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THE COMBINED ZEEMAN AND HIGH-FREQUENCY STARK EFFECTS, WITH APPLICATIONS 

TO NEUTRAL HELIUM LINES USEFUL IN PLASMA DIAGNOSTICS 

William W. Hicks, Roger A. Hess, and William S. Cooper 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 94720 

April 1971 

ABSTRACT 

We have extended the theory of the high-frequency Stark effect in 

atomic spectra to treat cases of multiple interacting upper levels and 

of strong electric fields and resonances, where perturbation theory is 

inadequate. We have also included the effects of a static external 

magnetic field both in the perturbation theory and the more general 

treat~ent. NU1TIerical calc'J.lation5 are preser!ted for the 4922- and 

4388-.li' line s of He I for se~eral field strengths and frequencie 5. The 

new theory is used to infer the frequency and strength of a microwave 

electric field applied to a steady.state helium discharge with no 

magnetic field; excellent agreement is obtained between the calculated 

and the observed spectra. 

I. INTRODUCTION 

In 1961 Baranger and Mozer proposed using the high-frequency star} 

effect as a diagnostic tool to'study oscillating electric fields in 

Plasmas. l Such electric fields' induce atomic transitions involving 

more than one quantum which produce "satellites" of allowed or for-

bidden spectral lines. The frequency (or frequency spectrum), 

j.ntensity, and direction of the electric fields in the plasma can be 

determined from the intensities, frequenCies, and polarizations of the 

satellites. Theoretical treatments of the high-frequency Stark effect, 

based on second-order time-dependent perturbation theory, have been 

given by Baranger and M;zer,l by Reinheimer, 2 and by Cooper and 

Ringler. 3 Cooper and Ringler also demonstrated agreement with exr~ri-

mental results for low electric field strengths. 

There are, however, important disadvantages of the pertur'bation 

calculations mentioned above. First, it is difficult to extend them 

to include higher-order satellites (higher-order multiple quantum 

transitions) which are important at high electric field strengths and 

near resonances. Second, Stark shifts of the levels, which change thee 

spectral positions of the satellites, become increasingly i!!lportant 8.S 

the field strength grows, and they must be calculated separately, agair. 

using perturbation theory. An approach which is valid at high field 

strengths or near a resonance is that of Autler and Townes,4 which 

avoids the usual perturbation treatment, and which is able to calcu-

late Stark shifts and higher multiple quantlli~ transitions. 

In the last three years, numerous autho:!:"s have ap:;clied the Stark 

effect to the study of high-frequency electric fields in 1:lasmas. 5- l3 

In two of these experircents,8,lO the electric field strengths a:;:peur 

to be 50 high that the validity·of calculations based on perturcation 
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theory is questionable. Recognizing this, Kunze et al. have modified 

the perturbation theory by adding a phenomenological damping constant5 

and by extending the calculations of the intensities of the lowest­

order satellites to fourth order. 8 Cooper an& Hicks have estimated 

the range of validity of perturbation calculations and have pointed 

out possible pitfalls in using the high-frequency Stark effect in 

1 d · t· 14 p asma lagnos lCS. 

In many laboratory plasmas in which one would like to use this 

spectroscopic technique, not only are strong high-frequency electric 

fields present, but the plasma may also be permeated by a magnetic 

field. This situation has not been treated by any of the theories 

mentioned above. Cooper and Hess9 have pointed out one simplification 

introduced by the magnetic field; by simply inspecting the Zeeman 

pattern of the satellites it is possible to determine the relative 

directions of the electric and. magnetic fields, and if the electric 

field is circularly polarized, the sense of the polarization. Tbis 

technique has also been ap~lied by Scott et al. 10 

There is a clear need for a comprebensive tbeoretical treatment 

of the higb-frequency Stark and Stark-Zeeman effects which is valid 

for strong electric a~j magnetic fields, and for arbitrary electric 

field frequency. We develop such a theory in Sec. II of this paper, 

by extending the method of Autler and Townes to include more than two 

upper levels and the interaction of a magnetic field with the excited 

atom. Unfortunately the usefulness of the theory is somewhat re-

stricted because the resulting set of equations must be solved by a 

computer. Since in many cases the ~erturbation theory is adequate, in 

Sec. III we extend it to include the effects of a magnetic field and 

illustrate its use in calculating the high-frequency Stark-Zeeman 
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effect of the 4922-~ line of He I. In Sec. IV we display numerical 

results of the general theory, and in Sec. V we compare the theoretical 

calculations with experiment for the case of no magnetic field and in a 

situation in which the perturbation theory fails. 

II. MULTILEVEL THEORY 

A. Equivalence of Schr~dinger's Equation to an 

Infinite Set of Linear Equations 

We start from the time-dependent Schr~dinger equation for an atom 

in external magnetic and electric fields, and split the Hamiltonian 

into three parts: 

i~ = H(~,t)~ = (HO+ Hl + H2)~ (1) 

In Eq. (1) and in the rest of this paper all energies are expressed in 

angular frequency units. HO is the time-independent Hamiltonian for 

the unperturbed atom (no external fields) and is assumed to have a 

known orthonormal set of eigenfunctions {U
j

} and co,rrensponding eigen­

values (m.}: 
J 

HOUj = illjUj , j 1, 2, .... (2) 

In general, HO will have an infinite number of eigenfunctions, but for 

any single calculation only a finite number N will be physically im-

portant (their choice will be discussed in Sec. IV). Hl represents 

the interaction energy between the atom and the externally applied 

static magnetic field B and is time-independent. It will often be 

possible to pick the (Uj } to be eigenfunctions not only of HO but also 

of Hl . In this case 

(HO + Hl)U j = illjUj , illj = CDj + mj~ , (3) 

~ 

•. 

--
"" 
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where ~ is the Larmor frequency 

1 leB I ~=2 me ' 
e 
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B = 1131 (4) 

and m. is the magnetic quantum number of eigenstate j. H2 represents 
J ' 

the interaction energy between the atom and the externally applied 

electric field. The electric field is assumed to vary harmonically in 

time with frequency w, thus allowing separation of the time and space 

dependence ,of H
2

: 

H2Cr,t) - +(~) iillt -(~) -iwt H2 r e + H2 r e • 

We next expand the wave function 

N 

1IrCr,t) = \"' T.(t)U.(r), L J J 
j=l 

( 5) 

( 6) 

where ,the T's are time-dependent coefficients to be determined. Sub-

stituting this expansion into Eq. (1) we obtain 

N 

i L UjT j 
j=l 

* 

N 

L (wj + Hi +H2 )Uj Tj • 

j=l 

(7) 

We multiply on the left by U." integrate over all space, and use the 
J 

orthonormality of the U's to get (we interchange j and j' for conven-

ience) 
N 

iT
j 

\"' + irut - -iwt 
rujTj + ~ (ajj , + ~jj,e ~ ~jj,e )Tjl (8) 

j'=l 

where ,Ie have defined the following quantities: 

a jj , = (jIHllj') = fd
3

r u; Hl Uj ' 

and .,,± - (·IH±I·') 1-',., = J 2 J • 
JJ 

(9) 

Using Floquet' s theorc!', of differential equations,15 we can expand 
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the time-dependent coefficient T. as 
J 

00 

T
j 

,,; e -iA.t L 
s=-oo 

C. e- isrut 
JS 

where A. and the C's are time-independent unknowns; the C's are in 

(10) 

general complex, and A. is real. Substitution of this expression for 

T. into Eq. (8) yields 
J 

00 

L (A. + sru)C. e-i(A.+sru)t 
JS 

s=-oo 

N 00 

00 

L 
s=-oo 

m.C. e-i(A.+sru)t 
J JS 

+ L L c. [rv -ic'"'t 
.,_ J's '-< • • ,e ~ 
J -1 s=-(]) J J 

+ A+ e-i(S-l)rut 
I-'jj' 

+ ~- e -i( S+l)wt] -iA.t 
jj' e. 

(ll) 

Since this equation must be valid for all times, we may equate coeffi­

cients of equal powers of e- imt to give 

(m. - S(J) - A.)C. + 
J, JS 

j 

s 

N 

L (ajj,CjlS + ~;j,Cj"S+l + ~jj,Cj':S_l) 
j'=l 

1, 2, N, 

-00, +00. 

0; 

(12) 

4 
This set of equations was solved by Autler and Townes in terms 

of an infinitely continued fraction for the special case N = 2, a = 0 
, ' 

(no magnetic field), and ~+ = ~- (linearly polarized electric field). 

As pointed out by Autler and Townes, once any sing~e solution has been 

found to the set of equations (12), the new variables 

A. '= A. + ID(J), 

C' = C . 
j s j, s+m' J 1, ~, S -00, ••• , +00 , (13) 



-7-

where m is any positive or negative integer, will also comprise a 

solution. We will ref~r to solutions related by Eqs. (13) as a "set." 

There are an infinite number of solutions within each set but every 

solution in a set contains the same physical information, i.e., cor-

res.ponds_ to the same wave function 1/1, as can be seen by noting that 

the expression for Tj Eq.[(lO)] is invariant under the substitution 

given by Eqs. (13). 

