
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
SoC-Based In-Storage Processing: Bringing Flexibility and Efficiency to Near-Data Processing

Permalink
https://escholarship.org/uc/item/40m4t7gp

Author
Torabzadehkashi, Mahdi

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/40m4t7gp
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

SoC-Based In-Storage Processing: Bringing Flexibility and Efficiency to Near-Data
Processing

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Engineering

by

Mahdi Torabzadehkashi

Dissertation Committee:
Professor Nader Bagherzadeh, Chair

Professor Phillip Sheu
Professor Jean-Luc Gaudiot

2019

c© 2019 Mahdi Torabzadehkashi

DEDICATION

This one to
The most important things in the world

family and love

”He who knows not and knows not he knows not; he is a fool - shun him; He who knows
not and knows he knows not; he is simple - teach him; He who knows and knows not he

knows, he is asleep - wake him; He who knows and knows he knows; he is wise - follow him”
poem, by Ibn-i Yamin (1286-1368).

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vii

ACKNOWLEDGMENTS viii

CURRICULUM VITAE ix

ABSTRACT OF THE DISSERTATION xi

1 Introduction 1
1.1 Dissertation Objectives and Contributions 3
1.2 Dissertation Organization . 6

2 Literature Review 8
2.1 Processor-Based CSDs . 9
2.2 FPGA-Based CSDs . 12
2.3 Other CSD Architectures . 14
2.4 Summary . 15

3 A Practical Approach to Proposing CSD Architectures 18
3.1 Background . 19

3.1.1 The SSD Architecture . 20
3.1.2 ISP: Bring the Process to Data . 25

3.2 CompStor: The First Linux-Powered CSD 27
3.2.1 Hardware Architecture . 27
3.2.2 CompStor Software Stack . 29
3.2.3 Prototype and Experimental Results 33

3.3 Catalina: An SoC-based ISP Platform . 39
3.3.1 Hardware Architecture . 39
3.3.2 Catalina Software Stack . 42
3.3.3 Catalina Prototype . 45

iii

4 ISP-Enabled Distributed Platforms 49
4.1 Background . 50

4.1.1 Distributed Processing Platforms . 50
4.1.2 Cluster Filesystems . 57

4.2 Deploying CSDs in Distributed Platforms . 59
4.2.1 Experimental Setup . 61
4.2.2 Benchmarks and Results . 64

5 FPGA-Based Acceleration for ISP 77
5.1 An FPGA-Based Accelerator Inside Catalina 78
5.2 Running Image Similarity Search In-Place 81
5.3 Experimental Results . 82

5.3.1 Experimental Setup . 83
5.3.2 Results . 84

6 Conclusion and Future Works 87
6.1 Summary . 87
6.2 Future Directions . 89

Bibliography 91

iv

LIST OF FIGURES

Page

1.1 Comparing ”data move to process” and ”bring process near data” paradigms 2

2.1 Overall architecture of Biscuit CSD . 10
2.2 BlueDBM overall and node architecture . 12

3.1 Flash chip organization . 21
3.2 High-level overview of a modern SSD . 22
3.3 Storage systems’ I/O bottleneck . 24
3.4 The CompStor hardware architecture . 28
3.5 A Minion message travelling between host and CompStor 30
3.6 CompStor software stack and the step-by-step description of the ISP flow . . 32
3.7 CompStor prototype . 34
3.8 CompStor performance for running I/O- and compute-intensive applications 36
3.9 Host’s CPU and CompStor CSDs aggregated performance for running bzip2 37
3.10 Conventional SSDs versus CompStor CSDs energy consumption 38
3.11 Catalina hardware architecture . 40
3.12 Catalina software stack . 43
3.13 Catalina prototype . 46

4.1 An overview of Hadoop filesystem (HDFS) 52
4.2 MapReduce application on Hadoop cluster 52
4.3 Apache Yarn structure . 54
4.4 OCFS2 implementation in Catalina CSD . 58
4.5 Overview of ISP-enabled Hadoop cluster . 59
4.6 Overview of ISP-enabled MPI-based cluster 60
4.7 Architecture of the developed system equipped with 16 Catalina CSDs . . . 62
4.8 Hadoop MapReduce benchmarks performance results 67
4.9 Hadoop MapReduce benchmarks energy consumption results 70
4.10 Four images of the 2D-DFT dataset . 74
4.11 DFT experiments performance and energy consumption results 76

5.1 AXI memory-mapped versus AXI stream data transfer channels 79
5.2 Architecture of a floating-point 4D vector multiplier block 80
5.3 Architecture of the FPGA-based accelerator 81
5.4 Performance results of the similarity search application 85

v

5.5 Energy consumption results of the similarity search application 86

vi

LIST OF TABLES

Page

2.1 Comparison between notable related works and one of the architectures pro-
posed in this research . 16

3.1 The experimental server specification . 35
3.2 Catalina prototype hardware specifications 46

4.1 Specifications of the hosts in the developed system 63
4.2 Different configurations for running Hadoop MapReduce benchmarks 65
4.3 Datasets for 1D-, 2D-, and 3D-DFT calculations 74

5.1 Dataset used in the similarity search application 83

vii

ACKNOWLEDGMENTS

The Ph.D. study was not a short-term sprint; instead, it was a tough marathon wherein a lot
of people helped in the path. When I started my Ph.D. studies, I was excited and expected
a smooth run from start to end. However, later, I found out this path was full of bridges
over troubled water, and remembering them makes me thankful to all the people who helped
me cross those bridges.

I would like to acknowledge my advisor Professor Bagherzadeh, who led me throughout my
Ph.D. studies. I always knew he was in his office and would help me whenever I needed it.
I would also like to deeply thank Dr. Vladimir Alves and all the team members in NGD
Systems, Inc. I could never explain the awesome experience that I had with this company
during my internship. Dr. Alves is one of the most knowledgeable individuals I have ever
met, and without his support, this dissertation would not even exist. I also want to thank
my friends, Siavash Rezaei, Ali Heydarigorji, and Dr. Hosein Bobarshad, for their valuable
comments and contributions while preparing the papers we published together.

viii

CURRICULUM VITAE

Mahdi Torabzadehkashi

EDUCATION

Doctor of Philosophy in Computer Engineering 2019
University of California, Irvine (UCI) Irvine, California

Master of Science in Computer Architecture Engineering 2014
Sharif University of Technology (SUT) Tehran, Iran

Bachelor of Telecommunication Engineering 2010
Shahr-e-Rey Azad University Tehran, Iran

RESEARCH AND WORK EXPERIENCE

Internship in the computational storage R&D team 2016–2019
NGD Systems, Inc. Irvine, California

Graduate Research Assistant 2014–2015
University of California, Irvine Irvine, California

Graduate Research Assistant 2011–2014
VLSI Laboratory, Sharif University of Technology Tehran, Iran

Head of the Robotics Team 2007–2010
Shahr-e-Rey Azad University Tehran, Iran

TEACHING EXPERIENCE

Teaching Assistant 2012–2013
Data Communications,
Digital Electronic Lab,
Digital System Design Lab
Sharif University of Technology Tehran, Iran

Teaching Assistant 2009–2010
Digital System Design,
Computer Architecture
Shahr-e-Rey Azad University Tehran, Iran

ix

REFEREED CONFERENCE PUBLICATIONS

Accelerating HPC Applications Using Computational
Storage Devices

August 2019

The 21st IEEE International Conference on High Performance Computing and Com-
munications (HPCC)

Catalina: In-Storage Processing Acceleration for Scal-
able Big Data Analytics

February 2019

The 27th Euromicro International Conference on Parallel, Distributed and Network-
Based Processing (PDP)

CompStor: An In-storage Computation Platform for
Scalable Distributed Processing

May 2018

The 32nd IEEE International Parallel and Distributed Processing Symposium Work-
shops (IPDPSW)

x

ABSTRACT OF THE DISSERTATION

SoC-Based In-Storage Processing: Bringing Flexibility and Efficiency to Near-Data
Processing

By

Mahdi Torabzadehkashi

Doctor of Philosophy in Computer Engineering

University of California, Irvine, 2019

Professor Nader Bagherzadeh, Chair

Data are among the most valuable assets in the modern world, and they have caused a

revolutionary stage in human life. Nowadays, companies make knowledge-based decisions

by analyzing a huge volume of data, super-scale data centers are used to process customers’

data to suggest products to them, government services rely on the data people provide to

them, and there are many similar cases wherein data are used as an important asset. Data

are originally stored in storage systems. To process data, application servers need to fetch

the data from storage units, which imposes the cost of moving the data to the system. This

cost has a direct relationship to the distance of the processing engines from the data, and this

is the key motivation for the emergence of distributed processing platforms such as Hadoop,

which bring the process closer to the data.

In-storage processing (ISP) pushes the “bring the process to data” paradigm to its ultimate

boundaries by utilizing processing engines inside the storage units to process data. The

architecture of modern solid-state drives (SSDs) provides a suitable environment for imple-

menting such technology. Thus, this dissertation focuses on SSD architectures that are able

to run user applications in-place, which are called computational storage devices (CSDs).

In this dissertation, we propose CSD architectures and investigate the benefits of deploy-

xi

ing CSDs for running different applications. This research uses a practical approach that

includes building fully functional prototypes of the proposed CSD architectures, developing

storage systems equipped with the CSDs, and running different benchmarks to investigate

the benefits of deploying the CSDs in the systems. This research proposes two different CSD

architectures, namely CompStor and Catalina.

These are the first CSDs to be equipped with a dedicated ISP engine for running user appli-

cations in-place that includes a quad-core ARM Cortex-A53 processor together with FPGA-

and application-specific integrated circuit (ASIC) based accelerators. The proposed archi-

tectures run a full-fledged operating system inside, which provides a flexible environment for

running a wide range of user applications in-place. The system-on-chip (SOC) based archi-

tecture of Catalina CSD, together with a software stack developed for seamless deployment

of the CSD, makes it a platform for the implementation of different ISP concepts and ideas.

To the best of our knowledge, Catalina is the only ISP platform that can be seamlessly de-

ployed in clusters to run distributed applications such as Hadoop MapReduce and message

passing interface (MPI) based applications in-place without any modifications to the under-

lying distributed processing framework. We performed extensive experimental tests using

several datasets on both CompStor and Catalina CSDs. The experimental results show up

to 2.2x and 4.3x improvements in performance and energy consumption, respectively, for

running Hadoop MapReduce benchmarks using Catalina CSDs and up to 5.4x and 8.9x im-

provements for running 1-, 2-, and 3-dimensional DFT algorithms due to the Neon SIMD

engines inside Catalina. Additionally, using FPGA-based accelerators, Catalina CSDs can

improve the performance and energy consumption of a highly demanding image similarity

search application up to 11x and 7x, respectively.

Keywords— computational storage, in-storage processing, near-data processing, Catalina,

CompStor, SSD, system-on-chip, big data, Hadoop, Faiss, HPC, DFT, image similarity

search

xii

Chapter 1

Introduction

The modern human’s life has been technologized, and nowadays, people rely on super-scale

applications to receive services such as healthcare, entertainment, government services, and

transportation in their day-to-day lives. As the usage of these services becomes universal,

people generate more unprocessed data, which increases the demand for more sophisticated

data centers and applications. The valuation of the generated data has been highlighted

by several research works [1, 2]. According to the well-known 4V’s characteristics of big

data, the systems need to deal with very large volumes of data which are in various types,

and their velocity is more than that of conventional data, while the data’s veracity is not

confirmed [3].

To process data with the mentioned characteristics, the data should frequently move be-

tween the storage systems and memory units of the application servers. This high-cost data

movement imposes extra energy consumption and potentially degrades the performance of

the applications. Therefore, data processing has moved toward a new paradigm: “bring the

process to data” rather than moving high volumes of data. Fig. 1.1 compares the traditional

“moving data to the process” policy to the “bring the process to data” paradigm.

1

data

application server 1

application server 2

application server 3

application server 4

application server 5

interconnection

network

data

server 1

data

server 2

data

server 3

data

server 4

data

server 5

interconnection

network

Figure 1.1: Comparing ”data move to process” and ”bring process near data” paradigms

In modern clusters, nodes are connected via a low-latency and power-hungry interconnect

network such as InfiniBand [4] or Myrinet [5]. In such systems, moving data can be more

expensive than processing it [6, 7]. In fact, accessing and transferring data from the storage

systems to the application servers can be a huge barrier toward reaching compelling per-

formance and energy efficiency. To deal with this issue, some frameworks such as Apache

Hadoop [8] provide mechanisms to process data near where they reside. In other words, these

frameworks push the process closer to the data to avoid massive data movements between

storage systems and application servers.

In-storage processing (ISP) is the concept of pushing the process closer to the data in its

ultimate boundaries. This technology proposes utilizing embedded processing engines inside

the storage devices to enable them to run user applications in-place, so data do not need

to leave the devices to be processed. This technology has been around for a few years.

However, the modern solid-state drive’s (SSDs) architecture, as well as the availability of

relatively powerful embedded processors, makes it more appealing to run user applications

in-place. SSDs use flash memory as the storage media and deliver higher data throughput

in comparison to hard disk drives (HDDs). Moreover, they contain a considerable amount

of processing horsepower in the form of multiple embedded cores for managing the flash

memory array and providing a high-speed interface to the host. These processing engines

could potentially provide an environment to run user applications. Based on the reasons

2

mentioned above, this research focuses on modern SSD architecture, and, in the rest of this

dissertation, computational storage device (CSD) refers to an SSD that is enabled to run

user applications in-place.

In a CSD architecture, an ISP engine is responsible for running user applications. This

engine potentially accesses the data stored in the flash memory array through a low-power,

high-speed link. Thus, the deployment of such CSDs in systems can increase the overall

performance and efficiency.

1.1 Dissertation Objectives and Contributions

Processing user applications inside storage units without sending data to the host processor

seems appealing. However, proposing a flexible and efficient CSD architecture comes with

the following challenges:

1. ISP engine: SSDs come with multiple processing cores to run the conventional SSD

controller routines. These cores can be utilized for running user applications as well.

However, there are two major problems in utilizing the existing SSD cores for ISP.

First, these cores are usually busy doing normal SSD operations, and using them to

run user applications can negatively affect the I/O performance of the drive. Second,

these processing engines are usually real-time cores such as the ARM Cortex-R series

[9], which limits the category of applications that can efficiently run on these cores.

In some cases, user applications need major modifications to be able to run on these

cores.

2. Host-CSD communication: In a CSD architecture, there should be a mechanism

for the communication between the host and CSD to submit ISP commands from the

host to CSD and receive the results. Regularly, conventional SSDs have one physical

3

link connected to the host that is designed for transferring data. There are many

protocols for sending data through this link such as SATA [10], SAS [11], and NVMe

[12]. None of these protocols are designed for sending ISP commands and results.

Thus, it is the responsibility of the CSD designer to provide an ISP communication

protocol between the host and CSD.

3. Block-level or filesystem-level data access: An embedded processing engine

inside a CSD has access to the raw data stored on the flash, but the filesystem metadata

is in control of the host. As a result, data access inside the storage unit is limited to

the block-level data. Therefore, any application running in-place should not expect

to be able to access the filesystem-level data. This issue strictly limits the type of

programming models available for developing ISP applications as well as the reuse of

other applications. Thus, the CSD designer should provide a mechanism to access the

filesystem metadata inside the ISP engine so the applications that run in-place can

open files, process data, and, finally, create output files to write back the results.

4. Host-CSD data synchronization: In a system where a host is equipped with a

CSD, potentially, both the host and the ISP engine inside the CSD have access to the

same flash memory array simultaneously. In such a system, without a synchronization

mechanism, these two machines may not be able to see each other’s modifications,

which could result in data corruption.

5. CSDs as an augmentable resource: Attaching CSDs to a host machine should not

limit the host from accessing the data and processing it. The processing horsepower of

the CSDs should be an augmentable resource so that the host and CSDs can process

data concurrently. If processing an application in the CSD interferes with the host’s

access to the data, this will dramatically decrease the utilization of the host and the

efficiency of the whole system. A well-designed CSD architecture allows the host to

access data stored in the flash memory at any time.

4

6. Adoptability: CSDs should provide a flexible environment for running different

types of applications in-place. If the ISP engine of a CSD supports very limited pro-

gramming languages or needs users to rewrite the application based on a specific pro-

gramming model, this can negatively affect the adoptability of the CSD.

7. Distributed ISP: A single CSD with limited processing horsepower may not be able

to enhance an application’s performance satisfactorily, so in many cases, there should be

multiple CSDs orchestrating together to deliver compelling performance improvement.

To perform such distributed processing, CSD designers need to provide the required

tools for implementing a distributed processing environment among multiple CSDs.

8. ISP for compute-intensive applications: Highly demanding applications such

as high-performance computing (HPC) algorithms can potentially run inside CSDs.

However, to serve this class of applications, CSDs should be able to boost their per-

formance for some specific applications. In other words, the CSD architecture should

be customizable enough to run some applications in an accelerated mode. Therefore,

CSD designers are required to provide ASIC- or FPGA-based accelerators to run highly

demanding applications appropriately.

These challenges are outlined in the literature, and a large number of research works have

tried to solve a subset of the challenges mentioned above. However, to the best of our

knowledge, there is no ISP solution that addresses all the above challenges. This dissertation

aims to investigate these challenges and propose solutions to overcome them. Throughout

this research, we will show how each of these challenges can be addressed, and using a

practical method, we will explore different architectures and investigate the benefits of the

proposed solutions for I/O- and compute-intensive benchmarks in both distributed and non-

distributed environments.

The contributions of this research can be summarized as follows:

5

• We will discuss the challenges of developing efficient CSD architectures and propose

solutions to address them.

• We will describe the path that led us to develop an efficient CSD architecture. We

propose two CSD architectures in this dissertation, namely CompStor and Catalina.

Using a practical approach, we show why the earlier design is not aligned with the

ISP core concepts. However, the Catalina CSD meets or exceeds our expectations and

shows how CSDs can improve the performance and energy efficiency of the systems.

• Both CompStor and Catalina CSDs were prototyped to show the feasibility of the

proposed solutions. Building these CSDs gave us an accurate understanding of the

challenges of designing and manufacturing efficient CSD architectures.

• We explored the utilization of FPGA- and ASIC-based accelerators inside CSD ar-

chitectures for improving the performance and energy efficiency of highly demanding

applications, such as image similarity searches on a very large dataset as well as 1D,

2D, and 3D DFT calculations.

• Different platforms equipped with multiple CSDs were built to explore the benefits

of the deployment of CSDs in systems. We used several I/O- and compute-intensive

applications as well as distributed benchmarks such as Hadoop MapReduce and MPI-

based applications to run extensive experimental tests.

1.2 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 summarizes some notable

related works in the literature. In Chapter 3, we first provide an overview of the mod-

ern SSD architecture and how ISP technology improves the performance and efficiency of

the systems. Then, we propose two CSD architectures, which are called CompStor and

6

Catalina. Additionally, we discuss the features of the Catalina CSD that make it a platform

for implementing different ISP ideas.

