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ABSTRACT

We have extended the theory of the high-frequency Stark effect in

gtomic spectra to treat casés Qf multiplé interacting upper levels and
of strong electric fields and resonances, where perturbation theory is
inadeqﬁate. We have also included the effects of a static external
magnetic field both in the perturbation theory énd the more general
treatment. Numerical calculations are prgsented for the 4922, ang
43%88-8 lines of He T for se&eral field strengths and ffequencies. The
neﬁ theory is used to infer the frequency and stréngth of a microwave
electric field applied to a steady state helium discharge wifh ho
magnetic field; excellent agreement is obtaine§ between the calculated

and the observed spectra.
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I. INTRODUCTION

In 1961 Baranger and Mozer proposed using the high-frequency Stark
effect as a diagﬁostic tool to'study oscillating electric fields in
plasmas.1 Such electric fields induce atomic transitioné involving
more than one guantum which produce "satellites".of allowed or for-
bildden spectral lines. The frequency {or frequency spectrum),
intensity, and direction of fhe electric fields in the plasma can be
determined from the intensities, frequencies, and polafizatiéns of the
satellites. Theoretical treatments of the high-frequency Stark effect,

based on second~order time-dependent perturbation theory, have been

given by Baranger and Mozer,l by Reinheimer,2 and by Cooper and

Ringler.

Cooﬁer and Ringlér also demonstrated agreement with experi-
mental results for low electric field strengths.

There are, however, important;disadvantages of the perturbation
calculations mentioned above. First, it is difficult to extend them
to include higher-order satellites (higher-order multiple gquantum
transitions) vhich are important at high electric field strengths and
near resonances. Second, Stark shifts of the levels, which change the-
spectral posifions of the satellites, becone iﬁcreasingly important aé
the field strength grows,_and.théy must be calculated sepaiately, agair
using perturbation thebry. An approach which is vaiid at high field
strengths or near a resonance is that of Autler énd'Townes,u which
avoids the usual perturbation treatment, and which is able to‘calcu—
late Stark shifts and higher multiple quantum transitions.

In the last three years, numerous authors have apzlied the Stark

5-13

effect to the study of high-frequency electric fields in vlasmas.

8,10

In two of these experiments, the electric fiéid strergths agpear'

to be =o high that the validity of calculations based on rerturtation
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theory is questionable. Recognizing this, Kunze et al. have modified
the verturtation theory by adding a rhenomenological damping constant5
and by extending the calculations of the intensities of the lowest-
ordér satellites to fourth order.8 Cooper and Hicks have estimafed
the range of validity of perturbation calculations and have pointed
out possible pitfalls in using the high-frequency Stark effect in
plasma diagnostics.l

In many laboratory plasmas in which one would like to use this
spectroscopic technique, not oﬂiy are strong high-frequeﬁcy electric
fields present, but the plasma may also be permeated by a magnetic
field. This situation has not been treated by any of the theories

9

mentioned above. Cooper and Hess” have pointed out one simplification
introduced by the magnetic field; by simply inspecting the Zeeman
pattern of the satellites it is mnossible to determine the relative
directions of the electric and magnetic fields, and if the electrig
field is circularly volarized, the sense of the polarization. This
technique has also been aprlied by Scott et al.lo

There is a clear nééd for a comprehensive theoretical treatment
of the high-frequency Stark and Stark-Zeeman effects which is wvalid
for strong electric agd magnetic fields, and for arbitrary electric
field frequency. We develop such a theory in Sec. II of this paper,
by extending the method of Autler and Townes to includé more than t&o
upper levels and the interaction of a magnetic field with the excited
atom. Unfortunately the usefulness of the theory is somewhat re-

stricted because the resulting set of equations must be solved by a
computer. Since in many cases the pérturﬁafion theory is adequate, in
Sec. IIT we extend it to include the effects of a magnetic field and

illustrate its use in calculating the high-frequency Stark-Zeeman

.

effec? of the h922—8 line of He I. In Sec. IV we display numerical

results of the general theory, and in Sec. V we compare the theoretical

célculations with experiment for the case of no magnetic field and in a '

situation in which the perturbation theory fails.
II. MULTILEVEL THEORY

A. Equivalence of Schrbdinger's Egquation to an

Infinite Set of Linear Equations

We start from the time-dependent Schrfdinger equation for an atom
in external magnetic and electric fields, and split the Hamiltonian

into three parts:

1 = BF,0)¥ = (B, + B + H)V . Y

In Eq. (1) and in the rest of this paper all energies are expressed in
angular frequency units. H, is the time-independent Hamiltonian for
the unperturbed atom (no external fields) and is assumed to have a
known orthonormal set of eigenfunctions {Uj} and corrensponding eigen- ’

values {uﬁ}:

HoUs = @505, JEL, 2, +er . (2)

In genéral, HO will have an infinite number of eigenfunctions, but for
any single calculation only a finite number N will be physiéally im-
poftant (their choice will be discussed in Seec. IV). Hl represents
the interaction energy between the atom and the externally aprlied
static magrnetic field % and is time-independent. It will often be
possible to pick the [Uj} to be eigenfunctions not only of_HO but also

of Hlf In this case

_: ' 1 =
_(HO + Hl)Uj = ijj’ ®f = w5 + may (3)
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where ) is the Larmor frequency
1 eB. _ 12 \
=5 me—c ’ B= B (&)

and mj is the magnetic quantum number of eigenstate j. H, represents

2
the interaction energy between the atom and the externally appiied
electric field. The electric field is assumed éo vary harmonically in
time with frequency w, thus allowing separation of the time and space
dependence of He:

Hy(7,t) = ER(H)e™ + my(Fe ", (5)

We next expand the wave function
N .
Wi = ) T E), | o
j=1 .
vwhere the T's are time-dependent coefficients to be determined; Sub-

stituting this expansion into Eg. (1) we obtain
N N
i u,T, = Z o, + H: +H,)U,T.. -
Z 373 ( J 1 2_) JJ ' (0
J=1 J=1

B * .
We multiply on the left by Uj" integrate over all space, and use the
orthonorﬁality of the U's to get (we interchange j and j' for conven-

ience)

N
.o + - _iwt - ~iwt
iT, = o.T. +. Q... + PB..,e + B..,e T, . (8
37 %5 Z (@550 + Byyn Py )75 @
51

where we have defined the following gquantities:

a..
Jd

= (4 ; 3 ¥
1 =
= (lE L )—fdrUj H Uy,

it

+ e e '
and B5 = Calmglan). . | (9)

Using Floquet's theorem of differential eq_uations,15 we can expand
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the time-dependent coefficient ‘I‘j as

o0
T, < e I Z C, e T, ' " (10)

where A and the C's are time-independent unknowns; the C's are in
general complex, and A is real. Substitution of this expression for

Tj into Eq. (8) yields

» -i(A+sw)t .
E: (n + &n)ste 1(M+sw)t _ E: chjse
§=-00 §=-00

N o :

“iswt 4 -i(s-L)at - - -i -
. E: }: Cj'sLyjj'e isat | gt o i{s-1)w 48 e 1(s+l)um]e it
J'=1 s=-w

33 33
(11)

Since this equation must be valid for all times, we may equate coeffi-

cients of equal powers of e-;wt to give

N
: . , + -
(cnj sw x)st + Z ‘ajj'cj’s + Bjj'cj',s+1 + Bjj’c,j',s—l) = 0;
jt=1 : : (12)

1,2, =, N,

i

d
S = ~00, *+++, +00.

- This set of equations was solved by Autlef and wanesh in terms
of an infinitely continued fraction for the special case N=2, ¢ =0
(no magnetic field), and é+ = g (linearly polarizéd electric fiélﬁ).
As pointéd out by Autler and Townes, once any sing}e solution has been

found to the set of equations (12), the new variables

Al

i

A+ o,

585 Cj;S-H’D’j =1, -, N’ §= -0, 0, +® (13)
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where m is any positive or negative integer, will also éomprise a
solution. We will refer to solutions related by Egs. (13) as a "set."
There are an infinite number of solutions within each set but every
solutipn in a set contéins the same physical information, i.e., cor-
responds to the same wave function V¥, as can be seen by nbting that

the expression for Tj Eq.[(lo)] is invariant under the substitution

given by Egs. (13).