B. Discussion of the Exact Solution 

We have shown above that solving Schr8dinger ' s equation [Eq. (l)J 

is equivalent to solving the infinite set of equations (12) for ~ and 

the C's. Given a solution of Eqs. (12), substitution of ~ and C
jS

' 

j = 1, "', Nand s = -00, "', 00, into the expression for 1/1 gives a 

solution to Eq. (1). Since the Hamiltonian H has been defined over an 

N dimensional srace made up of the eigenstates of Ho' the complete 

solution of Eq. (1) must consist of N linearly independent 1/I's. We 

have seen above that the solutions of Eq. (12) within a single set 

give the same wave function 1/1, thus there must beN different sets of 

solutions to Eq. (12). We denote the di~ferent sets with the index 

"i": 

1/Ii e 
-i~.t 

~ 

N 

L 
j=l 

Ci -i8(J)tU jse j' i 1, N. (14) 

Before discussing the interpretation of the wave function 1/Ii , we 

will examine its mathematical properties and from them prove two rela-

tions between the C's which will be useful in the following two sec-

tions. We start from SchrBdinger's equation H1/I. i a1/l./at and its 
~ ~ 

* * / Hermitian conj-L;gate 1)1. ,H -i 0*., at which together imply 
~ ~ 

r 
d (.,!.) _ d I d3 ,* I 0 
Cit 1 1 = dt J r Vi' Vi' (15) 
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We can use Eq. (14) to evaluate 1/1.: 
~ 

(i'ji> 
00 N 00 

-i(:\i -:\i,)t L -iU{J)tE, L e e -

u=-oo j=l s=-oo 

i'* Ci 
Cj,s_u js' u:= s - S'. (16) 

From the above expression we can get a usefUl relationship between the 

C's by noting that condition (15) requires that the right-hand side of 

Eq. (16) be independent of time. This will be true if and only if 

N 00 

LL i'* i 
C. C. 
J,s-u JS Xioii,ouO := °ii'ouO' (17) 

j=l s=-oo 

The constants [X.) are arbitrary and we have chosen them to be 1 (this 
~ , 

choice determines the normalization of the-C's). 

Using (17) we can rewrite (16) as 

(i'!i) = 0ii' , (18) 

and thus show that at any time t the [1/1.) form an orthonormal set of 
~ . 

solutions to the time-dependent Schr8dinger equation. Furthermore the 

t1/l.} form a set of stationary wave functions (the probability density 
~ 

* 1/1.1/1. is independent of time when integrated over all space) and hence 
~ ~ 

represent the stationary states of an atom in the presence of a static. 

magnetic field and an oscillating electric field; by stationary we mean 

that an atom in state Wi at time t to will remain in that state 

indefinitely. 

To derive a second relation similar to (17) we start by rewriting 

Eq. (14) as 

N 
- -i:\i

t f 
1/Ii = L TijUj ; C~ e 

-i8(J)t (19) Tij = e JS 
j=l s=-oo 

.", 

.;~ 

,,:-

... 
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Since both sets of wave functions, (W.) and (U.), form an orthonormal 
1 . J '. ~ 

basis for the N-dimensional vector space at any time t, the matrix ~ 
~ 

must be unitary for all t. For a unitary matrix ~ we must have 

TtT = 1. Evaluating this condition in terms of the matrix elements 

T
ij

: 

00 N 00 

I e-iU'llt [ L 
u=-m i=l S=-(I[; 

C~* C~ 
J' ,s-u J s 

0 .. , 
JJ 

(20) 

for all t. Since the right-hand side is independent of t, the left-

hand side must be also. This will be true, if and only if the C's 

satisfy the condition 

N 00 

LL i* i 
C., C. a ,s-u JS ° jj ,QuO' (21) 

i=l s=-oo 

As is shown by Eq. (19) above, the set of wave functions (W) 

which solves the time-dependent Schrl:)dinger equation represents the 

rearrangement of the eigenfunctions (U.) into a new set of functions 
J 

-,,-hich SLC.TI the same J'J-o.ilLe:'1sional space as the (U.}. The nature 
~ . ~ J 

of this rearrangement changes in time since ~ is a function of time, 

but at all tir~es the ne,,' set of flLnctions form an orthonormal set. 

We shall aSSUl'lle that the (1)r.} have been chosen such that in the 
, ' 1 

limit H
l

,H
2 
~ 0, 1)ri - Ui • This choice is not necessary but will lead 

to simplifications in the following sections. When no external fields 

are present an atom can be characterized 

states represented by the ,lave functions 

by the set of stationary 
-iaJ.t 

(U.e J}. Each such state 
J 

has a ,Jell-defined energy m
j

; an allo,led dipole transition betweeYl t"o 

such states produces a single spectral line. In the presence of an 

external o3cillating,lectric field and a static magnetic field the 

stationary states of the atom are represented by the, (Wi) or linear 
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combinations (with time-independent coefficients) of the (W.). As can 
. 1 

be seen from the form of the (1jr.) and expression (19) there is no set 
1 

of states whose members are both stationary and can be characterized 

by a unique energy (i.e., have a simple exponential time dependence). 

As a result spectra produced in the presence of an oscillating electric 

field are more complicated than in the field-free case: a single line 

(allowed or forbidden) which would exist in the field-free case is 

replaced in the field-present case by an infinite series of spectral 

lines. 

C. Transition Rate of an Atom in the Presence of a Static 

Magnetic Field and an Oscillating Electric Field 

In the presence of a static magnetic field and an oscillating 

electric field, the state of an atom, both before and after a transi-

tion, will be described by a wave function of the form (14). However, 

in many cases we can assume that the final state k is negligibly 

affected by the electric field. As can be seen from the perturbation 

solution for ~ and the C's [Eq. (A8) in the APpendiX], this condition 

will occur if all states k' coupled to the state k by a nonzero elec-' 

tric dipole matrix element ~, also satisfy I~ -~, I » I~,I and 

ill. In addition, if we assume that a representation of the unperturbed 

eigenstates has been chosen such that both HO and HI are diagonal 

operators, then the final state k can be described by the wave function 

-' 't 
W

k 
= U e ~ 

k 
(22) 

We define $ (m )dm d..'1 to be the number of photons emitted into' 
r r 

'" solid anele dQ per second with polarization e and with frequencies 
~ r-

in the range (J) to m + dill • 
r r r In the Appendix we calculate the :r:ho'!;o.n 

k 
emission spectrurn 8 i (mr ) for transitions from an upper state i to the 
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lower state k of Eq. (22): tions) ~re the dominant mechanism inducing transitions among states 

2 en 
k e (1) L 

o(~ + (1) - A.. ~.«(1)) = ~ , 
1 Y 21Tnc y 1 

s=-oo 

N 
\"' " k 'k* i i* 

S(J.)) ~ (1)jk(1)j'k Sj Sj'CjSCj,s 
j,j'=l 

with different values of i and when the average kinetic energy of the 

colliding particles is large compared with the interlevel energy s?ac-

(23) ing of the N states. Then the energy levels are "degenerate" with 

(1)jk == (1)j - ~. The matrix element S~ contains the dependence of the 
J 

transition rate on the direction and polarization of the emitted 

photon and is defined in Sec. III, Eq. (36). The total photon 

emission spectrum S from an ensemble of N atoms populating the.N . a 

states (1jr.) will be expression (23) surmned over final states, aver-
1 

aged over initial states, and surmned over photon polarization: 

N 

$«(1)y) = L L 
e i=l y 

N' 

Ki L $~ , 
k=l 

N 
Ki ==-2 

N a 

Here Ni is the number of atoms in the state i, N' is the number of 

(24) 

final states, and Ki represents the probability that the state i is 

occupied by atoms in the ensemble and has the normalization 

N 

L Ki 1. (25) 
i=l 

, The value given to K. in any particular problem/will be governed 
1 

by physical considerations. In the calculations presented in the 

following sections we have assumed that 

K. liN, i 1, N; 
1 

(26) 

i.e., that each of the states 1jri is equally populated by atoms in the 

ensemble. In the, limit of no external fields where 1jr. - U., Eq. (26) 
1 1 

is just the assumption that the N eigenstates (U.) are in thermal 
1 

equilibrium at a high temperature. Such a situation occurs in most 

laboratory plasmas when random collisions (and not radiative transi-

respect to collisional excitation and deexcitation, a~d the effect of 

collisions will be to maintain equal populations. In the presence of 

external fields, energy levels of the N states are shifted relative to 

each other by energies of the order of (1) and A.. - (1). (the latter quan-
1 1 

tity will be shown in Sec. III to be of the order of ~ and ~1~.12/(1)~ .), 
L j lJ lJ 

but we still expect collisional processes to maintain equal populations 

if the mean kinetic energy of the colliding ~~rticles is much greater 

than these energy shifts. We can make the analogy of assumption (26) 

and high-temperature thermal equilibrium more explicit by considering 

a consequence of Eq. (26). From Eq. (19), the probability that an atom 

in the state i is also in the eigenstate U. is 
J 

00 

1 T •• 1
2 

lJ L 
u=-oo 

00 

e -iOOlt L 
s=-oo 

.* . C: C: 
J,s-u JS 

(27) 

and is time-dependent. Then W., the probability that the eigenstate j 
J 

is populated by the atoms in the ensemble, is given by Eq. (27) aver-

aged over the states i: 

00 . t N en 
Ci * Ci = ~ w. L e-

uw L Ki I J j,s-u js N (28) 

u=-oo i=l s=-oo 

the latter equality follows from Eqs. (26) and (21). 1~us Eq. (26) 

implies that the probability that the slJ8.tial eigenstate j is por:u-

lated by atoms in the entire ensemble is time-independent and the same 

for all j even though the probability that a single partiCle in the 

.I' 

~~ 

.., 

.' 
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stationary state i is in the spatial eigenstate j is time'-dependent. 

