
Lawrence Berkeley National Laboratory
Recent Work

Title
BATCHED INTERPOLATION SEARCHING ON DATABASES

Permalink
https://escholarship.org/uc/item/40n7d1ds

Authors
Li, J.
Wong, H.K.T.

Publication Date
1987-02-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/40n7d1ds
https://escholarship.org
http://www.cdlib.org/

7.

~ .•

LBL-2284~ :~

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA, BERKELEY

~ :. "'~ I 1 \J' E f)
r i -I ._

Information and Computing
Sciences Division

, t 'J\' ,-.-.,...,.y

Presented at The Third International Conference
on Data Engineering, Los Angeles, CA,
February 2-6, 1987

BATCHED INTERPOLATION SEARCHING ON DATABASES

J. Li and H.K.T. Wong

February 1987

TWO-WEEK LOAN COpy , ,>,,,~
, :

~. 0\1)

......... __________ ' .. _.This is a Library Circulating Copy . .;:. ~/,:<. ,.4>

I which may be borrowed for two wee
~-. . ;! . . . -

.'!i:' - r- ",;.i

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

r
OJ r ,
9J

~
'" +> y o<J

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

Batched Interpolation Searching on Databases

Jian- zhong Li and Harry K. T . Wong

Computer Science Research Department
University of California

Lawrence Berkeley Laboratory
Berkeley, California g4720

February,lgS7

•

LBL-22848

This research was supported by the Applied Mathematics Sciences Research Pro­
gram of the Office of Energy Research, U.S. Department of Energy under Contract
DE-AC03-76SF00098.

\1

Batched Interpolation Searching on Databases

Jian-zhong Li * and Harry K. T. Wong
Lawrence Berkeley La~oratory,

University of California

Abstract

LBL- 22848

This paper examines the effect of bat ching search requests in the Interpola­
tion Search Algorithm on ordered tables in main-memory as well as in a more
typical database environment, i.e. a blocked secondary memory. Experiments are
performed on several hybrid interpolation search algorithms over non-uniformly
distributed data. The effect of batching on these algorithms is examined in terms
of algorithms, analysis and experiments.

Algorithms, analytic expressions and experimental results of these extensions
are given and described. Analytic expressions of these algorithms are validated
by experiments.

1. Introduction

Our interest in batched interpolation search comes from three separate
search problems in statistical and scientific databases. The first problem involves
the searching of data items in a compressed file. In-particular, the compression is
performed using a technique--caUed header compression scheme [11]. The second
problem is related to the searching, of hierarchical relationship implemented in a
file structure called hierarchical transposed file [10]. The third problem is the
searching of data items in a sparse multi-dimensional data structure [12]. All
three of these search problems can be reduced to batched interpolation search
over ordered files.

The idea behind the Interpolation Search algorithm on ordered tables is sim­
ple and natural. An example will be used to illustrate the algorithm in action.

Given a table of 1,000 records with xl<x2< ... <xlOOO uniformly distri­
buted between 0 and 10,000. Our task is to find index i such that Xi =6,000. It

is reasonable to guess that about 6,000 X 1,000 keys are less than or equal to
10,000

xi' and the required record should be near the 600th record. However, let us
assume that X 600 contains a key with value 5,800. The desired record should lie
between 600th and I,oooth records. We therefore take a second guess that Xi

should be the 6,~5,800 X (1,000-600)=19 th record of the new file. This pro-
10,000-5,800

cess continues until the record is found.

Supported by the Office of Energy Research, U.S. DOE under Contract No.
DE-AC03-76SF00098.

* On leave from Dept. of Computer Science, Heilongjiang Univ., China.

First published by Peterson [5], the Interpolation Search problem has
received extensive attention. The major result is the loglog (N)1 (where N is the
number of keys in the table) complexity behavior of a single search [6-8,14].
These works, however, did not take the effect of batching search queries into con­
sideration.

The advantages of batched searching on databases have been advocated by a
number of researchers [1,2,3,4]. The major argument is that by batching searches
or updates, the throughput of the system is increased and the potential reduction
on processor demand may in fact reduce the response time.