B. Discussion of the Exact Solution

We have shown abova that solving Schrddinger's equaﬁion [Eq. (l)]

is equivalent to sol?ing the infinite set of equations (12) for A and
the C's. Given a solution of Eqs. (12), substitution of A and st,

j=1, «++, Nand s = -, +-+, @, into the expression for V¥ gives a
solution to Eq. (1). since thé Hamiltonian H has been defined over an
N dimensional space made up of the eigenstates of Ho, the complete
solution of Eg. (1) must consist of N linearly independent y's. We
have seen above that the solutions of Egq. (12) within & single set
give the same wave function ¥, thus there must be N different sets of
solutions to Eq. (12). ‘We denote the different sets with the index
it
it R . o
v, = e + Z c?se'ls‘“tuj, i=1, +o0, N. . (14)
Jj=1

Before discussing the interpretation of.the wave function Wi’ we
will examine its mathematical properties and from them prove two rela-
tions between the C's which will be useful in the following two sec-

tions. We start from Schrddinger's equation HWi =1 awi/at and its

: * *
Hermitian conjugate wi,H = -1 5Wi,/8t which together imply

5d/’3

* ) N
= tJ d TV Y 0. (15)
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.We can use Eq. (14) to evaluate 7%

- _
e-i()\i-xi.)tZ _wwtz Z - "]s wu=s - s'. (16)

U=-00 J=1 s=-00

(i']1)

It

From the'aboverexpression we can get a useful relationship between the
C's by noting that condition (15) requires that the right-hand side of

Eq. (16) be independent of time. This will be true if and only if

N o .
z: 5: J,s- u JS - Xiaii'suo = Sii'SuO' (17)
The constants {Xi] are arbitrary and we have chosen them to be 1 (this

choice determines the normalization of the-C's).

Using (17) we can rewrite (16) as
(11]2) = 8., , : (18)

and thus show that at any time t the [Wi] form an orthongrmal set of
solutions to the time-dependent Schr8dinger eqﬁation. Furthermore the
{vi} form a sgt of stationary wave fungtions (the probability density
szi is independent of time when integrated over all space) and hence
represent the stationa;y states of an atom in the presence of a static.
magnetic field and an oscillating electric field; by stationary we ﬁean
that an atom in state v at time t = to will remain in that state
indefinitely.

To derive a second relation similar to (17) we start by rewriting

Eq. (14) as

N ' . :
- . - i i ~iswt ,
= E: TijUj’ Ty e E: Csee . (19)
J=1 ' '
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Since both sets of wave functions, [Wi] and {Uj]’ form an orthonormal

basis for the N-dimensional vector space at any time %, the matrix T
. o

must be unitary for all t. For a unitary matrix ? we must have

T*T = 1. Evaluating this condition in terms of the matrix elements

T, .t
ij
oo N @ ’
-iwwt. i* i
)RR WD SR (20)
u=-m. i=l s=-@

for all t. Since the right-hand side is independent of t, the left-
hand side must be also. This will be true if and only if the C's
satisfy the condition

N

(o0] :
cgf,s_ucés = 855:00° (21)
i=1l s=-00
As is shown by Eq. (19) above, the set of wave functions {wi}
which solves the time-dependent SchrBdinger equation represents the
rearrangenent of the eigenfunctions {Uj} into a new set of functions

N

which spen the same N-dinensional space as the {U,}. The nature

of this rearrangemenﬁ changes in time since % is a function of time,
but at all times the new set of functioné form an orthonormal set.

We shall assume that the {Wi} have been chosen such that in the

limit Hl,H2 - 0, wi - Ui' This choice is not necessary but will lead
to simplifications in the following sections. When nd extefnél fieldé
are present an atom can be characterized by the set of stationary
states'represented by the wave functions Ujje-hmjt}.b Each such state
has a well-dsfined energy ws; an allowed dipole transition tetween two
such states producesba single specirél linre. 1In the presence of an

externzl oscillating :lectric field and a static magnetic field the

stationary states of the atom are represented by thef{wi] or linear
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combinationé (with time-independent coefficients) of the»{wi]. As can
be seen from the form of the.{wi} and expression (19) there is no set
of states whose members are both»stationary and can be chgracterized
by a unique energy (i.e., bave a simple exponential time dependence).
As a result spectra produced in the presence of an oscillating electric
field are more complicated than in the fiéld-free case: a single line
(allowed or forbidden) which would exist in éhe field-free c@se'is
replaced in the field-present cése by an infinite series of spect;al
lines. . | »

C. Transition Rate of an Atom in the Preéence'of a Static

Magnetic Field and an Oscillating Electric Field

In the presence of a static magnetic field and an oscillating

.electric field, the state of an étom, both before and after a transi-

tion, will be described by a wave function of the form (14). However,
in many cases we can assume that the final stéte k is negligibly

affected by the electric field. As can be seen from the perturbation
solution for A and the C's [Eq. (AB) in the Appendix], this condition
will occur if all states k' coﬁpled to the state k by a nonzero elec-’
tric dipole matrix element By, also satisfy o - wﬁ,l > ]aﬁk,l and
w. In addition, if we assume that a representation of the unperturted
eigenstétes has been chosen such thét both;HO and Hl a;e diagonal

operators, then the final state k can be described by the wave functior

¥y = U e . ) . (e2)

We define § Qny)dwydg to be the number of photons emitted into-
ol
solid angle dQ per second with polarization e7 and with frequencies

in the range u» tow + dm?. In the Appendix we calculate the rhoton

7
k

emission srectrum & (ay);for transitions from an upper state 1 to the

Kl
1
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‘lower state k of Eq. (22):
2 @

k RS - K k% i i
_ - ' - - [ 1
gi(my) — E: S(wk t A sm) E: 050y gj gj'cjscj's’
§=-00 “Jsd'=l

(23)
m&k = mﬁ - wﬁ. The matrix element g? contains the dependence of the
transition rate on the direction and polarization of the emitted
photon and is defined in Sec. III, Eq. (36). The total photon .
emission spectrum $ from an ensemble of Na atoms populafing the . N
states {wi] will be expressidn (23) summed over final states, aver-

aged over initial states, and summed over photon polarization:

N N' . Ni
S(‘“y):Z inz %i, KiEN—. (24)
e7 i=] k=1 a

Here Ni is the nmumber of atoms in the state i, N' is the number of
final states, and Ki represents the probability that the state i is
occupied by atoms in the enseﬁble and has the normalization

N‘ ~
K; = 1. (25)
i=1 S

" The vaiue giveﬂ to Ki in any particular problem’will be governed
by physical considerations. In the calculations presented.in the
following sections we have assumed that

K, = 1/N, 1 =1, e, N k - (26)
i.e., that each of the states Wi is equally populated by atoms in the
ensemble. In the, limit of no external fields where Wi - UiJ Eq..(é6)
is just the assumption that tﬁe N eigenstates {Ui) are in thermal
equilibrium at a high temperature: Such a sifuation occurs in mosf

laboratory plasmas when random collisions (and not radiative transi-
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tions) are thé dominant mechanism inducing transitions among states
with different values of i and when the average kinetic energy of the
colliding particles is large compared with.the interlevel energy svac-
ing of thé N states. Then the energy levels are "degenerate" with)
respeét to collisional excitation and deexcitation, and the effect of
collisions will be to maintain equal populations.. in the presence of
external fields, energy levels of the N states are shifted relative to
each other by energies of the order of w and ki - o (the latter quan-'
tity will be shown in Sec. III to be of the order of_wL and §]5§j|2/mij),
but we still expect coliisional processes to maintain equal populations
if the mean kinet;c energy of the colliding yarticles is much greater
than these energy shifts. We can make the analogy of assumption (26)
ané high-temperature thermal equilibrium more explicit by considering

a consequehce.of Eq. (26). From Eq. (19), the probability éhat an atom

in the state i is also in the eigenstate Uj is : s

o0}

(e'o)
2 s % .
[7..1° = g o~ iuat E c: c: (27)
iJ Jr,s-u gs
s=-00

u=-00

and is time-dependent. Then Wj’ the probability that the eigenstate j
is populated by the atoms in the ensemble, is given by Eq. (27) aver-

aged over the states i:

fe ] s N ® .
_ -iuwt i% i _ 1,
wj - E € E Ki E Cj,s-ucjs T (28)
i=1 s=-00 . .

u=-00

the latter equality follows from Egs. (26) and (21). Thus Eq. (26)
implies that the probability that the spatial eigenstate j is rogpu-
lated by atoms in the entire ensemble is time-indecvendent and the same

for all j even though the probability that a single particle in the
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stationary state i is in the spatial éigenstate J is time?depeﬁdent.
D. Physical Model
We now con§truct a physical moéel of the time-averaged behavior
of an ensembie of atoms in the presence of a time-varying electricﬂ
field. Such a model is useful in describ;ng the. solution to the
SchrBdinger equation, Eq; (14); in terms of simple physical processes
between tﬁe atom and the oscillating electric field ana leéds to cor-
rect theoretical predictions of atomic spectra when the variation of
the differential transition rate [Eq. (A5) in the Appendix} over times
of the order of w - can be ignored. We first note thdt from Eq. (16)
(setting i' = 1),
(il1) = Z Z Ic =1, o (29)
J =1l s=- .

vhere we have used Eq. (17) to simplify the result. We can also cal-

culate the energy of a particle in state Wi:

N o0
1,2
YY) ylel]

(1fu]1) = er%fi‘i Sy, -

j=l S=-m
‘1qu i% i )
+ &D}: J’S upjs)‘ (30)

u=-a

The particle energy oscillates in time due to the intéraction of the
"atom and the external electric field. If we average Eq. (30) over the
period of the electric field, T = 2r/w, we get

