line, **p = 0.002, two-tailed). In older adults, whole brain WM-age scores (thick light-gray line) accounted for more of 
the variance in chronological age than whole brain GM-age scores (thick dark-gray line, *p = 0.015, two-tailed). Dashed lines show the 95-percentile of the R2 

distribution for all GM and WM sub structurers. (D) Contribution of different WM and GM sub-regions to predicting chronological age in younger (top row) versus 
older (bottom row) adults (see also Supplementary Tables 2 and 3). (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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age-related differences in younger and older adults (see Methods, 
Fig. 2C). In younger adults, GM structures including the postcentral 
gyrus, posterior cingulate, rostral anterior cingulate, and supramarginal 
gyrus contributed the most to these age-related differences (>95 
percentile; Fig. 2D; Supplementary Table 2). In older adults, WM 
structures in anterior corpus callosum, and WM near fusiform and 
lingual gyri contributed the most to age-related differences, but also the 
pars opercularis of the inferior frontal gyrus in GM (>95 percentile, 
uncorrected; Fig. 2D; Supplementary Table 3). 

2.4. Brain age and intellectual abilities 

We assessed the extent to which GM and WM age scores were asso-
ciated with individual differences in WASI matrix reasoning (indexing 
fluid intelligence: Gf) and WASI vocabulary (indexing crystalized in-
telligence: Gc). First, we examined age-group differences in intellectual 
abilities. Consistent with prior findings, younger adults outperformed 
older adults in Gf (Supplementary Table 1, t(37) = 3.00, p = 0.0048, 
two-tailed), and older adults outperformed younger adults in Gc (Sup-
plementary Table 1, t(37) = 2.82, p = 0.0077, two-tailed). We then 
compared how GM and WM age scores were related to intellectual 

Fig. 3. Gray matter (GM) and white matter (WM) age score associations with fluid and crystallized abilities (as measured by WASI matrix reasoning and WASI 
vocabulary tasks, respectively) in younger and older adults. (A) Solid lines show the R2 of the associations with intelligence measures for whole brain WM and GM 
age scores. The dashed lines show the 5-percentile limit for the distribution of R2 estimates, each obtained after excluding one tissue sub-region from the analysis. A 
region was considered relevant when its exclusion from the model resulted in a drop in R2 estimate below this limit. Whole-brain GM age scores significantly 
contributed to predicting fluid ability in younger adults (p < 0.02, two-tailed). (B) Putamen and pallidum GM sub-regions significantly contributed to these effects in 
younger adults (<5 percentile, ΔR2 > 0.06, Supplementary Table 5). (C) Whole-brain WM age scores significantly contributed to predicting crystallized ability in 
older adults (p < 0.02, two-tailed). (D) WM sub-regions nearby inferior parietal lobule and superior temporal gyrus significantly contributed to these effects in the 
older adults (<5 percentile, ΔR2 > 0.025, Supplementary Table 6). 
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abilities within age groups (Supplementary Table 4). For younger adults, 
only GM age scores significantly correlated with Gf (Fig. 3A, Supple-
mentary Fig. 3A), where higher GM age scores were associated with 
lower Gf scores (r(18) = − 0.53, p = 0.017, two-tailed). We replicated 
this analysis using a secondary measure of Gf (Supplementary Table 1) 
and found a similar association with GM age scores in younger adults (r 
(18) = − 0.55, p = 0.011, two-tailed), but not with WM age scores. No 
such effects were observed in older adults (p > 0.4). For older adults, 
only WM age scores significantly correlated with Gc (Fig. 3C, Supple-
mentary Fig. 3B). Specifically, higher WM age scores were associated 
with lower Gc (r(17) = − 0.54, p = 0.017, two-tailed). 

2.5. Regional associations with intelligence 

Lastly, we repeated the above analysis (performed at the tissue level) 
for GM and WM sub-regions. We used an exploratory leave-one-out 
approach to characterize the contributions of individual GM and WM 
sub-regions to behavioral associations with brain age. We found that 
putamen and pallidum GM structures significantly contributed the most 
to Gf association with the GM age score in younger adults (<5 percen-
tile, ΔR2 > 0.06, uncorrected; Fig. 3B; Supplementary Table 5). We also 
found that WM structures near inferior parietal lobule and superior 
temporal gyrus contributed the most to Gc association with the WM age 
scores in older adults (<5 percentile, ΔR2 = 0.026; Fig. 3D; Supple-
mentary Table 6). 