D. Physical Model 

We now construct a physical model of the time-averaged behavior 

of an ensemble of atoms in the presence of a time-varying electric 

field. Such a model is useful in describing the solution to the 

Schrodinger equation, Eq. (14), in terms of simple physical processes 

between the atom and the oscillating electric field and leads to cor-

rect theoretical predictions of atomic spectra when the variation of 

the differential transition rate [Eq. (A5) in the APpendiX] over times 

of the order of w- l can be ignored. We first note that from Eq. (16) 

(setti~~ i' = i), 

N 00 

(iii) II Ic~ 12 
JS 

1, (29) 

j:=l s=-oo 

v!here vie have used Eq. (17) to simplif'<J the result. We can also cal-

culate the energy of a particle ib state Wi: 

( 3 * d 
(iIHli) = J d rWii"Cit Wi 

00 

N 00 

L L . (;>...1 c~ 12 
J=l s=-m 1 JS 

+SWL -iul)t i* i) 
e C. C.' J, s-u JS 

u=-O) 

(30) 

The particle energy oscillates in time due to the interaction of the 

atom and the external electric field. If we average Eq. (30) over the 

period of the electric field, T = 2rr/w, we get 

~J 
o 

T 

dt(iIH!i) 

N 00 

1 c-.: I (;>... + sw). ~ I i 2 
JS 1 

j=l s=-m 

We could equally well obtain the above equation by using the 

(31) 
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following model. We consider an ensemble of atoms populating the state 

i. We assume that each atom in the ensemble has "eigenstates" charac-

terized by the "quantum numbers" (i,j,s); such a state has a spatial 

dependence U. and an energy ;>... + sw. The probability that the state 
J 1 

(i,j,s) is populated by atoms in the ensemble is assumed to be Ic~ 12 • 
JS 

In this model Eq. (29) represents the normalization for the probability 

and Eg. (31) represents the ensemble-averaged energy. If we extend 

our ensemble to include atoms in the states (W., i = 1, •.. , N}, then 
1 

the probability of the state (i,j,s) in the enlarged ensemble will be 

Ic~ 12 multiplied by the probability that the state i is populated, 
JS 

i.e., K
i

, and the average energy of an atom in the enlarged ensemble 

will be 

Eav 

N N 00 

\"' \' \' K.lc~ 12(;>... + sw). L L L 1 JS 1 

i=l j=l S=-O) 

Atoms in the ensemble undergo transitions between the states 

(32) 

(i,j,s), i 1, N, j 1, Nand s -m, ' .. , +oo}'owing 

to interactions with quanta of the external electric field. An inter-

action consists of the emission (absorption) of a quantum; the new 

state (i',j',s') after the interaction will have i' i (eaCh state i 

is stationary) and s' s - 1 (s' s + 1); i.e., its energy after the 

interaction will have been decreased (increased) by the quantum energy. 

Since the field quanta carry angular momentum of 1 (in units of h), 

the state after an interaction will differ in the index j from the 

state before the interaction (6£ = £' - £ ±l, £ = orbital angular 

momentum of the s~atial eigenstate U.). 
- J 

In this model the energy of the state (i,j,s), ;>... + sw, has the 
1 

following interpretation: the energy difference between Wi (the 

energy of state i in the limit, HI' H2 ~ 0) and ;>"i + sw is the result 
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of the stark shift of th~ energy levels, the Zeeman splitting, and the 

exchange of quanta with the electric field. We assume that a repre-

sentation of the (Uj } can be found such that both HO and Hl are 

diagonal; then the Zeeman shift of state i is mi~' We must now 

decide which member of each set of solutions to choose for each Wi' 

From Eqs. (13) it is clear that each number of the set will have a 

different v~lue of ~., If we choose that solution in each set for 
1 

which &: =" ~. - m.ill.. - ill. goes to zero when the electric field goes to 
1 1 L 1 

zero, then we can interpret &: as the Stark shift, and s as the net 

number of electric field quanta absorbed or emitted by the atom in the 

state (l,j,s). Under this assumption as the electric field goes to 

zero, 

i 
CjS - °ijOsO" 

and (33) ~. - ill. + m.ill... 
1 1 1 L 

We can now see the significance of ' this particular choice. Another 

member of the set would have the property that a different coefficient 

C~a (a 1 0) would remain finite in the weak-field limit. Such'a situ­

ation would not change the physics, since ~i + ~ is invariant for all 

members of a set, but would not yield such a simple interpretation; 

s - a would be the net number of quanta.absorbed or emitted in state 

(i,j,s). 

Finally we note that an atom in the state (i,j,s) can undergo a 

spontaneous radiative transition to a state with lower energy with 

which it has a nonzero dipole moment. In such a transition, the energy 

of the resultant.~hoton will' be ~i + 9m minus the energy of the final 

state; hence, the optical spectra of atoms in an oscillating electric 

field will consist of "satellites," a given satellite being deter-

-16-

mined by fixed values of i, j, and s. The intensity of such a satel-

lite would be given by K.lc
j
i 12 times the transition rate from U. to 

1 S J 

the lower state. However, as ~an be seen from the correct expression 

for the total photon emission spectrum (24), this simplified model 

only works in the special case that we can ignore cross term; (those 

with j' f j) in Eq. (23). Circumstances under which cross terms can 

be ignored often occur and are discussed in the Appendix. 

III. EXTENSION OF THE PERTURBATION THEORY TO INCLUDE 

STARK SHIFTS AND MAGNETIC FIELD EFFECTS 

A. Transition Rate for TwO-Quantum Transitions 

in Non-hydrogenic Atoms 

If we consider the weak-electric-field limit of the wave function 

of Eq. (14), then we can derive an expression for the transition rate 

which is valid for weak electric fields and which is the generaliza­

tion of Eq. (1) of Cooper and Ringler3 to include a static magnetic 

field and Stark shifts. We assume that the magnetic field B lies in 

the z direction. We consider three atomic states: i, j, and kj an 

electric dipole transition from i directly to k is assumed to be for­

bidden. In the presence of an oscillating electric field E, an atom 

in the state i may be pictured as decaying to the state k.by a two-

quantum transition in which it exchanges a quantum of energy TIm with 

the electric field" exists transiently in the intermediate state j, 

and undergoes a dipole transition to the state k with the emission of 

a TIhoton of energy TIm • 
- 7 

The photon emission spectrum ~~«(j) ) for the 
1 7 

photon emitted in a two-quantum transition as described above is 

~~(ill7) 
e 2(j) 

~5«(j) 
27rt'ic"'- 7 

- illik ~ (j)~ T(j))~ 
j 

r 2 
illjk 

(illi j .:I: ill)2 
1~;iI2r s~12. (34) 

;, 

'" 

." 

w. 



'" 

'" 

~ 

• 
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This equation is the weak-electric-field limit of Eq. (23); its deriya-

tion and a discussion of the assumptions made in deriving it are given 

in the Appendix. In the above expression the upper sign corresponds 

to absorption of a quantum from the electric field, the lower'sign to 

emission of a quantum to the electric field; w~ is the second-order 
1 

correction to the energy of atomic state i due to the Stark shift (the 

Stark shift of state k is assumed negligible) 

S 
wi 

\' [ 1~~,.12 L J 1 

j' (w1j , + w) 

1~;'iI2 ] 

+ (w1j , - w) 

and the summation is over all intermediate states j. 

(35) 

The matrix elements ~j are proportional to the electric field 

strength; they are defined in Sec. II, Eq. (9) and expressions for 

them are given by Egs. (57) and (58) for linearly and circularly 

ized electric fields. The matrix element sY: is defined by 

polar-

, J 

k -f 3 * ,,* -> s. = d r U, e . r U., 
J' "Y J 

(36) 

where i is the pos5tion vector of the electron, ~ is a unit vector in 
Y 

the direction of polarization of the emitted photon, and U. is the 
J 

spatial part of the eigenfunction of the state j. 

B. Special Cases 

We will restrict our discussion to transitions between states 

with quantu~ numbers: 

i -> (n,2,m), m -£, £, 

j -+ (n, £":l,m" L m'I - £+1, .", £-1, 

k -+ (n',£-2,m'L m' -£+2, 2-2. 

(37) 

This includes most transitions of interest in plasma diagnostics. Now 

>consider hlo special cases: first, a linearly polarized electric field 
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-> 
whose azimuthal angle with respect to B is random in time an~, second, 

an electric field which is circularly polarized and perpendicular to 

B. In either case, due to the time-averaged azimuthal symmetry of the 

electric field, we can average over the azimuthal angle in evalUating 

Is~12. If the photon is emitted at an angle B with respect to B, 
J 

then for photon polarization parallel to B ("IT" polarization), 

1 
kl2 1 1 kl2 1 kl2 g. = -2 (x. + y. ) 
J J J 

2 1 kl2 . 2 cos e + z. Sln B, 
J 

(38) 

and for polarization perpendicular to B (" 'J''' polarizationL 

kl2 1 1 kl2 1 kl2 Is. = -2 (x. + y. ); 
J J J 

(39) 

x~, y~, and z~ are the matrix elements of the corresponding coordinates. 
J J J . 

1. Linearly Polarized Electric Field 

We first consider a linearly polarized electric field 

E(t) = EO cosm( t - toL IEol = /2 Erms' (1.1,0) 

If ~ is the angle between the electric field and the magnetic field, 

then after averp.gine; o"er the corresponding azimuthal 2.Y'.gle, 

I t3~) 2 I t3~. I 2 
lJ 

e2E2 

= 2li~s [~ (lx.1 + ly01 ) sin ~ + Iz01 cos ~ • 2 '2' 2 '2 2] 
111 

To obtain ~~~£-2(Wy)' the total photon emission spectrum for two­

quantum transitions from the states (n,£,m), m= -2, "', £} to the 

states (n',£-2,m'), m' -£+2, ,£-2}, we must average Eq. (34) 

over the initial states i which, for simpliCity, are assumed to be 

equally populated, sum over the final states k, and sma over both 

polarizations. After evaluating all matrix elements and performing 

the sUP2Dations, we can write ~n~£-2(w) as 
nk y 

(!n) 



(bn.' £-2(ill ) 
V n £ r 

4 
1 e 1 __ 2 

480 7r li3c3 ;- Enns 
i 
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£(£ - 1) I n £-112IRnl£-212 
Rn£ -h £-1 

(2£ - 1) 

\ 

[ 

2 
cos ~ 

x (illij ± ill)2 
(16EO,0 sin

2
e + 6E6,_1 cos

2
e + 6EO,1 cos

2
e) 

2 
sin I; 

+ 2 (6E_l _1 cos
2e + E_l 1 cos

2e + 6E_1 ° sin
2e) 

(illij ± ill - ~) . ' - , , 

. 2~ 
Sln ,. 