The research on interpolation search cited above concentrates mainly on
main-memory data structure. and ignores the database secondary memory con­
sideration. We are interested in adding block accesses as well as providing block_
accesses approximation expressions to the basic Interpolation Search algorithm,
similar t'o '{13].

The loglog (N) behavior is guaranteed only if the keys are uniformly distri­
buted. In [8,14], remarks were made to the effect that the same result is achiev­
able on non~uniform distributions if the distribution function on the keys is
known and used to map an initial non-uniform distribution onto an uniform dis­
tribution. This mapping, however, is typically expensive or impossible to attain
for very large databases. Several hybrid interpolation search algorithms have
been proposed to remedy the worst case behavior (0 (N)) of the Interpolation
Search Algorithm [0, 15; 16].

The benefits of batched searches using Interpolation Search are analyzed in
this· paper. We will provide performance expressions of average behavior for both.
cases in terms of record accesses as well as block accesses,.similar to [13J.

The paper is organized as follows. The analysis and the experiments of
batched interpolation search algorithm in non-blocked environment are shown in
section 2. In section 3, the analysis and the experiments are described for the
batched interpolation search algorithm in blocked environment. Experiments on
several hybrid interpolation search algorithms and the discussion of hybrid algo­
rithms for batched interpolation search are given in section 4. Section 5 sum­
maries and concludes the paper.

2. Batched Interpolation Search

2.1. Algorithm

Let X,=(x. [l],x [2], ...••. ,x[n]) be an ordered file of uniformly-distributed keys
between a and 6, where x [j]<x [j +1](1 <j <n -1). For expository reasons, we
add the keys x [O)=a and x [n +1]=6 as the first and last keys of the file.

Let B =(al,a2,oooo •. ,ak) be a ordered collection of search keys to be applied
to file X, where ai (1 < i < Ie) is uniformly distributed keys between a and b,

1 Throughout this paper, "log" designates base 2 logarithm.

v

and CXi < CXi+l(I<i <Ie-I), the algorithm BIS below will find an index j for each
cxi (1 < i < Ie) such that x [j]=CXi if such an index exists, otherwise,
x [j] <O!i <x [j +1].

The idea behind algorithm BIS given below is that in searching file X for
each element cxi in B , one can take advantage of the previous search for element
O!i -1' Since both B and X are ordered, BIS can start the search for O!i at the
rtA place of X where r is such that x [r]=O!i_l or x [r]<O!;_I<x[r+I]. The
savings of batched searching are achieved because the size of file X is monotoni­
cally decreasing.

ALGORITHM BIS

(1) L :=O;H :=11. +I;i =1;
(2) FOR i=I TO Ie DO
(3) Search CXi in (x [L], ... ,x [H]) using

Interpolation Search Algorithm;
(4) L=r where r satisfies x [r J=cxi or

x [r]<CXi <x [r +IJ; H:=n+I;
(5) END .

The variables L and H represent lower and upper indices of the file
searched respectively. For each i (1 <i <Ie) cxi is searched by step(3) in the
algorithm BIS in sub file Fi =(x [L], •••••• ,x [11. +1]) using the Interpolation Search
Algorithm [5]. The number of keys remaining in file X at the beginning of the
search for CXi is given by the following lemma. First, we define an iteration of
BIS to be the execution of step(3) and step(4).

LEMMA 1. The i tA iteration in the algorithm BIS is to search cxi in the
11. .(i -1)

subfile (x [r], •••••• ,x [11. +1]), where r = Ie •
+1

Proof. When i =1, r =0 and the lemma is true. Let i >2. From step (4) in
BIS, the itA iteration must be to search CXi in sub file (x [r],• ,x [11. +1]), where
r is such that x [rJ=cxi-l or x [rJ<cxi_l<X[r+IJ. Since the keys in X and B
are uniformly distributed, the Ie elements of B divide X into Ie + 1 subsets.

Hence, CXi-l should be determined on the average at location r 11. ~(~~I) of X.

