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Abstract

This paper describes a prototype of a simulated physics student
that leamns by interacting with a human wtwr. The sysiem
solves physics problems while showing itls work on a work-
station screen, and the tutor can inicrvene at certain points
during problem-solving to advise the simulated student. This
prototype conslitules an initial cognitive task analysis of the
skill of learning from a tutor, which prescribes several tulor-
ing practices that appear to be plausible for both human and
compuler tutors.

Introduction

STEPS is a simulated, tutorable physics student. That is, itis a
machine learning program that icarns from feedback and hints
provided by a a human tutor as it solves physics problems.
The main motivation for STEPS is to see if it is technically
feasible to build a simulation-based tutor training system, and
a preliminary evaluation of its potential for training human
tutors has been conducted (Ur and VanLehn, 1994). However,
this paper focuses on what STEPS has taught us about the
cognitive task of learning from a tutor.

Although computational theories of human skill acquisition
exist (e.g. Anderson, 1990; Newell, 1991; VanLehn, Jones
and Chi, 1992) they do not adcquately address interactive
learning, wherein a leamner and a tutor can converse. They
apply most readily to instructional situations where the learner
works alone or with minimal supervision. STEPS is an
extension of onc such theory (CASCADE—see VanLehn et
al., 1992) to interactive learming, but there are as yet so few
empirical studies of human-human tutoring, especially from
the tutee’s point of view (see Merrill, Reiser, Ranney and
Trafton, 1992) that many of the design decisions in STEPS are
unconstrained by empirical evidence. Al this point, we
cannot claim that STEPS is a theory of interactive leaming.
However, it does provides an initial cognitive task analysis of
the process of learning from a tutor.

The benefit of having a computational cognitive task anal-
ysis of learning (i.e., a simulated student) is that one can
readily see how lo organize instruction so that it will be
learned most effectively. In particular, we will indicate an
number of tutoring practices that optimize STEPS's leaming
and appear to be plausible prescriptions for both human and
computer tutors. Moreover, we understand completely why
the prescribed policies optimize learning (or at least, STEPS’s
learmming), which is not the case with the heuristics thal are
currently used for designing the pedagogical components of
intelligent ttoring systems.
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First the system is described, and its operation is illustrated
with several short sessions. Then we present the tutoring tac-
tics suggested by STEPS's design and discuss their suitability
as prescriptions for human and computer tutoring.

The System

STEPS utilizes the simulated physics student embodied in the
CASCADE system (see VanLehn, Jones and Chi, 1992 for a
description of an earlier version) as its basic problem-solver,
and the OLAE interface (Martin and Vanlehn, 1993), on which
it shows its work and accepts input from the tutor. Both
systems have been modified, extended and linked to form
STEPS. The next sections will describe the system'’s interface,
problem-solver and leamner.

User Interface

The STEPS screen is divided into several windows (see
figure 1): the icon window, which displays icons representing
physics problems (top bar), the problem window, which
displays the text and diagram of the current problem (upper
right), the diagram window, which will contain the free body
diagram that STEPS constructs (lower right), the solution
window, where STEPS can wrile equations (upper left), and
the dialog window, where STEPS comments aboul its progress,
describes new variables it will be using, requests help from
the tutor, etc. (lower left).

The tutor chooses a problem to pose to STEPS by clicking
on its icon. The problem description is then presented
in the problem window, and STEPS starts to solve the
problem by drawing vectors (representing forces, velocities
and accelerations) and axes in the diagram window and
wriling equations in the solution window.

After each problem solving action is displayed on the
screen, the tutor is given an opportunity to intervene. The
tutor can cross out an action that STEPS has taken by pointing
1o its representation on the screen. The tutor may also draw
an arrow in the diagram window or enter an equation in the
solution window. In the latter case, the system allows only
input that it can parse, enforcing variable names that are
consistent with the problem-solver’s representation. When
the tutor has said all he wishes 1o say, he clicks the “Go Ahead”
button, which passes control back to the problem-solver.

Problem Solving

Currently, the problem solver’s knowledge covers a subset
of the material in Chapters 2-5 of a college physics text-
book (Halliday and Resnick, 1988), including kinematics and
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Figure 1: The OLAE screen

Newtonian Mechanics. This knowledge is represented by a
set of rules (e.g. If spring A touches object B then A exerts
pressure force F on B) and equations (e.g. If X is a massive
body, close 1o earth, then W=mg where W is X's weight, m
is X’s mass and g is the gravitational constant). Using this
knowledge, STEPS can solve quantitative physics problems
of the kind described in Figures 2-4. These problems are
available to STEPS as lists of predicates which describe the
situation, given quantities and sought quantities.