Chapter 4 explores the deployment of Catalina CSDs in the Hadoop and MPI-based clusters

and reports the results of running the Hadoop MapReduce and HPC benchmarks on the

developed platforms that are equipped with up to 16 Catalina CSDs. In this chapter, we

show how utilizing Neon SIMD engines for running HPC applications improves performance

and energy efficiency considerably. Chapter 5 investigates the utilization of the FPGA-based

accelerators for running a highly demanding image similarity search application on the ISP-

enabled systems. Finally, Chapter 6 concludes this dissertation and discusses future topics

that could extend the contributions of this research.

7

Chapter 2

Literature Review

Primarily, there are two categories of near-data processing, which are near main memory

processing and in-storage processing [13]. These technologies aim to bring the process closer

to data that are stored in different levels of the memory hierarchy. In this research, we focus

on the processing data inside storage units, i.e., data do not need to be transferred to the

host’s memory to be processed.

ISP technology was initially introduced for hard disk drives. Archarya et al. proposed

an ISP-enable HDD architecture with a dedicated ISP engine that includes an x86-based

processor running at 200 MHz and 16 MB of memory for running user applications in-place

[14]. They set the cost constraint for implementing the ISP engine to $100, which was a

considerable cost overhead at the time of publishing the paper.

In those early stages, the filesystem challenge, which was discussed in the first chapter of

this dissertation, was remarked by Lim et al. [15]. They introduced a filesystem designed

for the ISP-enabled HDDs called the active-disk-based data server (ADFS). The ADFS is a

filesystem that is implemented partially in the ISP-enabled disk and the host.

8

There are other papers that explored the ISP-enabled HDDs in the late 1990s [16, 17, 18].

However, these ISP-enabled HDDs could not reach a satisfactory level of improvement and

feasibility due to the relatively high manufacturing cost of implementing an ISP engine in the

HDDs, the inherent random latency of HDDs, and the limited availability of the processor

that could be embedded in the HDDs at that time.

After the emergence of SSDs, ISP technology found a new platform on which to flourish.

The SSDs deliver better throughput in comparison with HDDs, especially for random read

and write operations. Oftentimes, they have multiple processors inside for conventional

flash management and to host interface routines. Such a device can be better extended

to run user applications. However, there is a considerable gap between the available data

bandwidth inside SSDs and the bandwidth that is provided to the host. This gap is an

influential motivation for processing user data in-place. In this dissertation, the SSDs that

can run user applications in-place are called CSDs. There are two main categories of the

related works: 1.) research works that advocate for the utilization of the general-purpose

processors for running user applications inside the CSDs (processor-based CSDs), and 2.)

publications that propose using pure FPGA-based accelerators inside the CSDs (FPGA-

based CSDs). In addition to these two main groups, there is a third group with a limited

number of research works that propose other mechanisms. In this chapter, we will review

the notable related works in the two main categories as well as the limited works that use

other mechanisms to run user applications inside the storage units.

2.1 Processor-Based CSDs

The majority of processor-based CSD architectures share the same processing resources both

for running user applications and for conventional flash management routines. This class of

CSDs mainly uses real-time processors that are already available in the SSD architectures [19,

9

h
o

st
 i

n
te

rf
ac

e
co

n
tr

o
ll

er

FMC

FMC

flash flash

flash flash

…

…

channel #1

channel #c

CPUs SRAM

DRAM

CPUs

main
memory

…

NVMe driver

libsisc

host-side
program

Biscuit runtime
SSD

firmware SSDlet SSDlet SSDlet…

system
agent

hardware
pattern matcher

software
layer

Figure 2.1: Overall architecture of Biscuit CSD

20]. Although utilizing the available processors for ISP purposes increases the utilization of

the existing processors in the storage unit, it does not provide enough processing horsepower

for compute-intensive tasks, as a user application can interfere with the conventional SSD’s

I/O operation, and vice-versa. Even worse, many of these architectures are based on 32-

bit embedded processors that are not suited for executing complex applications. In other

words, using the same real-time processor for two concurrent tasks, user applications and

SSD firmware control, may cause a loss in performance in both tasks.

Biscuit uses ARM Cortex-R7 embedded real-time processors together with a set of hard-

ware pattern matcher modules in the storage device to provide an environment to run I/O-

intensive applications in-place [19]. Fig. 2.1 (adopted from [19]) shows the overall system of

Biscuit, including its hardware and software architecture. The proposed architecture makes

a seamless distributed environment for the host and CSD to run the user applications.

In Biscuit, users have to develop the ISP application based on a flow-based programming

model [21]. Using a set of APIs (libsisc library) that are available in Biscuit, the user needs to

develop a set of SSDlets that communicate with each other to perform the ISP task. In such a

10

programming model, the CSDs are slaves to the host, which is responsible for controlling the

ISP flow. The software layer of Biscuit supports “dynamic module loading” and “dynamic

memory allocation,” which are two useful features for running ISP applications.

Each SSDlet is a simple C++ program developed using Biscuit’s provided APIs. Since the

applications have to be developed based on a flow-based programming model, users cannot

reuse other types of applications. Biscuit CSD has been prototyped; however, there are

major hardware limitations in the prototype such as no cache coherency, a limited amount

of fast memory, and no memory management unit (MMU).

Kim et al. proposed a CSD architecture for database scan and join operations [22]. To exploit

the full parallelism inside the SSD architecture, they designed per-flash channel processing

elements that collaborate with the embedded ARM Cortex-A9 processor to implement the

database scan and join operations. In fact, a part of the operations is executed on the data

path, while the data is prepared for transmission inside the storage. This design is intended

only for two specific operations and cannot be generalized. To evaluate the benefits of the

proposed architecture, they used a simulation and modeling approach.

Kang et al. proposed Smart SSD, which supports a modified version of the Hadoop MapRe-

duce programming model to run ISP tasks in CSDs [20]. They used an off-the-shelf Samsung

SATA SSD as the hardware platform and did not make any modification to the hardware.

However, they modified the SSD controller firmware to support their modified version of the

Hadoop framework. Smart SSD does not support any message passing mechanism between

the CSDs. Since they only support an extended version of the Hadoop MapReduce pro-

gramming model, they need to break down an ISP task to tasklets and cross-compile them

to be able to run them on the Samsung SSD’s internal ARM cores. The internal ARM cores

are shared between the conventional flash management routines and the ISP engine, so only

trusted people can develop ISP applications for Smart SSD.

11

1TB Flash

host server

BlueDBM
storage

1TB Flash

host server

BlueDBM
storage

1TB Flash

host server

BlueDBM
storage

…

storage network

host server

1TB flash

flash
interface

in-storage
processing

host
interface

network
interface

DRAM

Ethernet

Figure 2.2: BlueDBM overall and node architecture

2.2 FPGA-Based CSDs

The second category covers FPGA-based CSD architectures. While FPGAs potentially give

higher horsepower, a pure FPGA design suffers from a lack of generality and flexibility

compared to general-purpose processors. Jun et al. proposed an architecture for scalable

multi-access flash storage for big data analytics called BlueDBM, wherein the whole flash

controller, host interface, and computation unit are implemented on FPGAs [23, 24]. Fig.

2.2 (adopted from [23]) shows the overall architecture of a cluster that is equipped with

BlueDBM CSDs, as well as the architecture of a node.

Each server in Fig. 2.2 is attached to a BlueDBM CSD. Inside each CSD, the ISP unit

has access to four other modules: the flash interface, network interface, host interface, and

12

DRAM module. The cluster has two network interconnects, which are the regular fabric

between the hosts, and an inter-controller network (storage network). The storage network

allows one CSD controller to access the other CSDs’ data. In other words, the flash interface

can be accessed by the local ISP engine (ISP unit in Fig. 2.2), the local host, and another

CSD controller concurrently. From a performance point of view, this structure provides a

scalable ISP-enabled cluster architecture since the storage network provides a high-speed

link to other CSDs’ data. However, due to the existence of two networks (the regular fabric

between the hosts and the storage network), when there are a large number of ISP-enabled

nodes, the physical scalability of the proposed architecture is questionable.

The BlueDBM filesystem is limited to the refactored file system (RFS) [25]. Normally, the

SSD controller handles the internal flash translation layer (FTL), and the internal charac-

teristic of the flash memory is invisible to the host. Unlike conventional filesystems, RFS

handles some functionalities of the FTL, such as translating the virtual addresses to the

physical flash block numbers. BlueDBM needs the host to use an RFS-based filesystem, and

this limitation could negatively affect the adoptability of the proposed solution.

Vincon et al. proposed nativeNDP [26] as an FPGA-based CSD architecture that is able to

run an R script [27] inside the storage units of the nodes in a Ceph cluster [28]. In fact,

they designed a custom R plugin to interact with the Ceph cluster. The nativeNDP uses a

NoFTL-KV storage engine [29] in the host, which provides the physical address of the flash

memory blocks inside the host. To evaluate the performance of nativeNDP, they used a

simulation environment and ran benchmarks using synthetic datasets.

Another example of an FPGA-based CSD architecture is RISP [30]. The RISP CSD includes

a reconfigurable unit (RU), which is composed of a processing cell and an NVM controller

on each flash channel, as well as a public processing cell shared by all the channels. In

fact, in the proposed architecture, a set of memory chips on a flash channel together with

the corresponding NVM controller and processing cell form a RISP channel, which is the

13

minimum processing element of the RISP architecture. The public processing cell can access

all the RISP channels. All the components mentioned above are implemented in FPGA.

Overall, the modification of an FPGA-based CSD architecture to provide new functionalities

is time-consuming and error-prone and includes RTL design, synthesizing, and bitstream

generating. Additionally, since the functionality of a pure FPGA-based CSD is limited, in

some scenarios, pre-processing on the host system is required before invoking FPGA-based

accelerators in the CSD [31]. This can impose unnecessary data transfer to the system that

has a significant interference with the core concept of ISP technology.

2.3 Other CSD Architectures

Although the aforementioned categories cover most of the related works, there are a limited

number of papers that do not belong to either of those two main categories. Cho et al.

proposed a CSD architecture called XSD that uses a graphics processing unit (GPU) as the

ISP engine [32]. They provided an API set to the user for uploading the task to the CSD

based on a modified version of the MapReduce programming model. They used a simulation-

based approach to evaluate the performance of the proposed GPU-based CSD and reported

that the GPU-based CSD is considerably faster than processor-based CSDs. However, only

applications that are developed based on the modified version of MapReduce are off-loadable

to the proposed CSD.

PRINS [33] is an ISP-enabled storage based on resistive content-addressable memories (Re-

CAM) for machine learning applications. This CSD architecture does not follow the von

Neumann model. There is one associative processing unit per ReCAM memory row and

a microcontroller that controls these processing units; these elements form the ISP engine.

The code of the PRINS microcontroller is developed manually in the assembly language,

14

and there is no data coherency between the host’s CPU and the ISP engine. Thus, for the

sake of data coherency, PRINS does not allow the host’s CPU to access the storage during

in-storage task executions. This is a serious limitation that can decrease the host’s CPU

utilization significantly.

2.4 Summary

After reviewing the related works, we can now summarize the main challenges that have

not been addressed in the previous works. In almost all the works, the major challenge is

adoptability. In other words, in the proposed solutions, data is only available at the block-

level to the ISP engine of the CSDs; therefore, applications cannot deal with the filesystem

concepts, as needed for conventional programming. In some of the related works [23, 24, 26],

the CSD architects tried to solve this problem by dividing the flash memory management

tasks between the host’s operating system (OS) and the CSD controller. Using this approach,

the internal physical block addresses of the flash memory are exposed to the host’s operating

system, and the user can send the block addresses alongside the main ISP task to the CSD. As

a result, the ISP engine can access the physical blocks to run the ISP application on the data.

However, to the best of our knowledge, all the available CSDs require major modifications

to the conventional applications to be adapted to the CSD architectures. In some CSDs, the

applications have to be developed from scratch based on a specific programming model [19].

In this research, we address these issues by porting a full-fledged Linux operating system into

the ISP engine and developing the necessary tools to execute a wide range of applications

in-place without modifying them. Another issue is the imposed limitation on the host’s data

access during execution of the ISP applications [33]. This problem is also addressed in this

research.

15

Table 2.1: Comparison between notable related works and one of the architectures proposed
in this research

ISP engine programmability

filesystem

support in

ISP engine

ISP-supported

distributed

processing

Biscuit [19]

2x ARM

Cortex-R7

(shared)

medium

(Biscuit API set)

not

supported
not supported

Scan & Join [22]

ARM

Cortex-A9

(shared)

limited

(database scan

and join)

not

supported
not supported

Smart SSD [20]

2x ARM

cores

(shared)

medium

(MapReduce)

not

supported

(object-

based)

A modified

version of

Hadoop

MapReduce

BlueDBM [23]
FPGA

(dedicated)

limited

(RTL design

required)

not

supported

(RFS-based)

inter-

controller

network

NativeNDP [26]
FPGA

(dedicated)

medium

(R language)

not

supported

(NoFTL-KV)

limited to

Ceph

RISP [30]
FPGA

(dedicated)

limited

(RTL design

required)

not

supported
not supported

XSD [32] GPU
medium

(MapReduce)

not

supported

A modified

version of

MapReduce

PRINS [33]

associative

processing

units

limited (non-von

Neumann)

not

supported
not supported

Catalina

4x ARM

A53 +

FPGA

(dedicated)

full

(e.g. C++, Python)
full support

full support

(e.g. MPI /

Hadoop)

16

Table 2.1 compares one of the proposed CSD architectures in this dissertation, Catalina,

to the CSD architectures proposed by the notable related works. In this table, the first

column shows the names of the CSD architectures. The second column indicates the type

of ISP engine for each CSD. The third column shows the adaptability and programmability

of the architectures. To the best of our knowledge, among all the previous works, Catalina

is the first CSD that includes an ISP engine that can execute, potentially, any application

with no modification. The fourth column represents the capability of accessing data at the

filesystem-level inside the ISP engines. Finally, the fifth column shows the potentials of the

proposed CSD architectures in distributed environments.

17

Chapter 3

A Practical Approach to Proposing

CSD Architectures

We mentioned the challenges of proposing a well-designed CSD architecture in the first

chapter. Based on these challenges, we set eight design goals to propose an efficient and

flexible computational storage platform. The design goals are as follows:

1- A desired CSD architecture should avoid using real-time processors that were originally

intended to run conventional flash management routines for running user applications in

place; instead, it should contain an ISP-dedicated application processor to provide a flexible

environment to run user-applications without negatively affecting normal I/O operations.

2- There should be a TCP/IP link between the host and the ISP engine inside the CSD so

that the applications running on the host and CSD can communicate with each other. 3-

The ISP engine should have access to the filesystem-level data so that it can read files that

are stored in the flash memory, process them, and generate output files. 4- Since both the

host and the ISP engine have access to the same flash memory at the filesystem-level, there

should be a synchronization mechanism such as clustered filesystems to ensure the integrity

18

of the data. 5- Both the host and the ISP engine should be able to interact with the

flash storage concurrently. This makes the CSD an augmentable resource, so both the host

and CSD can collaborate in executing user applications. 6- There should be an operating

system running inside the CSD. This OS should provide a flexible environment to run a vast

spectrum of applications in-place. 7- The desired CSD should support distributed processing

platforms such as Hadoop and MPI. 8- The CSD should have the potential to implement

ASIC- or FPGA-based accelerator engines to run highly demanding applications in-place

with a compelling performance.

This chapter is composed of three sections. In the first section, we will provide a background

on the modern SSD architectures and how ISP technology can be embedded in the SSD

architectures. In the second and third sections, we will propose two CSD architectures,

CompStor and Catalina, and show the path that led us to proposing a computational storage

platform that can satisfy all the design goals mentioned above. In contrast to some of the

related works that used simulation and modeling to propose an ISP architecture, in this

research, a practical approach is used. We designed and prototyped two CSDs, namely

CompStor and Catalina. Both of these CSD prototypes are fully functional and able to run

a wide spectrum of user applications in-place. In this chapter, we will describe the hardware

and software architectures of these two CSDs and discuss their strengths and weaknesses. At

the end of this chapter, we will show why Catalina is not only an efficient CSD architecture

but also a platform for implementing different ISP ideas and concepts.

3.1 Background

The storage system, where data originally reside, plays a crucial role in the performance

of applications. In a system with multiple processing nodes, the data should be read from

the storage units to the memory units of the application servers to be processed. As the

19

size of the data increases, the role of the storage subsystem becomes more important since

the nodes need to talk to the storage units more frequently to fetch data and write back

the results. Recently, data center architects have been considering SSDs over HDDs as the

major storage units in the modern systems due to the former’s better power efficiency and

higher data transition rate [34].

SSDs use Nand flash memory as the storage media [35]. Nand memory chips are faster and

more power-efficient than the magnetic disks that are used in HDDs, so SSDs are considered

more efficient than HDDs. However, this advantage comes with complexity in the design

and implementation of SSDs, wherein a multi-core controller is needed to manage the flash

memory. Nonetheless, SSDs usually provide a high-speed interface to communicate with the

host, such as NVMe over PCIe [12]. Implementing such an interface requires embedding

more processing horsepower inside SSDs. In this section, we will first review the modern

SSD architecture and explain the NVMe over PCIe, which is the host interface protocol of

the proposed CSD architectures. Then, we will explain why an ISP-enabled storage unit

could improve the performance and efficiency of the systems.

3.1.1 The SSD Architecture

The structure of a flash memory chip is shown in Fig. 3.1. A Nand flash memory chip

is a package containing multiple dies. A die is the smallest unit of flash memory that can

independently execute I/O commands and report status. Each die is composed of a few

planes, and each plane contains multiple blocks. Erasing is performed in the block-level, so

a flash block is the smallest unit that can be erased. Inside each block, there are several

pages, which are the smallest units that can be programmed and written. The key point in

this hierarchical architecture is the programmable unit versus the erasable unit. The Nand

flash memory can be programmed in the page-level, which is usually 4–16 KB, while the

20

package

die

plane

block

page

Figure 3.1: Flash chip organization

erase operation cannot be done on a smaller segment than a block, which is a few megabytes

of memory.

The data cannot be simply overwritten on flash memory and should only be written on the

erased blocks. This means if a page within a block should be updated, the SSD controller

has to read the whole block’s data, update the page content, and write back the data to

a fresh and erased block. To modify the write operations, a garbage collector routine runs

inside the SSD controller to erase the blocks during off-peak times to maintain optimal write

speeds.