3. Discussion 

To address our primary aim of examining tissue-specific aging pat-
terns, the present results showed that brain WM age (R2 = 0.57) and GM 
age (R2 = 0.73) can be estimated by combining related diffusivity and 
volumetric measures. We showed that WM and GM are differentially 
sensitive to the aging process in younger versus older adults. Specif-
ically, age-related differences in GM in younger adults were significantly 
larger than that in older adults (R2 = 0.45 vs. R2 = 0.24, Fig. 2C), 
whereas age-related differences in WM in older adults were significantly 
larger than that in younger adults (R2 = 0.36 vs. R2 = 0.22, Fig. 2C). Our 
analysis benefited from the inclusion of parameters such as variance and 
skewness of DTI measures which characterize the heterogeneity and bias 
in the whole brain FA, AD, and RD (Fig. 1). Between age groups, GM age 
scores accounted for more chronological age variance in younger versus 
older adults, whereas the WM age score accounted for higher chrono-
logical age variance in older than younger adults. Based on these ob-
servations, future longitudinal studies could investigate whether age- 
related GM changes precede WM changes. This pattern of results, 
however, is consistent with extant literature demonstrating that, 
whereas GM volume shows a monotonic decline across the adult life-
span, WM volume shows accelerated declines after the fourth decade of 
life (Ge et al., 2002b; Sowell et al., 2003). 

The distinct characteristics of GM and WM aging that we observed 
are differentially related to fluid and crystalized abilities in younger and 
older adults. Despite higher fluid ability in younger than older adults, 
individual differences in Gf in younger adults were better predicted by 
aging effects on GM than on WM. Notably, younger individuals with 
higher GM age scores than their peers had lower fluid abilities. At the 
same time, older adults had higher Gc scores than younger adults and 
individual differences in Gc in older adults were best predicted by effects 
of age on WM than GM. That is, older individuals with higher WM age 
scores than their peers had lower crystalized abilities. Our results 
highlight age-related differences in the contributions of GM and WM to 
age-related differences in Gf and Gc, respectively. Both fluid and crys-
tallized abilities rely on interactions between brain structures through 
GM and WM (Colom et al., 2009; Deary et al., 2010; Luders et al., 2009; 
Ritchie et al., 2015). Our results highlight the contribution of GM to age- 
related differences in Gf in younger adults that may be related to the 
effects of aging on neuronal populations in GM in a manner that limits 

their ability to process cognitively demanding functions of Gf (Genç 
et al., 2018). In contrast, the WM contribution to age-related differences 
in Gc in older adults may be driven by effects of advanced aging on 
integrity of axons in WM (Westlye et al., 2010) and their ability to 
facilitate information transfer in networks of distributed regions 
throughout the cortex that are involved in knowledge retrieval (Sta-
matakis et al., 2011). Together, these findings suggest that there may be 
a dissociation between the contribution of GM aging to individual dif-
ferences in Gf in younger adults and the contribution of WM aging to 
individual differences in Gc in older adults. Given the cross-sectional 
nature of our study, we cannot address how measures of brain struc-
ture and intelligence may change and influence one another over age. 
Thus, generalizability of our findings requires longitudinal data to 
determine the trajectories of GM and WM aging patterns over the life 
span and to further investigate their relationship to changes in Gf and 
Gc. 