+ 2 
(illij ± ill + ~) 

(6E1,1 cos
2e + E1 ,_1 cos

2e + 6E1,0 '~n2e~ ~F 
sin

2
1; [ 00,2, 

(6E + 6E' ) + 2 
0,-1 0,1 (ill .. + ill - ill..) 

(6 ' + € 1) E_l,_l -1, 

. 2 1J - ] L ) 
Sln ~ 

+ 2(6El ,1 + El ,_l) crF 
(ill .. ± ill + ill..) 

1J L 

(42) 

We hav~ evaluated the necessary matrix elements by using expressions 

from Bethe and Salpeter. 16 R~':' is an integral over the radial 

eige~functions, 

n' £' _ r-- 3 
Rn£ =JrdrRn,£,(r)Rni r ), (43) 

and gi is the statistical weight of the state i. The coefficients 

€ are defined as 
mij,mjk 

_ "2,,,( , S ) 
€ '" ill.kill., u ill - ill' k - ill. ~ ill , mij,mjk 1" JK r 1 1 

(44) 

wherem' k = m. - ill], etc. As can be seen from Eq. (44) a tenn in Eq. 
J J ' 

(!~2) proportional to E produces a component of the. Stark-Zeeman 
mij,mjk 

pattern '-lith frequel~cy 
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S 
illr = illik+ illi ± ill + (mij + mjk)~· (45) 

Spectral lines described by tenns within [···]7rF in Eq. (42) are 

polarized parallel to 13; those from tenns within [ • •. J crF are polarized 

perpendicular to Bo The "F" in the subscripts indicates that a dipole 

transition from i - k is forbidden. Equation (42) is the generaliza-

tion of Eq. (7) of Ref. 3; it implies the usual two "satellites" of 

the forbidden line, each 'Stark shifted and split into a Zeeman pattern. 

,If ill. > ill.j -fill gives the "far satellite" and -ill gives the "near satel-
1 J 

lite," each named according to its proximity to the-allowed line 

(j - k), 

Two conclusions about the Stark-Zeeman pattern can be drawn from 

Eq. (42). First" for a given direction of observation e, as the angle 

between the electric and the magnetic fields is varied from ° to 7r/2, 

some components will appear and others will disappear. It is therefore 

possible, as has already been pointed out,9 to tell the angle between 

the electric field and the magnetic field by simple inspection of the 

Zeeman pattern of the satellites. Second, the total intensity of a 

satellite (the sum of the intensities of all Zeeman components) will 

depend on ~ and therefore on B. For components with m. . 0, the 
lJ 

magnetic field deuendence is very weak since ill~k "" ill·' k and ill"k "" ill' k ~ 1 1 J J-

(the angular frequency separation between the states i, j and the 

state k is approximately 4 x 1015 radians/sec--in the optical frequency 

range--which is the value of the Lannor frequency for B"" 108 gauss). 

For components with m .. 1 0, the magnetic field dependence 'Hill be 
lJ 

significant if ~ is of the same order of magnitude as the other terms 

in the resonant denominators in Eq. (42). 

" 

Ii 

t~ 

.. ' 
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2. Circularly Polarized Electric Field 

We now consider an electric field which is circularly polarized 

~ A 
and perpendicular to B = Bz: 

~ (I" I' ) E(t) = E x cosnt ± y sinmt • rms (46) 

The upper sign corresponds to right-hand 'circular polarization (elec-

tric field rotation in the same sense as a free~lectron in the mag­

netic field) and will be denoted by RHC; the lower sign corresponds to 

left-hand circular polarization (electric field rotation in the same 

sense as a free positive ion) and will be denoted by LHC. A calcula-

tion similar to that given above for the linearly polarized electric 

field will give the transition rate. However) it is simpler to note 

that the matrix elements given by Eq. (58) produce the following 

selection rules for transitions from state i to state j via absorption 

or emission of a quantum of the electric field: if the electric field 

is RHC and a field quantum is emitted) or if E is LHC and a field 

quantum is absorbed, m .. 
lJ 

+1; if E is RHC and a field quantum is 

absorbed) or if E is LHC and a field quantum is emitted, m .. = -1. 
lJ 

In either case, mjk is unaffected and may be 0 or ±l. With these 

selection rules the photon emission spectrum for circularly polarized 

electric fields can be easily found from Eq. (42) by the following 

prescription: 

a. Set S = ~/2. 

b. Multiply the right-hand side by 2. 

c. Retain only. those terms which fit the selection rules given 

above. For instance, if the electric field is RHC, then select only 

those terms ,.;ith -I-'J) in the resonant denominator and m .. = -1 in the 
lJ 

coefficient E for the far satellite (absorption of a quantum from the 
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field)) and only those terms with ~ and mij = +1 for the near satel­

lite (emission of a quantum to the field). As in Case 1, "far" and 

"near" refer to the special choice (J). > (J) .• 
1 J 

d. The resulting expre.3sion will be $ :/-2 and can be written 

in a form similar to (42). 

C. Ratio of the Intensity of a Satellite to the 

Intensity of an Allowed Line 

It is convenient to calculate and useful to know not only the 

absolute intensity of a satellite but also the ratio of t~e intensity 

of a satellite to the intensity of a nearby allowed transition.' We 

can write the photon emission spectrum of the allowed dipole transi-

tion (j ~ k) in a fashion similar to (42): 

@ n '£_2 «(J) ) 
v n£-l y 

e 2 
1 

~hc3 -- (£ - 1)!R
n

'£-2!2 
gj n£-l 

x ([ Tll cos
2

e + Tl_l cos~e + 2TlO sin
2

eJ TfA 

+ [Tll + Tl-11crA) , (47) 

where~. = (J)jk35(wy - (J)jk - (J)~k)· A term in Eq. (47) proportional to 
Jk ' 

~ produces a Zeeman component of the allowed transition with fre-
jk S 

quency (J)y = (J)jk + (J)jk + mjk~. The same convention for the polariza-

tion of the emitted photon applies; the subscript "A" signifies 

"allowed." 

We define S (e,S) to be the ratio of the number of photons emitted 
± 

per second in "forbidden" transitions (i .... k) into the solid angle dQ 

to the number emitted per second in "allowed" transitions (j ~ k)'into 

the solid angle dQ: 



s (e,~) 
± 

-23,.. 

k 
N. dU! elm ~. «(J) ) 

l "/ l "/ 

N .dn! elm g~«(J)..) 
J "/ J I 

(48) 

N. represents the population of state i, etc., and the .upper (lower) 
l 

sign corresponds to the upper (lower) sign in expression (42). If we 

assume that the states i,j are in thermal equilibrium in the high-

temperature limit (kT» I(J)! .1) then N./N. = g./g., and S (e,~) 
lJ l J l J ± 

reduces to 

s ±(e,~) 
e~2 £ 

rms 
240 fi2 -(-2£---1-) (49) 

IRn'£-112 !dm"/{["']7tF + [':'LF\ 

nt !dffi"/{[ .. ·lrrA + l··J aAJ 

The square brackets are the same as in Eqs. (42) (or the equation 

equivalent to (42) in the case of a circularly polarized electric 

field) and Eq. (47). By using only selected-,terms within these' 

brackets, one can use Eq. (49) to compare the intensity of any for-

bidden component with any allowed component. 

As an example of the use of Eq. (49) we show in Fig. 1 the 

results of calculating the ratio of the intensities-of components of 

the Zeeman pattern of the satellites of the forbidden line (41F ~ 21p) 

to the intensity of the central "rr"-component (m'
k 

= 0) of the 4922-it 
. J 

allowed line of HeI (41D ~ 21p), for various configurations of electric 

and magnetic fields with 

e = rr/2, 

ill •. = 5.63 cm-\4~ - 41F separation in HeI), 
lJ 

(J) = 2.35 cm -1 (electric field frequency = 70:5 GHz), 

-1 I~I ~ = 0·33 cm (B = 7 kG), and 

E 1 kV/cm. rms 

We now discuss each part of Fig. 1 in turn. 
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(a.) E /I 'B; ~ = O. The remaining nonzero terms in Eq. (42) are 

only very weakly dependent on I'BI through (J)ik and (J)jk' The pattern 

resembles a normal Zeeman triplet, with the a-components of each satel-

lite 3/8 of the intensity of the rr-component. 

(b) E 1 'B and random in azimuth; ~ = rr/2. The intensities of all 

forbidden components depend on I'BI through resonant denominators; the 

net effect is to increase the total intensity of a satellite (the sum 

of the intensities of all Zeeman components) by a factor of 

F - - + 1 [( (J)ij ± (J) )2 
- 2 (J)ij ± (J) + ~ 

2] k:i~: ~ "Ll ( 50) 

over its intensity in the absence of a magnetic field. In the limit 

B ~ 0, the stronger a-components of a satellite become equal in in-

tensity to the rr-components, and the weakest (central) a-component 
I 

approaches 1/3 the intensity of either of the other two a-components. 

(c) and (d) E 1 B and Circularly polarized. The intensities of 

all forbidden components again depend on B through resonant denomi-

nators. In the limit B ~ 0, the intensities of the rr-component and the 

stronger a-component become equal; the weaker a-component approaches 

1/6 of the intensity of the stronger a-component. 

(e) Finally, if E is entirely random in direction we must replace 

cos2~ and sin2s in Eqs. (42) and (47) by their average values 

(sin2~) av = k J sin2~ an = 3 ' and 

2 1 J 2 1 (Cos~)av = 4rr cos ~ an = 3 

With these substitutions, Eq. (49) reduces in the limit B ~ 0 to the 
_ G 

expression for random fields (8 ) give!'l by Baranger and Mozer LRef. 1, 
+ , 

.. 

tr 

• 

" 
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Eq. (1)]: 

s± 
e2a 2 £ E2 IRn£-112 ° rms n£ 

6 n3 (2£ - 1) (W
ij 

± w)2 
(51) 

If W ~ 0, the Zeeman patterns of the two satellites merge; the result-

ing pattern consisting of 3 rr-components and 5 ~-components is the 

Zeeman pattern of the "forbidden line" produced by the quasi-static 

fields of the ions in a plasma. 