However, flash blocks can only be erased for a finite number of times, and they wear out

as erase operations take place, so it is important to balance the number of erase operations

among all the flash blocks of an SSD to increase the lifespan of the drive [36]. The process of

leveling the number of erase operations is called wear leveling. In addition, the logical address

space exposed to the host is different from physical block addresses, so there are multiple

21

flash memory
interface

…
memory

controller

DRAM memory

front-end
processing engine

internal bus

back-end

processing engine

channel #1

ch #2

ch #C

flash
package

flash
package

flash
package

flash
package

flash
package

flash
package

…

…

…

host

SSD controller

SSD architecture

Figure 3.2: High-level overview of a modern SSD

tables for logical and physical address translation. The flash translation layer (FTL) is

composed of all the routines needed to manage flash memory arrays, such as logical block

mapping, wear leveling, and garbage collection.

An overview of the organization of an SSD is shown in Fig. 3.2. This figure demonstrates the

modules that compose an SSD and how they collaborate to execute the host’s I/O commands.

These modules include the SSD controller, DRAM memory, and flash memory packages. The

SSD controller talks to the host, receives the I/O commands, and controls the flash memory

packages to serve the host. The DRAM memory is attached to the controller to be used

by the controller’s firmware routines. The flash packages are organized in channels, and all

the channels can transfer data to the controller simultaneously. The number of channels

and the bandwidth of each channel define the maximum bandwidth available to the internal

components of the SSD.

There are four main components inside the SSD controller, namely the front-end processing

engine, the back-end processing engine, the flash memory interface, and the memory con-

troller. The front-end processing engine is responsible for communicating with the host via

22

protocols such as SATA, SAS, or NVMe over PCIe. It receives the I/O commands, checks

their integrity, interprets them, and forward the commands to the back-end processing en-

gine. The back-end engine handles the FTL, which includes garbage collection, physical and

virtual address translation, error correction, and wear leveling routines. Note that there are

other components, such as error correction unit (ECC), that are not shown in this figure for

the sake of simplicity.

Super-scale data center designers have been trying to develop storage architectures that

favor high-capacity hosts, and this fact is highlighted at Open Compute Summit (OCP) by

Microsoft Azure and Facebook, which call for up to 64 SSDs attached to a host [37]. In Fig.

3.3, such a storage system is shown, wherein 64 NVMe SSDs are attached to a host via a PCIe

switch. Modern SSDs usually contain 16 or more flash memory channels that can be utilized

concurrently for flash array I/O operations. Considering 512 MBps bandwidth per channel,

the internal bandwidth of an SSD with 16 flash memory channels is 8 GBps. However, the

leading SSDs’ specifications show that the host bandwidth is limited to about 1 GBps for

random reads due to the complexity of the host interface software and hardware architecture

[38, 39]. In other words, the accumulated bandwidth of all internal channels of the 64 SSDs

reaches the result of the multiplication of the number of SSDs, the number of channels per

SSD, and the bandwidth of each channel, which is equal to 512 GBps. Meanwhile, the

accumulated bandwidth of the SSDs’ external interfaces is equal to 64 multiplied by 1 GBps

(the host interface bandwidth of each SSD), which is 64GBps.

Overall, there is an 8x gap between the accumulated internal bandwidth of all SSDs and

the bandwidth available to the host. In other words, to read 32 TB of data, the host needs

more than 8 minutes, while internal components of the SSDs can read the same amount

of data in about 1 minute. Additionally, in such a storage system, data need to continu-

ously move through a complex hardware and software stack between the host and storage

interfaces, which imposes a considerable amount of energy consumption and dramatically

23

Nand flash

Nand flash…
host

16×512MBps = 8GBps

controller

switch

NVMe

NVMe

NVMe

…

SSD #1

SSD #2

SSD #64

~ 64×1 GBps = 64 GBps

Figure 3.3: Storage systems’ I/O bottleneck

decreases the energy efficiency of large data centers. Thus, storage architects need to develop

techniques to decrease data movement; ISP technology has been introduced to overcome the

data bottleneck challenge by bringing the process closer to the data.

NVMe: A High-Performance Interface for Non-Volatile Storage

There are different protocols to transfer data between the host and storage systems, such

as SATA [10], SAS [11], and NVMe over PCIe [12]. The SSDs can execute multiple I/O

commands simultaneously with low latency, and this feature is highlighted by some papers

in the literature. Elyasi et al. improved the performance of a large-scale graph processing

algorithm by 2x when they modified the algorithm based on the SSD architecture [40].

Among the aforementioned host interface protocols, the NVMe is proposed for SSDs and

has an impressive performance in sending data between SSDs and hosts. Thus, the CSD

architectures proposed by this research utilize this protocol. Although implementing the

NVMe over PCIe protocol in a CSD is quite time-consuming, it is not within the scope of

the contributions of this research. Thus, in this subsection, we will provide an overview of

the NVMe protocol.

24

The peripheral component interconnect express (PCIe) [41] is a high-speed bus standard

that is developed using a set of unidirectional pairs of serial and point-to-point links that are

called lanes. A PCIe slot can have 1, 4, 8, or 16 lanes, which are shown by x1, x4, x8, and x16

notations, respectively. The PCIe is composed of three layers, namely the transaction layer,

data link layer, and physical layer, and currently, there are four generations of the PCIe

bus. Each lane of PCIe Gen1 provides 250 MBps of data bandwidth; Gen2 provides 500

MBps, Gen3 provides 985 MBps, and Gen4 provides 1970 MBps. This link can be used for

connecting different peripherals to hosts, such as video cards, expansion cards, and storage

units. The proposed CSD architectures in this research contain a host interface based on

PCIe Gen3 x4, which can provide up to 3940 MBps of bandwidth.

NVMe protocol uses the PCIe data link to transfer data between a host and an SSD. In

contrast to some traditional data transfer protocols developed around the HDDs that do not

have more than a queue for submitting I/O commands, NVMe protocol is designed based

on the SSD architectures. In other words, since SSDs can run multiple I/O commands at

the same time, NVMe is designed to take advantage of this feature, and it provides up to

64K data transition queues, while each queue supports up to 64K parallel I/O commands.

NVMe over PCIe protocol is developed based on the non-uniform memory access (NUMA)

model [42, 43]. In this model, two systems that are connected can access each other’s

memory; however, the character of the local memory access is different than the character of

the remote memory access. In other words, this model provides high-performance memory

access for the host and the SSD.

3.1.2 ISP: Bring the Process to Data

In a traditional CPU-centric scheme, data always move from storage devices to processing

engines. This mechanism, which is inherently limited by the von Neumann bottleneck, is the

25

root cause of the data bottleneck challenges mentioned in the previous subsection, especially

when many SSDs are connected to a host. ISP technology proposes a contrary approach to

push the concept of “bring the process to data” to its ultimate boundaries wherein processing

engines inside storage units take advantage of internal high-bandwidth, low-power data links

and process data in-place. In fact, “bring the process to data” is the same concept that

led to the emergence of distributed processing platforms such as Hadoop and Spark [44].

Later in this dissertation, we will discuss how the Hadoop platform and ISP technology can

simultaneously work together in a cluster.

The ISP technology minimizes the data movements between the host and storage units

and also increases the processing horsepower of a system by augmenting energy-efficient

processing engines to the whole system. This technology can potentially be applied to

both HDDs and SSDs; however, modern SSD architecture provides a better environment for

developing this technology. SSDs that can run user applications in-place are called CSDs.

These storage units are augmentable processing resources, which means they are not designed

to replace the high-end processors of modern servers. Instead, they can collaborate with the

host’s CPU and augment their efficient processing horsepower to the system.

It is noteworthy that CSDs are fundamentally different than object-based storage systems

such as Seagate Kinetic HDDs [45], which transfer data at the object-level instead of the

block-level. The object-based storage units can receive objects (e.g., images) from a host,

store them, and, at a later time, retrieve the objects back to the host using object identi-

fications. Consequently, the host’s filesystem does not need to maintain metadata of block

addresses of the objects. On the other hand, CSDs can run user applications in-place without

sending data to a host.

26

3.2 CompStor: The First Linux-Powered CSD

The first CSD that we designed and prototyped is called CompStor [46], which stands for

“computational storage.” CompStor is the first computational storage with a dedicated

quad-core application processor as the ISP engine, which runs a full-fledged Linux oper-

ating system. This ISP engine is revolutionary enough to make CompStor a very flexible

CSD compared to similar works that struggle to run ISP tasks on real-time processors or

FPGA-based accelerators. This section includes three subsections to describe the CompStor

hardware architecture and software stack as well as the CompStor prototype and experimen-

tal results.

3.2.1 Hardware Architecture

Since the development of the firmware of a regular SSD is time-consuming and error-prone,

for the first CSD design, we chose to separate the development of the conventional flash

management functionalities from the innovative ISP capabilities to avoid potential errors

and extra complications. Therefore, CompStor is composed of two boards that implement

the flash management routines and ISP engine. Fig. 3.4 demonstrates a high-level overview

of the CompStor hardware architecture. This architecture is composed of two separate parts,

namely the conventional subsystem and ISP engine.

The conventional subsystem contains a controller, 2 GB DRAM memory, and an array of

flash packages. The controller is composed of two MicroBlaze processors [47], an ECC unit,

a host NVMe over PCI interface, a memory controller, and a flash memory interface. All of

these components are designed and implemented in the FPGA. Among these components,

the two MicroBlaze processors are the front-end and back-end processors that run the SSD

controller firmware and control the other modules.

27

error
correction

unit

flash memory
interface

…

memory
controller

host NVMe/PCIe
interface

Data bus

2x MicroBlaze
(back-end and
front-end FWs)

2GB DRAM memory

NVMe

Nand flash

Nand flash

Nand flash

Nand flash

channel #1

ch #2

ch #3

ch #C

Quad-core ARM A53
(Linux OS) 8 GB DRAM

memory

FMC
connector

ISP engine

h
o

st

Ethernet cable

conventional subsystem

controller

Figure 3.4: The CompStor hardware architecture

Data stored in the flash packages may change due to the transient errors that usually happen

in memory cells. The ECC unit takes care of these errors by utilizing error-correction

algorithms such as low-density parity-check (LDPC) [48]. The host interface is responsible

for communicating with the host via the NVMe over PCIe protocol. It receives the I/O

commands, checks their integrity, and sends them to the front-end processor. The front-end

processor interprets the commands, performs internal DRAM initializations, and then asks

the back-end processor to execute the host’s commands. The back-end processor controls

the flash memory interface to communicate with the flash packages and fulfills the host’s

commands. After the back-end processor finishes the I/O operations, a completion command

is sent to the front-end processor, and, accordingly, the host is notified that the I/O command

is finished.

There is an internal data bus in the conventional subsystem that transfers data between

different components. This bus is where we can attach the innovative ISP engine, which is

responsible for running user applications. In other words, the ISP engine is attached as an

28

external utility to the conventional subsystem to augment the ISP capabilities to the storage

unit. The ISP engine includes a quad-core ARM Cortex-A53 processor [49] as well as 8 GB

of dedicated DRAM memory. There is an FPGA mezzanine card (FMC) connector [50] that

forms the connection between these two subsystems. In addition, an ethernet connection

has been provided in CompStor to allow for a TCP/IP connection between the ISP engine

and the applications that run on the host.

3.2.2 CompStor Software Stack

In CompStor, a host-side client application controls the ISP flow, so from a master-slave

perspective, the client is the master, while CompStor behaves as the slave. The client needs

to perform a defined sequence of steps: sending an ISP task to CompStor, waiting for the

completion of the task, and receiving the results of the execution. In this subsection, the

software stack that helps the user go through these steps will be discussed.

We implemented an ad-hoc messaging protocol for ISP-related data transfer between the

client running on the host and the ISP engine in CompStor via the Ethernet cable (see Fig.

3.4). This ISP messaging protocol includes different types of messages. In fact, they are vir-

tual entities traveling through layers of the software stack to deliver ISP-related information

and may get encapsulated into other messages. Each layer may either process or redirect

them to the next layer. The different message entities in the CompStor software stack are

as follows:

1. Command : A data structure containing detailed information about ISP tasks,

including the name of input and output files, the Linux shell command/script or the

executable file name, the arguments needed to pass to the application, and the access

permissions.

29

ResponseCommand

ResponseCommand

host CompStor

Minion from the host to CompStor

Minion from CompStor to the host

client
application

Figure 3.5: A Minion message travelling between host and CompStor

2. Response: A data structure containing the information about the outcome of an

ISP task, such as the final status of the command and the time consumed to execute

the ISP task inside CompStor.

3. Minion : A virtual entity that travels from a client to CompStor and delivers a

command. It waits until the ISP task is finished to deliver the response back to the

client. This virtual entity is composed of a command and a response. The command

part is populated by the client, while the response is populated by CompStor. Fig.

3.5 depicts a minion containing a command and a response traveling between a client

and CompStor.

4. Query : A virtual entity that travels from a client to CompStor to deliver an ad-

ministrative message. Similar to a minion, it travels back to the client after delivering

the message, but it cannot trigger an ISP task. Instead, it can load an executable to

the ISP engine or obtain information about the current status of CompStor such as

processor utilization and temperature.

The software stack consists of multiple layers spread over the host and CompStor. Each

layer is responsible for a specific task and serves other layers. The commands, responses,

minions, and queries are the only entities traveling from one layer to another. These layers

are defined as follows:

• Client: An administrative C/C++ application that controls the ISP flow, i.e., it sends

30

minions to CompStor and waits for the result of the ISP task.

• ISP executable: A C/C++ application, a Linux shell command/script, or a combi-

nation of both that the user desires to run inside CompStor.

• ISP library: A C/C++ library that provides high-level APIs for the client admin-

istrative application to control the ISP flow. The ISP library is intended to be used

in the client, not in the ISP executable. This means the CompStor software stack is

invisible to the ISP executable, and the user can reuse applications that are developed

for running in regular hosts.

• ISP agent: A daemon that runs in the ISP engine and is responsible for receiving

minions from the client and spawning ISP applications in CompStor. After ISP com-

mand completion, the daemon populates the response field of the minion and sends it

back to the client.

• ISP device driver: A Linux device driver that is implemented in the kernel space of

the CompStor Linux operating system and communicates to the conventional subsys-

tem for flash data access. This device driver abstracts the flash read/write accesses,

so the ISP executable can read and write to flash memory similar to when it runs in a

host.

• Conventional subsystem’s back-end firmware: The firmware that is responsible

for flash management tasks and implements FTL. This firmware runs in the conven-

tional subsystem and talks to the ISP device driver via the FMC connector to transfer

data between the conventional subsystem and the ISP engine.

Fig. 3.6 depicts the software stack architecture and shows how the layers communicate with

each other to accomplish an end-to-end ISP process. When the client launches a minion, it

triggers multiple message transfers between different software layers. Fig. 3.6 also describes

31

client

ISP
library

host

ISP agent

ISP engine Linux operating system

ISP executable

ISP device driver

front-end
firmware

back-end
firmware

flash
memory
packages

conventional subsystem
NVMe

1
2

3

4

5
6

Step # Description

1
Host side client configures a minion and sends it to the ISP agent
using the ISP library APIs.

2
The ISP agent extracts command from the received minion and
spawns the ISP executable.

3
At runtime, the ISP executable accesses the flash storage via the ISP
device driver.

4
The ISP device driver sends read/write commands to the back-end
firmware that handles flash management routines.

5
At runtime, the ISP agent keeps track of the progress of the ISP
executable.

6
In the end, the ISP agent populates the response field in the minion
and sends theminion back to the client.

Figure 3.6: CompStor software stack and the step-by-step description of the ISP flow

32

the lifespan of a minion, from the time it is configured in client to when it delivers the

result back to the client. The client is able to send several concurrent minions to multiple

CompStor CSDs attached to a host. This gives the client the ability to trigger parallel ISP

applications.

3.2.3 Prototype and Experimental Results

In this subsection, we demonstrate a fully functional CompStor prototype and run several

experiments to investigate the energy consumption and performance of running I/O- and

compute-intensive applications using CompStor CSDs. The prototype is an NVMe CSD

with an FPGA-based controller coupled with an ISP engine built around a quad-core 64-bit

ARM Cortex-A53 application processor.

Fig. 3.7 shows the prototype that was developed for running the experiments. For the pro-

totype, we built two boards, which were completely aligned with the hardware architecture

described in Fig. 3.4. In fact, the whole CSD controller was implemented using an ISP

engine attached to the conventional subsystem via an FMC connector. For the implemen-

tation of the conventional subsystem, we used a Xilinx Vertex-7 2000T FPGA, while the

ISP engine was implemented using a Xilinx Zynq Ultrascale plus MPSoC. The latter is an

MPSoC chip containing an FPGA together with a quad-core 64-bit ARM Cortex-A53 pro-

cessor. This MPSoC also contains two ARM Cortex-R5 real-time processors [51], a GPU,

and a set of ASIC modules such as encryption and decryption units. However, we did not use

these utilities and modules in the CompStor. To the best of our knowledge, the CompStor

prototype is the first Linux-powered CSD equipped with a software stack to support running

user applications in-place seamlessly.

33

CSD controller

ISP
engine

conventional
subsystem

Flash memory
packages

Figure 3.7: CompStor prototype

Experimental Setup

To run the experiments, we built a host with 16 CompStor CSDs (see specifications in

Table 3.1). Since processing very large text files is common in super-scale applications,

for the experiments described in this subsection, we prepared a dataset that contained 348

compressed big text files selected from the Gutenberg dataset [52]. These text files were

books written by different authors that were transformed into plain text files. The total size

of the dataset was about 11.3 GB. The definition of performance in this subsection is the

amount of data that is processed in a time unit (second), and energy consumption is defined

as the amount of energy the system needs to process one gigabyte of data.

The application set selected for the experiments included both I/O- and compute-intensive

applications. Compression and decompression algorithms are commonly used in super-scale

applications. Thus, we used gzip/gunzip [53] and bzip2/bunzip2 [54] algorithms as the

34

Table 3.1: The experimental server specification

CPU type Intel Xeon E5-2620 v4

memory 32 GB DDR4

operating system Ubuntu 16.04

conventional SSDs 4x 256GB NVMe SSD

computational storage device 16x CompStor NVMe CSD

compute-intensive applications. For the I/O-intensive experiments, two search applications

were selected, namely grep [55] and gawk [56]. Grep is a standard Linux shell command

designed to search in text inputs, while the gawk utility searches text and makes changes

based on user-specified patterns.

Experimental Results: Performance

In the first set of experiments, we used a host-side client to trigger ISP tasks on CompStor

CSDs. We ran the applications mentioned above using different numbers of CompStor

CSDs to show the scalability of the proposed solution. Expectedly, the performance of

one CompStor was lower than a high-end Intel Xeon processor; however, the performance

improvement scaled as the number of CSDs increased. Fig. 3.8 depicts how performance

scaled with different numbers of CompStor CSDs.