The declarative rules are used by an agenda-based top-
level control structure. At each iteration of the top-level loop,
possible tasks are proposed. When all possible tasks have
been queued, one of them is selected for execution, executed,
and marked as having been tried. This process continues
until the problem is solved. In the physics domain, the tasks
are creating variables for given and sought quantities in the
problem, choosing bodies, choosing methods (e.g., forces,
energies), drawing the free body diagram, drawing the axes,
and writing an equation. Once a task has been chosen for
execution, the rules that implement it are enabled, and these
fire until quiescence, which signals the next iteration of the
top-level loop.

STEPS’ progress is visible on the screen as it draws arrows
on the free body diagram and writes equations. Each time
that the problem solver displays another step in the solution,
it pauses and asks the tutor, “Go ahead?” If the tutor answers
yes, the problem solver continues from exactly where it left
off. However, the tutor can also cross out equations or
arrows, or add new equations or arrows before answering
yes. When this occurs, STEPS (a) deletes all the goals of the
problem solver, (b) handles the tutor’s inputs, (c) reconstructs
the problem solving goals, then (d) resumes problem solving.
This same four-step process also occurs after the problem
solver has gotten stuck and asked the tutor for help.

The tutor’s input often changes the state of the problem
solving so much that it is impossible to continue problem
solving from where it left off. That is why STEPS deletes the
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Table 1: STEPS's top-level algorithm

Get problem from tutor
Repeat until problem solved
Generate next step (1f known)
Get tutor's advice
If (case 1) tutor suggested step
Try to derive tutor‘s step
else if Tutor crossed out step
if (case 2) Tutor also suggested alternative step
Derive tutor's step
Try to find divergence between derivations
Delete rule at divergence
else if (case J) Can modify crossed-out step
Generate modified step
if Tutor approves it
Try to derive it
elae (case 4)
Mark step for later learning
If any steps marked for later learning
Find first previously unused rule in derivation and delete it

goals before handling the tutor's input and reconstructs goals
afterwards. Goal reconstruction (VanLehn and Ball, 1991)
is simple in STEPS’ agenda-based control structure. The
system checks if new tasks have become possible given the
tutor’s input, then chooses which task to execute in the usual
way. Sometimes a tutor may leave the most recently written
equation alone and modify an arrow or equation writlen
earlier. In this case, STEPS assumes that all the reasoning
taken since the modified action is now suspect, so it mentally
crosses those results out.

The tutor may take several actions before giving control
back to STEPS, and how STEPS learns from this input depends
on what the specific actions are. Table 1 summarizes STEPS’s
algorithm, and the next section describes in more detail STEPS’
methods for learning new rules and deleting old ones.

Learning

When the tutor demonstrates what the next action should be
(case 1 in Table 1), and the system realizes that it cannot
generate this action using its current set of rules, it tries to
learn new rules that would enable generation of the action
in future using Explanation-Based Leamning of Correctness
(VanLehn et al., 1992). The system tries to derive the correct
action using a set of overly general rules that are part of
its knowledge base. If it is successful, it creates (using
Explanation-Based Generalization (Mitchell et al., 1986))
new rules that are more specific than the overly general rules
but general enough to apply to more than this specific problem.
These new rules become part of the system’s knowledge base.
There is fairly good evidence that this is how human students
learn new rules in this task domain (VanLehn, Jones and Chi,
1992; VanLehn and Jones, 1993).

When the tutor supplies negative feedback on an action,
the system assumes the incorrect action was a result of an
incorrect rule. What happens next depends on whether the
tutor supplied an alternative, correct action.

If the tutor has supplied a correct alternative action (case
2 in Table 1), the system attempls to derive it using its
rules. If the attempt is successful, the system traces through
the derivation of the correct action and the derivation of
the incorrect action, then deletes the rule that caused the
derivations to diverge. This is a standard machine learning
technique for handling negative feedback (Sleeman et al.,
1982). However, there is as yet no evidence that human



students use it because no finc-grained (e.g., protocol) studies
of learning from a tutor have been conducted. Nonctheless, it
is clear that human students do learn from negative fecdback
(e.g., Anderson, Conrad and Corbett, 1989) and this is a
relatively simple, parsimonious mcchanism that does the job.

When no additional feedback is given, STEPS first considers
generating its own action to replace the crossed-out onc, If it
decides it should (case 3 in Table 1) it syntactically modifies
its old action and then asks the tutor for confirmation. If the
tutor confirms that STEPS’ new action is correct, then leaming
continues just as if the wutor had supplied the correct action.