Several authors have treated the dc Stark-Zeeman effect, among 

them Brochard and Jacquinot,17 who derived the same selection rules as 

given above and calculated the Zeeman pattern of the forbidden line, 

and Deutsch et al.,18 who have performed extensive machine calculations 

on the dc Stark-Zeeman effect in HeI. 

TV. NUMERICAL CALCULATIONS 

In this section we present results of numerical calculations using 

the theory given in Sec. II. 

We do not have an analytical solution to the infinite set of 

equations (12). Instead, we use a numerical method of solution sug-

gested by the physical interpretation. 

For weak electric fields, the multiple absorption of s photons 

becomes less likely as lsi increases (negative values of s correspond 

to emission) since the larger values of lsi correspond to higher-order 

terms in,the perturbation series. The probability of the absorption 

of one photon is given by second-order perturbation theory, two photons 

by third-order theory, etc. As the strength of the electric field 

increases, the probability of multiple absorption also increases, and 

higher-order satellites will become observable. However, it is reason-

able to assume that ev'On for strong fj,elds the prol:ability of absorbing 
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s photons becomes negligible for Is/ sufficiently large. 

probability is proportional to Ic. 12 we assume that 

Since this 

JS 

c. 
JS ° Isl>s,j 1, 2, .•• N. (52) for 

Then the infinite set of equations (12) is reduced to a finite set: 

N 
~ + - . 

(Wj - Sill - A)CjS + ~ (ajj.cj •s + ~jj,Cj',s+l + ~jj,Cj.,S_l) ~ 0, 
j'=l 

j 1, 2, ... N, ( 53) 

s -S,,,.+S. 

Equations (53) can be viewed as an eigenvalue equation: 
-+ -+ 

XD 53, (54 ) 

where D is an N(2S + 1) dimensional column vector whose elements are 

in a one-to-one correspondence with the, coefficients CjS' j = 1,2""N 
-+ . 

and s = -S,,·· + S; X is an N(2S + 1) by N(2S + 1) matrix whose ele-

ments are chosen so that the set of equations, represented by (-54) is 
-+ 

the same set given in (53). One can easily show that X is Hermitian 
-+ 

when H is Hermitian. Let Z represent the unitary matrix which diagon-

alize s X; then 
-+ -+-+ 

ztE X', ( 55) 
-+ 

where X' is the diagonal matrix whose nonzero elements are the eigen-
-+ 

values of X and also the solutions for A. The columns of Z are the 
-+ 

eigenvectors of X; they are solutions for D and hence for the C's. We 

can construct a solution for Eg. (1) from each of the N(2S + 1) eigen-

values and eigenvectors of X. As discussed above, only N of these 

solutions are to be used/in the complete wave function and, as before, 

the solutions may be divided into N sets, each set now containing 

2S + 1 members. For the infinite set of equations (12), all of the 
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solutions within a set can be found from any one member of the set by 

using the transformation (13); this will only be approximately true in 

the case of the finite set of equations (53) because of the approxima-

tion made in truncating the matrices. We must be careful in selecting 

which eigenvalues and eigenvectors to use. As one method we could 

choose the solution in each set most accurately fulfilling condition 

(52) above; or we could choose the solution described in the previous, 

section where s has the physical meaning of the net number of photons 

absorbed, or emitted and ~. - illLm. - ill. is the Stark shift. For low 
1 1 , 1 

electric fields these two choices will be the same. 

In order to identify which eigenstates of HO need to be included 

in the expansion of the wave function W, it is helpful to consider the 

perturbation solution, Eq. (34). Because of the resonant denominators, 

for a given initial state i, the most important intermediate states j 

to consider are those for which lill!.1 - ill is smallest and t3 .. is non-
IJ IJ 

zero. However, for strong electric fields, all nearby intermediate 

states should be included even if t3 .. is zero, since multiple quantum 
IJ 

transitions may be important and two states i and j can be coupled 

through other intermediate states. For instance, for the 4388 He I 

(5~21p) line the 5G level must also be included, since it introduces 

satellites and strongly affects the position and intensities of the 

satellites originating from the 5D and 5F levels. If there are inter-

mediate states for which lill!.1 < ill and t3 •• is nonzero, then states for 
IJ ~ IJ 

which lillfjl »ill can be neglected unless very strong fields are present 

or great accuracy is desired. The best method to determine whether a 

particular state need be included is to }~rform the calculations with 

and without the state and compare results. Similarly the appropriate 

value for S [the limit of the summation in exr:ansion (12)] can' 'ce 
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found by increasing its value and noting the effect on the results. 

In order to calculate the matrices a and ~, and the unperturbed 

energy levels ill., we need to know the unperturbed wave functions (U.}. 
J J 

Since, except for hydrogen, these wave functions are not known exactly, 

an approximation must be made. In many cases hydrogenic wave functions 

may be used to calculate the dipole matrix elements a and ~, and 

measured values may be used for the unperturbed energy levels. 

For hydrogenic wave functions the HI term is diagonal if the 

external magnetic field is chosen along the z axis. If the total 

electron spin of the atom is zero, then HI =~Lz' where Lz is the z 

component of the orbital angular momentum of the excited electron. 

H
2

, the interaction energy of 4he high-frequency electric field, is 

-;r'E r'E 
H2 - - = + lei 

ft ft, 

where ~ is the electric dipole moment. For linear polarization of 

the electric field, E(t) EO coswt and 

+ 
t3 jj I t3 - - lei ('1- - I jj' - ~ J r.Eo j'). 

For circular polarization perpendicular to the magnetic field, 

E(t) Erms (~ coswt ± Y sinwt) and 

+ t3 .• , 
JJ 

t3j j , 

lelErms (jlx '+ iylj'), 
2ft 

lelErms (jl~ ± iylj'). 
2ft 

( 56) 

( 57) 

( 58) 

The upper sign corresponds to right-hand circular polarization and the 

" 

.. 
!) 
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lower sign corresponds to left-hand circular polarization relative to 

the magnetic field. 

We have confined our calculations to helium, but the theory can 

be used for any element, as long as the unperturbed energy levels are 

known to sufficient accuracy and the necessary matrix elements can be 

computed. 

We have used our theory to investigate extensively two optical 

transitions of parahelium, the 4922-~ (~~21p) and 4388-~ (5~21p) 

He I lines. For the upper levels in these two cases, the only states 

which need be included in calculations for electric fields E < 20 =s 
kV/cm and frequencies ffi, ~ < 75 GHz are the 4p, D, and F, and the 5P, 

D, F, and G, respectively. The lower states (n = 2) are negligibly 

affected by the electric field because the 2P, m = 0, 21 states are 

not coupled by the ~ matrix elements and the 2P levels are widely 

separated from any other levels. However, the 2P levels are split by 

the magnetic field. 

For our calculations, we have used Martin's values19,20 for the 

eigenvalues of HO' and hydrogen-like eigenfunctions for the {U
j
). 

In the calculations which are presented below, we have not 

included Ii magnetic field. This is because a thorough treatment of the 

effects of a magnetic field was given in Sec. III and the new phenomena 

which arise when the perturbation treatment is not valid are similar to 

those which are shown below for the case of electric field alone. That 

is, higher-order satellites and Stark shifts become important. 

Figures 2 and 3 show calculated Stark profiles of He 4922-~ and 

He 4388-~ for an electric field frequency of 35.1 GHz (1.17 cm-l ) for 

various field strengths. This frequency was used because it is the 

one used in the experiment described in the next section. In the 
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calculations we have set S = 10 for E < 6 kV/cm and S = 15 for =s- . 
~ 

stronger fields. The resulting matrix X has then been numerically 

diagonalized using a CDC 6600 computer. Since for strong electric 

fields there are a great many satellites which contribu~significantly 

to the spectrum, the main features of the spectrum are more easily seen 

if the multitude of theoretical lines predicted by our calculations are 

"smoothed" by folding with an "instrument" function. To obtain the 

profiles shown in the figures we have used the function 

I = 10-4x
2
/(x

2
+a

2
) 

where x is the distance in angstroms from a line center and "a" has 

been set to give a full width at half maximum of 0.2~. This instrument 

function produces a line shape which is often observed experimentally 

for nonbydrogenic lines: Gaussian at the center and Lorentzian in the 

wings, >Iith a weak continuum background. The half width and background 

chosen are approximately those of the experiment described in Sec. V. 

In each figure the profiles are plotted lined up behind each other and 

the intensity of each profile is plotted logarithmically. The first 

profile in each figure is the instrument function, the profile for no 

electric field. 

For low field strengths the profiles calculated by using the 

multilevel theory of Sec. II agree with the perturbation theory: the 

pattern consists of a strong allowed line and "far" anq, "near" satel-

lites separated by twice the field frequency. For higher electric 

field strengths other satellites appear and grow until they dominate 

the spectral pattern. The additional satellites are due to multiple 

photon transitions from the upper set of states to the 2P level. In 

Fig. 2 the allowed line (41~21p) has satellites associated with it 
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which are due to an even number of photons being absorbed or emitted 

from the external field, while the forbidden transition (41F4el p) has 

associated with it satellites due to an odd number of photons being 

emitted or absorbed; these additional satellites are separated from the 

positions of the corresponding transitions by even and odd multiples of 

the field frequency, respectively. Figure 2 also shows the effect of 

the Stark shift of the 4D and 4F levels: the satellites of the forbid-

den line and the satellites of the allowed line (as well as the allowed 

line itself) appear to "repel" each other as the field strength is in-

creased. The allowed line and its satellites are shifted towards 

longer wavelengths and the satellites of the forbidden line are shifted 

towards shorter ,vavelengths. 