Even though the aggregated performance of multiple CompStor CSDs can equal or surpass

that of a high-end x86-based processor, it makes sense to consider that one augments the

other and results in higher performance and a more efficient system. Fig. 3.9 depicts the

performance of the Xeon processor combined with the performance of multiple CompStor de-

vices when running the bzip2 compression algorithm. In this experiment, we distributed the

input files between the host and CompStor CSDs; then, the performances of the CompStor

35

0

500

1000

1500

2000

1 2 4 8 16

grep

gawk

0

200

400

600

800

1 2 4 8 16

gzip

gunzip

0

20

40

60

80

100

1 2 4 8 16

bzip2

bunzip2

Number of CompStors CSDs

C
o

m
p

St
o

r
p

er
fo

rm
an

ce
 (

M
B

/s
)

Figure 3.8: CompStor performance for running I/O- and compute-intensive applications

36

0

50

100

150

200

250

1 2 4 8 16 32

P
ro

ce
ss

in
g

P
er

fo
rm

an
ce

 (
M

B
/s

)

CompStor

Xeon

Aggregated

Number of CompStor CSDs

Figure 3.9: Host’s CPU and CompStor CSDs aggregated performance for running bzip2

CSDs and the host are measured. These results show that the CompStor CSDs augmented

a considerable processing horsepower to the whole system and were flexible enough to run

different I/O- and compute-intensive applications.

Experimental Results: Energy

In this experiment, we have utilized 16 CompStor CSDs for running different applications

and measured the energy efficiency of the developed system for comparing the deployment of

the regular SSDs versus the CompStor CSDs. In this experiment, we utilized 16 CompStor

CSDs to run different applications and measured the energy efficiency of the developed

system to compare the deployment of the regular SSDs versus the CompStor CSDs. In the

latter case, for the computation to take place, only the ISP minions needed to be transferred

between the host and the CSDs, greatly reducing the interface traffic and required energy.

The reason we chose energy consumption over power consumption was to make the results

of these experiments independent of the performance of the system. We ran the experiments

and measured the energy consumed when executing compression, decompression, and search

applications. The results were normalized per gigabyte of data processed, i.e., J/GB, as

shown in Fig. 3.10. The experimental results show up to 3.3x improvement in energy

37

8
8

0
.9

1
7

7
.6

1
4

6
2

1
7

1
7

1
9

0
8

5
2

2

2
6

2
1

.4

4
6

6
6

gzip gunzip bzip2 bunzip2

E
n

er
gy

 C
o

n
su

m
p

ti
o

n
 p

er
 G

ig
ab

y
te

D

at
a

(J
o

u
le

/G
B

)
CompStor

Xeon E5-2620

Compression/Decompression

6
8

.5 8
9

.1
7

2
2

2
.7

2
9

5
.4

grep gawk

Search

Figure 3.10: Conventional SSDs versus CompStor CSDs energy consumption

efficiency in comparison to the host CPU utilizing conventional SSDs.

CompStor shows good flexibility to run different I/O- and compute-intensive applications and

can also improve the performance and energy efficiency of a system considerably. However,

there is an important problem with CompStor’s design. CompStor is introduced as an ISP

device, yet data still need to move from the conventional sub-system to the ISP engine.

Although this data transfer is less expensive than data transfer via a complex NVMe over

PCIe interface, this off-chip data transfer is not aligned with the core ISP definitions. The

off-chip data transfer between the conventional subsystem and the ISP engine increases the

latency and also imposes energy consumption on the whole system. In other words, any

application run on the ISP engine will suffer from the off-chip data transfer latency and

energy consumption. To solve this problem, we introduced Catalina, which is an MPSoC-

based computational storage platform with potentials to implement different ISP engines

and run a wide spectrum of applications. In the next section, we will describe the software

and hardware architectures of Catalina.

38

3.3 Catalina: An SoC-based ISP Platform

In this section, we will describe the hardware and software architectures of Catalina [57],

which propose to satisfy all the design goals mentioned earlier in this chapter. Unlike Comp-

Stor, the Catalina controller contains all the conventional flash management components and

the ISP engine implemented on a single chip, so data do not need to be transferred off-chip

for ISP. This section is composed of three subsections. In the first subsection, different hard-

ware components of Catalina will be described, and we will discuss how they work together.

The second subsection will define the Catalina software layers that make it possible to send

ISP commands, process data in-place, and write the results back to flash memory. Finally,

the third subsection will demonstrate the fully functional Catalina prototype, which was

used to investigate the benefits of deploying CSDs in clusters.

3.3.1 Hardware Architecture

Catalina was developed based on the Xilinx Zynq Ultrascale plus MPSoC chip [58]. This

device is composed of two subsystems, namely programmable logic (PL) and a processing

system (PS). The PS is an ASIC-based processing subsystem that includes a quad-core ARM

Cortex-A53 64-bit processor equipped with Neon SIMD engines and floating-point units, two

ARM Cortex-R5 real-time processors, a DRAM controller, and other interconnect and data

movement components. Adjacent to the PS is the PL subsystem, which is an FPGA that

can be utilized to implement different components of the CSD controller, such as the host

and flash memory interfaces. These two subsystems are packaged in one chip, with multiple

data links connecting them for high-performance, power-efficient intra-chip data transfers.

Together, these two subsystems provide a suitable platform for implementing conventional

SSD routines as well as running user applications in-place.

39

error
correction

unit

flash
memory
interface

…
memory

controller

host
NVMe/PCIe

interface

PL

PS
2x ARM R5
(firmware)

8GB DRAM memory

NVMe

Nand flash

Nand flash

Nand flash

Nand flash

TCP/IP tunnel

channel #1

Ch #2

Ch #3

Ch #C

Quad-core
ARM A53
(Linux OS)

Neon SIMD

Floating point
unit

ISP engine

FPGA-based
accelerators

AXI bus

Figure 3.11: Catalina hardware architecture

Fig. 3.11 shows the Catalina architecture implemented using the Xilinx Zynq Ultrascale

plus MPSoC chip. On the PL subsystem, there are three conventional components of the

controller: the host NVMe over PCIe interface, the ECC unit, and the flash memory interface.

The host interface is responsible for sending and receiving the NVMe commands from the

host and checking the integrity of the commands. The ECC unit enables the controller to

correct the data errors that regularly occur in the flash memory array. The flash memory

interface communicates with the flash memory channels. In Fig. 3.11, each flash channel is

connected to a set of flash memory packages, and the flash memory interface talks to the

flash packages on all the channels concurrently.

On the PS, there are two ARM Cortex-R5 real-time processors that are used for both con-

trolling the components implemented in the PL as well as running the FTL routines. In

fact, the conventional firmware routines run on these two real-time processors. Similar to

CompStor, Catalina has two firmware processors, front-end and back-end. However, instead

of the MicroBlaze processors that are used in the CompStor design, Catalina uses the ARM

Cortex-R5 processors of the Xilinx Zynq Ultrascale plus MPSoC chip. In other words, one of

the real-time processors runs the front-end (FE) firmware, which controls the host interface

40

module and interprets the host’s I/O commands, while the other ARM Cortex-R5 processor

runs the back-end (BE) firmware, which is responsible for controlling the error correction

and flash interface units. The BE firmware also runs other essential FTL routines, such as

garbage collection and wear leveling.

All of the components mentioned above are common among conventional SSDs; however,

Catalina is equipped with a unique ISP engine. This engine is dedicated to running user

applications in-place, and it contains a quad-core ARM Cortex-A53 processor equipped with

Neon SIMD engines and floating-point units (FPUs). The quad-core processor is capable

of running a vast spectrum of applications, while the Neon SIMD engines can increase the

performance of some compute-intensive applications. Overall, the quad-core Cortex-A53

processor is the main ISP engine of Catalina, and the Neon SIMD engines as well as the

FPUs can accelerate user applications running in-place. Additionally, since there is an

FPGA on the PL subsystem, it is possible to implement FPGA-based accelerators to boost

the performance of specific applications significantly.

As Fig. 3.11 demonstrates, both the ISP engine and the two Cortex-R5 real-time processors

which run the conventional flash management routines are packaged in the same chip. These

two engines are connected via an internal ARM advanced extensible interface (AXI) bus

[59]. The shared AXI bus makes it possible to transfer data between the BE firmware and

the ISP engine efficiently. In other words, the ISP engine can bypass the whole NVMe

hardware and software stack and access the data stored in the flash memory array directly

by communicating with the BE firmware. There is also an 8 GB DRAM memory connected

to the AXI bus that is shared among all the processing units. This shared memory, which

is not available in the CompStor architecture, can be used for data transfers between the

conventional subsystem and the ISP engine.

41

3.3.2 Catalina Software Stack

The most important part of the software components is the operating system running inside

the ISP engine. Thus, similar to CompStor, we ported a full-fledged Linux OS running on

the quad-core ARM Cortex-A53 processor. This OS provides a flexible environment for both

running user applications in-place as well as implementing other layers of the software stack.

3.12 demonstrates the architecture of the software layers and how they make it possible to

run applications in-place.

In Fig. 3.12, there is a cluster of M hosts connected using a TCP/IP interconnect, and the

host #1 is attached to the N Catalina CSDs via a PCIe switch. In this figure, the lowest

layer of the software stack is the BE firmware, which implements the FTL procedures. The

BE firmware serves both the FE firmware, which talks to the host via NVMe protocol, as

well as a block device driver implemented in the kernel space of the ISP engine’s operating

system. The block device driver issues flash I/O commands directly to the BE firmware,

so the data link through the block device driver bypasses the NVMe over PCIe software

and hardware stack. The block device driver also makes it possible to mount the flash

storage inside the Catalina OS. In other words, any user application that runs in-place has

filesystem-level access to the data stored in the flash memory array via a high-performance,

low-power internal data link.

However, the ISP engine should also provide a link between applications that run in-place

and applications on the host. Thus, in addition to the block device driver, we implemented

a TCP/IP tunnel through NVMe protocol to transfer TCP/IP packets between the applica-

tions running on the host and the applications inside Catalina. Such a link was not available

in CompStor, and we had to use an Ethernet cable to talk to the host. In Catalina, we

utilized NVMe vendor-specific commands to packetize TCP/IP payloads inside the NVMe

commands (the TCP/IP tunnels through NVMe are demonstrated in Fig. 3.12 by dashed

42

user application
running in-place

Flash memory array interface

CSD block
device driver

CSD Linux
kernel space
(ARM A53)

Nand flash array

CSD controller
PL subsystem

CSD Linux
user space
(ARM A53)

back-end
firmware (BE)

CSD firmware
(ARM R5)

C
SD

 L
in

u
x O

S

AXI bus intra-chip

inter-chip

NVMe

front-end
firmware (FE)

inter-process

Catalina #2

Catalina #3

Catalina #N

Catalina #1

AXI bus intra-chip

TCP/IP over NVMe tunnel

PCIe switch

cluster TCP/IP interconnect

user application running on host

host DRAM
memory

host OS

host #1
intra-operating system network

host #3
N

V
M

e
host #M

Neon SIMD
API set

…

…

host #2

FPGA accelerators
device driver

FPGA-based
accelerators

Figure 3.12: Catalina software stack

43

lines). A software layer implemented on both host OS and the Catalina OS provides the

tunneling functionality. Since distributed platforms such as Hadoop MapReduce and MPI

are based on TCP/IP connection, this link plays a crucial role in running distributed appli-

cations. As shown in Fig. 3.12, all the N Catalina CSDs that are attached to the host #1

can concurrently communicate with applications running on the host.

It is noteworthy that by using Linux TCP/IP packet routing tools, we can create an internal

network in the host operating system and reroute the packets sent or received by the Catalina

CSDs to the other hosts attached to the TCP/IP interconnect (see Fig. 3.12). In other

words, if several hosts are connected via a TCP/IP interconnect—each of them equipped

with multiple Catalina CSDs—the hosts, as well as the CSDs can communicate with each

other via a TCP/IP network. Such a CSD-equipped cluster architecture benefits from the

efficient ISP capabilities of Catalina CSDs to run distributed applications. In fact, the

proposed CSD architecture is an augmentable processing resource, which is adoptable in the

cluster without any modifications in the underlying Hadoop or HPC platforms.

Additionally, the user applications that run in Catalina CSDs have access to Neon SIMD

engines via a set of application programming interfaces (APIs) provided in the Catalina

operating system. Using these APIs, user applications can potentially be accelerated by the

Neon SIMD engines. Overall, user applications have access to four unique tools as follows:

1.) a high-speed, low-power internal link to the data stored in the flash memory, 2.) a

TCP/IP link to the applications running on the host, 3.) a set of APIs to utilize the Neon

SIMD engines, and 4.) the FPGA-based accelerators that can potentially be implemented

in the PL subsystem.

The last layer of the software stack is the synchronization layer between the host and the

Catalina operation systems. These two operating systems can access the data stored in the

flash memory array at the filesystem-level and concurrently mount the same storage media,

which is a problematic behavior without a synchronization mechanism. In CompStor, we

44

avoided such a problem by partitioning the flash memory into two parts: 1.) a partition that

is accessible by the host, and 2.) another partition that is accessible by the ISP engine. In

this case, the host could still access the ISP engine’s partition by a mounting/unmounting

mechanism; however, such a mechanism adds a delay when both the host and ISP engine

need to access the same partition frequently.

In the Catalina software stack, to address the synchronization issue, we implemented the

Oracle cluster filesystem 2nd version (OCFS2) [60] between the host and the CSD. Using

the OCFS2, both the host and Catalina CSD can issue flash I/O commands and mount the

shared flash memory natively. This is the main difference between the OCFS2 and network

filesystem (NFS) [61]. In the NFS, only one node mounts the shared storage natively, and

other nodes use a network connection to access the shared storage, so NFS limits the data

throughput and also suffers from the single point of failure problem. Meanwhile, using the

OCFS2, all nodes can mount the flash memory natively.

3.3.3 Catalina Prototype

To prove the feasibility of the proposed ISP solution and investigate the benefits of deploying

Catalina CSDs in clusters, we designed and built a fully functional prototype of Catalina

that completely aligns with the hardware and software architectures described in the previous

subsections. Fig. 3.13 shows the Catalina CSD prototype. The CSD controller implemented

on a Xilinx Zynq Ultrascale plus MPSoC as well as the Nand flash packages are shown in

this figure.

The CSD controller is composed of the PS and PL subsystems, which implement the Catalina

conventional and ISP engines. The hardware specifications of the Catalina prototype are in

Table 3.2, separated for these two engines.

45

flash memory
modules

CSD
controller

Figure 3.13: Catalina prototype

Table 3.2: Catalina prototype hardware specifications

conventional subsystem

processing units 2x ARM R5 processors @600MHz

FPGA @250MHz
host interface NVMe over PCIe Gen3

ISP engine
processing units

1x quad-core ARM Cortex-A53 with

Neon SIMD engines and FPUs

FPGA-based accelerators
host interface TCP/IP tunnel over NVMe

shared DRAM memory 8 GB

46

The prototype of Catalina is able to execute the host’s I/O commands and also provides

a user-friendly mechanism for offloading the applications to the CSD via a TCP/IP tunnel

through a NVMe over PCIe link. Considering multiple Catalina prototypes attached to a

host, an administrative application on the host can initiate parallel and distributed tasks

on CSDs while the host and the CSDs’ operating systems are synchronized by the OCFS2

filesystem.

The user applications that run inside the Catalina CSDs could potentially be developed in

any language supported by Linux OS. In addition, since there is a TCP/IP tunnel to the

host, ISP users can easily connect to the internet to extend the libraries and languages that

are supported by the Linux operating system inside Catalina. The applications can interact

with the flash memory at the filesystem-level, i.e., open files, process them, and write back

the results similar to when they run on a conventional host.

Despite all the projected benefits of deploying the CSDs, they should be cost-effective to

be adoptable in the clusters. After prototyping Catalina, a sensible cost analysis of manu-

facturing CSDs can be presented. Compared with a regular SSD based on a conventional

controller, a CSD should be equipped with more processing horsepower to run applications

in-place efficiently. Interestingly, according to our observations as well as the SSD bill of

material analysis [62, 22], the difference between SSD and CSD manufacturing costs is in-

significant, since the SSD manufacturing cost is largely dominated by the flash memory

chips. The cost of flash memory chips is about 75% of the SSD price [63]. With other

miscellaneous costs (such as DRAM, miscellaneous components, and manufacturing costs)

that would account for 20-25% of the SSD price, the controller would account for, at most,

5% of the SSD price.

Overall, Catalina is a CSD that has a dedicated ISP engine with a quad-core application

processor equipped with Neon SIMD engines and FPUs. There is a full-fledged operating

system ported to the ISP engine that provides a flexible environment for running a wide

47

spectrum of applications. The user can also implement FPGA-based accelerators to boost

the performance of applications. The applications running in the ISP engine can access the

flash memory data at the filesystem-level through a highly-efficient intra-chip link, while the

host and ISP engine operating systems are synchronized by the OCFS2 cluster filesystem.

All these ISP features are available in Catalina without imposing a major overhead on the

manufacturing cost.

Since Catalina with the features mentioned above has potentials for implementing different

types of FPGA-based accelerators, utilizing ASIC-based processing engines, and being used

in distributed environments such as Hadoop and MPI, it can be considered a computational

storage platform. In the rest of this dissertation, we will use Catalina as a platform to

implement various ISP ideas as well as investigate the benefits of deploying Catalina in

different systems and applications.

48

Chapter 4

ISP-Enabled Distributed Platforms

Catalina was developed concerning a straightforward deployment in distributed environ-

ments. Since it has all the required features to play the role of a regular processing node,

the system architects do not have to make major modifications in the underlying platforms

for deployment of the Catalina CSDs. After attaching Catalina CSDs to a host and setting

the network configurations, the CSDs are exposed to the other hosts in the cluster by their

network addresses (e.g., IPs). In other words, from a system-level point of view, the Catalina

CSDs are similar to regular processing nodes, and the underlying ISP hardware and soft-

ware details are invisible to other nodes in the cluster. In this chapter, the first section will

provide an overview and explain how Hadoop, MPI, and cluster filesystems work. In the

second section, we will show how Catalina CSDs can be deployed in such clusters as well as

investigate the benefits of ISP-enabled Hadoop and MPI-based clusters.

49

4.1 Background

A cluster is a set of nodes that work together to accomplish a distributed task. In a cluster,

there is an interconnect network to provide connectivity among the nodes. The configuration

of these nodes can be uniform so that all nodes are similar to each other, i.e., they use the

same hardware and operating system, or they can have different configurations [64]. Overall,

these nodes form an environment for running tasks in a distributed fashion. In this section,

we will provide an overview of this class of platforms and the cluster filesystem.

4.1.1 Distributed Processing Platforms

A while ago, when the cost of data movement was insignificant in comparison to the compu-

tational cost, there could be a centralized storage system, and other hosts had to send I/O

requests to fetch data. With this mechanism and today’s volume of data, a data-intensive

application requires large amounts of data to be fetched from the centralized storage system,

and such huge data movements drastically increase energy consumption. With the emergence

of big data, the storage system can no longer be centralized, and the centralized approaches

come short of satisfying super-scale applications’ demands, which call for scalable distributed

processing platforms. To answer these demands, distributed processing platforms such as

Hadoop have been proposed to process data near where they reside [65].