T @®
%j at{i|ul1i) Z lc;fslg(xi + sw). (31)

0 J=1 s=-®

=

We could equally well obtain the above equation by using the

<1k

following model. We consider an ensemble of atoms populating the state
i. We assume that each atom in the ensemble has "eigenstates" charac-
terized by the "quantum numbers" (i, j,s); such a state has a spatial
dependence Uj and an energy Ki + sw. The probability that the state
(i,3,s) is populated by atoms in the ensemble is assumed to be [C§S|2.
In this model Eq. (29) represents the normalization for the probability
and Eq. (31) represents the ensemble-averaged energy. If we extend

our ensemble to include atoms in the states [V., i=1, +, N}, then
the probability of the state (i,j,s) in the enlarged ensemble will be
IC | multiplied by the probability that the state i is populated,

i.e., Ki’ and the average energy of an atom in the enlarged ensemble

will be N

= Z Z Ki|C§S]-2(>\.i + sa)) - (32)

N
i=1l J=1 s=-
Atoms in the ensemble undergo transitions between the states

{((i,j,8), i=1, -+, N, j=1, *++, Nand s = -@, +++, +00} owing

- to interactions with quanta of the external electric field. An inter-

action consists of the emission (absorption) of a quantum; the new
state (i',j',s') after the interaction will have i' = i (each state i
is sﬁationary) and s' = s - 1 {(s' =35 + 1); i.e., its energy after the
interaction will have been decreased {increased) by the quantum energy.

Since the field quanta carry angular momentum of 1 (in wnits of 1),

‘the state after an interaction will differ in the index j from the

state before the interaction (Af = £' - £ = 1, £ = orbital angular
momentum of the sratial eigenstate Uj)' .

In this model the energy of the state (i,j,s), Ki + sw, has the
following interpretation: the energy difference betweén W, (the

energy of state iin the limit, H, By o o) and A, + sw is the result
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of the Stark shift of the energy levels, the Zeeman splitting, and the
exchange of quanta with the electric field. We assume that a repre-

sentation of the {Uj} can be found such that both Hy, and H, are

1
diagonal; then the Zeeman shift of state i is mimL. We must now
decide which member of each set of solutions to'choose fof each wi.
From Egs. (13) it is clear that each number of the set will have a
different value of ki. If we choose that solution in each set_for
which AE = xi - miwL - w; goes to zero when the electric field goes to
zero, then we can interpret AE as the Stark shiff, and s as the net

number of electric field quanta absorbed or emitted by the atom in the

state (i,J,s). Under this assumption as the electric field goes to

zero,
i
Cis ™ 035040
- . Y 33
and Moo may _ | (33)

We can now see the significance of .this particular choicé. Another
member of the set would have the prorerty that a different coefficient
c}c (o # 0) would remain finite in the weak-field limit. Such’a situ-
ation would not change the physics, since xi + ow is invariant for all
membersvof a set, but would not yield such a simple interpretation;

s - ¢ would be the net number of quanta.absorbed or emitted in state
(i,3,8).

Finally we note that an atom in the state (i,j,s) can undergo a
spontaneous‘radiative transition to a state with lower'energy with
which it has a nonzero dipcle moment. In such a tranéition, the eﬂergy
cf the resultant .thoton will be xi + sw minus the energy of the final

state; hence, the ogptical spectra of atoms in an oscillating electric

field will consist of "satellites," a given satellite being deter-

S -16-

mined by fixed values of i, j, and s. The intensity of such a satel-
lite would be given by Kilc§512 times the transition rate from Uj to
the lower state. However, as can be seen from the correct expression
for the total photon emission spectrum (2&), this simplified model
only works in the special case that we can ignore cross terms (those
with j' ¥ J) in Eq. (23). Ci;éumstances under which cross terms can ¢
be ignored often occur and_are discussed in the Appendix. ‘
ITI. EXTENSION OF THE PERTURBATION THECORY TO INCLUDE
STARK SHIFTS AND MAGNETIC FIELD EFFECTS

A. Transition Rate for Two-Quantum Transitions

in Non-hydrogenic Atoms

If-we consider the weak-electric-field limit of the wave function
of Eg. (14), then we can derive an expression for the transition rate
which is vélid for weak electric fields and which is the generalizaQ
tion of Eg. (1) of Cooper and Ringler3 to include a static magnetic
field and Stark shifts. We assume that the magnetic field B lies in
the z direction. We consider three atomic states: i, J, and k; an
electric dipole transition from i difectly po k is assumed to be for-
bidden. In the presence of an oscillatingvelectric field E, an atom
in the state i may bé pictured as decaying to the state k by a fwo~
quantum transition in which it exchanges a quantum of energy Hw with
the electric field, e;{ists transientiy in the intermediate state j,
and undergoes a dipole transition to the state k with the emission of
a photon of :anergy ﬁmy. The photen emission spectrum S}:(wy) for the

photon emitted in a two-quantum transition as described above is

2

2
e w w!
k 4 y . 8 jk T 121 k2
= 3 0w, - op C e F — |87 e (34
CHCW B~ (@, - ofy = @ w)jéz (o, = o lﬁall [ EJI (34)
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This equation is the weak-electric-field limi£ of Eé. (23); its deriva-
tion and a discussion of the assumptions made in deriving it are given
in the Appendix. In the above e%pression the upper sign corfésponds
to absorption of a quantum from the electric field, the lower sign to
emission of a quantum to the electric field; w? is the second-order

correction to the energy of atomic state i due to the Stark shift (the

Stark shift of state k is assumed negligible)

2

5. Ful” ] (35)

Y (w gt w) (w - w)

and the summation is over all intermediate states j.

The matrix elements B?j are proportional to the electric field
strength; they are defined in Sec. II, Eq. (9) and expressions for
them are given by Egs. (57) and (58) for linearly and circularly polar-

ized electric fields. The matrix element g? is defined by

f3r U, € -7 5 ' (36)

where T 1s the position vector of the electron, 37 is a unit vector in

k
&

all]

the direction of polarization of the emitted photon, and Uj is the
spatial part of the eigenfunction of the state j.
B. Special Cases
We will restyict our discussion fo transitions between states

with quantum numbers:

i- (n,2,m), moo= -, vy 4
i~ (n,-2¥l,m"), m'' o= ~f4l, eee, £-1, (37)
k - (n',2-2,m'), m' = -g42, -+, 4-2.

This includes most transitions of interest in plasma diagnostics. Now

consider two svecial cases: first, a linearly polarized electric field

-.18-

whose azimuthal angle with respect to B is random in time ang, second,

"an electric field which is circularly polarized and perpendicular to

B. In either case, due to the time-averaged azimuthal symmetry of the

electric field, we can average over the azimuthal angle in evaluating
IE?IQ- 7If the photon is emitted at an angle 6 with respect to ﬁ,

then for photon polarization parallel to B ("7 polarization),

6512 = 3 (512 + 19517) cos®o 4 [25[% sin®e, (38)

and for polarization perpendicular to B ("o" polarization),

k(2 k2 k2 '
51" =5 = (517 + 1951505 (39)
J J
k _k k . - . .
xj, yj, and zj are the matrix elements of the corresponding coordinates.

1. Linearly Polarized Electric Field

We first consider a linearly polarized electric field

-

Y -3 . 31 = N
E(t) = E, cosw(t to), IEOI J2 E_ o (40)
If € is the angle between the electric field and the magnetic field,
then after averaging over the corresponding azimuthal angle,

e2E2 -
IB; I |B |2 —EEEEE [% (Ixi|2 IYJIQ) sin C + Iz l cosgC]. (41)

To obtain Sn £- 2(&&), the total photon emission spectrum for two-
quantum transitions from the states {(n,4,m), m= -4, --+, £} to the
states {(n',4-2,m'), n' = -2+2, +-., £-2}, we must average Eq. (3&)
over the initial states i which, for simplicity, are assumed to be
equally populated, sum over the final states k; and sum over both .

polarizations. After evaluating all matrix elements and performing

the summations, we can write Sn ' £-2

(wy) as
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1 eLL 1 | 2(2 - 1)
8n~£-2(m ) = _ E2 n 2- 1|2an 2|2
nf 7 480 ﬂ'ﬁECB g TS (op - 1) £-1
c052§ o o 2
—_—— in~ 9 -
x 5 (1660,0 sin~ 6 + 650,_1 cos 9 + 660,1 cos” 0)
(w, . + ) :
1J
sin ¢
2 2 2
6 0 ] i
+ o 1o )2 ( €q,.1 C08 9 +e g g cosTO+ 66_1’0 sin~6)
15 % L.
sin’t 2 2 2
- 6 in 6
+ o s )2 (6€l,l cos™f + ¢ _y cos 6 4+ 661,0 sin”8) -
13 %, ‘
2
cos ¢§ sin2C T
+ EZ:——:;——;— (6601_1 + 650,1) + o 1o )2 (66_1’_1 + €-l,l)
ij =+ @, ‘
sin2§
(
+ PP )2‘6el,l + El,-l) e (42)
13 “r
We have evaluated the necessary matrix elements by using expressions
] 1 .
from Bethe and Salpeter.16 RE f is an integral over the radial
eigenfunctions,
n'g! _ i 5 .
Rap =78 Ry (MR,(), (43)

and g is the statistical weight of the state i. The coefficients

€ are defined as
m, .,m,
137 3k

€ = 8(& -, - wg Fow), (hh)

m, ,,m,

157%5% ik

1h Jk

where-m'jk = my - Wy etc. As can be seen from Eq. (44) a term in Eg.