The spectra shown in Fig. 3 for,the 4388-R line are more complex 

than those of Fig. 2 due to coupling of the 5~ and 51F levels to the 

nearby 5
1

G level. This coupling not only modifie"s the positions and 

intensities of satellites arising from the 5~ and 51F levels but also 
~ 

produces an additional group of satellites associ~ted with the forbid-

den transition (51G~21p) and separated from it by even multiples of the 

field frequency. The Stark shift of the 51G level and its associated 

satellites is in the same sense as that of the 51F level, i.e. toward 

shorter wavelengths and "away" from the red-sr..ifted allowed line. 

In the limit of very strong electric fields, where the Stark shift 

is much greater than the unperturbed energy level separation, we expect 

the Stark patterns to approximate the symmetric patterns predicted by 

Blochinzew2l for degenerate levels. Such a tendency can be seen in 

Fig. 2 where the spectrum becomes more symmetric as the 4~ and 41F 

levels become increasingly "degenerate." 

Figures 4 and 5 show the results of further calculations on the 
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4922-R He I line, again with a linearly polarized electric field and 

no magnetic field. Because we have chosen the electric field polarized 

parallel to the z axis, each satellite and the allowed line have three 

uncoupled components whose amplitudes and Stark shifts depend upon the 

absolute value of m, the azimuthal quantum number. In calculating the 

data for these graphs we summed the amplitudes of the three components 

of the appropriate line. 

In Figs. 4 and 5 the rms electric field is plotted against 

S (S ), the ratio of the far (near) satellite to the allowed line, for 
+ -

various frequencies (labeled in inverse centimeters). Perturbation 

theory predicts straight lines on a log-log plot (S and S are each 
+ 

proportional to E2 ) which are tangent to the curves of Figs. 4 and 5 
rms 

at low electric fields. For stronger fields there are increasing devi-

ations from the" results of perturbation theory. Figures 4 and 5 and 

also Fig. 2 show that the intensity of the far satellite is growing 

faster than the intensity of the near satellite, until at about 12 

kV/cm the far satellite is actually stronger. As is noted in Ref. 11, 

and is clear from Figs. 4 and 5, the near satellite deviates much more 

than the far satellite from the predictions of perturbation theory, 

and the effects of the higher-order terms are to decrease the ampli-

;ude of the near satellite relative to the perturbation theory results. 

From Figs. 4 and 5 it is in ,prinCiple possible to determine the 

frequency and amplitude of an electric field from an experimentally 

measured spectrum. "However, the appearance of additional satellites 

may confuse the spectral pattern even for relatively 10vl field 

strengths. 

For instance, consider Fig. 6, which shows a set of profiles of the 

). 

.. 
# 
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4922-~ line of He I for a frequency of 4.0 cm-l It is not clear from 

,J;;he figure which are the far and the near satellites even for weak 
• :.":';;~.:!'-. 

e:I,e'ctric fields. The line marked with an arrow is actually a satel-

lite of the allowed line. Another si tua tion Ylhere confusion could 

result is at very low frequencies, since the two satellites will then 

merge into a single line at the position of the forbidden line. Fur-

thermore in a plasma the forbidden line is always present due to the 

quasistatic coulomb fields of the ions and it may be confused with the 

satellites if its intensity is comparable to satellite intensities. 

One might also see only a single satellite if the field frequency is 

-close to the energy separation of the 4D and the 4F levels; then the 

near satellite will be buried in the "wings" of the allowed line. For 

these reasons we emphasize that unless the features of the spect~xm 

are clearly identifiable, extreme caution must be observed in using 

the perturbation calculations or Figs. 4.and 5. 

The amplitude of the electric field can also be determined by 

measuring the Stark shift of the lines. 14 
It is usually most con-

venient to measure the total Stark shift, which we define as the 

change in the separation of the forbidden and allowed lines (compared 

with their separation with no external fields). The Stark shift of 

the allow=d line can also be used if one can determine its unshifted 

position. For low fields Eq. (35) can be used to find the Stark 

shifts; for high fields the theory of Sec. II must be used. From 

Eq. (35) we can see that for linear polarization the Stark shift is 

proportional to 

1 

(I)' 2 2' 
ij - Cll 
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and therefore for (I) < I(I)!.I it is a rather weak function of the fre­
lJ 

quency. Thus in this case a precise knowledge of the frequency is 

unnecessary; for other polarizations, however, the dependence of the 

Stark shift on the frequency is stronger. 

V. EXPERIMENT 

We have experimentally studied the effect of a linearly polarized 

high-frequency electric field on eigenstates of He I by observing 

optical transitions in the vicinity of two allowed lines, which we wil 

refer to as 

Case I: 

Case II: 

4922-~ (4~, etc. - 2~), arid 

011 4388-A (5 D, etc. - 2 p), 

and by comparing the observed spectrum with the spectrum calculated by 

using the methods of Secs. II and IV. In both cases there is no mag­

netic field. Figures 2 and 3 of the previou.s section shml the theo-

retical profiles predicted by the multilevel theory .of Sec. II for 

Cases I and II for the experimentally measured electric field frequenc 

and for various field strength. 

A. Apparatus 

Figure 7 shows the apparatus used in the ex~eriment. We generate 

the high-frequency electric field in a cylindrical microwave cavity 

and apply it to a helilull ';;lasma produced by a dc discharge in a quartz 

capillary which threads the axis of the cavity. The cavity (0.609 cm 

in diameter and 0.865 cm in length) oscillates in the TM
OIO 

mode with 

the electric field parallel to the axis of symmetry and electric field 

strength maXir!l1.UIi along the axis of the cavity. Mode identification 

was verified by calcUlating the resonant frelluency of cavity plus 

quartz capillary, which agreed to Ylithin 1%. of the measured frequency, 

35.2 GHz, and also by measuring the relative electric field intensity 
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as a function of position along the axis of the cavity. This latter 

measurement was done by measuring the change in resonant. frequency of 

the cavity-quartz capillary system as a small quartz plug was pushed 

into the cavity down the inside of the quartz capillary. The calcu-

lated electric field intensity variation over the inside cross section 

of the capillary (o.d. 0.85 mm, i.d. 0.40 mm) is < 5% of the value of 

the axis. In operation with a plasma, helium flow is maintained con 

tinuously through the capillary: typically the pressure at the high-

pressure end of the capillary is 3 torr, pressure at the low-pressure 

end is 1 torr. Other typical discharge parameters are: current 3.5 

rnA, current density 4 A/cm2, average dc electri~ field strength 300 

/ 
11 -3 V cm, and electron density 1 x 10 cm . The electron density is 

determined by measuring the change of resonant frequency of the micro-

wave cavity due to the presence of the plasma. ~The field frequency 

is much greater than either the plasma frequency br the electron col-

lision frequency, so that the microwave field bas no noticeable effect 

on the plasma. Further details of the experimental arrangement are 

given in Ref. 3. Two changes should be noted, however. The cavity is 

now excited by a 10-watt CW klystron. With the higher power and elec-

tric field the satellites are no longer buried in the wings of the 

allowed line; this permits the experiment to be runCW and obviates 

the need for phase-sensitive detection. The light intensity at a 

given wavelength is now measured by use of standard photon-counting 

techniques; Peak intensities in Figs. 8 and 9 represent> 10
4 

counts 

per second. For a single experimental ~oint, counts were taken for 

10 seconds. 
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B. Comparison of Theory and Experiment 

For a direct comparison of the theoretical calculations with bur 

measured line profiles, we have folded the tbeoretical results, which 

consist of a discrete line spectrum, with a realistic "instrument 

function" obtained from measurements taken on the same apparatus but 

with the microwave power turned off. Most of the observed broadening 

was instrumental. Figures 8 and 9 sbow comparisons of experimental 

results with various theories, all calculated for observation at right 

angles to the direction of the electric field and for a peak field 

strength of 5.0 kV/cm (3.54 kV/cm rms). In all cases fY... = 0 is the 

position of the allowed line in the absence of the perturbing electric 

field. All "bumps" on the theoretical profiles are produced by one or 

more satellites and not by irregularities in the instrument fUnction. 

All satellites stronger than 10-5 of the total intensity of the pattern 

were retained in the calculations (the number of satellites so kept is 

noted in discussion of each figure). 

Figure 8 shows a comparison between experimental and theoretical 

results for Case I. The multilevel theory outlined above, the Autler-

Townes theory, and the perturbation theory of Baranger and Mozer all 

give nearly the same results for the predicted spectrum; the major 

discrepancy between them comes from the neglect of the stark shift in 

the perturbation calculation. The slight difference between the 

Autler-Townes and the multilevel theories is due to the retention of 

the 4p energy level in the latter. In both cases we have included 18 

satellites. Agreement of the multilevel theory with experiment is 

excellent, and even the other two theories agree quite well with 

experiment for this field strength. The close agreement of the rer-

turbation calculations and the multilevel calculations, which we "e:·:.::ect 

"'!' .. 

~" 
i....:' 
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to be much more accurate, indicate that the perturbation calculations 

can still be trusted for this line at this frequency and field strength. 

The value so obtained was 5 kV/cm peak field with an estimated error 

of less than 500 v/cm. 

Case II, shown in Fig. 9, is a much more severe test of the vari-

ous theories because 

(a) the matrix elements ~ increase with n, hence the effect of a 

given electric field is greater on the 4388-R line than on the 4922-R 

line, 

(b) the energy levels of n 5 are closer together, so that more 

satellites (i.e., higher-order transitions) become important, and 

(c) for n 5 there is a G energy level very near the F energy 

level, and the two interact strongly. 