On the other hand, STEPS can decide that the tutor supplied
no correct action for the crossed-out action because there is
no such correct action (case 4 in Table 1). In this case, the
standard machine leamning assignment-of-blame technique
will not work, so STEPS must use a risker approach. 1t marks
the incorrect action as something it needs to think about once
problem solving has been done, and proceeds. When the
problem has been solved, the system isolates the derivation of
the incorrect action and deletes the first rule it finds that has
not been used successfully in a previous problem. Obviously,
the success of this tactic depends heavily upon the set of
problems the system has been exposed to.

Illustrations

In this section, we illustrate STEPS' operation by presenting
problems o il in pairs. The first problem of each pair gives
it the opportunity to learn some new rules, and the second
allows it to demonstrate what it has learned.

The first pair of problems demonstrates the learning of new
rules viaEBLC. In the first problem, the system is required to
solve a simple problem involving a block resting on a spring
(see figure 2(a)). The system draws the free body diagram
for the problem (see figure 2(b)). The free body diagram is
incomplete, since the force exerted by the spring on the block
is missing because the system does not know about this type
of force. The system then derives an erroncous instantiation
of Newton's First Law, stating that mg = 0. The tutor
intervenes al this point, and draws an arrow originating at
the block, pointing upwards. He then indicates to the system
that it should continue. The system, faced with a hint by the
tutor, decides to try to explain the hint to itself. It does so
by activating its overly-general rules and trying to derive the
action of drawing an arrow like the one drawn by the tutor.
It succeeds in doing so by employing rules that suggest that
a spring is an instance of a pusher, that pushers push, and
that pushes can be forces. Once the system has succeeded in
deriving the tutor’s suggested action, it adds new rules to its
knowledge base. These new rules (shown in figure 2(c)) are
the result of applying EBL to the derivation.

STEPS assumes that the reasoning it engaged in after leaving
out the spring force is suspect, so it crosses out the equation
it generated, and attemplts to generate another equation. This
time it produces a correct instantiation of the First Law.

The third problem describes a situation where a force
was applied for a short period of time (see figure 3(a)). This
situation triggers a common misconception in human students
— the belief that an agent that moves a body imparts impetus
to the body (Halloun and Hestenes, 1985). The system draws
the free body diagram shown in figure 3(b), which contains
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the force that the man exerts on the block. The tutor promptly
crosses out the arrow representing this force, and clicks the
“Go Ahcad” button. Because the tutor has not supplied a
corrected version of the crossed-out force and STEPS cannot
sce how 1o do so, the system decides that the action just
should not have generated at all. Thus, it continues solving
the problem, but when it has finished, it scarches for the rule
that should be blamed for deriving the action of drawing the
crossed-out force. The system walks backward along the
derivation tree of the action, looking for a rule that has never
been used in a problem that was correctly solved. The first
such rule is indeed the rule embodying the misconception, and
this rule is marked as incorrect. The next problem, involving
a rocket that fires its engines for a short period, is solved
correctly—the system does not draw the “impetus” force.

In the fifth problem, a rocket that is accelerating in a
direction opposite to the direction of its motion (see fig-
urc 4(a)). The system’s knowledge base contains an incorrect
rule, which states that if a body is moving in direction X, its
acceleration is also in direction X. This is one manifesta-
tion of the misconceptions caused by lack of differentiation
between velocity and acceleration (Halloun and Hestenes,
1985; Reif, 1987). The system starts drawing the free body
diagram and produces the acceleration arrow shown in fig-
ure 4(b). The tulor intervenes, and crosses out the incorrect
(downward pointing) acceleration arrow. The sysiem tries Lo
fix the arrow using a simple repair heuristic: Try reversing
the direction of an arrow. It draws the acceleration arrow,
this time pointing upwards, and asks the tutor “Should it go
this way?” The tutor confirms, and the system decides to try
to explain to itself why this is true by deriving the correct
action — drawing the acceleration arrow pointing upwards.
Using the correct rule, which states that when the body is
slowing down, the direction of its acceleration is the opposite
of the direction of its motion, the system derives the correct
action. It then tries to find which rule was responsible for
the incorrect action. This is done by walking backward along
both derivation trees (the incorrect action’s and the correct
action’s) simultaneously, and finding the point where they
diverge. The bad rule is assumed to be the first rule at the
divergence point in the incorrect action’s derivation, and it
is marked as incorrect. The next problem, which holds the
possibility of making the same mistake, is solved correctly.