(42) proportional to € produces a component of the Stark-Zeeman

157"k

pattern with frequency

~ Zeeman pattern of the satellites.

-00-
W = o +a>s+u)+(m +n, o . (45)
)y T Qg 0 & i PPk

Spectral lines described by terms within [---] in Eq. (42) are

TF

polarized parallel to i; those from terms within [---] are polarized -

oF
perpendicular to B. The "F" in the subscripts indicates that a dipole
transition from i - k is forbidden. Equation (42) is the generaliza-
tion of Eq. (7) of Ref. 3; it impiies the usual two ”satellites" of #
the forbidden line, each Stark shifted and split into a Zeeman pattern.
JIE wy > wj, +w gives the "far satellife" and - gives the "near satel-
lite," each named according to its proximity to the'allowed line
(3~ x),

Two conclusions about the Stark-Zeeman pattern can be drawn from
Eq. (42). First, for a given direction of observation 6, as the angle
between the electric and the magnetic fields is varied from O to /2,
some components will appear and others will disappear. It is therefore

9

possible, as has already been pointed out,” to tell the angle between

the electric field and the magnetic fleld by simple inspection of the

of the Second, the total intensity of =2
satellite.(the sum of the intensities of all Zeeman components) will
depend on wL and therefore on B. For components with mij =iO, the o
magnetic field dependence is very weak since a%k = mik and a%k ~ wjk

(the angular frequency separation between the states i, j and the >
state k is approximately 4 x 1015 radians/sec—-in the optical frequency
range--which is.the value of the Larmor frequency\for B = lO8 gauss).

For components with m # G, the magnetic field dependence will be

significant if mi is of the same order of magnitude as the other terms

in the resonant denominators in Eq. (42).
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2. Circularly Polarized Electric Field

We now consider an electric field which is circularly polarized

o A
and perpendicular to B = Bz:

B(t) = £ (% coswt 1+ ¥ sinut). (46)

The upper sign corresponds to right-hand circular polarization (elec-
tric field rotation in the same sense as a free electron in the mag-
netic field) and will be denoted by RHC; the lower sign corresponds to

left-hand circular polarization (electric field rotation in the same

sense as a free positive ion) and will be denoted by LHC. A calcula-

tion similar to that given above for the linearly polarized electric
field will give the transition rate. Hoﬁever, iﬁ is simpler to note
that the matrix elements given by Eq. (58) produce the following v
selection rules for transitions from state i to state j via absorption
or emission of a guantum of the electric field: if the electric field
is RHC and a field quantum is emitted, or if E is LHC and a field
guantum is absorbed, mij = +1; if E is RHC and a field quantum is
absorbed, or if E is LHC and a field quantug is emitted,,mij = -1.

In either case, m, is unaffected and may be O or +1. With these

Jk
selection rules the photon emission spectrum for circularly polarized
electric fields can be easily found from Eqg. (42) by the following
prescription:

a. Set t = 7/2.

b. Multiply the right-hand side by 2.

c. Retain only-those terms which fit the selection rules given

above. For instance, if the electric field is RHC, then select only

‘

_ those terms with +» in the resonant denominator and m*j =--1 in the

coefficient ¢ for the far satellite (absorption of a quantum from the

=20~

field), and only those terms with -o» and m, = +1 for the near satel-

J

lite (emission of a quantum to the field). As in Case 1, "far" and

"near" refer to the special choice w; > ug-

n'g-2

d. The resulting expression will be 3nl

and can be written
in a form similar to (42).

C. Ratio of the Intensity of a Satellite to the

Intensity of an Allowed Line

It is convenient tb calculate and useful to know not only the
absolute intensity of a satellite but also the ratio of the intensity
of a satellite to the intensity of a nearby allowed transition. We
can wiite the photon emission spectrum of the allowed dipole transi-

tion (j - k) in a fashion similar to (42):

2

. e ’
n'g-2 n'g-2,2
S ng-1 (a)y) B Roe-1

1
s — (£ -1)]
2nhe gj.

X {[nl 00526 +0_y cos?@ + 2qo singé]WA

+ [nl + n-l]oAS , (%7)

3 S . N .
W = o' © - o - . . (W7 t
here 7 ; wj] 6(@7 mj] mj]) A term in Eq ( ) proportional to

nm. produces a Zeeman component of the allowed transition with fre-
qugﬁcy w7 = wjk + m?k + mjkwL' The same convention for the polariza-
tion of the emitted photon applies; the subscript "A" signifies
"allowed." 7

We define si(e,g) to be the ratio of the number of photéns emitted
per second in "forbidden transitionsv(i - k) inﬁo the solid angle dg

to the number emitted per second in "allowed" transitions (J - k) into

the solid angle dQ:
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ok
Nidszfdm7 Si(my) .

5,(6,0) - (:8)

k >
N.dafde_ $ (o
J 7 SJ( 7)
Ni represents the population of state i, etc., and the upper (lower)
sign corresponds to the upper (lower) sign in expression (h2). If we
assume that the states i,j are in thermal equilibrium in the high-
- > _

te@perature limit (kT > lmij') then Ni/Nj gi/gj, and si(e,g)

reduces to

B nrgorge 18 {[]TTF * [] cF&

oho 12 (22 - 1) ™ fd“’y{["']m +‘[‘;.]UA} .

The square brackets are the same as in Eqs. (42) (or the equation

5,(6,¢) = (49)

equivalent to (42) in the case of a circularly polarized electric
field) and Eg. (47). By using only.selectedﬂferms within these
brackets, one can use Eq. (49) to compare the intensity of 5n& for-
bidden component with any allowed component.

As an example of the use of Eq. (49) we show in Fig..l the
results of célcﬁlating the ratio of the intensities-of components of
the Zeeman pattern of the satellites of the forbidden line (th *.21P)
to the intensity of the central "v"-compénenﬁ (mjk = 0) of the hopo-§
allowed line of Hel (th - 21P)J for various configurations of electric
and magnetic fields with

6 = /2,

w5 = 5.6% cm-l(th - 4'F separation in HeI),

W= 2.35 en™t (electric field frequéncy = 70.5 GHz),

a, = 0.55 en (3] - 7 ko), ana |

Epe = L kV/cm.

We now discuss each rart of Fig. 1 in turn.

oL

(a) E| B ¢ =0. The remaining nonzero terms in Eq. (42) are
only very weakly dependent on lfl through w;k and mék. The pattern

resembles a normal Zeeman triplet, with the g-components of each satel-

1ite 3/8 of the intensity of the T-component.

(v) E 1 B and random in azimuth; ¢ = 7/2. The intensities of all
forbidden components depend_on'lﬁl through resonant denominators; the
net effect is to increase the total intensity of a satellite (the sum

of the intensities of all Zeeman components) by a factor of

2
w,, + o CHAE XA

F = % 1J + J (50)
w5 £ 0+ ay @ 5 -

over its intensity in the absence of a magnetic field. 1In the limit
B 0, the stronger 6-combonents of a satellite become equal in in- |
tensity to tbe m-components, and the weakest (central) o-component
approachés 1/3 thé’intensity of either of the other two c-componentsﬂ

(c) and (d) ¥ L B and circulérly polarized. The intensities of
all forbidden components again depend on B through resonant denomi-
nators. In the limit B - O, the intensities of the v-éomponent and the
stronger o-component become equal; the weaker g-component approaches
1/6'of the intensity of the stronger o-component.

(e) Finally, if E is entirely random in direction we must replace

coseg and sin2§ in Egs. (42) and (47) by their average values

(sineg)aV = ,]f—vfsinzc aq = % , and
' 2 1 2, . 1
| (coslg)av = 7= | cos“t an = 3

‘With these substitutions, Eq. (49) reduces in the limit B - O to the

- R
expression for random fields (S+) given by Baranger and Mozer LRef. 1,
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eza 2 P E2‘ IRnZ-1|2
rms’ nl _

6 1 (22 - 1) (a)ij + a))2

. - (51)

If w -+ O, the Zeeman patterns of the two satellites merge; the result-
ing pattern consisting of 3 T-components and 5 o-components is the
Zeeman pattern of thé "forbidden line" produced by the quasi-static
fields of the ions -in a plasma.