Given the regional differences in effects of aging on GM and WM 
(Kochunov et al., 2007; Pfefferbaum et al., 2010; Sexton et al., 2014), we 
further characterized age-related sensitivity across multiple regions of 
interest for both tissues types and estimated their contribution to the 
associations with intellectual abilities. Results revealed that areas within 
the frontoparietal network (implicated in Gf) (Jung and Haier, 2007) 
show the highest age-related differences in GM in younger adults. In 
addition, we found that the putamen and pallidum were most important 
for the association between GM age scores and Gf. Considering the ac-
tion of multiple neurotransmitters in putamen and pallidum and their 
diverse anatomical projections to the cortex, these structures may serve 
as key gateways for functions related to Gf (Burgaleta et al., 2014; Rhein 
et al., 2014; Rypma et al., 1999). The importance of the inferior parietal 
lobule and superior temporal gyrus for the associations between WM age 
scores and Gc (Supplementary Table 6) is consistent with the recognized 
role of these regions in memory and language processing (Bigler et al., 
2007; O’Connor et al., 2010). It is important to point out that our study 
was limited to measuring Gf and Gc using a limited set of psychometric 
tests in a notably small sample. Moreover, some of our diffusivity 
measures may be influenced by the presence of iron, which accumulates 
in select basal ganglia nuclei (including the putamen and pallidum) 
across the adult life span (Langley et al., 2019). Future work utilizing 
latent factors of behavioral measures in a larger sample and with 
improved image acquisition and distortion correction approaches 
(Yamada et al., 2014) is needed to assess the validity of our results. 

Age-related differences in brain structures have been of interest since 
neuroimaging has become widely accessible (Coffey et al., 1992; Meyer 
et al., 1994). Advances in methodological approaches have led different 
research groups to provide estimates of brain age with high accuracy 
using volumetric or morphometric variables that are derived from 
structural data (e.g., T1-weighted images) (Beheshti et al., 2019; Cole 
et al., 2017b; Franke et al., 2010). Multimodal approaches that, for 
example, integrate diffusivity and volumetric characteristics have been 
helpful for studying the interacting effects of aging and neuropsychiatric 
disorders on the brain (Shahab et al., 2019) and have improved the 
predictions of brain age (Niu et al., 2020). Our multimodal approach 
involved identifying age-related measures of macrostructure (i.e., vol-
ume) and microstructure (i.e., distribution properties of DTI data) to 
study cross-sectional age-related differences in GM and WM. Results 
revealed that AD and RD indices in GM were significant predictors of 
age, particularly in younger adults. Across the adult life span, when 
combined with volumetric measures, the GM age score accounted for 
about 74% of chronological age variance (mean error of 8.39 years in 
predicting chronological age). DTI measures have been assessed within 
GM structures in aging and neuropsychiatric disorders (Müller et al., 
2006; Nazeri et al., 2017; Venkatesh et al., 2020). Age-related differ-
ences in GM diffusivity may reflect a composite of changes in glial cell 
bodies, dendrites, and axonal-dendritic terminal density (Abdelkarim 
et al., 2019; Kim et al., 2013) that may affect the quality of proximal 
intercellular connectivity due to reductions in dendritic arborization or 
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spine numbers (Fukutomi et al., 2019; Hof and Morrison, 2004; Peters, 
2002). Notably, our results suggsted that volumetric measures alone 
may not be able to fully capture age-related differences in GM. For WM, 
age-related differences were more pronounced later in our sample (>40 
year), primarily affecting FA (as well as AD and RD), possibly due to 
factors such as axonal degeneration, demyelination, and gliosis (Bennett 
et al., 2010; Kraus et al., 2007; Peters, 2009). Though the median age in 
our sample was 40 years old, prior work has indicated this age may be a 
pivotal point for aging of WM and GM. Specifically, decreases in GM 
density that were accompanied by increases in WM volume before age 
40 (Ge et al., 2002b), have been suggested to reflect increases in mye-
lination, while degenerative processes have been linked to GM volume 
decline after age 40 (Sowell et al., 2003). However, there are indications 
that WM volumetric increases peak at the fifth decade of life, while 
thickening in GM structures such as inferior parietal and posterior 
temporal regions is inversed following the fifth decade of life (Sowell 
et al., 2003; Tau and Peterson, 2010). It is noteworthy that cerebrospinal 
fluid volume is another important contributor to age-related differences 
in the brain which we did not assess in this paper (Levakov et al., 2020). 
Our approach of estimating brain age relied on selecting most relevant 
distribution properties of diffusivity measures that was presumably 
robust to heterogeneity in the effect of aging on brain regions. Future 
research on brain age estimation may compare our approach with other 
approaches that rely on extracting the mean of structural (or functional) 
measures from regions of interest (Niu et al., 2020). Future work should 
also investigate the shared and unique age-related variance in structural 
properties of GM and WM and incorporate additional measures of 
myelination and morphometry in multivariate models of brain age. 