Thus, the lemma is proved. Q.E.D.

The behavior of BIS is summarized by the following theorem. It shows that
the behavior is still O(loglog (11. », but n is reduced by a term proportional to 11. •
The savings gained in practice are discussed in the next section.

THEOREM 1. Let X and B be the same as mentioned above. The aver­
age number of record accesses required by algorithm BIS for searching B is less

3

than

" n·(i-I)). E loglog (n Ie +1
;=1

Proof. Let us consider the i th iteration. From lemma 1, the i th iterat~on is
. . n ·(t-l)

to search O:i (1 <a <Ie) in sub file Fi = (x [r], ,x [n +1]), and r = Ie +1 '

° fil F· n·(i-l) Th ·th °t t' that is, the number of unchecked keys In e i 15 n Ie +1. e Z 1 era Ion

is interpolation search for one record. By Perl et.al.'s theorem 2 [8V. the average

d .. th· • • I th I I (n . ~s -1)) Th ' number of recor accesses in S IteratIOn IS ess an og og n Ie + 1 . us,

it followsthat.;the.average number of.record accesses for searching.B is less than.

"~n .(i -1)). E loglog (n Ie +1
.=1

Q.E.D .

.2.2.. Experimental Results
To validate theorem 1 experimently, we generated 6 sorted files of uniformly

distributed random integers between 0 and ~1. 1,000 sets of batched and sorted'
recordS are also generated with integers uniformly distributed between O' and 231

with size Ie for Ie =1 to 20. Table 1 contains the results of comparing the theoret­
ical result of theorem 1 (the T.R. column) and the experimental result of execut­
ing algorithm BIS (the E.R. column). AB· can be seen, theorem 1 provides a good.
approximation to the behavior of algorithm BIS.

Figure 1 shows the savings of the batched interpolation search algorithm on
a. file of 400,000 uniformly distributed integers over its unbatched counterpart.
The savings are roughly 40% when Ie >20.

3 .. Blocked Batched Int~rpolation Search

In this section, algorithm BIS is modified to take blocking into consideration.
The analysis following the algorithm provides block access approximation.

3ah Algorithm

The. algorithm BBIS below' is 'similar-to BIS· except' the addition of step(7)
where block access is taken into consideration. In the discussion below, we
assume that X.=(x [1], ... ,x [n]) and B =(0:11 ... , 0:,,) are uniformly distri­
buted between a and b, x [O]=O:o=a , x [n +IJ=o:" +l=b and m is the block­
ing factor.

4

,-.

v

v

ALGORITHM BBIS

(1) L :=O;H :=n +1;
(2) tor i =1 to Ie do
(3) begin
(4) while H -L -1>0 do
(5) begin

J =L +(H -L -1)- r z 7~1:;~11 } (6)

(7)

(8)
(9)
(1'0)
(11)

it the r J / m 1 til
block is not in memory than read it;

it x[J]<ai then L:=J;
it x [J]>ai then H:=J;
itx [J]=ai then

. (12)
(13)
(14)

L:=J; H:=n+1; goto 14{Key found);
end;

L:=J; H:=n+l; (Key not found)
end;

As in section 2.1, an iteration in BBIS is said to begin with execution of step
(3), and a search step is said to begin with the execution of step (5). The Otll
search step refers to the beginning of an iteration •

Let Fi
j

denote the searched subtile of the j til search step in the i til itera­
tion and L i . and Hi. be the lower and upper indices of F i ., i.e.

1 1 1

Fi.=(x [L,..], ••• ,x [Hi']). Fi . consists of N.,.=Hi .-Li .-l unchecked keys, which are
1 1 1 1 111

uniformly distributed between x [Li
j

] and x [Hij]. Obviously, F 10=X ,
N 10=H -L -1, L 10=0, and H lo=n +1.

Let K i . denote the index of the key accessed in the j til search step in the
1

itll iteration. For i >2, Kio is L in step(U) or step(13) in the (i _1)8t iteration
in BBIS, which is the required index for ai-I' And, K 10=0. For i >1 and j >1,
K i . is the J in step (6).