- Several authors have treated the dc Stark-Zeeman effect, among

17

who derived the same selection rules as

given above and calculated the Zeeman pattern of the forbidden line,

them Brochard and Jacquinot,

and Deutsch et al.,l8 who have performed extensive machine calculations
on the dec Stark-Zeeman effect in HelI. .
IV. NUMERICAL CALCULATIONS

In this section we present results of numerical calculations using
the %heory given in Sec. IT.

We do not have an analytical solution to the infinite set of
equations (12). Instead, we use a numerical method ofvsolution sug-
gested by the physical intefpretation. -

For weak electric fields, the multiple absorﬁtion of s photons
becomes less likely as Isl increases (negative values of s correspond
Vto emission) since the larger values of Is[ correspond to higher-order
terms in.the perturbation series. The probability of the absorption
of one rhoton is given by second-order perturbation theory, two rhotons
by third-order theory, etc. As the strength of the electric field
increases, the probability of multiple absorption also increases, and
higher-order satellites will become observable. However,'it is reason-

able to assume thaﬁ even forstrong fields the probability of absorbing
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s photons becomes nezligible for ls[ sufficiently large. Since this

probability is proportional to ICjSI2 we assume that
C,.=0 for ls| >, 5=1,2, -=- N (52)

Then the infinite set of equations (12) is reduced to a finite set:

N '
+ - y
(g = w0 = Ny v ) (0508500 + B3O gy * BypCyr,ey) = O
=1
J=1,2, --- N, (53)
s=-5, <+ + 8.

Equations (53) can be viewed as an eigenvalue equation:

B - 33, | (5%)

where D is an N(25 + 1) dimensional column vector whose elements are

in a one-to-one correspondence with the coefficients st, Jg=1,2,+-'X

-

and s = -8,+-+ + S; X is an N(25 + 1) by N(25 + 1) matrix whose ele-

ments are chosen so that the set of equations represented by (54) is

-

the same set given in (53). One can easily show that X is Hermitian

4

when H is Hermitian. Let Z represent the unitary matrix which diagon-

alizes i; then
7% = X', (55)
-

- : L.
where X' i1s . the diagonal matrix whose nonzero elements are the eigen-
-

values of i and also the solutions for A. The columns of 7 are the
eigenvectors of %; they are solutions for B and hence for the C's. We
can construct a solution for Eg. (1) from each of the N(25 + 1) eigen-
values and eigenvectors of %. As discussed above, only N of these
solutions are to be used in the complete wave function and, as before,

the solutions may be divided into N sets, each set now containing

23 + 1 members. For the infinite set of equations (12), all of the
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solutions within a set can be found from any one member of the set by
using the transformation (13); this will only be approximately true in
the case of the finite set of equations (53) because of the appréxima-
tion made in truncating the matrices. We must be careful in selecting
vhich eigenvalues and eigenvectors to use. As one method we could
choose the solution in each set most accurately fulfilling condition
(52) above; or we could choose the solution described in the-previous
section where s has the physical meaning of the net number of photons
absorbed or emitted and Xi - mLmi 1(Di is the Stark shift. For low
electric fields these two choices will be the same.

In order to identify which eigenstates of HO need to be included
in the expansion of the wave function V¥, it is helpful to consider the
verturbation solution, Eq. (34). Because of the resonant denominators,
for a given initial state i, the most important intermediate states j
to consider are those for which [mijl - wis sﬁallest and Bij is non-
zero. However, for strong electric fields, all nearby intermediate
states should be included even if Bij is zero, since multiple quantum
transitions may be important and two states i and j can be coupled
through other intermediate states. For instance, for the\4588 He I
(51D»21P) line the 5G level must also be included, since it introduces
satellites and strongly affects the position and intensities of the
satellites originating from the 5D and 5F levels. If there are inter-
mediate states for which lwijl < o and Bij is nonzero, fhen states for
which Iwij' >> w can be neglected unless very strong fields are prgsenﬁ
or great accuracy is desired. The best method to determine whether a
rarticular state need te included is to perform the calculations with
and without.the state and compare results. Similarly the appropriate

value for § [the limit of the summation in expansion (12)] can e
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" found by increasing its value and noting the effect on the results.

In order to calculate the matrices a and Bi, and the unperturbed
energy levels wj, we need to know the unperturbed wave functions {Uj)'
Since, except for hydrogen, these wave functions are not known exactly,
an approximation must be made. In many cases hydrogenic wave functions
may be used to calculate the dipole matrix elements ¢ and 61, and
measured values may be used for the unperturbed energy levels;

For hydrogenic wave functions the H, term is diagonal if the

1
external mégnetic field is chosen along the z axis. If the total
electron spin of the atom is zero, then Hl = a&}%, where LZ is the z
component of the orbital angular momentum gf the excited electron.
H

") the interaction energy of the high-frequency electric field, is

=

-
T

=

-
te
H, = - = + |e|

= |

1

where E is the electric dipole moment. For linear polarization of

the electric field, E(t) = E

o coswt and
Bt., = B —Jfl<'l?-§l"> (57
SEANS A R ,

For circular polarization perpendicular to the magnetic field,

- ' A ~ .
E(t) = B s (x coswt + y sinwt) and

v lelBgg

Blyr = ——= (alx 7 ayl3n),
2h

- |e’Erms |

Bjj,:———-(JIXiiﬂj')- (58)
2h

The upper sign corresponds to right-hand circular polarization and the
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lower sign corresponds to left-hand circular polarization relative to
the magnetic field.

We have confined our calculations to helium, but the theory can
be used for any element, as long as the unperturbed energy levels are
known to sufficient accuracy and the necessary matrix eleménts can be -
computed.

" We have used our theory to investigate extensively two  optical
transitions of parahelium, the 4922-R (4'D-2'P) and 4388-R (5ip-2'e)
He I lines. For the upper levels in these two cases, the only states
which need be included in calculations for electric fields Erms < 20
kV/cm and frequencies w, wp < YSIGHZ are thé.hP, D, and F, and the 5P,
D, F, and G, respectively. The lower states (n = 2) are negligibly
affected by the elecfric field because the 2P, m = 0, +1 states are
not coupled by the Si matrix elements apd the 2P levels ére widely
separated from any other levels. However, the 2P levels are split by
the magnetic field.

19,20

For our calculations, we have used Martin's values for the
eigenvalues of HO’ and hydrogen-like eigenfunctions for the [Uj}.

In the calculations which are presented below, we have not
included & magnetic field.. This is because a thorough treatment of the
effects of a.@agnetic fieid>was given in Sec. iII and the new phenomena
which arise when the perturbation treatment is not valid are similar to
those which are shown below for the case of electric field alone. That
is, higher-order satellites and Stark shifts become important. _

Figures 2 and 3 show calculated Stark profiles of He h922-X and
He 4388-8 for an electric field frequency of 35.1 GHz (1.17 cm-l) for

various field strengths. This frequency wés used because it is the

one used in the experiment descrived in the next section. In the
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< 6 kV/em and S = 15 for

calculations we have set 8 = 10 for Erms <

stronger fields. The resultingbmatrix % has then been numerically
diagonalized using a CDC 6600 computer. Since for strong electric
fields there are a great many satellites which contribute significantly
to the spectrum, the main features of the spectrum are more easily seen
if the multitude of theoretical lines predicted by our céiculations are

"smoothed" by folding with an "instrument" function. To obtain the

profiles shown in the figures we have used the function

2 2 2
- lo-hx /(x"+a ,

where x is the distance in angstroms from a line center and "a" has
been set to give a full width at half maximum of 0.2 8. This instrument
function produces a line shape which is often observed experimentally
for nonhydrogenic lines: Gaussian at the center and Lorentzian in the
wings, with a weak continuum'background. The half width and background
chosen are approximately those of the experiment described in Sec. V.

In each figure the profiles are plotted lined up behind each other and
thé intensity of each profile is plotted logarithmically. The fir;t
profile in each figure is the instrument funcfion, the profile for no
electric field.

For low field strengths the profiles calculated by using the
multilevel theory of Sec. II agree with the perturbation theory: the
pattern éonsists of a strong.allowed line and "far" and "near" satel-
lites separated by twice the field frequency. For higher electric
field strengths other satellites appear and grow until they dominate
the spectral pattern. The additional satellites are due to multiple
photon transitions from the upper sét of states to the 2P level. 1In

Fig. 2 the allowed line (41D+21P) has satellites associated with it
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vhich are due to an even number of ﬁhotons being absorbed or emitted
from the external field, while the forbidden transition (th*QlP) has
associated with it satellites due to an odd number of photons being
emitted or absorbed; these additional satellites are separated from the
positions of the corresponding transitions by even and odd.ﬁultiples of
the field frequency, respectively. Figure 2 also shows the effect of
the Stark shift of the QD and 4F levels: the satellites of the forbid-
den line and the satellites of the éllowed line (as well as the allowed
line itself) appear to "repel" each other as the field strength is in-
creased. The allowed line and its satellites are shifted towards
longer wavelengths and the satellites of the forbidden line are shifted
towards shorter wavelengths.