4. Conclusion 

By introducing a composite index of macrostructural and micro-
structural properties, we derived estimates of brain age (age scores) for 
GM and WM and reported different effects of age on these tissue types. 
We provided evidence that relative to volumetric measures, distribution 
properties of diffusivity indices accounted for distinct age-related vari-
ance in both GM and WM. GM showed higher age-related differences in 
younger than older adults whereas WM showed higher age-related dif-
ferences in older than younger adults. We also showed that age-related 
differences in GM and WM may have implications for predicting Gf and 
Gc, respectively. The GM age score was significantly associated with Gf 
in younger adults, whereas the WM age score was significantly associ-
ated with Gc in older adults. Prominent theories of aging suggest that 
changes over the adult life span are intrinsic, progressive, and delete-
rious (Viña et al., 2007) and may reflect a complex set of responses (Goh 
and Park, 2009; Rypma and D’Esposito, 2000) to damage and error in 
cellular mechanisms (Abdelkarim et al., 2019; Jin, 2010). Our results 
may be informative for characterizing cross-sectional effects of age on 
different brain tissues and may have implications for future research on 
the shift from excelling at novel problems solving (Gf) in younger adults 
to the state of specializing and succeeding in recruiting past knowledge 
and experience (Gc) in older adults. Future work may also assess the 
extent to which these observations form the basis of an aging model in 
which cognitive flexibility in younger adults coupled with stores of 
knowledge and experience gained by older adults could result in 
enhanced productivity across generations (Kaplan et al., 2000). Finally, 
our measures of brain aging may have implications for diagnosis and 
monitoring of age-related brain disorders that differentially affect WM 
and GM such as Alzheimer’s disease. 

5. Methods and materials 

5.1. Participants 

100 individuals were recruited for this study (18–78 years old). 
Three individuals were excluded due to distorted structural data (n = 1), 

abnormal findings in the white matter (n = 1), and excessive motion 
during the DTI scan (n = 1). Participants (n = 97, age = 43.47 ± 19.65 
years old, 58 females) had at least a high school degree and had normal 
or corrected-to-normal vision. Participants were recruited through the 
University of Texas at Dallas and from local, online, and newspaper 
advertising. All participants performed within the age-expected range 
(scores ≥ 26) on 2 brief measures used to screen for general cognitive 
functioning: the Mini Mental State Examination (Folstein et al., 1975) 
and Telephone Interview for Cognitive Status (Brandt et al., 1988). 
Informed consent was obtained from participants and they received 
either payment or course credit for their participation. The University of 
Texas at Dallas Institutional Review Board approved the experimental 
procedures. Prior to participation, individuals were screened for con-
ditions that would prevent them from being able to enter the magnetic 
resonance imaging (MRI) scanner (e.g., being pregnant, having ferrous 
metal implants, having difficulty lying in the supine position for 30 min, 
and being claustrophobic), or influence their cognitive functioning and/ 
or contribute to brain pathology (e.g., history of stroke, dementia, dia-
betes, and unmanaged depression or hypertension). 

5.2. Measures of intelligence 

Intelligence was measured using standardized WASI vocabulary test 
for crystalized intelligence (Gc) and WASI matrix reasoning for fluid 
intelligence (Gf) (Wechsler, 1999) (Supplementary Table 1). These 
measures were only available in 20 younger and 19 older participants, 
though our prior work has shown age-related effects on the association 
between behavior and DTI indices in a comparable sample size (Bennett 
et al., 2012). A secondary measure of fluid intelligence included a 
composite of z-scores of WAIS-III Symbol Search (# correct - # incor-
rect), WAIS-III Digit Span total, and Trail Making B tests, which indexed 
processing speed, working memory, and executive functioning of fluid 
abilities, respectively (Reitan and Wolfson, 1985; Tulsky et al., 2003). 
No adjustments for age were carried out for comparisons with the im-
aging measures. 