Hadoop has emerged as the leading computing platform for big data analytics and is the

backbone of hyper-scale data centers [66], wherein hundreds to thousands of commodity

servers are connected to provide service to clients. The Hadoop distributed processing plat-

form consists of two main parts, namely the Hadoop filesystem (HDFS) [67] and MapReduce

engine [68]. Hadoop was inspired by the Google filesystem (GFS) and Google publications

related to the MapReduce programming model [69, 70].

50

The Three main characters of the Hadoop distributed platform are:

1. Scalability: A Hadoop cluster can be scaled up very well. This feature makes it

capable of handling big datasets. Although there is a limitation on the number of

nodes in the original Hadoop implementations (and the largest reported Hadoop cluster

includes about 4,000 nodes [71]) there are approaches to overcome this [72].

2. Fault tolerance: Hadoop replicates the data to several nodes so that in case of a

node failure, data can be retrieved.

3. Data locality: Hadoop distributes the input data among the nodes. Using this

approach, it can take advantage of the data locality and process data near to where

they reside.

A distributed filesystem (DFS) allows us to store data on multiple nodes, and it maintains

the metadata of the files. The HDFS is a Java-based DFS and the underlying filesystem of

the Hadoop platform. It is responsible for partitioning the data into blocks and distribute

them among nodes. The HDFS also generates a certain number of replicas of each block to

make the system resilient against storage or node failures. It consists of a NameNode host,

which takes care of filesystem metadata such as the location of the data blocks and status

of the nodes, and multiple DataNodes hosts that store the blocks. Fig. 4.1 illustrates an

overview of a HDFS.

On top of the HDFS, MapReduce [73] takes advantage of the partitioned data (i.e., data

locality) to run map and reduce functions and orchestrate the cluster nodes to run distributed

applications while data movements are minimalized. Fig. 4.2 shows a high-level overview of

a MapReduce application on a Hadoop platform.

The MapReduce is a programming model that is able to process a large volume of data in a

distributed fashion. The data should be formatted to key-value pairs to be processable by the

51

NameNode

DataNode #1 DataNode #2 DataNode #M…

Figure 4.1: An overview of Hadoop filesystem (HDFS)

input
data

data block #1

results

...

HDFS

reduce

shuffling
and

sorting

map

data block #2

data block #N

map

map

reduce reduce…

Figure 4.2: MapReduce application on Hadoop cluster

52

MapReduce-based distributed systems. This programming model has two functions (stages),

namely, map and reduce. These two stages are performed sequentially in MapReduce. These

two stages can be explained as follows:

• Map stage: This stage is composed of running Mapper processes on different nodes

of the cluster. The Mappers initially bring the input data to the key-value format and

then process the formatted data based on the map function. The Mappers process one

key-value pair at a time. The output of the Mappers is also in the key-value format

and can be smaller or larger than the input data. This output data is sent to the reduce

stage.

• Reduce stage: The output of the Mappers should be sent to the Reducers; however,

between these two main stages, the data should be shuffled and sorted. In fact, the

output of the Mappers is sorted for each key, based on the value fields. Thus, the

Reducers receive them in a sorted format. The Reducers consume the sorted data and

generate the final output, which is saved in the HDFS.

According to Fig. 4.2, MapReduce is both a sequential and parallel programming model.

In other words, although there are potentially a large number of Mappers and Reducers

running in a parallel mode, Reducers can only start after the Mappers finish.

The Apache MapReduce 2 (Yarn) is one of the well-known MapReduce platforms [74]. Yarn

agents manage the procedure of running Mappers, performing shuffle and sort, and running

the Reducers to generate the output of the MapReduce application. The most important

agents in the Yarn framework are a global resource manager (RM), one node manager (NM)

per cluster node, and an application master (AM) per MapReduce application. The structure

of the Yarn framework is shown in Fig. 4.3 (adapted from [75]).

The RM has a list of all the resources available in the cluster and manages the high-level

53

…

resource
manager

node
manager

node
manager

node
manager

head node

processing node #1 processing node #2 processing node #M

app
master

container containercontainer

clientclient

Figure 4.3: Apache Yarn structure

resource allocations to MapReduce applications. Meanwhile, NM s that run on the cluster

nodes manage the local hosts’ resources. The RM regularly talks to the NM s to manage

the resources and poll the status of the nodes. Usually, the RM runs on the cluster head

node, the same node that also runs the HDFS NameNode. However, each Hadoop cluster

processing node runs a NM together with an HDFS DataNodes.

For each MapReduce application, an AM is created. The AM communicates with the RM

to report the progress and status of the application. In a Yarn framework, a container is

a virtual entity with limited resources that can run a Mapper or a Reducer. The user can

define multiple containers on each of the processing nodes, based on the available resources of

the nodes. For example, if a cluster processing node (in Fig. 4.3) has 8 GB of main memory

and 4 cores dedicated to running MapReduce applications, the user can define 4 Hadoop

containers on this cluster processing node, each with 2 GB of main memory and 1 core.

These containers will be dynamically assigned to Mappers and Reducers of the applications.

The AM is responsible for observing the containers that are assigned to the corresponding

MapReduce application.

Overall, the Hadoop framework is composed of the HDFS and MapReduce platforms. To

54

process data in this framework, data should initially be imported to the HDFS. This initial

process includes partitioning the input data into blocks, duplicating them, and storing them

in the DataNodes. At this point, the data blocks are ready to be processed in a distributed

fashion. Since Mappers preferably process the local data blocks, the MapReduce framework

is known for bringing the process closer to the data in order to improve the energy efficiency

and performance of the applications.

A MapReduce application targets a set of data blocks as well as the user-defined map and

reduce functions. The procedure starts by running the Mappers on the targeted data blocks.

The Mappers run concurrently on the Hadoop DataNodes, consume data blocks, and produce

a set of key-value pairs to be used as the input of the Reducers. These intermediate key-

value pairs are stored locally on the DataNodes and should be shuffled, sorted, and then

transferred to the Reducers. The Hadoop framework stores the output of the Reducers in

the HDFS, and, subsequently, it can later be imported to a host’s local filesystem.

The Hadoop strategy of “processing data close to where they reside” is completely aligned

with the ISP paradigm [8]. Thus, they can fortify each other’s benefits when both are de-

ployed concurrently in a cluster. In other words, Hadoop-enabled CSDs can play both roles

of storage units for the conventional nodes as well as the ISP-enabled DataNodes simulta-

neously. This results in the augmentation of the processing horsepower of the CSDs to the

Hadoop cluster.

Although CSDs can improve the overall performance of MapReduce applications by aug-

menting their processing engine to the Hadoop framework, this is not the primary advantage

of deploying CSDs in the clusters. In other words, increasing the total horsepower of a clus-

ter can also be achieved by adding more commodity nodes to a cluster. In fact, what makes

CSDs distinguishable is the utilization of the high-performance, power-efficient internal data

links of modern SSD architecture to run Hadoop MapReduce applications.

55

Moreover, well-designed CSDs can be deployed to run HPC applications in-place. However,

CSDs need to deliver a compelling performance when running HPC applications; otherwise,

it is hard to justify the complexity of deploying CSDs in the clusters while their performance

improvement is not satisfactory. In this research, we argue that CSDs can considerably

improve the performance of HPC applications when they utilize ASIC- or FPGA-based

accelerators.

MPI for HPC applications

The term HPC refers to the use of powerful machines along with sophisticated parallel

processing techniques to run heavy tasks in more efficient ways, both time-wise and energy-

wise. HPC dates back to the 1960s, when high processing power became attractive for

scientific projects [76]. The cost of a powerful machine was significantly higher than that of

commodity ones. This led to the emergence of a new trend: using a cluster of commodity

machines instead of a very powerful machine [77].

Although this technique is effective, it brought up new challenges such as communication

bottlenecks between processing nodes and storage systems [78] and led to efforts to optimize

interconnect systems for HPC applications [79]. Nowadays, HPC clusters utilize hundreds

to millions of multicore CPUs and GPUs, providing trillions of floating-point operations per

second (FLOPS) processing horsepower [80].

The MPI is a standardized parallel programming interface that allows multiple nodes in a

cluster to run a task distributedly [81]. In fact, processes with separated address spaces can

be connected using MPI for both synchronization and moving data from one host to another.

MPI has four significant features as follows:

• Standardized: MPI is a well-known standard message passing library that is sup-

56

ported in almost all HPC platforms.

• Portability: There is no need to modify an MPI-based application to run on different

platforms that are compatible with the MPI standard.

• Completeness: There are a large number of functions available in the MPI libraries.

These functions provide a complete toolset for MPI programmers.

• Availability: There are many implementations of the MPI standard, such as Open-

MPI [82] and MPICH [83].

The MPI with the features mentioned above is an acceptable programming tool when mul-

tiple CSDs and hosts run HPC applications. It also supports the heterogeneity that comes

with the utilization of CSDs in the clusters. Thus, we used this parallel programming library

to run different compute-intensive benchmarks on ISP-enabled systems.

4.1.2 Cluster Filesystems

The filesystem-level data access inside CSDs has a great advantage for developing applica-

tions as well as reusing the applications that are developed for conventional systems. How-

ever, providing filesystem-level access inside CSDs is very challenging, and to the best of our

knowledge, there is no proposed CSD architecture that provides filesystem-level data access

inside the ISP engine of CSDs. This challenge is rooted in two main issues: 1.) to support

filesystem-level data access inside CSDs, there should be an operating system running in

the storage unit. This requires a lot of time and resources to develop a CSD architecture

that is able to run an OS inside. 2.) Although running an OS inside the CSD can provide

filesystem-level access to the applications that run in-place, this will cause contention be-

tween the host’s OS and the CSD’s OS. In fact, the same flash memory will be mounted in

two different operating systems concurrently.

57

host

conventional
subsystem

Catalina

flash packages

OCFS2 synchronization data
transfer via TCP/IP tunnel

ISP
engine

O
C

F
S2

OCFS2

N
V

M
e

Figure 4.4: OCFS2 implementation in Catalina CSD

The concurrent access to the same flash memory from two operating systems can be addressed

simply by assigning different partitions to the operating systems. In other words, their access

to the flash memory will be limited to a portion of the flash memory. In this case, no data

can be shared between the host and CSD simultaneously. However, the host can still write

data in a partition and unmount it; then, the ISP engine inside the CSD can mount the

partition and process the data in-place. This mechanism is time-consuming, especially when

the host needs to modify the data repeatedly, which will cause many mount and unmount

operations.

The cluster filesystems (CFS) can solve this problem by providing a synchronizing mecha-

nism between the filesystem-level accesses of the operating systems. Using the CFS, both

operating systems can mount the shared flash memory natively. This is the main difference

between the CFS and network filesystem (NFS) [61]. Currently, many CFS are available,

such as the IBM general parallel filesystem (GPFS) [84], Red Hat global filesystem (GFS)

[85], Lustre [86], GlusterFS [87], and Oracle cluster filesystem 2 (OCFS2), which is a shared-

disk cluster filesystem for high-performance and highly available systems [60].

58

NameNode (head node)

DataNode (application host)

DataNode (CSD)

DRAM CPUDN

CPU

DRAM
NN

head node

application host #1
C

at
al

in
a

2

C
at

al
in

a
N

…

C
at

al
in

a
1

DRAM CPU

application host #2

C
at

al
in

a
2

C
at

al
in

a
N

…

C
at

al
in

a
1

…

DN

DN DN DN DN DN DN

DN

NN

DN

DRAM CPU

application host #M

C
at

al
in

a
2

C
at

al
in

a
N

…

C
at

al
in

a
1

DN

DN DN DN

Figure 4.5: Overview of ISP-enabled Hadoop cluster

We chose the OCFS2 since it provided the functionality we needed to share the flash memory

by both the host and ISP engine inside the Catalina CSD. Fig. 4.4 shows how the OCFS2

filesystem synchronization can be utilized in the Catalina CSD. It is noteworthy that the

OCFS2 is, indeed, a cluster synchronization filesystem, which means it can be deployed on

top of conventional filesystems such as Linux extended filesystems (i.e., ext2, ext3, and ext4).

In other words, utilization of the OCFS2 cluster filesystem does not limit the user’s choice

of the underlying filesystem in the host.

4.2 Deploying CSDs in Distributed Platforms

Fig. 4.5 and Fig. 4.6 illustrate the ISP-enabled Hadoop and MPI-based clusters, respectively,

where a head node is connected to M host machines and each of the hosts is equipped with

N Catalina CSDs. In such a cluster, all CSDs and conventional nodes orchestrate together

to improve the performance and efficiency of the distributed applications.

59

MPI coordinator (head node)

MPI worker (application host)

MPI worker (CSD)

DRAM CPU

application host #2

C
at

al
in

a
2

C
at

al
in

a
N

…
C

at
al

in
a

1

DRAM CPU

application host #M

C
at

al
in

a
2

C
at

al
in

a
N

…

C
at

al
in

a
1

CPU

DRAM

head node

…

DRAM CPU

application host #1

C
at

al
in

a
2

C
at

al
in

a
N

…

C
at

al
in

a
1

Figure 4.6: Overview of ISP-enabled MPI-based cluster

In the ISP-enabled Hadoop cluster, the head node runs the Hadoop NameNode and Yarn RM,

while the hosts and Catalina CSDs run the DataNodes and NM s. In fact, the Catalina CSDs

play the roles of both storage units and efficient DataNodes. Since Hadoop implements its

filesystem synchronization mechanism, we did not need the OCFS2 filesystem to run Hadoop.

In Fig. 4.6, the head node runs an MPI coordinator, while the conventional hosts and

the Catalina CSDs run the MPI workers. In this MPI-based cluster, each host is attached

to N CSDs, and the data stored on the CSDs are shared between the host and CSDs so

that the MPI workers on the host and CSDs have access to the shared data. Due to the

OCFS2 filesystem, the shared data is simultaneously visible to the host and CSDs at the

filesystem-level, so the user can freely distribute the processing loads among the hosts and

CSDs.

In the remainder of this section, we will first demonstrate the developed platforms equipped

with up to 16 Catalina CSDs and describe how we implemented an ISP-enabled Hadoop and

MPI-based clusters on the developed platforms. Then, the second subsection will show the

60

performance and energy consumption results of running different Hadoop MapReduce and

HPC benchmarks and discuss the benefits of deploying Catalina CSDs in clusters.

4.2.1 Experimental Setup

The Catalina CSDs were not designed to compete with the modern hosts that utilize high-

end x86-based processors with tens to hundreds of gigabytes of DRAM. Instead, they were

developed as a resource that augments the processing horsepower of a system and improves

the performance and energy efficiency of the applications. To gain considerable improve-

ments, we propose attaching multiple Catalina CSDs to host machines. Fig. 4.7 shows the

architecture of the developed platform, which contains 16 Catalina CSD prototypes. We

built this platform to investigate the benefits of deploying Catalina CSDs in clusters.

This platform is composed of a conventional host (the head node) and an application host

which is equipped with the Catalina CSDs. These two hosts, along with the Catalina CSDs,

form a distributed environment for running Hadoop MapReduce and MPI-based HPC ap-

plications. We use the head node exclusively for running Hadoop NameNode and the MPI

coordinator to eliminate the load of the administrative tasks on the processing nodes. In

other words, the application host and the CSDs are the processing nodes, while the head

node is dedicated only to running the administrative tasks.

To extensively investigate the benefits of Catalina CSDs in different environments, we have

considered three different configurations for the application host, namely low, medium, and

high. The specifications for the head node and the different application host ’s configurations

are summarized in Table 4.1. In order to attach up to 16 Catalina CSDs to the application

host, we used a Cubix Xpander Rackmount unit [88], which provides 16 PCIe Gen3 slots.

This unit and the attached Catalina CSDs are shown in Fig. 4.7.

61

C
at

al
in

a
#

1

. . .

application host
NVMe/PCIe

C
at

al
in

a
#

2

C
at

al
in

a
#

8
PCIe switch #1

TCP/IP Tunnel

C
at

al
in

a
#

9

C
at

al
in

a
#

1
0

C
at

al
in

a
#

1
6

. . .

PCIe switch #2

TCP/IP Tunnel

head node
Ethernet cable

Figure 4.7: Architecture of the developed system equipped with 16 Catalina CSDs

62

Table 4.1: Specifications of the hosts in the developed system

feature head node
application host configurations

low medium high

Processor Xeon E5-2620 v4 Core i3-8100T Core i7-7700 Xeon E5-2620 v4

Memory 32 GB (DDR 4) 32 GB (DDR 4) 32 GB (DDR 4) 32 GB (DDR 4)

Storage
4x Samsung 850

pro 1 TB SSD
6x Catalina CSD 6x Catalina CSD 16x Catalina CSD

CSD devices None 6x Catalina CSD 6x Catalina CSD 16x Catalina CSD

The implementations of the Hadoop and MPI-based clusters are aligned with the architec-

tures shown in Fig. 4.5 and Fig. 4.6, respectively. To implement the Apache Hadoop cluster,

we ran the Hadoop NameNode and the Yarn RM on the head node, while the DataNodes

and the YARN NMs were run on the application host and the Catalina CSDs attached to

the application host. The communication between the head node and the application host

was through an Ethernet cable, while the Catalina CSDs communicated via the developed

TCP/IP over NVMe link.

However, to run the HPC application based on the MPI framework, we used the head node

to run the MPI coordinator task, which initiated and organized the MPI worker tasks that

run on the application host and the Catalina CSDs. In this case, the OCFS2 filesystem

synchronized the filesystems of the Catalina CSDs and the application host, so at any given

time the application host could access the entire data stored on all the CSDs directly, while

each CSD only had access to its local data.

63

4.2.2 Benchmarks and Results

This section is composed of two subsections. First, we will describe the targeted Hadoop

MapReduce benchmarks and report the performance and energy consumption of running

the benchmarks for different configurations. Then, we will show the results of running 1D,

2D, and 3D discrete Fourier transform (DFT) algorithms utilizing the Neon SIMD engines

of the Catalina CSDs. To report the performance, we measured the total execution time

of running a benchmark on the developed platforms. To measure the energy consumption,

we used a power meter to measure the power consumption of the platform. Using the

logging tool provided by the power meter, we calculated the total energy consumption of

running the benchmarks. However, we deducted the idle energy consumption from the total

energy consumption for all the experiments to eliminate the energy consumption imposed

by miscellaneous devices such as the cooling system.

Hadoop MapReduce benchmarks and results

To run Apache Hadoop MapReduce applications on the developed platform, we used a sub-

set of the Intel HiBench benchmark suite [89] that includes Sort, Terasort, and Wordcount

benchmarks. We believed that extensive experiments using these three benchmarks could

show the potentials of the proposed CSD architecture for running Hadoop MapReduce ap-

plications. These benchmarks were executed on 16 different platform configurations, which

are listed in Table 4.2. In all the experiments, the head node configuration was fixed and

matches with Table 4.1, and the numbers of Mappers and Reducers tasks were 2000 and

200, respectively.