The spectra shown in Fig. 3 for, the 4388-8 1ine are more complex
than those of Fig. 2 due to coupling of the 51D and 51F levels to the
nearby SlG level. This coupling not only médifies the positions and -
intensities of satellites arising from the SlD and 51F Jevels but also
préduces an addipional group of satellites associated with the forbid-
den transition (51G*21P) and separated from it by even mul%iples of the
field frequency. The Stark shift of the SlG level and its associated
satellitesfis in the same sense és that of the 51F le%el, i.e. toward
shorter wavelengths and "away" from the red-shifted aliowed line.

In the limit of very strong electric fields, where the Stark shift
is much greater than the unperturbed energy level separation,-we expect
the Stark patterns to approximate the symmetric pattérns predicted by
Blochinzew21 for degenerate levels. Such a tendency can be seen in
Fig. 2 where the spectrum becomes more symmetric as the th and th

levels become increasingly "degenerate.”

Figures 4 and 5 show the results of further calculations on the
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h922—x He I line, again with a linearly polarized electric field and
no magnetic field. Because we have chosen the slectric field polarized
parallel to the z axis, each satellite and the allowed line have three
unpoupled components whose amplitudes and Stark shifts depend upon the
absolute value of m, jché azimuthal quantum number. In calculating the E
data for these graﬁhs we summed the amplitudes of the three components
of the appropriate line.

In Figs. 4 and 5 the rms electric field is plotted against
s+(s;), ‘the ratio of the far (near) satellite to the allowed line, for
various frequencies (labeled in inverse centimeters). Perturbation
theory predicts straight lines on a log-log plot (S+ and S_ are each.
proportional to Eims) which are tangent to the curves of Figs. 4 and 5
at low electric fields. For stronger fields there are increasing devi-
ations from the results of perturbation theory. Figures L and 5 and
also Fig. 2 show that the intensity of the far satellite is growing
faster than the intensity of the near satellite,'until at about 12
kV/cm ‘the far satellite is actually‘stronger. As is noted in Ref. 11,
and is clear from Figs. 4 and 5, the near satellite deviates much more
than the far satellite from the predictions of perturbation theory,

and the effects of the higher-order terms are to decrease the ampli- @

;ude of‘the near satellite relative to the perturbaticn theory results.

L7

From Figs. 4 and 5 it is in‘principle possible to determine the
frequency and amplitude of an electric field from an experimentally
measured spectrum. - However, the appearance of additional satellites
may confuse the sprectral rattern even for relatively low field
strengths.

-

" For instance, consider Fig. 6, which shows a set of profiles of the
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4922-8 1line of He I for a frequency of 4.0 em™t. Tt is not clear from

the figure which are the far and the near satellites even for weak

elécpric fields. The line marked with an arrow is actually a satel-
AR .

lite of the allowed line. Another situation where confusion could

result is at very low frequencies, since the two satellites will then

merge into a single line at the positionvof the forbidden line. Fur-

thermore in a plasma the forbidden line is always present due to fhe
quasistatic coulomb fields of the ions and it may be confused with the
satellites if its intensity is comparéble to satellite intensities.
One might also see only a single satellite if the field frequency is
“close to the erergy separation of‘the 4D and the 4F levels; then the
near satellite will be buried in the "wings" of thg allowed line. For
these reasons we emphasize that unless the features of the spectrum
are clearly idéntifiable, extreme caution must be.observed in using
the perturbation calculations or Figs. 4 and 5.

The amplitude of the electric field can also be determined by
measuring the Stark shift of the lines.lu It is usually most con-
venient to measure the total Stark shift, which we define as the
change in the separation of the forbidden and allowed lines (compared
with their separation with no externai fields). The Stark shift of
£he allowed line can élso be used if one can determine its unshifted
position. For low fields Eq. (35) can be used to find the Stark
shifts; for high fields the theory of Sec. IT must be used. Frbm

Eq. (35) we can see that for linear polarizaﬁion the Stark shift is

proportional to

—_— A.
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and therefore for w < lwéjl it is a rather weak function of the fre—
quency. Thus in this case a precise knowledge of the frequency is
unnecessary; for other polarizations, however, the dependence of the
Stark shift on the frequency is stronger.
| V. EXPERIMENT

We have experimentally studied the effect of a linearly polarized
high-frequency electric field on eigenstates of He I by observing
optical transitions in the vicinity of two allowed lines, which we will
refer to as |
hoeo-8 (41D, etc. - 2'p), and
4388-8 (51D, etc. - 2'p),

Case I:
Case II:
and by comparing the observed spectrum with the spectrum calculated by
using the methods of Secs. II and IV. In both cases there is no mag-
netic field. Figures 2 and 3 of the previous section show the theo-
retical profiles predicted by the multilevel theory of Sec. II for
Cases I and II for the experimentally meaéureq electric field frequenc]
and for various field strength.
Apparatus
Figure 7 shows the apparatus used in the exveriment. We generate

the high-frequency electric field in a cylindrical microwave cavity

and apply it to a helium tlasma produced by a dc discharge in a quartz

capillary which threads the axis of the cavity. The cavity (0.609 em

in diameter and 0.865 cm in length) oscillates in the Mo mode with

1
the electric field parallel to the axis of symmetry and electric field
strength maximum along the axis of the cavity. Mode identification
was verified by calculating the resonant freguency of cavity plus

quartz capillary, which agreed to within l% of the measured frequency,

35.2 GHz, and also by measuring the relative electric field intensity
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as a function of position along the axis of the cavity. This laﬁter
measurement was done by measuring the change in resonant, frequency of
the cavity-quartz capillary system as a small quartz plug was pushed
into the cavity down the inside of the guartz capillary. The calcu-

lated electric field intensity variation over the inside cross section

of the capillary {o0.d. 0.85 mm, i.d. 0.40 mm) is < 5% of the value of

the axis. 1In operation with a plasma, helium flow is maintained con-
tinuously through the capillary: typically tﬁe pressure at the high-
pressure end of the capillary is 3 torr, pressure at the low-pressure
end is 1 torr. Other typical discharge parameters are: curfent 3.5
mA, current density 4 A/cme, average dc electric field strength 300

V/em, and electron density 1 x 10t en?

The electron density is
determined by measuring the change of resonant frequency of the micro-
wave cavity due to the presence of the plasma. The field frequency

is much greater than either the plasma frequency or the electron col-
lisio; frequency, so that the microwave field has no noticeable effect
on the plasma. Further details of the experimental arrangement are
given in Ref. 3. Two changes should be noted,'however. The‘cavity is
now ¢xcited by a 10-watt CW klystron. With the higher power and elec-
tric field the satellites ére no longer bturied iq the wings of the
‘allowed line; this permits the experiment to be run CW and obviates
the need for phase-sensitive detection. The light intensity at a
given wavelength is now measured by use of standard photon-counting
technigues. Peak intensities in Figs. 8 and 9 represent > th counts
rer second. For a single experimental noint, counts were taken for

10 seconds.

‘function" obtained from measurements taken on the. same apparatus but
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B. Comparison of Theory and Experimént
For a direct comparison of the theoretical calculations with our
measured line profiles, we have folded the theoretical results, which

consist of a discrete line spectrum, with a realistic "instrument

with the microwave power turned off. Most of the observed broadening

e.d

was instrumental. Figures 8 and 9 show comparisons of experimental
results with various theories, all calculated for observation at right
angles to the direction of the electric field and for a peak field
strength of 5.0 kV/cm (3.5% kV/cm rms). In all cases & = O is the
position of the allowed line in the absence of the perturbing electric
fiéld. A1l "bumps" on the theoretical profiles are preduced by one or-
more satellites and not by irregularities in the instrument function.
All satellites stronger than ZLO-5 of the total intensity of the pattern
were retained ‘in the calculations (the number of satellites so kept is
noted in discussion of each figure). A : ~

Figure 8 shows a comparison between exﬁerimental and theoretical
results for Case I. The multilevel theory outlined above, the Autler-
Townes theory, and the perturbation theory of Baranger and Mozer all
give nearly the same results for the predicted spectrum;.the major
discrepancy between them comes from‘the neglect of the Stark shift in

the perturbation calculation. The slight difference between the

iy

Autler-Téwnes and the multilevel theories is dge to the retention of
the 4P energy level in the latter. In both cases we have included ;8
satellites. Agreement of thermultilevel theory with experiment is
excellent, aﬁd even the other two theories agree quite well with
experiment for this field strength. The close agreement of the rer-

turbation calculations and the multilevel calculationms, which we exrect



~

=37~

to be much more accurate, indicate that the perturbation calculations

can still be trusted for this line‘at this frequency and field strength.

The value so obtained was 5 kV/cm peak figld with an estimated error
of less than 500 V/cm.