5.3. Scanning protocol 

MRI images were acquired using a Philips Achieva 3.0 Tesla MRI 
system (Philips Medical System, The Netherlands) at the Advanced 
Imaging Research Center at the University of Texas Southwestern 
Medical Center. Participants lay in the supine position in the scanner 
with an 8-element, SENSE, receive-only head coil. Fitted padding was 
used to minimize head movements. For structural MR, a high resolution 
T1-weighted MPRAGE image was acquired with the following parame-
ters: scan time = 237 s, TR = 8.1 ms, TE = 3.7 ms, flip angle = 12◦, FOV 
= 256 × 256 × 160 mm3, spatial resolution = 1-mm isotropic, and 160 
sagittal slices. A diffusion weighted echo planar imaging sequence was 
acquired using gradient values of b = 0 (one image) and b = 1000 s/mm2 

(applied in 30 directions) and the following parameters: scan time =
265 s, TR = 5630 ms, TE = 51 ms, 65 axial interleaved slices (2.2 mm 
slice thickness, no gap), acquisition matrix = 112 × 112 (2 mm in-plane 
resolution) reconstructed at 256 × 256. 

5.4. DTI preprocessing 

Diffusion-weighted data were processed using the University of Ox-
ford’s Center for Functional Magnetic Resonance Imaging of the Brain 
(FMRIB) Software Library (FSL) release 4.0 (http://www.fmrib.ox.ac. 
uk/fsl). The first volume that did not have gradient applied (b = 0) 
was used to generate a binary brain mask with the ‘bet’ function in FSL. 
Subject movements and eddy current-induced distortions were cor-
rected using the ‘eddy_correct’ function in FSL. Estimates of displace-
ment relative to the first image were computed using the alignment 
parameters obtained from the motion correction step. One participant 
with mean relative displacement of 2.46 mm (>10 × SD) was excluded 
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from the sample (as mentioned in the Participants section). Mean esti-
mates of relative displacement were not significantly different between 
the younger and older participants, split at age 40 years (Myoung = 0.58 
mm, SDyoung = 0.12 mm; Mold = 0.61 mm, SDold = 0.13 mm; t(94) =
1.18, p = 0.24, two-tailed). Finally, the ‘dtifit’ function in FSL was used 
to independently fit diffusion tensors to each voxel, with the brain mask 
limiting the fitting of tensors to brain space. The output yielded voxel- 
wise maps of FA, AD (the primary direction of diffusion), and RD 
(calculated as the average of the two non-primary diffusion directions). 

5.5. Anatomical data processing 

Cortical and subcortical segmentations were performed using Free-
Surfer v5.1 in the subject-space (Martinos Center for Biomedical Imag-
ing, Charlestown, Massachusetts, USA; https://surfer.nmr.mgh.harvard. 
edu/fswiki). The generated segmentations were inspected relative to the 
structural MR image for quality assurance. When necessary, the volumes 
were edited to ensure alignment with brain boundaries as suggested by 
the FreeSurfer manual. The ‘wmparc’ FreeSurfer output file was used to 
create a single GM mask (including cortical, subcortical and cerebellar 
regions) and a single WM mask (including cerebrum and cerebellar re-
gions) for each participant. In addition, ‘wmparc’ was used to extract 43 
bilateral GM regions and 41 bilateral WM regions for each subject for the 
regional analyses. It is noteworthy that absolute estimates of regional 
volumes are different across FreeSurfer versions, but analyses that relied 
on the relative difference between regional volumes such as correlations 
between regional volumes and age were preserved within FreeSurfer 
versions (Bigler et al., 2020). For each participant, the skull-stripped 
anatomical brain was aligned with an affine transformation to the 
diffusion data using the ‘flirt’ function in FSL. The same transformation 
parameters were applied to the GM and WM masks. Finally, the masks 
were resampled to match the resolution of DTI. All images were visually 
inspected to ensure proper alignment between anatomical masks and 
DTI maps. 