In Fig. 9 we compare the measured line profile for the 4388-R 

line with theoretical ones calculated from our multilevel theory and 

from the Autler-Townes theory, using the field strength derived from 

the measurements on the 4922-R line. Agreement between the multilevel 

calculations and the 'measured data is very good, whereas experiment 

and the Autier-Tmllles calculations sharply disagree, not only in satel-

lite positions and intensities but also in the Stark shift of the 

allowed line. This disagreement graphically illustrates the need to 

t:' include additional upper levels, since this is the only significant 

difference in the two theories. Perturbation calculations, not shown, 

disagree even more stro~~ly with measurements. In the Autler-Townes 

calculations we include 1~2 satellites; 58 were used in the multilevel 

calculations. 

In Fig. 9 we have also indicated the major satellites originating 
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from the three upper levels, 51n, 51F, and 51G. Each vertical line' in 

the figure denotes the average position and relative intensity of the 

narrowly separated satellites which result from transitions from upper 

levels with differing magnetic quantum numbers. 

ACKNOWLEDGMENTS 

The authors wish to thank Prof. W. B. Kunkel and the other 

members of the Berkeley plasma physics group for many helpful dis-

cussions during the course of this work. We are especially grateful 

to Peter S. Rostler whose critical reading of the rough drafts of this 

paper has been invaluable and to E. B. Hewitt for his assistance on the 

experiment. 



-39-

VI. APPENDIX 

A. Calculation of the Transition Rate for an Atom in a Static 

Magnetic Field and an Oscillating Electric Field 

In order to calculate the theoretical radiation pattern emitted 

by an atom in an oscillating electric field we solve the equation: 

i ~ = [H(t) + HI]~, (Al) 

where H(t) is as defined in Eq. (1) and HI is the particle-radiation 

field interaction operator: 

e 4 4 e-:>ex 
HI=--A'(p+-A ); 

fun c c 
e 

4 4 
P is the momentw~ of the optical electron, A is the vector potential 

of the radiation field, and xex is the vector potential of the external 

magnetic field. At any time t, the solutions of the equation 

i(~1/0t) = H(t)~ form a complete orthonormal set. Hence we may expand 

~(t) ~s wet) = ~ rd(t)~d(t), where the sum ~s over the complete set 

of the ~'s. The ~'s explicitly contain both atomic and radiation 

field quantum nu~bers and hence differ from the solutions of Eq. (1) 

(1lr' s). Substitution for wet) in Eq. (Al) ,yields: 

i L drd CPd = L 
d dt d 

rdH'CPd (A2) 

* Multiplication of Eq. (A2) on the left by CPk and integration over all 

space yields an equation governing the time development of the coeffi-

cient r
k

: 

drk 
i-

dt, L (kl HI I d)r d; (A3) 

d 
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the matrix element (IH'I> involves integration over both atomic and 

radiation field variables. 

We assume that at t = ~ the system (atom + radiation field) is in 

a state ~ = CPi [rd(~) = 0di]; then Irk (t)1
2 

is the probability that 

the system, initially in state i at t ~,will by time t have under-

gone a transition to state k by emitting or absorbing photons from the 

radiation field. If we consider a time interval, t - ~, small com-

pared with the lifetime of state i, then we can solve Eq. (A3) by 

iteration: 

r = reO) + r(l) + ••• 
k k k ' 

(0) 
rk = °ki ' 

t 

r~l) = - i J dt (klHII i) etc. (A4) 

~ 

We now specialize to the problem of spontaneous emission of a single 

photon y in the atomic transition *i ~ *k where *i arid *k are gi~en 

by Eqs. (14) and (22). Then 

. (co -I<Jl.')t ~) 
-1 Y .K uk(r Ay , CPk = e 

CPi e 
-it...t 

1 

N 00 

LL i -iscot (~) C. e U. r 11.
0

, 
JS J 

j=l s=-oo 

where A is the radiation field state function; A denotes the presence 
y 

of photon y, 11.0 denotes that no such photon is present. By substitut-

ing CPk and CPi into Eq. (A4) and performing the time integration, 

"" 

'} 

,~ 

~ 
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N N 
Ir~1)12 L L (j'IH'lk)(kIH'lj) 

j=l j'=l 

(Xl co 

L c~ c~* e-l / 2 i[(s-s')m(t+T)] 
JS J' s' XL 

S=-CD s '=-CD 

)( 4 sin ~[(ml' + 0{ - lI.i - sm)(t - T)] 

(w + ~ - 11.. - sm) l' ]. 

sin ~[(m + 0{ - 11.. - s'm)(t - T)] 
X l' ]. 

(m + 0{ - 11.. - s'm) l' ]. 

where the matrix element (IH'I) now denotes integration only over 

atomic variables. 

As a function of wI" Ir~l) 12 consists of a series of "peaks" with 

centers m = 11.. + sm - m' and widths ~ l/(t - T). For w(t - T) » 1 
1']. K . 

the pe~~sare narrow relative to the interpeak spacing m and we can 

approximate 'Ir~l) 12 by 

(Xl 

I r (1 ) I;) ::: J dill \' 
k l' L 5(wl' + mk - lI.i - sm)I!S, 

S=-CD 

where r!S is the munber of photons emitted in transitions from state i 

to state k into solid angle d~ with m ~ 11.. + sm - m' during the time 
1']. K 

inter"'iTcvl ('T, t) : 

m 
; s f + (1) 2 . 

Ik == dt.l)rk I p(ml')dl1 

m 
N N 

211 L L (j'IH'lk)(kIH'lj) 

j=l j'=l 

~ e - e 
[ 

-i{j)( s- e' )-r-im( s- s' )t] 
i( S - f.I )w 

CD 

L . .* 
C~ C].", ,p(m )dQ 

JS J S l' 
s'=-co 
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p(m ) is the density of photon states/radian-solid angle and 
l' . 

m+ = 11.. + sm - m' ± ~, where ~ is chosen to satisfy l/(t - T) «~« m. 
_]. K 

In performing the integrations above we have used the sharply peaked 

nature of the integrands by p.valuating p(m ) and the matrix elements at l' _ 

the peak center and then letting ~~ co. Of more physical interest 

than Ir~1)12 is its time derivative, the differential transition rate: 

d 

dt 
Ir~1)12 

N N 

2I1f dilll' L L (j' IH' !k}(klH'! j) 

j=l j'=l 

(Xl (Xl 

x L L . .* 
c~ sc~, s' p(m)dQ 

S=-CD S'=-CD 

[ 
-i(s-s')mt ] x e . 5(wl' + mk - lI. i - sm) • (A5) 

The differential transition rate given by Eq. (A5) is a rapidly 

varying function of time for frequencies for which the approximations 

above hold [m» (t - T)-l » (lifetime of state i)-l], and hence of 

more experimental interest is the time-averaged differential transition 

rate dA~. Evaluation of the matrix elements in Eq. (A5) (using the 
]. 

dipole approximation) and p(m ) yields 
l' 

(klH'1 j) i __ w' k 

( 

2I1e2 )1/2 

fivml'jk
S 
j 

and 

2 
vm 

p(ml') = sJc3 ' 

where v is the system volume, the magnetic field has been assumed to 

line in the +z direction, and where we have defined the following 

quantities 

",' w1 
- m' 

~jk j K' wj == Ju3
rU;(Ho + Hl)Uj , etc. , and 

k f 3 *,,-* ... 
Sj == d rUkel' .rUj • 
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e
2

dil 

dA~ = J dm'Y 27Tl'ic3 

N N 

00 

L 
s=-oo 
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m 0 ( ()).' + m ' - A. - ~) 
'Y K ,'Y ~ 

"L L ·k k* i i* 

mjkmj'k~j~j' CjSCj's 
j=l j'=l 

(A6) 

The integrand of expression (A~) gives the photon emission spectrum 

$(m): 
2 

e 
$(m) = - '\ 

'Y 27Tnc3 L 
s 

N N 

m 0 «()).' + m - A. - Sill) 
'Y K 'Y ~ 

LL , , k k* i i* 
mjkmj'k~j~j,CjSCj'S (A7) 

j=l j'=l 

B. Weak-Field Limit 

If the' electric field is weak, then we can get an explicit expres-

sion for the solution of Eq. (12). We set S 1 (higher values cor-

respond to multiple quantum transitions which we expect to be rare for 

weak electric fields) and diagonalize the matrixX. The resulting 

expression for A and the C's are power series in'the small parameters 

~j: 
Ai = mi + m~ + 5(1~13), 

C~ 
,Js 

S 
mi == 

-
°sl~ji 

o 0 .. + ) 
sO ~J (m!. + m 

~J 

+ 
o l~" + s,- J~ 

(mij - m) 

L 
j 

'~jiI2 
(m ~. + ill) 

1.J 

1~:.12 
+_J1. 

(m1j - m) 

+ .:9(1~12), 

m~ is the Stark shift of level i due to the electric field and is 
~ 

(AS) 
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quadratic in the electric field amplitude. In deriving the above 

+ 
expressions we had to assume: I~~.I« 1m! .1, and also that 

~J 1.J 

1m!. ± mr» <I ~I); these assumptions will be discussed in the next 
~J 

section. 

The resulting expressions for the S(m) will contain cross terms 
'Y 

k k* ± +* 
of the form ~.~.,~ .. ~~, .. In many cases of pbysical interest (dis­

J JJ1. J ~ 

cussed in the next section) ~~~~~~:.~:~. ~ 0 .. ,. In this case Eq. 
J J J~ J 1. JJ 

(A7) reduces to 

k e 3 2 [ S . (m ) = --3 m o(m -
, S k 

mik - mi) 1~.12 
1. 'Y 27Tlic 'Y 'Y 

+ m o(m - m~ - m~ - m) \' 
'Y 'Y ~k 1. ~ 

j 

+ m'Y0(m'Y - m1k - m~ + m)~ 
j 

~ 

I kl21 - 12 , 2 
~j ~Ji mji 

(m
1j 

+ m)2 

k 2 + 12 I 2l 4 
I~jll~ji ~jkJ+6(1~'). 