Case iI, shown in Fig. 9, is a much more severe test of the vari-
ous theories because

+ ‘ ' o
(a) the matrix elements B~ increase with n, hence the effect of a

‘given electric field is greater on the 4388—2 line than on the 4922-8

line,

(b) the energy levels of n = 5 are closer together, so that more
satellites (i.e., higher-order transitions) become important, ana

(c) for n = 5 there is a G energy level very near the F energy
level, and the two interact strongly.

.‘In Fig. 9 we compare the measured line profile for the 4388-8
line with theoretical ones calculated from our multilevel theory and ‘
from the Autler-Townes theory, using the field strength derived from
the measurements on the h922—R line. Agreemeﬁt between the multilevel
calculations and the measured data is very good, whereas experiment
and the Autler-Townes calculations sharply disaéree, not only in satel-
lite positions and intensities but also in the Stark shift of the -
allowed line. This disagreement gravhically illustrates the neéd to
include additional uprer levels, since this is the only significant
differenée in the two theoriés. Perturbation calculations, not shown,
disagree even more strongly with measurements. In the Autler—Tanés
calculafions we include h2»satellites; 58 were'u;ed in the multilevel
calculations. |

In Fig. 9 we have also indicated the major satellites originating
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from the three upper levels, 51D, SlF, and 51G. Each vertical line in

the figure denotes the average position and relative intensity of the

narrowly separdated satellites which result from transitions from upper

levels with differing magnetic quantum numbers.
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VI, - APPENDIX

A. C(Calculation of the Transition Rate for an Atom in a Static

Magnetic Field and an QOscillating Electric Field

In order to calculate the theoretical radiation pattern emitted -

by an atom in an oscillating electric field we solve the equation:
1 2 [u(e) 1']o, (A1)

where H(t) is as defined in Eg. (1) and H' is the particle-radiation

field interaction operator:

H' = h; < (3 +
e

>eX
A™);

olo

5 is the momentum of the optical electron, X is the vector‘potentiai
of the radiation field, and B is the vector potential of the external
magnetic field. At any time t, the solutions of the equation

1(d9/3t) = H(t)¢ form a complete orthonormal set. Hencé we may expand
o(t) as o(t) = 2; Pd(t)md(t), where the sum ?s over the complete set
of the ¢'s. The @'s explicitly contain both atomic and radiation

field quantum numbers and hence differ from the solutions of Eg. (1)

(¥'s). Substitution for ®(t) in Eq. (Al) yields:

ar . '
iz —q(pd ZI‘Hcpd. (2)

d
Multiplication of Eg. (A2) on the left by ¢k and integration over all
space yields an equation governing the time development of the coeffi-

cient Pk:

ar.

k
I —= (klm'fadr ; A3
- };__ll . (43)

“4o-

the matrix element (IH'I) involves integration over bo£h atomic and
radiation field variables.

We assume that at t = T the system (atom + radiation field) is in
& state @ = o, [I‘d(T) = sdi]; then lrk(t)l2 is the probability that
the system, initially in state i at t = 7, will by time t have under-
gone a transition to state k by emitting or absorbing photons from the
radiation field. If we consider a time intervai, t - 1, small com-

pared with the lifetime of state i, then we can solve Eq. (A3) by

iteration:
o) | n(3)

l"k = Fk + Pk + 3

(o) _

Ty = Oy v

N :

rﬁl) = - ij at (x|mr{i) ete. (Ak)

T

. \ _
We now specialize to the problem of spontaneous emission of a single

photon ¥ in the atomic transition wi - Wk where Wi and Wk are given

by Egs. (14) and (22). Then

-i(wy«mé)t

1}
(o)

Py

where A is the radiation field state function; A denotes the presence

of photon 7, AO denotes that no such photon is present. By substitut-

ing ¢ and @, into Eg. (k) and performing the time integration,

b
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(j' IH'[k).(KlH;[j)

) f\/]z'

E N
L

o) ® v '
s ik _ . et
N zg: ol oi* e 1/2 1£(s s )w(t+T)]
js j's' -
< s=-® s'=-
Af, . ]
: , N 4 sin §[(a3 oy - N sw)(t - 1)
t - -
(u)y + . )\i sw)
sin i[(a) +a - N, - s'e)(t - Tﬂ
% 2Ly ke i
i
T L - 1
(m7 +ap - N oS )
where the matrix element (IH") now denotes integration only over
atomic variables.
. (1),2 . . " -
As a function of my’ lPk l consists of a series of "peaks" with
centers ®, = Ay o+ oS0 - wy and widths =~ l/(t - 7). For o(t - 1) > 1
the pea<s are narrow relative to the interpeak spacing w and we can
approximate'll‘l({l)[2 by
(1) ~ N . _ is
]P I dw B(my - Ny an)Ik 5
.
e where Iis is the number of photons emitted in transitions from state i
to state k into solid angle dp with my = xi + 8w - mi during the time
¢ interval (7,%

w
) _
is (1)2
T, f . Ir, "ol )da

(D-
N N @ :
C ik
=2,TZ (3 <fu' ) Z C1C jigrple,)ag
J=1§'=1 - gt=-0®
y e-ib(s-s')T ) é-ﬂb(s-s')i -
' i(s - & )w ?

~Uo-

p(w ) is the density of photon states/radian-solid angle and
'y x + sw - mk A, where A is chosen to satisfy 1/(t - 1) K A << o
In performing the integrations above we have used the sharply peaked
nature of the integrands by evaluating p(a5) and the matrix elements at

the peak center and then letting A~ . Of more physical interest

than |'1’*l({l)|2 is its time derivative, the differential transition rate:

' N

a _

— (l) 2_. st t t] s
= lrk < = 2Trfdu)7 E § it la e x]mt] 3)

j=1 j'=1

i i*
x Z Z stcj's'p(wy)d‘g
=0 .

s=-® '8’

e

x [e-i(s-s )u¢6(w + mk - N - smj] . ' (A5)

AN

The differential transition rate given by Eq. (A5) is a rapidly
varying function of time for frequencies for which.the approximations
above hold Lm > (t - T)-l > (lifetime of state i)—l], and hence of
more experimental interest is tﬁe time-averaged differential transition -

rate dA?. Eveluation of the matrix elements in Eq. (A5) (using the

dipole approximation) and p(wy) yields
2.,1/2 » 2

ﬂjc

21e

k
(xla'ly) =1 TE, and
Ja'ls — ] olw,) =
7

where v is the system volume, the magnetic field has been assumed to
line in the +z direction, and where we have defined the following

quantities

*
w, = ol -, o = dBrU.(H + H,)U,, etc., and
5k “ 3o TR
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Then
‘- [ il S o)
dA, = | dw E: wdlw +w -\, - s®
St 7 2’n’¥1c5 7 s 4 +
: $=-00
N N ' '
k k* i
XZ Z Jk J'kg g 1 jS J S M 1 ' (A6)
=1 §'=1 :

The integrand of expression (A6) gives the photon emission spectrum

8(&7):

5 )

e .
s(ﬂ3) = ;;;:3 E: ayﬁ(wi ta - A - SW)

. .
k k* i
E } @l 1y E5ES CJSCJ .- . (A7)

B. Weak-Field Limit

If the’ electric field is weak, then we can get an explicit expres-
sion for the solution of Eq. (12). We set S = 1 (higher vglues cor-

respond to multiple guantum transitions which we expect to be rare for

g

weak electric fields) and diagonalize the matrix X. The resulting

expression for N\ and the C's are power series in-the small parameters
B:ikj:
Ay = ol +of +5(|8l?),

1

- +
) 8 B 5. Bi:
1 -17j1i o) 2
€l = Bagbyy * i+ 2l (1], )
k ' 1 -
(wij +w) (mij »
- 12 2
5 [ 8%,
(l)iE Z ~ + 3
R R [
5 (le + @) (wij w)

w? is the Stark shift of level i due to the electric field and is

o

~lih

quadratic in the electric field amplitude. In deriving the above
expressions we had to assume: [Bijl << ,wijl’ and also that

Imfj + w[ >> (lBI); these assumptions will be discussed in the next
section.