Tutoring Tactics Indicated by STEPS

As we have demonstrated, STEPS leams to solve physics
problems while receiving much the same information as a
human student would. We cannot yet show that everything
it does is matched by human behavior, however many of its
learmning mechanisms are plausible and have some indepen-
dent support in the learning literature. Since this is the case,
we may assume that tutoring tactics that help STEPS learn
more effectively should also be employed by human and
machine tutors. Moreover, we can now explain why these
tactics are more effective. In this section, we will discuss
these tutoring tactics.

Immediate Feedback. Itis much easier for STEPS to learn
from immediate negative feedback than from delayed negative
feedback. When faced with delayed negative feedback, which



A block of mass m is resting If A 15 a spring and
on a spring. What is the B is an object and
pressure on the spring? A touches B
Then A exerts a pressure force F on B
If B is a body and
3 a pressure force F exerted on B by A
| Then magnitude(F) = pressure(A)
It A excrts a pressure force F on B and
S % 5 the value of function X applied to A is y
< H Then  the value of function X applied o Fis y
S S () If the position of A relative o B is x
and A exerts a pressure force Fon B
Then  the direction of force F is x
(a) Problem description (b) Free body diagram generated (c) New rules learnt

by STEPS for Problem 1

Figure 2: Problem 1

In this Atwood’'s machine, the mass of
both blocks is m. A man pushed one of
the blocks upward with force F and

started the machine in motion. What is
the tension in the string after the man
was no longer touching the box?

tension

qravn)] 5 '

qza\r.LUy-J tension

(a) Problem description

(b) Free body diagram generated by STEPS

Figure 3: Problem 3

A rocket of mass m slows its Iandinev?‘y
employing its engines with force T. Whatis
the acceleration of the rocket?

[

A\

=N
accel

[

(a) Problem description

(b) Acceleration arrow generated by STEPS

Figure 4: Problem 5
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refers to an action that is not the last action, STEPS mentally
crosses out the actions it took since the incorrect action.
However, this is not always sufficient. In many cases an
incorrect action results in erroncous conclusions thal arc
not manifested in actions but reside in working memory.
STEPS does nol try to comb through its memory searching for
conclusions that are rendered suspect by the tutonal input, so
subsequent errors are possible.

Several studies indicate that immediate feedback is better
for human learners than delayed fecdback (Anderson, Conrad
and Corbett 1989; Lewis and Anderson, 1985). Anderson’s
initial explanation for this effect was that delaying fecdback
makes it harder for the student to recall the reasoning that
led to the incorrect action, thus making it more difficult
to locate and repair the incorrect knowledge. However,
in view of the fact that students can often reconstruct their
reasoning from the scratchwork visible on the paper or screen,
Anderson’s current explanation is simply that immediatc
feedback prevents students from wasting time going down
unproductive paths (Anderson et al., 1994), so delay does not
affect the probability of leamning from the feedback, only the
efficiency.

STEPS is consistent with Anderson’s latest explanation, in
that it has no more trouble locating the incorrect knowledge
when feedback is delayed than when it is immediate. Thus,
delaying feedback wastes STEPS's time but does not affect
whether it will learn from the feedback.

However, the development of STEPS suggests that there
is a sublle penalty for using delayed feedback. When a
tutor points out an “old” error to a human student, the
student must retract the conclusions of his reasoning from
that point onwards (which is what STEPS does), or engage in
a complicated process of dependency-directed backtracking
that would leave both his internal memory and his external
memory (the page) disordered, and may confuse him in future
reasoning. Either way, subsequent errors that the student
makes may not be due to knowledge flaws, but to incomplete
retraction of obselete inferences. The tutor should either take
this into account when responding to any subsequent errors
that the student makes, or start the problem over from the
beginning, or move 1o a new, similar problem.

In short, STEPS “teaches” the tutor that delayed feedback
is just as likely to be successful as immediate feedback
(although it does waste some time), but it may complicate
the interpretation of any subsequent errors while solving the
problem. This is a rather non-obvious tutoring tactic, so
tutors who are not using the tactic already may find it a
difficult discover even while practicing tutoring with STEPS.
This is why we believe that STEPS and other simulated
students cannot stand alone as tutor training devices. They
must be accompanied by instruction on tutoring that explicitly
mentions considerations like the ones discussed here.

Low Content Negative Feedback. Whenever STEPS takes
an action that is basically correct but has some details wrong,
the tutor can either cross out the action and give a correct
version (high content negative feedback), or just cross out the
action (low content negative feedback).