1

We define the distance between two consecutive search steps in the i til
iteration, Di. = I K;. -Ki. I. Since there is at least one block retrieved for pro-

1 1+1 1

cessing B, the minimum value of D 10 is assumed to be 11\ , the blocking factor.

Next we will derive Dio=IKil-Kiol. By the distribution of X's and B's,
a,.-x [KiJ .

[1] [K J
is the probability of a random key in Fi being less than or

x n + -x ' 0 •
equal to ai. The number of random keys in Fio being less tha~ or equal to Cti is

-Ie n by lemma 1 and its proof. The size of F.' is n n '(a -1) by lemma 1.
+1 0 Ie +1

Hence,

n
ai -x [KiJ k +1

~--~--~~-----~~~
x [n +I]-x [KiJ n n·(i -1)

k+I
And thus, from step (6),

n
n ·(i-I). ai-x [KiJ

.. Ki1=Kio+(n k +1) x [n +I]-x [KiJ
_ Ki

o
+(n n' (i -1)). __ k_+-:-I:--· --:-

k+I n n ·(i-l)
k+l

D. =._n_.. (1) '0 k +1 .

By P-erl,et.al.'s corollary of lemma 1 [8] and our lemma 1, Di 1 is less than

1 . n ·(i -1) Z-1 (2)
"'2 (n k +1) .

The following lemma extends the result of Perl et.al.[8] to approximate the
distance between 2 search steps of searching a single elment in B .

LEMMA 2. The average value of Di , is less than
. 1

(n _ n ·(i -1))Z-i

. k+l '

where j >1.
Proof; From lemma 1 and its proof, tlie itA. iteration is to search ai in

sub file Fio with size n n ~(~~1). By the proof of Perl et.al's theorem 1 [8], the

average value of the Dr is less than
1

for j >1. Q.E.D.

The.approximated block. accesses' by, BBIS-is "given by the.following"theorem.

THEOREM 2. The expected number of block accesses required by BBIS
f6rsearching B in X' is less than

where,

" r-l E E block (Di · ,m),
•• J
1=1) =0

r =loglog (n n '(i -1»
k +1 '

{
I ifD >m

block (D ,m) =D'/m .. ifD" <m.

6

,....

v

and Di . is determined by (1), (2) and lemma 2.
J

Proof. The inner sum represents the expected block accesses required to
n .(i -1)

search for O:i' By theorem 1 above, we need at most r =loglog (n k + 1)

search steps to search for 0:;. The definition of the function block reflects the
fact that the number of block accesses required from the j th search step to
(j + 1)st search step is 1 if the distance between them is great than or equal to
m. Otherwise, it is Di./m , where the Di./m is the probability that x [K;.] and

J J J

lJ x [Kii+1
] are not in the same block, since the keys in X are uniformly distributed.

v

The outer sum is for total block accesses for searching all the elements in B.
Q.E.D.

3.2. Experimental Results

In. this experiment, five sorted files of 400,000 integers uniformly distributed
between 0 and ~1 were generated, each with a different blocking factor. A 1,000
sets of batched and sorted records were also generated with size k for k =1 to
20. Table 2 contains the theoretical/experimental results for the combination of
m (blocking factor) and k (size of batch). Again, theorem 2 provides good
approximation to the experimental results.

Figure 2 shows the savings of batched block accesses over unbatched block
accesses in a file of 400,000 records with blocking factor of 100. Again, there is
roughly more than 50% savings when k > 30.

4. Hybrid Algorithms for Non-uniformly Distributed Data

To remedy the worst case behavior 0 (N) of interpolation search in the
event of non-uniformly distributed data, several hybrid algorithms have been pro­
posed for single key search.

The proposal of combining binary search with interpolation search first
appeared in [9J. This algorithm (denoted by ISS) gives the analytic prediction of
o (loglog (N)+2) record accesses on the average on uniformly distributed files
and 0 (log (N)) worst case behavior.