5.6. WM and GM age scores 

A total of 10 regressors were initially included in the analysis for 
each tissue type. Specifically, from the anatomical masks of GM and 
WM, a measure of total volume was calculated for each tissue type (or 
region) in the subject space (1 regressor). For the DTI data, within 
anatomical mask of each tissue (or sub-region) measures of mean, 
variance, and skewness were calculated for FA, AD, and RD distributions 
in the subject space (9 regressors) (Fig. 1A–F) in MATLAB (The Math-
Works Inc., Natick, MA). We included variance which represented 
relative spread (indexing heterogeneity) of the whole-tissue distribution 
in diffusivity indices and included skewness which represented asym-
metry (bias) in the data away from the mean. Fig. 1G shows a schematic 
view of our procedure for estimating tissue-specific age scores. For each 
tissue type, we performed an initial stepwise regression of chronological 
age on all 10 regressors to select tissue-specific age-related regressors 
using data from the entire cohort (or when indicated for each age 
group). This dimension reduction was performed to alleviate multi-
collinearity between the regressors (Graham, 2003). Stepwise regression 
was performed in MATLAB using the ‘stepwisefit’ function with the 
default settings (penter = 0.05, premove = 0.1, no initial fit specified). Next, 
we removed one participant from the sample, and used a full multi-
variate regression of chronological age on the selected regressors to 
estimate regressor coefficients. This was done to obtain unbiased esti-
mates of regressor coefficients and to alleviate the data overfitting 
problem due to presence of multiple regressors (Hawkins, 2004). 
Finally, these regressor coefficients were used to estimate a tissue- 
specific age score for the removed participant. This procedure was 
repeated for all participants (Fig. 1G). The common variance (R2) be-
tween chronological age and the tissue-specific age scores were 
computed to index the quality of fit. We also repeated the variable 

selection step with lasso regression in MATLAB using 20-fold cross- 
validation to find the sparsest model that was within one standard 
error of the minimum mean square error (Tibshirani, 1996) (see Sup-
plementary Results and Supplementary Fig. 1). For the regional ana-
lyses, a similar procedure was performed (as shown in Fig. 1G) where 
volume and distribution properties of diffusivity indices were extracted 
for each of GM and WM sub-regions identified in ‘wmparc’ (see 
Anatomical data processing). 
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Gonzalez, A.R., Karama, S., Colom, R., 2014. Subcortical regional morphology 
correlates with fluid and spatial intelligence. Hum. Brain Mapp. 35, 1957–1968. 

Charlton, R., Schiavone, F., Barrick, T., Morris, R., Markus, H., 2010. Diffusion tensor 
imaging detects age related white matter change over a 2 year follow-up which is 
associated with working memory decline. J. Neurol. Neurosurg. Psychiatry 81, 
13–19. 

Charlton, R.A., Barrick, T.R., McIntyre, D.J., Shen, Y., O’Sullivan, M., Howe, F.A., 
Clark, C.A., Morris, R.G., Markus, H.S., 2006. White matter damage on diffusion 
tensor imaging correlates with age-related cognitive decline. Neurology. 66, 
217–222. 

Chen, P.-Y., Chen, C.-L., Hsu, Y.-C., Tseng, W.-Y.-I., 2020. Fluid intelligence is associated 
with cortical volume and white matter tract integrity within multiple-demand 
system across adult lifespan. NeuroImage 116576. 

Chiapponi, C., Piras, F., Piras, F., Fagioli, S., Caltagirone, C., Spalletta, G., 2013. Cortical 
grey matter and subcortical white matter brain microstructural changes in 
schizophrenia are localised and age independent: A case-control diffusion tensor 
imaging Study. PLoS One 8, e75115. 

Coffey, C.E., Wilkinson, W.E., Parashos, L., Soady, S.A.R., Sullivan, R.J., Patterson, L.J., 
Figiel, G.S., Webb, M.C., Spritzer, C.E., Djang, W.T., 1992. Quantitative cerebral 
anatomy of the aging human brain. A cross-sectional study using magnetic resonance 
imaging. 42, 527, 527.  

Cole, J., Ritchie, S., Bastin, M., Hernández, M.V., Maniega, S.M., Royle, N., Corley, J., 
Pattie, A., Harris, S., Zhang, Q., 2017a. Brain age predicts mortality. Mol. Psychiatry. 

Cole, J.H., Poudel, R.P., Tsagkrasoulis, D., Caan, M.W., Steves, C., Spector, T.D., 
Montana, G., 2017b. Predicting brain age with deep learning from raw imaging data 
results in a reliable and heritable biomarker. NeuroImage. 163, 115–124. 
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