The application host used all the attached Catalina CSDs as the storage units (6 CSDs in

the low and medium configurations, and 16 CSDs in the high configuration), while in each

configuration, a certain number of the ISP engines of the CSDs were enabled to run the

64

Table 4.2: Different configurations for running Hadoop MapReduce benchmarks

experiment

number

application host

configuration

the enabled in-storage

processing capability

1 low none

2 low 2 ISP-enabled CSDs

3 low 4 ISP-enabled CSDs

4 low 6 ISP-enabled CSDs

5 medium none

6 medium 2 ISP-enabled CSDs

7 medium 4 ISP-enabled CSDs

8 medium 6 ISP-enabled CSDs

9 high none

10 high 2 ISP-enabled CSDs

11 high 4 ISP-enabled CSDs

12 high 6 ISP-enabled CSDs

13 high 8 ISP-enabled CSDs

14 high 10 ISP-enabled CSDs

15 high 12 ISP-enabled CSDs

16 high 16 ISP-enabled CSDs

65

MapReduce application in-place. This way, the scalability of deploying the Catalina CSDs

in clusters could be investigated. The data sizes for the Sort, Terasort, and Wordcount

benchmarks were 8 GB, 1.3 GB, and 80 GB, respectively.

For the sake of accuracy, each experiment was repeated 30 times, and the performance

and energy consumption results reported in this subsection are the average numbers of all

repetitions. We ran the three targeted MapReduce benchmarks on the 16 different plat-

form configurations, and each experiment was repeated 30 times, giving us a total of 1,440

MapReduce experiments.

As previously stated, in all experiments, the application host used all connected Catalina

CSDs as storage units. However, in each test, a certain number of CSDs were enabled to

run MapReduce application in-place and play the role of a processing node. Fig. 4.8 and

Fig. 4.9 show the performance and energy consumption results, respectively, of the Hadoop

MapReduce experiments.

The diagrams in Fig. 4.8 show that increasing the number of ISP-enabled CSDs decreased

the elapsed time for all benchmarks. The performance of the high-configured application host

platform increased up to 2.2x when the ISP engines of all 16 Catalina CSDs were enabled.

Thus, deploying ISP-enabled CSDs increased the performance of the Hadoop MapReduce

benchmarks significantly.

Moreover, according to these diagrams, the elapsed time for running the MapReduce bench-

marks on the low -configured application host platform equipped with six Catalina CSDs

was close to the elapsed time of running the benchmarks on the high-configured application

host platform with no enabled ISP engine. Thus, only six Catalina CSDs could improve the

performance of a low-end host close to the performance of a high-end host.

Also, Fig. 4.8 shows as we increased the number of ISP-enabled CSDs, the performance of

the low -configured application host platform improved faster than the medium- and high-

66

12

17

22

27

32

37

42

47

52

57

62

0 2 4 6 8 12 16

T
im

e
(m

in
u

te
s)

Sort benchmark elapsed time

low application host

medium application host

high application host

30

40

50

60

70

80

90

100

110

0 2 4 6 8 12 16

T
im

e
(m

in
u

te
s)

Terasort benchmark elapsed time

low application host

medium application host

high application host

20

30

40

50

60

70

80

90

0 2 4 6 8 12 16

T
im

e
(m

in
u

te
s)

Number of ISP-enabled CSDs

Wordcount benchmark elapsed time

low application host

medium application host

high application host

Figure 4.8: Hadoop MapReduce benchmarks performance results

67

configured application host platforms. In other words, ISP-enabled CSDs make a better

improvement when their performance is significant in comparison to the host’s CPU. If a

host has a high-end CPU, augmenting CSDs only makes sense when the CSDs can deliver a

compelling performance gain. In other words, if CSDs can run some applications in a high-

performance mode by utilizing FPGA- or ASIC-based accelerators, they can be effectively

augmented to more hosts with low- or high-end CPUs.

In Chapter 3, adding more CompStor CSDs led to a linear performance improvement for

running compression and text search benchmarks. For those experiments, we distributed

the data among all of the CSDs, and there was no communication between the CSDs. On

the other hand, in the Hadoop platforms, the CSDs need to talk to each other when they

run the map and reduce tasks, and this communication overhead may prevent the system to

show a linear performance improvement when more CSDs are enabled to run applications

in-place. Thus, as Fig. 4.8 shows, the performance improvement diagrams for the medium-

and high-configured application host platforms are not linear for running Hadoop MapReduce

benchmarks.

However, in Fig. 4.8, the performance diagram of the low -configured application host plat-

form shows almost a linear behavior. We believe that the difference between the behaviors

of the low -configured application host platform and other platforms for running the Hadoop

MapReduce benchmarks is due to the relation between the CSDs’ performance contribution

and the communication overhead. In fact, the CSDs add processing horsepower to the whole

system, but if they need to communicate, this causes an overhead which should be com-

pensated by the augmented processing horsepower. In the low -configured application host

platform, the CSDs improved the performance of the whole system more considerable than

the other platforms, and the communication overhead was compensated properly.

As previously discussed, the cost of implementing the ISP engine inside the SSDs is negligible

compared to the total cost of manufacturing an SSD, so ISP technology can considerably

68

improve the performance of Hadoop clusters economically. Fig. 4.9 shows the energy con-

sumption results of running the Hadoop MapReduce benchmarks on the developed platform

for different configurations.

According to Fig. 4.9, the energy consumption of running the benchmarks on the low -

configured application host platform decreased up to 36% upon deploying 6 ISP-enabled

Catalina CSDs. This improvement for the high-configured application host platform equipped

with 16 ISP-enabled Catalina CSDs reached 4.3x.

With no ISP engine enabled, the low -configured application host platform was less energy

efficient than the other configurations. This was expected behavior, since running the same

benchmark on a more powerful platform takes less time. According to the diagrams in Fig.

4.9, when we enabled six ISP engines, the energy efficiency of the low -configured application

host platform could surpass the energy efficiency of the medium- and high-configured appli-

cation host platforms equipped with the same number of ISP-enabled CSDs. However, the

performance of the low -configured application host platform was still lower than the other

platforms (see Fig. 4.8). We believe that this occurred because of the high energy efficiency

of the Catalina CSDs.

The Hadoop framework distributes tasks among all of the processing nodes. If a processing

node gets idle, it will fetch data from other busy nodes and process it. Thus, the amount of

data processed by each node in the Hadoop cluster is proportional to its processing resources.

This means that in the low -configured application host platform, a larger amount of data

is processed by the Catalina CSDs compared to the amount of data processed by them in

the high-configured application host platform, which has an Intel Xeon processor. Since

ISP engines are considerably more energy-efficient than the application host ’s processor, as

we increased the portion of data processed by the CSDs, the whole platform became more

energy-efficient. This justifies why the energy efficiency of the low -configured application

host platform equipped with six ISP-enabled CSDs could surpass the energy efficiency of the

69

15

25

35

45

55

65

75

85

0 2 4 6 8 12 16

E
n

er
gy

 (
K

J)
Sort energy consumption

low application host

medium application host

high application host

45

65

85

105

125

145

165

0 2 4 6 8 12 16

E
n

er
gy

 (
K

J)

Terasort energy consumption

low application host

medium application host

high application host

25

45

65

85

105

125

0 2 4 6 8 12 16

E
n

er
gy

 (
K

J)

Number of ISP-enabled CSDs

Wordcount energy consumption

low application host

medium application host

high application host

Figure 4.9: Hadoop MapReduce benchmarks energy consumption results

70

high-configured application host platform with the same number of ISP-enabled Catalina

CSDs.

HPC benchmarks and results

In this section, we will first describe the targeted benchmarks to investigate the effect of

deploying Catalina CSDs in clusters for running HPC applications. Then, we will show and

discuss the performance and energy consumption results of running the benchmarks on the

developed platform. HPC applications usually demand a considerable amount of processing

resources and consume a large amount of data. Thus, we only considered the high-configured

application host platform equipped with 16 Catalina CSDs to run the HPC experiments (see

Table 4.1). We implemented the MPI framework to run the HPC benchmarks according to

the architecture described earlier in this section. The MPI coordinator runs on the head node

host, while the application host and the ISP-enabled Catalina CSDs run the MPI workers.

In the developed platform, the application host can access the data stored on all the Catalina

CSDs; however, each CSD only has access to its local data.

In addition, to run the HPC applications in-place, Catalina CSDs should be able to deliver a

compelling performance. Therefore, we utilized the Neon SIMD engines inside the Catalina

CSDs. The Neon SIMD engines are ASIC-based accelerators that are expected to improve

the performance and energy efficiency of the applications significantly. Overall, this section

will show how using ASIC-based accelerators enhances the benefits of deploying CSDs for

running HPC applications [90].

The HPC Challenge benchmark suite [91], which was developed by the University of Ten-

nessee, is a well-known HPC benchmark suite that has been used in many research works

[92, 93, 94]. This suite is composed of several benchmarks, each of which focuses on a par-

ticular feature of the HPC clusters, such as the ability to do floating-point calculations, the

71

communication speed between nodes, and the potentials of running demanding algorithms

such as DFT.

Among these benchmarks, we targeted the DFT algorithm since it is a CPU-intensive algo-

rithm that also consumes a large amount of data, so it can show the potentials of deploying

CSDs in clusters. Additionally, DFT is one of the most important algorithms, as Gilbert

Strang, the author of the textbook Linear Algebra and Its Applications [95], referred to it as

“the most important numerical algorithm in our lifetime.” The DFT of a finite sequence X is

a finite sequence Y with the same length of X in a complex-valued format in the frequency

domain. The DFT of the finite sequence X is defined by (4.1).

Y = F {xn}

yk =
N−1∑
n=0

xn · e−
2πi
N

kn
(4.1)

In the case of the multidimensional input signal of X : {xn1,n2,··· ,nl}, a d-dimensional DFT

is defined as (4.2).

yk1,k2,··· ,k1 =

N1−1∑
n1=0

(
αn1k1
N1

N2−1∑
n2=0

(
αn2k2
N2
· · ·

Nd−1∑
nd=0

(
αndkd
Nd
· xn1,n2,··· ,nd

)))

Where αNl = exp

(
−2π

Nl

) (4.2)

Considering a large amount of floating-point input data, the multi-dimensional DFT calcula-

tion is a challenging CPU-intensive application and can show the potentials of the Catalina

CSDs for running HPC applications. Thus, we targeted this algorithm to measure the energy

consumption and performance of 1D-, 2D-, and 3D-DFT calculations of large datasets run-

72

ning on the high-configured application host platform with different numbers of ISP-enabled

Catalina CSDs. To implement the DFT algorithm, we utilized the FFTW library [96],

which can be compiled to use the Neon SIMD engines of Catalina CSDs and also supports

the multi-threading capability of the processing nodes in the developed platform.

To run the 1D-, 2D-, and 3D-DFT calculations, we prepared three different datasets. The

PTB Diagnostic ECG dataset was used for the 1D-DFT calculation. The PTB Diagnostic

ECG is a set of ECG signals collected from healthy volunteers and patients with different

heart diseases by Professor Michael Oeff, M.D., at the Department of Cardiology of Univer-

sity Clinic Benjamin Franklin in Berlin, Germany [97, 98]. We duplicated this dataset to

generate 200 million 1D objects, each of which is a sequence of 180 floating-point numbers.

Regularly, 2D-DFT operations are performed on images; therefore, we generated 14.4 million

synthetic grayscale images for the 2D-DFT dataset. On each of these images, a dark point

was placed randomly on the image, and other points’ brightness was relative to their distance

from the single darkest point. Fig. 4.10 shows four samples of these images. To perform

the 2D-DFT operations, we converted each of the images to a 50× 50 matrix. Overall, the

2D-DFT dataset was composed of 14.4 million 2D objects, each of which was a sequence of

2,500 floating-point numbers.

The 3D dataset was also generated using the same method we used to generate the 2D

dataset. Each object in the 3D dataset can be described as a cube-shaped 3D object,

wherein a single darkest point was placed randomly in the cube-shaped object, and other

points’ brightness is relative to their distance from the single darkest point. We generated

a set of 288,000 three-dimensional objects and converted them to 50 × 50 × 50 matrices to

represent the dataset for the 3D-DFT operations. Table 4.3 summarizes the datasets we

used to run the 1D-, 2D-, and 3D-DFT operations on the developed ISP-enabled platform.

Similar to the Hadoop MapReduce experiments, in all of the DFT calculation experiments,

73

1

10

20

30

40

50

1 10 20 30 40 50

1

10

20

30

40

50

1 10 20 30 40 50

1

10

20

30

40

50

1 10 20 30 40 50

1

10

20

30

40

50

1 10 20 30 40 50

Figure 4.10: Four images of the 2D-DFT dataset

Table 4.3: Datasets for 1D-, 2D-, and 3D-DFT calculations

dataset number of objects dimensions of an object total size of the dataset

1D-DFT 200 million 180 × 1 288 GB

2D-DFT 14.4 millions 50 × 50 288 GB

3D-DFT 288,000 50 × 50 × 50 288 GB

74

the application host had access to the data stored in all of the Catalina CSDs, and the CSDs

always played the role of storage units. However, in each test, a certain number of ISP

engines of the CSDs were enabled to show the scalability of ISP technology for running HPC

applications. Fig. 4.11 shows the performance and energy consumption results of running the

DFT calculations on the developed platform for different numbers of ISP-enabled Catalina

CSDs. The performance reported in the diagrams is defined as the number of 1D, 2D, and 3D

objects that were processed in a second, and the reported energy consumption is the energy

consumed for processing an object. It is worth mentioning that each test was repeated 20

times, and each result reported in this subsection is the average of all repetitions.

According to the diagrams in Fig. 4.11, as we enabled more ISP engines, the performance

increased, and the energy consumption decreased. In these experiments, adding 16 ISP-

enabled Catalina CSDs improved the performance and energy consumption of running DFT

calculations by factors of 5.4x and 8.9x, respectively. The comparison between the results

of running the Hadoop MapReduce and HPC benchmarks yielded an important outcome.

The deployment of Catalina CSD in the platform improved the performance and energy

consumption of running DFT calculations significantly more than the Hadoop MapReduce

benchmarks. We believe that this difference is rooted in the utilization of the Neon SIMD

engines in running the DFT calculations. In other words, the Neon SIMD engines accelerated

the execution of the DFT algorithms considerably. Since in Catalina CSDs, these engines are

close to where the data reside, they made a compelling improvement when the ISP engines

utilized them for running the applications in-place.

75

0.00

5000.00

10000.00

15000.00

20000.00

25000.00

30000.00

35000.00

0 1 2 4 6 8 12 16

1
D

 o
b

je
ct

s
/

se
co

n
d

1 D- DFT pe r for m a nc e

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

0 1 2 4 6 8 12 16

2
D

 o
b

je
ct

s
/

se
co

n
d

2 D- DFT pe r for m a nc e

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

0 1 2 4 6 8 12 16

3
D

 o
b

je
ct

s
/

se
co

n
d

Number of ISP-enabled CSDs

3 D- DF T pe r for m a nc e

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0 1 2 4 6 8 12 16

Jo
u

le
s

/
1

D
 o

b
je

ct

1 D- DFT e ne rgy c onsu m pt i o n

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

0 1 2 4 6 8 12 16

Jo
u

le
s

/
2

D
 o

b
je

ct
2 D- DFT e ne rgy c onsu m pt i o n

0.00

2000.00

4000.00

6000.00

8000.00

10000.00

12000.00

14000.00

0 1 2 4 6 8 12 16

Jo
u

le
s

/
3

D
 o

b
je

ct

Number of ISP-enabled CSDs

3 D- DFT e ne rgy c onsu m pt i o n

Figure 4.11: DFT experiments performance and energy consumption results

76

Chapter 5

FPGA-Based Acceleration for ISP

One of the most significant features of Catalina is the capability to provide FPGA-based

accelerators inside the ISP engine. Some papers reported significant performance improve-

ments by implementing some parts of applications in the FPGAs [99]. Additionally, since

all the ISP components, including the accelerators, are implemented inside the same chip,

such an accelerator can improve the performance and energy efficiency of applications con-

siderably. In this chapter, we will implement an FPGA-based accelerator inside Catalina

and investigate the benefits of the CSDs that are equipped with FPGA-based accelerators

for running highly demanding applications.

This chapter is composed of three sections, as follows: The first section describes the ar-

chitecture of the FPGA-based accelerator that we developed for enhancing the performance

and energy efficiency of the targeted application. The second section defines the application

we chose to run on the developed system, and, finally, the experimental results that show the

effectiveness of the proposed solution appear in the third section. In fact, this chapter aims

to show the potential of implementing an FPGA-based accelerator inside Catalina CSDs.

77

5.1 An FPGA-Based Accelerator Inside Catalina

Matrix multiplication is a basic operation in many applications, including physics, economics,

statistics, and machine learning applications [100]. This operation is highly demanding when

the input matrices are oversized, and the elements are floating-point numbers. Equation 5.1

shows a simple matrix multiplication of a 4×4 matrix A and a 4×2 matrix B, which results

in a 4× 2 matrix C.



a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


×



b11 b12

b21 b22

b31 b32

b41 b42


=



c11 c12

c21 c22

c31 c32

c41 c42


(5.1)

A×B = C

In Equation 5.1, c11 equals (a11.b11) + (a12.b21) + (a13.b31) + (a14.b41), which is composed

of four floating-point multiplication and three floating point addition operations. In other

words, to calculate one column of matrix C, 28 floating-point operations should be done (16

multiplications and 12 additions).

As a result, the total number of floating-point operations for calculating the multiplication

of a 4× 4 matrix and a 4×N matrix is equivalent to 28×N. We developed an FPGA-based

accelerator in Catalina that is able to do this matrix multiplication in only 2×N clock cycles.

The accelerator’s working frequency is 250 MHz, which means it can perform 125million×28

floating-point operations per second. Thus, the performance of the FPGA-based accelerator

is about 3.5 GFlops, and it consumes data at a rate of up to 2 GBps. To reach such a high

performance, we utilized the AXI stream protocol for data transfer inside the accelerator’s

architecture.

78

AXI slave
(memory-mapped)

AXI master
(memory-mapped)

AXI slave
(stream)

AXI master
(stream)

write response channel

write data channel

write address channel

read response channel

read address channel

Data transfer channel

Figure 5.1: AXI memory-mapped versus AXI stream data transfer channels

The AXI is a high-performance master-slave ARM advanced microcontroller bus architecture

[59]. There are two different AXI protocols available in Xilinx Zynq Ultrascale plus chip

[101], namely AXI memory-mapped and AXI stream. The AXI memory-mapped is suitable

when there are multiple modules sharing a bus and data should have source and destination

addresses to be routed from one module to another. However, the AXI stream is designed for

high-speed data transfer between two modules when the data do not have to be addressed,

e.g., a stream of video frames. Fig. 5.1 shows the data channels of the AXI memory-mapped

and AXI stream protocols. The AXI stream is lighter, so data can potentially be transferred

faster.