In [16] an algorithm (denoted by ABI) is shown which simply alternates
between the methods of binary and interpolation search to obtain a retrieval time
o ("';log (N)) on non-uniformly distributed ordered files.

A recent paper on interpolation search [15] gives an algorithm (denoted by
ffi) with the expected time complexity of 0 (c floglog (N)+c 2) for non-uniformly
distributed keys.

4.1. Experiments

To examine algorithms ISS, ABI, and m in practice, we have implemented
these algorithms according to the original papers. Six files of different sizes con­
taining non-uniformly distributed keys were generated. The sizes are respectively
1,000, 5,000, 10,000, 50,000, 100,000 and 500,000 keys. For each algorithm, 1,000

7

searches are performed on each file. Fig. 3 contains the results of running IBS,
ABI, m and binary search (denoted by BI). As can be seen from the figure,
binary search performs the best among the algorithms when the size is 50,000 or
less. With file size exceeding 50,000, IDS requires the least number of record
searches. The surprise is that m and ABI, despite their attractive asymptotic
behavior, behave consistently worse than the other two in practice.

4.2. Batched Hybrid Algorithms

From algorithm BIS-and lemma 1, it is obvious that the worst case behavior

of our batched interpolation search algorithm is 0 (t (N N~(i -1»)). We will
i=1 +1

proviae algorithmscfor batched' searching based on the hybrid interpolation search
algorithms mentioned iIi. this section;·

Algorithm B
1. L :=0; H :=n +1;
2. FOR i=1 TO k DO
3. ca.ll hybrid interpolation search algorithm;
4. L :=r where r satisfies x [r]=ai or x [r]<ai <x [r +1]; H :=n +1;
5. END.

In step 3, the "hybrid interpolation search algorithm" can be anyone of the
hybrid interpolation algorithms mentioned above.

Let X ==(x [1], " .. ,x [n]) be a database, B =(al1 " " " 1 alc) be batched
keys, D 0=0, and Di =the number of keys in X between x [1] and a .. for i =1 to
Ie, whereoo==='x [1]. Similar to theorem 1, we can give the average behavior of H
when different hybrid interpolation search algorithms are used in step 3 in H.

When IDS is used, the average number of record accesses required by H on
non-uniformly distributed ordered files is less than

Ie
o (E (log (n -Di -1)+2».

"=1
When ABS is useed, the average retrieval time required by, H on Iion~

uniformly distributed ordered files is less than
Ie

o (E Jlog (n -D .. -1)).
"=1

When m is used, the expected time complexity required by H on non­
uniformly distributed ordered files is less than

Ie
o (oc I" E loglog (n -D .. -1) + "k"c 2).

i=1

8

v

Next we will derive the expected values of Dj's. Let Ij denote the index of
(};j 's in X. The expected values of I j 's are

E (I) _ 1. ."-Q..-l) .. (n -j)
1 - "E-1)(-I) .~ J k-1' n. J-l

k-1
1=1

for i=2, ... ,k .

Thus, the expected values of Di 's are

E (D 1) = E (II)'

E (D j) = I E (I;) - 1 I for i =2, .•. ,k.

In order to exa.mine the behavior of H, we generated a file of 500,000 non-·
uniformly distributed sorted random numbers. 1,000 sets of sorted random
numbers were also generated with the set size·varies from 1 to 40 keys. We run H
on the file using IR, IBS and ABI in step (3) in H. Fig. 4 shows' the average
number of record accesses of searching the batched random numbers for different
batch sizes. As can be seen, batched IBS is the most efficient one followed by
batched ABI and batched IR.

Fig. 5, Fig. 6 and Fig. 7 show the savings of executing batched IR, batched
IBS a.nd batched ABI on the file of 500,000 non-uniformly distributed random
numbers over their non-batched counterparts. The savings of batched IR,
batched ABI, and batched IBS are roughly 20%, 25%, and 70% respectively
when the batch size exceeds 40.