The resulting expressions for the" S(uy) will comtain cross terms

* +
of the form gkgk,B ﬁ In many cases of physical interest (dis-

3iPgri

cussed in th t section) £fE<pt p* In thi E

usse in e nex Sec ion asp® n 1S case .
§J 3P J'l JJI‘ q

1

(A7) reduces to

2
e
k - a8y [.k2
51(“’7)’2,,hc5 8w, - ol - o)) |€]]
. AR ES
' S 3" et i
+ 08w, - ®, - o -~ o)
7 ik + E: (!, + w)2
J 13
EARDARSS

-+

-w

J + 6(18".  (a9)

. g §:
wy&(a& W5 - ®; + ) (
: PGS

The spectrum given by expression (A9) consists of three spectral lines:

8 line resulting from a dipole transition from i to k with resulting

photon energy w7 = wik + m&, and two weaker "satellites" with energies

a» = “ﬁk + m? + whicp result from two-gquantum transitions (one quan-
tum absorbed from or ¢mitted to the electric field). If a dipole
transition from i to k is forbidden-(g? = 0), but the dipcle matrix
element B?i and g? are nonzero, then the spectrum is composed of just
the two satellites and we have Eq. (34). If g? # O then, to lowest
order, $(a§) is just the usual spectrum for an "allowéd" dipole
transition from i to k. |

C. Validity of the Perturbation Theory

We now discuss the assumptions made in deriving Eq. (A9).

b
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(1) The form of Eq. (A9) depends on the assumption that the

cross terms of the form

+ k. k¥
u)' m' Bijsijvgjg ,j' ,
Jk J'k 1 + t + .
. (a)i,j —w)(wijl -(D)

it

. can be ignored in the final expression for the spectrum s . Before

discussing situations in which this assumption holds, we néte that due
to the form of the denominators in Eg. (A9), the leading contribution
to the satellite intensities and positions wiil come from terms in the
sums involving intermediate étates whose eﬁergies lie clgse to the
energy of state 1. More distant st;tes wili have less effect and

states for which the energy separation wij is much greater than the

_energy seraration of the nearest states can be ignored in computing

the satellite intensities and positions. Similarly, cross terms for
which j and j' do not both represent states near to the state i ean be
ignored, since they will not significantly modify the result given in
Eg. (A9) for the frequency spectrum.

We can identify two cases in which tﬁe assumption that the cross
terms are negligibvle is wvalid.
(a) First, if for a given initial state i and final state k there
exists only a single intermedicate state j which is "near" toithe state
i and for which the matrix elements gg and Bijiaré both nonzero, . then
the assumption is valid. This situation occurs for singlet helium
lines 4388 (SlD - ElP) aﬁd hopp (FlD - 21P) for: a linearly polarized
elecfric field with either no magnetic field or polarized along .the
magnetic field, oflan electric fiéld circqlarly polarized perpendicu-
lar to the magnetic fisid.. In the above cases; for a ﬁfoper choice

of coordinate system, each initial state (5, £ =3, m = -3, <o, 3)

L6-

is coupled to only a single one of the nearby intermediate states
(n, 2=2, m=-2, -++, 2) by the matrix element ij-
(v) _Second, cross terms can be ignored when the time-averaged elec-
tric-field is axially symmetric with'respect to the magnétic field.
Then , in a coordinate system witﬁ z-axis along the magnetic field,
the croés terms vanish when an average is taken over the aximuthal
éngles of the electric field and of the emitted photon.

(2) Iij! << |mij|, i.e., the weak-electric-field approximation.
If the electric field is not weak then the problem must be solved
numerically by the methods of Sec. II. The validity of the perturba-
tion theory as the electric field increases is further discussed in
Sec. IV. |

(3) Imij + @! >> IB?jl' If this condition is‘violaﬁed then the
perturbation exransion (A8) is no longer valid, since one of the "small"
terms (e Bi) becomes comparable to the leading term. Since resonant
denominators of the form mij + o also appear in the perturbation

expressions for higher-order terms ([s| > 1), we can no longer be sure

that the higher-order terms which were ignored in calculating Eq. (A8)

‘

will be weaker than the terms kept.

i

Aé noted by Autler and Townes,u perturbation theory also breaks
down if a higher-order resonance condition is satisfied. If we con-
sider the case most often used in plasma diagnostics where a dipole
transition from i — k is forbidden and a dipole transition from j - k
is allowed, then in the weak eiectric field 1imit for which perturta-

tion theory is valid the condition for an nth-order resonance can .be

written as
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: 1 lex. 1\" _
i | I Iwig + (1)? - wj * nu)l < | 1J| = en’ n=3, 5,
!, ® .
ij 13

As can be seen from the above resonance condition, an nth-order
resonance occurs when the Stark-shifted position of the nth satellite
of the forbidden transition i - k (the forbidden transition has only
odd-numbered satellites) is separated from the Stark-shifted position
of the allowed line j - k by a distance of the order of |wij|en. Then
the intensity of this satellite (which would normally be much less th?n
the intensity of £he allowed line) can be cpmﬁarable to the intensityv
of the ailowed line.. Numerical calculations show that when a resonance
occurs two spectral lines separated by a distance of the order of

Iwi |en appear at approximately the position of the allowed line pre-

j
dicted by the perturbation theory. A similar situation 0ccurs_gt the
predicted positions of the far and near satellites, where a higher-
order satellite of the allowed line (which has only even-numbered
satellites)'can te comparable in intensity to the generally much more .
intense first-order satellites. For weak electric fields the separa-
tion between the two lines in each pair is very small and will not be
seen in a real experiment vwith finite resolving power and broadened
spectral lines. For'strdnger electric fields, the separation will be
obsérvable only for the lowest-order resonances. If the separation
cannot be resolved, then each pair will be observed as a single "satel-
line" Qith an intensity equal to-the sum of the individﬁal intensities
and an average positibn given bty an average cf the position of each
component weighted by its intensity; numericzl calculations with fhe

theory of Sec. II indicate that the sum intensity and avérage position

are given correctly bty Eq. (A9).
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FIGURE LEGENDS
Normal Zeeman patterns of thé satellites of the forﬁidden
transition 4'F » 2P of He I, caleulated from perturbation
theory and showing both o and W'polarization fér various con-
figurations of the electric field, all for direction of
observation perpendicular to ﬁ, field frequency of 2.35 cm_l,
and magnetic field strength of 7 kG. 2\ = O corresponds to
the allowed line th - 21P; the vertical dashed line denotes
the position of the forbidden 41F-+ 21P transition. Shown
are: (a) E parallel to B, (b) E perpendicular.to'ﬁ and
random in azimuth, (c) E perpendicular to B and>left—hand
circularly polarized, (d) £ perpendicular to B and right-hand
circularly polarized, and (e) E random in direction.
Calculated Stark profiles in the vicinity of the boe2-R
spectral line of He I for the case of no magnetic field and
é linearly polarized electric field of frequency 1.17 cm"1
and for various electric field strengths, all for direction
of observation perpendicular to E. Each profile is the result
of folding the theoretical.line spectrum with an instrument
function of FWEM of 0.2 X and is shown plotted logarithmically;

a single decade is shown in the figure by a double arrow.

M\ = 0 is the unperturbed position of the allowed line

th »»21P; A denotes the unperturbed position of the forbidden
transition th - 211’°
Calculated Stark profiles in the vicinity of the :388-f

spectral line of He I for the case of no magnetic field and

-2 linearly wpolarized electric field of frequency 1.17 cm-l



Fig. L.
Fig. 5.
fig. 6.

frequency 4.0 emt

-51-

and for various electric field strengths, all for direction
of observation perpendicular to E. Each profile is thé result
of folding the theoretical line spectrum with an instrument
function of FWEM of 0.2 £ and is shown plotted logarithmically;
a single decade is shown in the figure by a double afrow.

M\ = O is the unperturbed position of the allowed line

5lD - 21P; AF and AG denote the unperturbed positions of the
forbidden transitions, SlF - 21P and SlG - glP, respectively.
Calculated intensity ratio S+ of the far satellite of the

forbidden transition th - 2l

P to the allowed liﬁe th - 21P
in He I as a function of rms electric field strength for
several electric field frequencies for a linearly polarized
electric field E and for direction of observation perpendicu-
lar to E.

Calculated intensity ratio §_ of the far satellite of the
forbidden transition U'F —» 2P to the allowed line 4'D - 2'p
in He I as a function of rms electric field strength for
several electric field frequehcies for a linearly polarized
electric field E and for direction of observation perpendicu-
lart to E.

Calculated (instrument-broadened) Stark profiles in the
vicinity of the h922—8 spectral line of He I for the case of
no magnetic field and a linearly polarized eleétric>field of
and for various electric field strengths,
all for direction of observation perpendicular to ﬁ. Fach
profile is plotted logarithmically; a single decade is shown

bty the double-ended arrow.

M\ = 0 is the unperturved position ‘

Fig. 7.
Fig. 8.
Fig. 9.
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of tne allowed line th - 21P and the single-ended arrow
denotes one of its satellites.
Schematic diagram.of the experiment.

Comparison of experimeht and various theories for Case I -

. (th, ete. - 21P), 4922-f He I for the case of no magnetic

N/

field and a linearly polarized electric field of frequency
1.17 cm-l agd rms electric field strength of 3.54 kV/cm, and
for direction of observation perpendicular to the electric
field.

Comparison of experiment and various theories for Case II
(SlD, ete. - 21P), 4388-% He I for the case of no magnetic
field and a linearly polarized electric field of frequency
1.17 c:m-l and rms electric field strength of 3.54 kV/cm, and
for direction of‘observation perpendicular to the electric
field. The sets of vertical lines lateled SlD, SlF, and

SlG indicate thé positions and relative intensities of

spectral components originating from those levels.

o
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the

.United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor

any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or

responsibility for the accuracy, completeness or usefulness.of any

information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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