The developed FPGA-based accelerator multiplies a 4 × 4 single-precision floating-point

matrix to a 4 × N matrix in a pipelined design, where N can be any integer. The main

module of the accelerator is a vector multiplier that calculates the inner product of two four-

dimensional (4D) floating-point vectors. The architecture of this module, which is called a

floating-point vector multiplier, is shown in Fig. 5.2.

The module depicted in Fig. 5.2 implements the multiplication of two 4D vectors. The

building blocks of the floating-point 4D vector multiplier module are a “streaming floating-

79

streaming
floating-point

multiplier

32

32

streaming
floating-point

multiplier

streaming
floating-point

multiplier

streaming
floating-point

multiplier

128

128

streaming
floating-point

adder

streaming
floating-point

adder

streaming
floating-point

adder

32

32

32

32

32

32

32

Figure 5.2: Architecture of a floating-point 4D vector multiplier block

point adder” and a “streaming floating-point multiplier.” These two blocks are Xilinx soft

intellectual properties that are implemented in a heavily pipelined mode and can consume

data through AXI stream interfaces. The module shown in Fig. 5.2 is replicated four times

to generate the main FPGA-based accelerator. The overall architecture of the FPGA-based

accelerator is illustrated in Fig. 5.3.

Since we have utilized a Xilinx Zynq Ultrascale plus MPSoC chip, we need to make the con-

nection between the quad-core ARM Cortex-A53 processor and the FPGA-based accelerator

through the high-performance AXI ports available between the PS and PL subsystems of

the chip (see Fig. 3.11).

Since all the components in the PS subsystem, including the DRAM memory and ISP engine,

are in a memory-mapped space, we first need to convert the memory-mapped data to stream

data. Thus, a direct memory access unit (DMA) transfers data from the DRAM to a memory

map to stream convertor module. As mentioned before, the floating-point multipliers are

AXI stream interfaced; thus, it is possible to feed the accelerator at a very high data rate.

Finally, the stream output data is converted to the AXI memory-mapped format, and the

80

floating-point
vector multiplier

128

128

floating-point
vector multiplier

floating-point
vector multiplier

floating-point
vector multiplier

memory
map to
stream

convertor

stream to
memory

map
convertor

32

DMA

from DRAM to DRAM

multiplier 4× 4matrix

Figure 5.3: Architecture of the FPGA-based accelerator

result is directly written back to the DRAM. The developed FPGA-based accelerator makes

it possible to read the input matrices at a high rate from the DRAM memory and write back

the results to the memory. This accelerator consumes 7% of the configurable logic blocks

(CLBs), 3.5% of lookup tables (LUTs), and less than 3% of the DSP blocks of the Zynq

Ultrascale plus MPSoC chip.

5.2 Running Image Similarity Search In-Place

For the evaluation of the proposed solution, we used an open-source library called Faiss,

which was originally developed by Facebook AI Research [102, 103]. Faiss is a library for

image similarity search, i.e., it allows users to search for multimedia documents that are

similar to each other in a dataset. To utilize Faiss in an image similarity search application,

each multimedia item (e.g., image, sound, or video) should be represented by a vector. Two

vectors are similar to each other when they are close in the Euclidean space. The Euclidean

81

distance between two items is calculated by an inner product of the two vectors that represent

the items. Since the vectors are defined in a high-dimensional space and each dimension is

defined as a floating-point number, each member of the dataset is usually a tuple composed

of at least 128 floating-point numbers (128D). To compute the distances between these

high-dimensional vectors, the inner products between them should be calculated, which is a

compute-intensive task, especially when these computations have to be made in very large

datasets.

Faiss includes different algorithms for the purpose of similarity searches like flat, IVF, and

product quantization (PQ) [104]. The flat is a brute-force algorithm that searches the entire

dataset to find exact matches. The other algorithms search only a portion of the dataset,

which makes them faster but less accurate compared to the flat algorithm. However, regard-

less of the algorithm, the computationally intensive part of all of them is the inner product

of a large number of vectors. The developed device driver for the FPGA-based accelerator

provides an API set to do the inner product of very large floating-point vectors.

5.3 Experimental Results

In this section, we evaluate the benefits of using FPGA-based accelerators to improve the

energy-efficiency and performance of ISP-enabled storage systems. In the following sub-

section, the experimental setup will be described, and we will discuss the architecture of

the developed platform. Then, the energy consumption and performance of the proposed

solution will be discussed.

82

Table 5.1: Dataset used in the similarity search application

test dataset ANN_SIFT1B

dimension 128 floating-point numbers

search space set size 1 billion images

query set size 10 thousand images

5.3.1 Experimental Setup

To run the experiments in this chapter, we used the platform shown in Fig. 4.7 with the high-

configured application host (see Table 4.1). We added the developed FPGA-based accelerator

to the Catalina CSDs. In order to implement the image similarity search, we used the Faiss

library to execute the compute-intensive task of finding similar images to a set of query

images in a dataset with 1 billion images. Overall, the benchmark application searched for

the 100 most similar items in the entire dataset for each of the query images. Such a search

required a large number of the inner products of the two 128D floating-point vectors. In this

experiment, we used the ANN-SIFT1B dataset [105]. The brute-force algorithm (flat) was

chosen to be used in all the experiments. We did not explore other algorithms that trade

search accuracy for performance because it did not fall within the scope of this research. For

each experiment, two datasets were used: search space and query sets. Table 5.1 shows the

details of these datasets.

The ANN-SIFT1B search space set is very large, and we distributed it among the application

host and the Catalina CSDs. We used MPI as the distributed processing framework to

process the data on the Catalina CSDs and the application host, which are the processing

nodes (see Fig. 4.6). Since the whole search space set was distributed among the processing

nodes, the queries were dispatched to all of them, and they ran the image similarity search

in a parallel fashion as the MPI workers. Upon completion, the local results were sent to

the head node, and then the MPI coordinator took care of aggregating the results.

83

5.3.2 Results

This subsection compares the performance and energy consumption of the benchmark appli-

cation for seven different platform configurations. In all of the experiences, the application

host used all 16 Catalina CSDs as the storage units, but the numbers of enabled ISP engines

of Catalina CSDs, as well as the FPGA-based accelerators, were different. The platform

configurations that we will compare in this subsection are as follows:

1. The application host with no ISP-enabled Catalina CSDs (Catalina CSDs used only as

the storage units).

2. The application host with six ISP-enabled Catalina CSDs (software only – using the

ARM Cortex-A53 processors). In this case, FPGA-based accelerators were not enabled.

3. Similar to the second configuration, but the FPGA-based accelerators of the ISP-

enabled Catalina CSDs were enabled.

4. Eight ISP-enabled Catalina CSDs were used, but no FPGA-based accelerator was

enabled.

5. Eight ISP-enabled Catalina SSDs with enabled FPGA-based accelerators.

6. Sixteen ISP-enabled Catalina CSDs were used, but no FPGA-based accelerator was

enabled.

7. Sixteen ISP-enabled Catalina SSDs with enabled FPGA-based accelerators.

Fig. 5.4 shows that as we increased the number of ISP-enabled Catalina CSDs, the perfor-

mance of the application increased. We achieved an 11x improvement in the performance of

the image similarity search when all 16 Catalina CSDs were enabled to run the application in-

place. This figure also shows the performance gain when the FPGA-based accelerators were

84

240

480
560

850

1115

1400

2600

0

500

1000

1500

2000

2500

3000

host only host + 6 Catalina
SSDs

Host + 8 Catalina
SSDs

Host + 16 Catalina
SSDs

q
u

er
y

 p
er

 h
o

u
r

Host + Catalina (Only ARM)

Host + Catalina (ARM + FPGA)

Figure 5.4: Performance results of the similarity search application

enabled in the CSD-equipped storage system. When the Catalina CSDs used FPGA-based

accelerators, there was a 3x gain over the same experiment run on a similar configuration

without using the FPGA-based accelerators.

The energy consumption was measured over the processing of all 10,000 image queries fed

in at a rate that saturated the system. The energy consumption per query was then derived

as considering an average over the total duration of the experiment. The experiment was

performed in a similar way for all seven configurations mentioned above. Fig. 5.5 shows how

the heterogeneous ISP approach (utilizing both the quad-core ARM Cortex-A53 processors

and the FPGA-based accelerators) resulted in a 7x reduction in energy consumption per

query. The energy consumption per query reduced from 825 J when the application was run

exclusively on the application host’s CPU down to 119.13 J when the application host’s CPU

was combined with the 16 ISP-enabled Catalina CSDs equipped with FPGA accelerators.

85

825.00

499.80
453.34

364.40

215.16
181.34

119.13

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

host only host + 6 Catalina
SSDs

Host + 8 Catalina
SSDs

Host + 16 Catalina
SSDs

E
n

er
gy

 C
o

n
su

m
p

ti
o

n
 p

er
 q

u
er

y
 (

Jo
u

le
) Host + Catalina (Only ARM)

Host + Catalina (ARM + FPGA)

Figure 5.5: Energy consumption results of the similarity search application

86

Chapter 6

Conclusion and Future Works

In this chapter, we will first summarize our achievements throughout this research. Then,

the future research topics will be discussed. These topics could potentially extend the con-

tributions of this dissertation.

6.1 Summary

ISP technology enables storage units to run user applications in-place, i.e., data are not

required to move from the storage units to the host’s main memory to be processed. It can

relieve the data movement challenges in highly demanding super-scale applications wherein

huge data need to be fetched from the storage systems. The modern SSD architecture uses

flash packages to store data, and they are faster and more efficient than the traditional

HDDs that use magnetic disks. Regularly, a modern SSD controller includes multiple cores

to run conventional flash management and host interface routines. Such an architecture

provides a better environment for implementing ISP technology compared to the HDDs.

The SSD architecture that is enabled to run user applications in-place and is equipped with

87

an ISP engine is called a CSD. This dissertation proposed efficient CSD architectures and

investigated the benefits of deploying such CSDs for running different types of applications.

We introduced two NVMe CSD architectures, namely CompStor and Catalina. These two

CSD architectures both have a dedicated ISP engine that runs a full-fledged Linux operating

system to provide a flexible environment for running user applications in-place.

CompStor is the first proposed CSD architecture that is composed of a conventional flash

management subsystem and an ISP engine. These two subsystems are implemented on

two boards that are connected via an FMC connector. We ran several compute- and I/O-

intensive algorithms to explore the benefits of deploying CompStor CSDs in systems. The

experimental results showed up to 2.6x and 3.3x improvements in performance and energy

consumption, respectively, when running the applications on CompStor in comparison to the

host’s CPU.

In CompStor, the conventional subsystem controls the flash memory and accesses data stored

in the flash memory chips. The data should move from the conventional subsystem to the

ISP engine, which is implemented on two boards. Although this off-chip data link is less

costly than a complex host interface link such as NVMe, data still need to move from one

board to another to be processed, and this data transfer is not aligned with the core concepts

of ISP.

To solve this problem, we introduced Catalina, which is equipped with a controller that

includes both the conventional subsystem and the ISP engine implemented in an SoC. Thus,

the ISP engine has access to the data stored in flash memory via a high-performance, power-

efficient intra-chip data link. We developed a block device driver that abstracts the under-

lying ISP engine and the conventional subsystem data transfer, and applications running

inside Catalina have filesystem-level access to the data stored in flash memory.

Additionally, a TCP/IP tunnel through NVMe over PCIe link was developed to allow

88

Catalina CSD to communicate with the host. Catalina can be seamlessly deployed in dis-

tributed environments such as Hadoop and MPI-based clusters. For the proof of concept,

we built a fully functional Catalina CSD prototype as well as a system equipped with 16

Catalina CSDs to investigate the benefits of deploying the CSDs in clusters. The experi-

mental results showed that the deployment of Catalina CSDs in the clusters improved the

Hadoop MapReduce application’s performance and energy efficiency up to 2.2x and 4.3x,

respectively. By utilizing the Neon SIMD engines to accelerate DFT algorithms running

in-place, the performance and energy efficiency improvements grew even further to 5.4x and

8.9x. Also, using FPGA-based accelerators, Catalina CSDs can improve the performance

and energy consumption of a highly demanding image similarity search application up to

11x and 7x, respectively.

6.2 Future Directions

CSDs are more energy-efficient in comparison to the host’s CPU for the following reasons.

First, CSDs decrease the data movement between the host and the storage units dramatically.

This data movement is usually through a complex data link such as NVMe over PCIe.

Second, due to the limited power budget of the storage units, the ISP engines usually utilize

a power-efficient embedded processor. These reasons make CSDs low-power environments

for processing user data. However, CSDs also need to provide a compelling performance for

different applications to justify the complexity that comes with deploying them in systems.

Since embedding very high-end processors inside CSDs is practically impossible due to the

power and economical budgets of the storage units, the reasonable technique is to provide a

heterogeneous environment inside CSDs to process data. Such an environment could benefit

from FPGA- and ASIC-based accelerators to improve the performance of some applications

that run in-place. This dissertation followed this method to propose efficient CSD architec-

89

tures. For future works, there could be multiple topics based on the heterogeneous SoC-based

ISP method advocated for in this dissertation. Future directions are suggested as follows:

1. In both architectures that are proposed in this dissertation, the conventional flash

management subsystem and the ISP engine are two subsystems that communicate

with each other. The development of such architecture is less error-prone in comparison

with a uniform design wherein both subsystems are integrated into a single system.

For future works, a uniform design could be proposed that could potentially improve

the performance and energy consumption of the CSD architectures.

2. The ASIC-based accelerators in Catalina are limited to the engines that are available

in Xilinx Zynq Ultrascale plus MPSoC. This limits the applications that can benefit

from this type of accelerator. Developing a CSD architecture with more ASIC-based

accelerators could improve the performance of some applications that were not explored

in this dissertation.

3. The possibility of implementing FPGA-based accelerators inside CSDs gives a con-

siderable amount of flexibility to the CSD architecture. This flexibility comes with

the time-consuming process of designing, synthesizing, and implementing the targeted

accelerator inside the CSD. For example, the implementation of the matrix multiplier

FPGA-based engine, which is discussed in Chapter 5, took a long time to reach a stable

and error-free design. High-level synthesis (HLS) [106] tools could potentially shorten

the required time for the design and implementation of the FPGA-based accelerators

inside the ISP engines considerably. However, due to the presence of other components

in a CSD architecture, adding an FPGA-based accelerator using HLS tools needs some

considerations. One direction of the future works could concern the integration of HLS

tools into the CSD design flow.

90

Bibliography

[1] The Economist. The world’s most valuable resource is no longer oil, but data. The
Economist: New York, NY, USA, 2017.

[2] Flávio Kapczinski, Benson Mwangi, and Ives Cavalcante Passos. Personalized Psychi-
atry: Big Data Analytics in Mental Health. Springer, 2019.

[3] Rob Kitchin and Gavin McArdle. What makes big data, big data? exploring the
ontological characteristics of 26 datasets. Big Data & Society, 3(1):2053951716631130,
2016.

[4] Gregory F Pfister. An introduction to the infiniband architecture. High Performance
Mass Storage and Parallel I/O, 42:617–632, 2001.

[5] Nanette J Boden, Danny Cohen, Robert E Felderman, Alan E. Kulawik, Charles L
Seitz, Jakov N Seizovic, and Wen-King Su. Myrinet: A gigabit-per-second local area
network. IEEE micro, 15(1):29–36, 1995.

[6] Prabhat and Quincey Koziol. High Performance Parallel I/O. CRC Press, Cleveland,
Ohio, USA, 2014.

[7] George Eason, Benjamin Noble, and Ian Naismith Sneddon. On certain integrals of
lipschitz-hankel type involving products of bessel functions. Philosophical Transac-
tions of the Royal Society of London. Series A, Mathematical and Physical Sciences,
247(935):529–551, 1955.

[8] Tom White. Hadoop: The definitive guide. O’Reilly Media, Inc., Sebastopol, California,
USA, 2012.

[9] ARM, cortex-r series processors web page. https://developer.arm.com/ip-products/
processors/cortex-r, Accessed on 20 December 2018.

[10] SATA ecosystem web page. https://sata-io.org, Accessed on 5 June 2019.

[11] Serial-attached scsi (SAS) web page. https://searchstorage.techtarget.com/definition/
serial-attached-SCSI, Accessed on 5 June 2019.

[12] Non-volatile memory express project web page. https://nvmexpress.org, Accessed on
5 June 2019.

91

https://developer.arm.com/ip-products/processors/cortex-r
https://developer.arm.com/ip-products/processors/cortex-r
https://sata-io.org
https://searchstorage.techtarget.com/definition/serial-attached-SCSI
https://searchstorage.techtarget.com/definition/serial-attached-SCSI
https://nvmexpress.org

[13] Gagandeep Singh, Lorenzo Chelini, Stefano Corda, Ahsan Javed Awan, Sander Stuijk,
Roel Jordans, Henk Corporaal, and Albert-Jan Boonstra. Near-memory computing:
Past, present, and future. Microprocessors and Microsystems, 2019.

[14] Anurag Acharya, Mustafa Uysal, and Joel Saltz. Active disks: Programming model,
algorithms and evaluation. ACM SIGPLAN Notices, 33(11):81–91, 1998.

[15] Hyeran Lim, Vikram Kapoor, Chirag Wighe, and David H-C Du. Active disk file
system: A distributed, scalable file system. In 2001 Eighteenth IEEE Symposium on
Mass Storage Systems and Technologies, pages 101–101. IEEE, 2001.

[16] Erik Riedel, Garth Gibson, and Christos Faloutsos. Active storage for large-scale data
mining and multimedia applications. In Proceedings of 24th Conference on Very Large
Databases, pages 62–73. Citeseer, 1998.

[17] Kimberly Keeton, David A Patterson, and Joseph M Hellerstein. A case for intelligent
disks (idisks). ACM SIGMOD Record, 27(3):42–52, 1998.

[18] Mustafa Uysal, Anurag Acharya, and Joel Saltz. Evaluation of active disks for de-
cision support databases. In Proceedings Sixth International Symposium on High-
Performance Computer Architecture. HPCA-6 (Cat. No. PR00550), pages 337–348.
IEEE, 2000.

[19] Boncheol Gu, Andre S Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee, Jonghyun Yoon,
Jeong-Uk Kang, Moonsang Kwon, Chanho Yoon, Sangyeun Cho, et al. Biscuit: A
framework for near-data processing of big data workloads. In ACM SIGARCH Com-
puter Architecture News, volume 44, pages 153–165. IEEE Press, 2016.

[20] Yangwook Kang, Yang-suk Kee, Ethan L Miller, and Chanik Park. Enabling cost-
effective data processing with smart ssd. In 2013 IEEE 29th symposium on mass
storage systems and technologies (MSST), pages 1–12. IEEE, 2013.