5. Summary and Conclusion

In this paper, the basic Interpolation Search algorithm is extended to provide
batched searching over blocked and non-blocked database environments. An
examination on some hybrid interpolation search algorithms over non-uniformly
distributed data is performed. Also, the effect of batching on these hybrid algo­
rithms is given.

Analytic expressions for the behavior of these extensions are given. All
V expressions are validated by extensive experiments.

Our experiment has revealed some interesting surprises on hybrid algorithms
for non-uniformly distributed data. The first surprise is that the simple binary
search consistently out-performs other more elaborate algorithms in a non­
batched environment. The second is that IBS, which combines binary and

9

~ :;:, .. ~~,
'.'

J ",: ~

~ -'''\l
~
,~.

; .. ~

: :;~

interpolation search in a straightforward manner, behaves much better than the
asymptotically more attractive algorithms such as IR and ABI in hatched or
non-batched environments.

These algorithms are an integral part of a scientific ~nd statistical database
management prototype system [10].

Acknowledgments

We are very grateful to Doron Rotem and Arie Shoshani for many sugges­
tions and useful comments on our work.

References,

[1] Nijssen;. G.M. Efficient~ Batched Updating of a Random file. Proc. 1971
ACM.;SIGFIDET Workshop-Data Description, Access and Control.
pp.113-186.

[2] Shneiderman, B. and Goodman, V. Batched Searching of Sequential and Tree
Structured Files. ACM Transactions on Database SyStems, Vol. 1 ,
No.3, September 1916, pp.286-275.

[3] Palvia, P. Expressions for Batched searching of Sequential and Hierarchical
Files. ACM Transactions on Database SyStems, Vol.IO, No.1, March
1985~, pp~97~106.

[4] Piwowarski, K. Comments on Batched searching 0/ Sequential and Tree­
structured' Files. ACM Transactions on Database Systems, Vol. 10,
No.2, June 1985, pp.285-287.

[51' Peterson9 W.W. AOddressing for Random-access storage, ffiM' J~ Res. and
DevelOPe. L(1957:)~ 131~132.

[6] pOrtee, C.E. Table Looliup Techniques. Computing Surveys, 3, 56-58(1911).
(7) Yao, A.C. and Yao, F.F~ The Complexity of Searching an Ordered Random

Table. Proc. Seventeenth Annual Sysmp. Foundations of Comptr.
Sci., 1976, pp.173-177.

[8] Perl,. Y., Ita.i, A. a.nd Avni, H. Interpolation Search--A loglog (N) Search.
Communication of the ACM, Vo1.21, No.7, July 1918, pp.550-553.

[9] Santoro, N. and Sidney, J.B. Interpolation-Binary search. Information Pro­
cessing Letters 20(1985), pp.119-181.

[10]' Wong, H.K.T., LI, J.Z~ Hierarchical" Bit' Transposed Files, LBL Technical
Report LBL-21284, 1986.

[11] Eggers, S., Olken, F., Shoshani, A., "A Compression Technique for Large
Statistical Databases", Proc. 1981 International Conference on VLDB,
Cannes, France, 1981.

[12J Nievergelt, J., Hinterberger, H., Sevcik, K.C., "The Grid File: An Adaptable,
Symmetric Multikey File Structure" , ACM TODS, 9, 1, pp38 - 71.

[13] Yao, S.B. Approximating Block Accesses in Database Organization. CACM
20, 4 (April, 1977), 260-261.

[14] Gounet, G.H., Rogers, L.D., and George, J.A. An Algorithmic and Complex­
it'{l Analysis of Interpolation Search, Acta Inform., 13 (1980) pp. 39-52.

10

[15] Willard, Dan Ee, Searching unindexed and Nonuniformly Generated Files in
loglog (N) Time, SIAMJ. Comput., Vol.l4, No.4, November 1Q85.

[16] Willard, D., Surprising efficient Search Algorithm for Nonuniformly Gen­
erated Files, 21st Allerton Conference on Communication Control and
Computing, 1Q83, pp. 656-662.