(m!. - m) 
~J 

(A9) 

The spectrum given by expression (A9) consists of three spectral lines: 

a line resulting from a dipole transition from i to k with resulting 

photon energy m = m!k + m~, and tw'o weaker "satellites" with energies 
'Y ~ ~ \ 

m = m!k + m~ ± m which result from two-quantum transitions (one quan-! ~ 1. . ' 

tum absorbed from or emitted to the electric field). If a dipole 

transition from i to k is forbidden (s~ = 0), but the dipole matrix 
~ 

element ~:. and ~~ are nonzero, then the spectrum is composed of just 
J~ J 

the two satellites and we have Eq. (34). If ~~ I 0 then, to lowest 

order, 3 (m') is just the usual spectrum for an "allowed" dipole 
'Y 

transition from i to k. 

C. Validity of the Perturoation Theory 

We now discuss the assumptions made in deriving Eq. (A9). 

) 

v' 

, 
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(1) The form of Eq. (A9) depends on the assumption that the 

cross terms of the form 

+ + k k* 
~ilij , S j S j' 

mjkmj 'k (m' ± m) (m~ ., ± m) 
ij lJ 

j ! j', 

can be ignored in the final expression for the spectrum 3. Before 

discussing situations in which this assumption holds, we note that due 

to the form of the denominators in Eq. (A9), the leading contribution 

to the satellite intensities and positions will come from terms in the 

sums involving intermediate states whose energies lie clpse to the 

energy of state i. More distant states will have less effect and 

states for which the energy separation m!. is much greater than the 
lJ 

energy se:raration of the nearest states can be ignored in computing 

the satellite intensities and positions. Similarly, cross terms for 

which j and j' do not both represent states near to the state i can be 

ignored, since they will not significantly modify the result given in 

Eq. (A9) for the frequency spectrum. 

We can identify tw.o cases in which the assumption that the cross 

terms are negligible is valid. 

(a) First, if for a given initial state i and final state k there 

exists only a single intermedicate state j which is "near" to the state 

i and for "Ihich the matrix elements s~ and t)~. are both nonzero, then 
J lJ --

the assumption is valid. Tnis situation occurs for singlet helium 

lines 4388 (5~ ~ 2lp) and 4922 (4~ ~ 2~) for: a linearly polari3ed 

electric field ',lith either no magnetic field or polarized along the 

magnetic field, or an electric field circularly polarize,d perpendicu-

lar to the magnetic field. In the above cases, for a proper choi"ce 

of coordinate system, each initial state (n, £ 3, m -3, "', 3) 
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is coupled' to only a single one of the nearby intermediate states 

(n, £ 2, m -2, "', 2) by the matrix element f3=!= .. 
lJ 

(b) .Second, cross terms can be ignored when the time-averaged elec-

tric field is axially symmetric with respect to the magnetic field. 

Then in a coordinate system with z-axis along the magnetic field, 

the cross terms vanish when an average is taken over the azimuthal 

angles of the electric field and of the emitted photon. 

(2) I~.I« Im~ .1, i.e., the weak-electric-field approximation. 
~ ~ 

If the electric field is not weak then the problem must be solved 

numerically by the methods of Sec. II. The validity of the perturba-

tion theory as the electric field increases is further discussed in 

Sec. IV. 

(3) 1m!. + ml » I ~7 .1· If this condition is violated then the 
lJ - lJ 

perturbation expansion (A8) is no longer valid, since one of the "small" 

terms (<< ~) becomes comparable to the leading term. Since resonant 

denominators of the form m!. + m also appear in the perturbation . lJ - , 

expressions for higher-order terms (lsi> 1), we can no longer be sure 

that the higher-order terms which were ignored in calculating Eq. (A8) 

will be weaker than the terms kept. 

As noted by Autler and Townes,4 perturbation theory also breaks 

down if a higher-order resonance condition is satisfied. If we con-

sider the case most often used in plasma diagnostics where a dipole 

transition from i ...,. k is forbidden and a dipole transition from j ~ k 

is allowed, then in the vleak electric field limit for which perturba-

tion theory is valid the condition for an nth-order resonance can.be 

\.ritten as 



1 

I ' S S m .. + m. - m. ± 
I 'I ~J 1 J mij 
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l1I.J)l :s (I~jl)n _ 
1m! .1 

~J 

€n, n 3, 5, 

As can be seen from the above resonance condition, an Eth-order 

resonance occurs when the Stark-shifted position of the nth satellite 

of the forbidden transition i ~ k (the forbidden transition has only 

odd-numbered satellites) is separated from the Stark-shifted position 

of the allowed line j ~ k by a distance of the order of 1m! .IEn. Then 
lJ 

the intensity of this satellite (which would norrrallybe much less than 

the intensity of the allowed line) can be comparable to the intensity 

of the allowed line. Numerical calculations show that when a resonance 

occurs two spectral lines separated by a distance of the order of 

ImijiEn appear at approximately the position of the allowed line pre­

dicted by the perturbation theory. A similar situation occurs at the 

predicted positions of the far and near sate11ites, where a higher­

order satellite of the allowed line (which has only even-numbered 

satellites) ca~ be comparable in intensity to the generally much more 

intense first-order satellites. For weak electric fields the separa-

tion between the two lines in each pair is very small and will not be 

seen in a real experiment with finite resolving power and broadened 

spectral lines. For stronger electric fields, the separation will be 

observable OI1~y for the lowest-order resonances. If the separation 

cannot be resolved, then each pair will be observed as a single "satel­

line" with an intensity equal to the sum of the individual intensities 

and an average }:osition given by an average of the position of each 

component ~eighted by its intensity; numerical calculations with the 

theory of Sec. II indicate that the sum intensity and average position 

are given correctly by Eq. (A9). 
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- FIGURE LEGENDS 

Fig. 1. Normal Zeeman patterns of the satellites of the forbidden 

transition 41F _ 21p of He I, calculated from perturbation 

theory and showing both cr and ~ polarization for various con-

figurations of the electric field, all for direction of 

observation perpendicular to B, field frequency of 2.35 cm-l 

and magnetic field strength of.7 kG. ~ = 0 corresponds to 

the allowed line 4~ - 21p; the vertical dashed line denotes 

the position of the forbidden 4~ ~ 21p transition. Shown 

are: (a) E parallel to B, (b) E perpendicular toB and 

random in azimuth, (c) E perpendicular to B and left-hand 

Circularly polarized, (d) E perpendicular to B and right-hand 

Circularly polarized, and (e) E random in direction. 

Fig. 2. Calculated Stark profiles in the vicinity of the 4922-~ 

spectral line of He I for the case of no magnetic field and 

a linearly polarized electric field of frequency 1.17 cm-l 

and for various electric field strengths, all for direction 

of observation perpendicular to E. Each profile is the result 

of folding the theoretical line spectrum with an instrument 

function of FWHM of 0.2 ~ and is shown plotted logarithmically; 

a single decade is shown in the figure by a double arrow. 

~ = 0 is the unperturbed position of the allowed line 

4~ - 21p; £ denotes the unperturbed position of the forbidden 

transition 41F _ 2lp. 

Fig. 3. Calculated Stark profiles in the vicinity of the h38S-~ 

spectral line of He I for the case of no magnetic field and 

a linearly polarized electric field of frequency 1.17 crn- l 
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and for various electric field strengths, all for direction 

of observation perpendicular to E. Each profile is the result 

of folding the theoretical line spectrum with an instrument 

function of FWHM of 0.2 R and is shown plotted lcgarithmically; 

a single decade is shown in the figure by a double arrow. 

~ = 0 is the unperturbed position of the allowed line 

5~ - 21p; ~ and AG denote the unperturbed positions of the 

forbidden tranSitions, 51F ~ 21p and 51G _ 21p, respectively. 

Fig. 4. Calculated intensity ratio S of the far satellite of the 
+ 

forbidden transition 41F _ 21p to the allowed line 4~ _ 21p 

in He I as a function, of rms electric field strength for 

several electric field frequencies for a linearly polarized 

electric field E and for direction of observation perpendicu-

lar to E. 

Fig. 5. Calculated intensity ratio S of the far satellite of the 

forbidden transition 4~ _ 21p to the allowed line 4~ _ 21p 

in He I as a function of rms electric field strength for 

several electric field frequencies for a linearly polarized 

electric field E and for direction of observation perpendicu-

lart to E. 
Fig. 6. Calculated (instrument-broadened) Stark profiles in the 

vicinity of the 4922-R spectral line of He I for the case of 

no magnetic field and a linearly polarized electric field of 

frequency 4.0 cm-l and for various electric field strengths, 

all for dj.rection of observatj.on perpendicular to E. Each 

profile is plotted logarith~ically; a single decade is shown 

'by the double-ended arrow. ~ = 0 is the unperturbed position 
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of tne allowed line 4~ - 21p and the single-ended arrow 

denotes one of its satellites. 

Fig. 7. Schematic diagram of the experiment. 

Fig. 8. Comparison of experiment and various theories for Case I 

(4~, etc. - 21p), 4922-R He I for the case of no magnetic 

field and a linearly polarized electric field of frequency 

1.17 cm-l and rms electric field strength of 3.54 kV/cm, and 

for direction of observation perpendicular to the electric 

field. 

Fig. 9. Comparison of experiment and various theories for Case II 

(5~, etc. - 21p), 4388-R He I for the case of no magnetic 

field and a linearly polarized electric field of frequency 

1.17 cm-l and rms electric field strength of 3.54 kV/cm, and 

for direction of observation perpendicular to the electric 

field. The sets of vertical lines labeled 5~, 51F, and 

51G indicate the positions and relative intensities of 

spectral components originating from those levels. 
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p------------------LEGALNOTICE--------------------_ 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness. of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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