[21] J Paul Morrison. Flow-Based Programming: A new approach to application develop-
ment. CreateSpace, 2010.

[22] Sungchan Kim, Hyunok Oh, Chanik Park, Sangyeun Cho, Sang-Won Lee, and Bongki
Moon. In-storage processing of database scans and joins. Information Sciences,
327:183–200, 2016.

[23] Sang-Woo Jun, Ming Liu, Sungjin Lee, Jamey Hicks, John Ankcorn, Myron King,
Shuotao Xu, et al. Bluedbm: An appliance for big data analytics. In 2015 ACM/IEEE
42nd Annual International Symposium on Computer Architecture (ISCA), pages 1–13.
IEEE, 2015.

[24] Sang-Woo Jun, Ming Liu, Kermin Elliott Fleming, et al. Scalable multi-access flash
store for big data analytics. In Proceedings of the 2014 ACM/SIGDA international
symposium on Field-programmable gate arrays, pages 55–64. ACM, 2014.

92

[25] Sungjin Lee, Jihong Kim, and Arvind Mithal. Refactored design of i/o architecture
for flash storage. IEEE Computer Architecture Letters, 14(1):70–74, 2014.

[26] Tobias Vincon, Sergey Hardock, Christian Riegger, Andreas Koch, and Ilia Petrov.
nativendp: Processing big data analytics on native storage nodes. 2019.

[27] The R project for statistical computing. https://www.r-project.org, Accessed on 27
April 2019.

[28] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and Carlos Maltzahn.
Ceph: A scalable, high-performance distributed file system. In Proceedings of the 7th
symposium on Operating systems design and implementation, pages 307–320. USENIX
Association, 2006.

[29] Tobias Vinçon, Sergej Hardock, Christian Riegger, Julian Oppermann, Andreas Koch,
and Ilia Petrov. Noftl-kv: Tacklingwrite-amplification on kv-stores with native storage
management. In EDBT, pages 457–460, 2018.

[30] Xiaojia Song, Tao Xie, and Wen Pan. Risp: a reconfigurable in-storage processing
framework with energy-awareness. In 2018 18th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGRID), pages 193–202. IEEE, 2018.

[31] Siavash Rezaei, Kanghee Kim, and Eli Bozorgzadeh. Scalable multi-queue data transfer
scheme for fpga-based multi-accelerators. In 2018 IEEE 36th International Conference
on Computer Design (ICCD), pages 374–380. IEEE, 2018.

[32] Benjamin Y Cho, Won Seob Jeong, Doohwan Oh, and Won Woo Ro. Xsd: Accelerating
mapreduce by harnessing the gpu inside an ssd. In Proceedings of the 1st Workshop
on Near-Data Processing, 2013.

[33] Roman Kaplan, Leonid Yavits, and Ran Ginosar. Prins: Processing-in-storage accel-
eration of machine learning. IEEE Transactions on Nanotechnology, 17(5):889–896,
2018.

[34] Seonyeong Park, Youngjae Kim, Bhuvan Urgaonkar, Joonwon Lee, and Euiseong Seo.
A comprehensive study of energy efficiency and performance of flash-based SSD. Jour-
nal of Systems Architecture, 57(4):354–365, 2011.

[35] Jim Cooke. Micron technology, flash memory: An introduction to NAND flash. https:
//www.eetimes.com, Accessed on 2 August 2019.

[36] Nitin Agrawal, Vijayan Prabhakaran, Ted Wobber, John D Davis, Mark S Manasse,
and Rina Panigrahy. Design tradeoffs for ssd performance. In USENIX Annual Tech-
nical Conference, volume 57, 2008.

[37] The open compute project (OCP) web page. https://www.opencompute.org, Accessed
on 18 November 2018.

93

https://www.r-project.org
https://www.eetimes.com
https://www.eetimes.com
https://www.opencompute.org

[38] Samsung 960pro SSD specifications. https://www.samsung.com/semiconductor/
minisite/ssd/product/consumer/960pro, Accessed on 28 July 2019.

[39] ADATA , XPG sx8200 pro 2280 SSD data sheet. https://www.adata.com/upload/
downloadfile/Datasheet XPG, Accessed on 26 July 2019.

[40] Nima Elyasi, Changho Choi, and Anand Sivasubramaniam. Large-scale graph process-
ing on emerging storage devices. In 17th {USENIX} Conference on File and Storage
Technologies ({FAST} 19), pages 309–316, 2019.

[41] David Mayhew and Venkata Krishnan. Pci express and advanced switching: evolu-
tionary path to building next generation interconnects. In 11th Symposium on High
Performance Interconnects, 2003. Proceedings., pages 21–29. IEEE, 2003.

[42] Christoph Lameter et al. Numa (non-uniform memory access): An overview. Acm
queue, 11(7):40, 2013.

[43] Rohit Gupta. Western digital , what is nvme and why is it important? a tech-
nical guide. https://blog.westerndigital.com/nvme-important-data-driven-businesses,
Accessed on 24 April 2019.

[44] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion
Stoica. Spark: Cluster computing with working sets. HotCloud, 10(10-10):95, 2010.

[45] Seagate, kinetic hdd produce web page. https://www.seagate.com/support/
enterprise-servers-storage/nearline-storage/kinetic-hdd, Accessed on 20 September
2018.

[46] Mahdi Torabzadehkashi, Siavash Rezaei, Vladimir Alves, and Nader Bagherzadeh.
Compstor: An in-storage computation platform for scalable distributed processing. In
2018 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pages 1260–1267. IEEE, 2018.

[47] Xilinx , microblaze processor reference guide. https://www.xilinx.com/support/
documentation-navigation/design-hubs/dh0020-microblaze-hub.html, Accessed on 10
June 2019.

[48] Robert Gallager. Low-density parity-check codes. IRE Transactions on information
theory, 8(1):21–28, 1962.

[49] ARM , cortex-a53 processor documentation web page. https://developer.arm.com/
ip-products/processors/cortex-a/cortex-a53/docs, Accessed on 7 June 2019.

[50] Dave Barker. Vita technologies, introducing the fpga mezzanine card: Emerging vita
57 (fmc) standard brings modularity to fpga designs. http://vita.mil-embedded.com/
articles/introducing-fpga-brings-modularity-fpga-designs, Accessed on 15 June 2019.

[51] ARM , cortex-r5 processor production web page. https://www.arm.com/products/
silicon-ip-cpu/cortex-r/cortex-r5, Accessed on 2 June 2019.

94

https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/960pro
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/960pro
https://www.adata.com/upload/downloadfile/Datasheet_XPG
https://www.adata.com/upload/downloadfile/Datasheet_XPG
https://blog.westerndigital.com/nvme-important-data-driven-businesses
https://www.seagate.com/support/enterprise-servers-storage/nearline-storage/kinetic-hdd
https://www.seagate.com/support/enterprise-servers-storage/nearline-storage/kinetic-hdd
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0020-microblaze-hub.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0020-microblaze-hub.html
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a53/docs
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a53/docs
http://vita.mil-embedded.com/articles/introducing-fpga-brings-modularity-fpga-designs
http://vita.mil-embedded.com/articles/introducing-fpga-brings-modularity-fpga-designs
https://www.arm.com/products/silicon-ip-cpu/cortex-r/cortex-r5
https://www.arm.com/products/silicon-ip-cpu/cortex-r/cortex-r5

[52] Shibamouli Lahiri. Complexity of word collocation networks: A preliminary structural
analysis. arXiv preprint arXiv:1310.5111, 2013.

[53] L Peter Deutsch. Gzip file format specification version 4.3. https://www.gzip.org,
Accessed on 2 September 2018.

[54] J Seward. A program and library for data compression. bzip2 and libbzip2. http:
//www.bzip.org, Accessed on 2 September 2018.

[55] Gnu grep project web page. https://www.gnu.org/software/grep, Accessed on 2 June
2018.

[56] Gnu awk project web page. http://www.gnu.org/software/gawk, Accessed on 2 June
2018.

[57] Mahdi Torabzadehkashi, Siavash Rezaei, Ali Heydarigorji, Hosein Bobarshad, Vladimir
Alves, and Nader Bagherzadeh. Catalina: In-storage processing acceleration for scal-
able big data analytics. In 2019 27th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP), pages 430–437. IEEE, 2019.

[58] Xilinx, zynq ultrascale+ mpsoc product web page. https://www.xilinx.com/products/
silicon-devices/soc/zynq-ultrascale-mpsoc.html, Accessed on 25 August 2018.

[59] Christina Toole. ARM , introduction to AXI protocol: Understanding the AXI inter-
face. https://community.arm.com/developer/ip-products/system/b/soc-design-blog/
posts/introduction-to-axi-protocol-understanding-the-axi-interface, Accessed on 29
June 2019.

[60] Oracle, oracle cluster filesystem second version web page. https://oss.oracle.com/
projects/ocfs2, Accessed on 5 February 2019.

[61] Brian Pawlowski, David Noveck, David Robinson, and Robert Thurlow. The nfs version
4 protocol. In In Proceedings of the 2nd International System Administration and
Networking Conference (SANE 2000), 2000.

[62] Sangyeun Cho, Chanik Park, Hyunok Oh, Sungchan Kim, Youngmin Yi, and Gre-
gory R Ganger. Active disk meets flash: A case for intelligent ssds. In Proceedings of
the 27th international ACM conference on International conference on supercomputing,
pages 91–102. ACM, 2013.

[63] Trendforce , dramexchange web page. https://www.dramexchange.com, Accessed on
19 June 2019.

[64] Jose Luis Bosque and Luis Pastor. A parallel computational model for heterogeneous
clusters. IEEE Transactions on Parallel and Distributed Systems, 17(12):1390–1400,
2006.

[65] Aditya B Patel, Manashvi Birla, and Ushma Nair. Addressing big data problem us-
ing hadoop and map reduce. In 2012 Nirma University International Conference on
Engineering (NUiCONE), pages 1–5. IEEE, 2012.

95

https://www.gzip.org
http://www. bzip. org
http://www. bzip. org
https://www.gnu.org/software/grep
http://www.gnu.org/software/gawk
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://community.arm.com/developer/ip-products/system/b/soc-design-blog/posts/introduction-to-axi-protocol-understanding-the-axi-interface
https://community.arm.com/developer/ip-products/system/b/soc-design-blog/posts/introduction-to-axi-protocol-understanding-the-axi-interface
https://oss.oracle.com/projects/ocfs2
https://oss.oracle.com/projects/ocfs2
https://www.dramexchange.com

[66] Lena Mashayekhy, Mahyar Movahed Nejad, Daniel Grosu, Quan Zhang, and Weisong
Shi. Energy-aware scheduling of mapreduce jobs for big data applications. IEEE
transactions on Parallel and distributed systems, 26(10):2720–2733, 2014.

[67] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler, et al. The
hadoop distributed file system. In MSST, volume 10, pages 1–10, 2010.

[68] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[69] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system.
2003.

[70] C Long. Data science and big data analytics: Discovering, analyzing, visualizing and
presenting data. Indianapolis, Indiana, 2015.

[71] Konstantin V Shvachko and Arun C Murthy. Scaling hadoop to 4000 nodes at yahoo.
Yahoo! Developer Network Blog,, 2008.

[72] Ke Wang, Ning Liu, Iman Sadooghi, Xi Yang, Xiaobing Zhou, Tonglin Li, Michael
Lang, Xian-He Sun, and Ioan Raicu. Overcoming hadoop scaling limitations through
distributed task execution. In 2015 IEEE International Conference on Cluster Com-
puting, pages 236–245. IEEE, 2015.

[73] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[74] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad Agarwal, Mahadev
Konar, Robert Evans, Thomas Graves, Jason Lowe, Hitesh Shah, Siddharth Seth,
et al. Apache hadoop yarn: Yet another resource negotiator. In Proceedings of the 4th
annual Symposium on Cloud Computing, page 5. ACM, 2013.

[75] Apache, yarn project web page. https://hadoop.apache.org/docs/current/
hadoop-yarn/hadoop-yarn-site/YARN.html, Accessed on 10 September 2018.

[76] Eric Gottfrid Swedin and David L Ferro. Computers: the life story of a technology.
Greenwood Publishing Group, 2005.

[77] Al Geist and Daniel A Reed. A survey of high-performance computing scaling chal-
lenges. The International Journal of High Performance Computing Applications,
31(1):104–113, 2017.

[78] Baruch Awerbuch, Rainer Gawlick, Tom Leighton, and Yuval Rabani. On-line admis-
sion control and circuit routing for high performance computing and communication.
In Proceedings 35th Annual Symposium on Foundations of Computer Science, pages
412–423. IEEE, 1994.

96

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

[79] Reza Asadi, Solmaz S Kia, and Amelia Regan. Cycle basis distributed admm solu-
tion for optimal network flow problem over biconnected graphs. In 2016 54th Annual
Allerton Conference on Communication, Control, and Computing (Allerton), pages
717–724. IEEE, 2016.

[80] Hans Meuer, Erich Strohmaier, Jack Dongarra, Horst Simon, and Martin Meuer. The
top 500 list of supercomputers. https://www.top500.org, Accessed on 3 April 2018.

[81] David W Walker and Jack J Dongarra. MPI: a standard message passing interface.
Supercomputer, 12:56–68, 1996.

[82] Open MPI: Open source high performance computing. https://www.open-mpi.org,
Accessed on 9 December 2018.

[83] MPICH: High-performance portable MPI. https://www.mpich.org, Accessed on 9
December 2018.

[84] Jason Barkes, Marcelo R Barrios, Francis Cougard, Paul G Crumley, Didac Marin, Hari
Reddy, and Theeraphong Thitayanun. GPFS: a parallel file system. IBM International
Technical Support Organization, 1998.

[85] Steven R Soltis, Thomas M Ruwart, and Matthew T OKeefe. The global file system.
1996.

[86] Philip Schwan et al. Lustre: Building a file system for 1000-node clusters. In Proceed-
ings of the 2003 Linux symposium, volume 2003, pages 380–386, 2003.

[87] Gluster filesystem web page. https://www.gluster.org, Accessed on 17 July 2019.

[88] Cubix, the xpander produce web page. https://www.cubix.com/xpander, Accessed on
2 June 2019.

[89] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. The hibench
benchmark suite: Characterization of the mapreduce-based data analysis. In 2010
IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010),
pages 41–51. IEEE, 2010.

[90] Mahdi Torabzadehkashi, Ali Heydarigorji, Siavash Rezaei, Hosein Bobarshad, Vladimir
Alves, and Nader Bagherzadeh. Accelerating HPC applications using computational
storage devices. In The 21st IEEE Conference on High Performance Computing and
Communications (HPCC). IEEE, 2019.

[91] The HPC challenge benchmark suite web page. http://www.hpcchallenge.org, Ac-
cessed on 10 March 2019.

[92] Jack Dongarra and Michael A Heroux. Toward a new metric for ranking high perfor-
mance computing systems. Sandia Report, SAND2013-4744, 312:150, 2013.

97

https://www.top500.org
https://www.open-mpi.org
https://www.mpich.org
https://www.gluster.org
https://www.cubix.com/xpander
http://www.hpcchallenge.org

[93] Jack Dongarra and Piotr Luszczek. Reducing the time to tune parallel dense linear
algebra routines with partial execution and performance modelling. University of
Tennessee Computer Science Technical Report, Tech. Rep, 2010.

[94] Peter Steinbach and Matthias Werner. gearshifft–the fft benchmark suite for het-
erogeneous platforms. In International Supercomputing Conference, pages 199–216.
Springer, 2017.

[95] Nicholas J Rose. Linear algebra and its applications (gilbert strang). SIAM Review,
24(4):499–501, 1982.

[96] Matteo Frigo and Steven G Johnson. The design and implementation of FFTW3.
Proceedings of the IEEE, 93(2):216–231, 2005.

[97] R Bousseljot, D Kreiseler, and A Schnabel. Nutzung der ekg-signaldatenbank car-
diodat der ptb über das internet. Biomedizinische Technik/Biomedical Engineering,
40(s1):317–318, 1995.

[98] Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch
Ivanov, Roger G Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and
H Eugene Stanley. Physiobank, physiotoolkit, and physionet: components of a new
research resource for complex physiologic signals. Circulation, 101(23):e215–e220, 2000.

[99] S. Rezaei, C. Hernandez-Calderon, S. Mirzamohammadi, E. Bozorgzadeh, A. Veiden-
baum, A. Nicolau, and M. J. Prather. Data-rate-aware fpga-based acceleration frame-
work for streaming applications. In 2016 International Conference on ReConFigurable
Computing and FPGAs (ReConFig), pages 1–6, Nov 2016.

[100] Henry Cohn, Robert Kleinberg, Balazs Szegedy, and Christopher Umans. Group-
theoretic algorithms for matrix multiplication. In 46th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’05), pages 379–388. IEEE, 2005.

[101] Xilinx , AMBA AXI4 interface protocol web page. https://www.xilinx.com/
products/intellectual-property/axi.html, Accessed on 2 June 2019.

[102] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with
GPUs. IEEE Transactions on Big Data, 2019.

[103] Facebook AI research, a library for efficient similarity search and clustering of dense
vectors. https://github.com/facebookresearch/faiss, Accessed on 20 November 2018.

[104] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest
neighbor search. IEEE transactions on pattern analysis and machine intelligence,
33(1):117–128, 2010.

[105] Hervé Jégou, Romain Tavenard, Matthijs Douze, and Laurent Amsaleg. Searching in
one billion vectors: re-rank with source coding. In 2011 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 861–864. IEEE, 2011.

98

https://www.xilinx.com/products/intellectual-property/axi.html
https://www.xilinx.com/products/intellectual-property/axi.html
https://github.com/facebookresearch/faiss

[106] Michael C McFarland, Alice C Parker, and Raul Camposano. The high-level synthesis
of digital systems. Proceedings of the IEEE, 78(2):301–318, 1990.

99

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE Dissertation
	Introduction
	Dissertation Objectives and Contributions
	Dissertation Organization

	Literature Review
	Processor-Based CSDs
	FPGA-Based CSDs
	Other CSD Architectures
	Summary

	A Practical Approach to Proposing CSD Architectures
	Background
	The SSD Architecture
	ISP: Bring the Process to Data

	CompStor: The First Linux-Powered CSD
	Hardware Architecture
	CompStor Software Stack
	Prototype and Experimental Results

	Catalina: An SoC-based ISP Platform
	Hardware Architecture
	Catalina Software Stack
	Catalina Prototype

	ISP-Enabled Distributed Platforms
	Background
	Distributed Processing Platforms
	Cluster Filesystems

	Deploying CSDs in Distributed Platforms
	Experimental Setup
	Benchmarks and Results

	FPGA-Based Acceleration for ISP
	An FPGA-Based Accelerator Inside Catalina
	Running Image Similarity Search In-Place
	Experimental Results
	Experimental Setup
	Results

	Conclusion and Future Works
	Summary
	Future Directions

	Bibliography