11

.... •• 'E
0
u
CI
::.
III
CI
.£
>
D'

U)

2:1

16
15

12

10

4

5 W ~ ~ ~ ~ ~ ~ 4 ~

Number or records searched

Fig. 1

... .-
..so IIlcTo ==80 -- ==100

X TJt; E.K. l'JL EJt. TJL J:Jr.. TJ't EJt. fA E.R.

I 2.5lI :UI 2oe:3 2.$:J 2.:11 2.50 ~ 20CS 2.:30 2.42
Z 4.15 5.U 4.az UI 4.'72 eJsf 4-" 4.'71 4.s? 4.'7:3
:I '7040 ,.5:3 '7.20 t;JS 7.D5 ,.zz &.a '7.10 '&.84 &.114
4 1.83 '.n 11.57 11.'75 U7 11.55 11.22 a.:n 1.10 1.22
5 12.25 I~I 1I.J4 120m lUI 11:19 tl.5O IUt 11.:3$ tt.3!
I 14.6. IU:3 IUD lUI 14.01 1:J.az 1:1." 1:3.5$ lUI 1:3.31
'7 11.11 llUIf lua lUI 1&.33 1&.11 lim 15.eS 15.85 15.5&
I 11.5:3 11..11 SlUIl SB.n IB.G4 ,18.:14 IUS 1'1'.91 lUI 1'1'.61
9 :u~ ZL46 ZL» ZUlI za.1I ZO.IZ 2Il.5:3 20.16 ZIl.35 nus

10 24.:s 2:3.66 2:3.14 22.11'7 ZlZl 22.411 22.'1 zz.u ZZ.R 21.11
Ii 25.'71 Z5.'D 21.10 zs.n Z5.SII ZU" 2S.11 ZU4 24.8'7 z:us
Ii all n.l:3 21.40 neZ! n.lS Z&.5S ZlA2 2&.10 VJlS 2$.61
1:3 :n.$S ~.S'7 :sII.n 2I.ZII :s:l.UI za.&Z 29.'70 27.ft 2J.:D 21':'& t
14 3115 :lU:3 :un 31.3& 32.41 :lD.M :11.87 :zus :l1.s'7 21MB
15 :35.:11 :M.2S 35.47 :l:U3 :M.'7. :12.11 :M.25 :11.12 :D.IZ :11.0
.1 :15.1. 3U$:n.az :s.s.a 37.at 35.1 a' 3S..SS :lC"J2 :!$.Of :13~
1'1' 41.%1 :I!A$ CIUI 37.1' !II.CO 35.'71 3U:I 3S.25 :31.3Z 3S.!ID
II (US 4D.CS <2041 31.31 el.GS 3S.SZ <I.a:'! :31.61 CO.5:J :31.0:1

I~ <SSf cUt' 4C.83 I:;~ CLI7 CO.$C C3.31 I~'~ I!~~~ :\s.D4
t!~i ILC5~ 47....111 14~?~ n., I~!t!t" I~n.,

Table 2

:l)

"iii' 2S JIt

I 23
19

III
IS Cl

. .£
>' 11 1:1.

U) 8
S'
3
1

1

I\'umberol rcco:ds se2fChed'

Fig. 2

"'--1~~!~~A~"'~~~~ _________________________ ~~~=s~ __ ==_~ ___ ==~~
.10.,

25

20
...•.

'5
--~ .• ,' -----------:::::====::;:::::---'0

flg. 3' v

12

File Size=SOOOOO

111 ,,-----
1000

800 ---
600 --- --- ---
400

200 .- ---------...:..:.:------------,
Flg. 4

File Sae=500000

8afched IR ~.!!!

1140

Fie. s

File Si%e=500000

,61~~--~--~~--_T----~----~----~--__
IS 20 30

SIze of 8a~_ oc.yl

Fie. G

File Size=SOOOOO

907

707

507

107

107~~--~-----r-----r----~-----r----~----~
IS 20 25 30

StI. of 8a~_, oc.YI

Fie. 7

13

'~,

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

, -
LA WRENCE BERKELEY LABORATORY

TECHNICAL INFORMATION DEPARTMENT
UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

~;- \.l