Low content negative feedback is often used in tutoring.
Human tutors often initiate an episode of negative feedback
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with a low content indication, such as an overly long pause
(Fox, 1993). Many intelligent tutoring systems® first level
of ncgative fecdback consists of becping, highlighting the
incorrect action, or issuing some other low content indicator.

In STEPS, if the tutor uses low content fecdback, then the
learner has Lo solve two problems that it would not otherwise
have to solve. First it must decide whether the action was
crossed out because its details are wrong or because the
whole thing is wrong (e.g., a non-existent force), STEPS uses
problem-specific heuristics to make this decision. If it selects
the details-are-wrong interpretation, then it faces the second
problem, deciding which details are wrong. STEPS uses
syntactic heuristics to guess a corrected version of the action,
and then asks the tutor if it is correct. If it solves this second
problem correctly, it finally has a corrected action, so learning
proceeds just as if the tutor had entered that action in the
first place. Thus, low content feedback has no advantage
for STEPS over high-content feedback. It only increases the
chance that STEPS will misinterprel the feedback.

STEPS’s behavior is consistent with human data. McK-
endree (1990) showed that low content feedback caused less
learning than feedback that provided some indication about
whal was wrong,

STEPS does not “teach™ tutors to avoid low content neg-
ative feedback, because STEPS can sometimes learn from
it. However, it does “teach” tutors to follow up low content
negative feedback carefully in order to make sure that the stu-
dent has learned from it. For instance, if the tutor intended a
details-are-wrong interpretation and STEPS does not propose
a correction, then the tutor should make the correction at the
first opportunity.

Using the Student’s Vocabulary. In human-human tutorial
interaction, the usual complexities of understanding dialogues
exist, though somewhat mitigated by the use of technical
words and symbols. STEPS sidesteps these issues by re-
stricting tutorial input in several ways. The tutor can only
refer o entities such as forces, accelerations and equations by
pointing to them, thereby precluding misidentification of the
intended referent, a common source of misunderstanding in
natural language dialogues. In addition, STEPS announces the
meaning of each new variable as it is created, and expects the
tutor Lo use these variable names. Without these conventions,
the STEPS interface would be complicated immensely. A
tutor working with a human student could impose these con-
ventions on herself by pointing to the graphic representations
of entities she is referring to and using the same variable
names as the student whenever possible. Such restrictions
in human-human interactions could help students avoid some
of the problems of disambiguating tutorial input, and free
students’ cognitive resources for the important learning task.

Avoiding Shortcuts. A tutor may be tempted to collapse
several reasoning steps into one resulting action. Consider
the problem presented in Figure 2(a). The problem-solver
has not yet learned about pressure forces, so it omits the force
exerted by the spring on the block and generates an erroneous
equation. The tutor could decide Lo intervene by proposing
the correct equation: P — mg = 0. (Indeed, this is exactly
what the two pilot subjects did - see (Ur and VanLehn, 1994).)



STEPS cannot understand this intervention, because it docs
not know what P siands for. In order 1o be able to understand
the tutor's comment, STEPS would have had to guess that
the equation is an instantiation of Newton's Law, therefore
addends in the equation rcpresent forces, so there must be
a force missing from the diagram. It would then have to
search for the missing force. This chain of reasoning would
be extremely hard to produce. In the first problem described
above, the tutor chose to draw in the missing force on the free
body diagram, and this gave STEPS sufficient information to
learn about pressure forces and to generate a correct equation
on its own.

Human students may have similar difficultics in under-
standing tutors when they engages in “reasoning leaps.”
Catrambone (1993a, 1993b) has shown that human students
also leamn better from examples where shortcuts are avoided.

The tutoring tactic suggested by STEPS’s solution is dif-
ficult to state precisely because it depends on the details of
STEPS explanation algorithm. However, the gist of it is that
the tutor should always take the same small steps that the
student does. This is arguably a reasonable convention for
tutors to learn.

Summary. We have discussed four tutoring tactics that
STEPS encourages tutors 1o practice: (a) Delaying feedback
can cause subsequent errors on the problem, so consider
restarting the problem or going to a new problem when
feedback has been delayed significanuy. (b) Follow up low
content feedback carefully to make sure that the student did
not misinterpret it. (c) In order to make it easicr for the
student to understand which objects in the problem you are
referring to, use the student’s names for variables and other
problem-specific terms, and use pointing whenever possible.
(d) When demonstrating a line of reasoning, avoid skipping
steps and use steps as small as the student uses. These four
tutoring tactics could easily be employed as design policies for
the pedagogical component of an intelligent tutoring system.
Unlike other prescriptive work, these pieces of advice are
each based on a computational model that indicates exactly
why each tactic improves learning.
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