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ABSTRACT OF THE DISSERTATION
Some Results for the Ambient Obstruction Flow
By
Christopher Lopez
Doctor of Philosophy in Mathematics
University of California, Irvine, 2017

Professor Jeffrey Streets, Chair

We establish several results for the ambient obstruction flow (AOF), a parabolic flow of Rie-
mannian metrics introduced by Bahuaud-Helliwell which is based on the Fefferman-Graham
ambient obstruction tensor. The flow may be regarded as a higher order analogue of Ricci
flow, and the critical metrics for this low may be regarded as generalizations of Einstein
metrics. First, we obtain local L2 smoothing estimates for the curvature tensor along AOF
and use them to prove pointwise smoothing estimates for the curvature tensor. We use the
pointwise smoothing estimates to show that the curvature must blow up for a finite time
singular solution to AOF. We also use the pointwise smoothing estimates to prove a com-
pactness theorem for a sequence of solutions to AOF with bounded CO curvature norm and
injectivity radius bounded from below at one point. The compactness theorem allows us to
obtain a singularity model from a finite time singular solution to AOF and to characterize
the behavior at infinity of a nonsingular solution to AOF. Our final result is a rigidity the-
orem, which states that under suitable conditions a metric that is critical for AOF and has

small scale-invariant integral energy has vanishing Riemann curvature tensor.
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Chapter 1

Introduction

1.1 Introduction

The uniformization theorem ensures that for a compact two dimensional Riemannian man-
ifold (M, g), there is a metric § conformal to g for which (M, g) has constant sectional
curvature equal to K. Moreover, the sign of K can be determined via the Gauss-Bonnet
theorem. In higher dimensions, curvature functionals have been used with great success to
define and locate optimal metrics in higher dimensions; see [32]. One conformally invariant

curvature functional for a 4-dimensional Riemannian manifold (M, g) is given by

Flylo) = [ Wy av,

where W is the Weyl tensor. The negative gradient of ]:I%V is the Bach tensor B;; defined

as

Bjj = =V Wy — $RM Wy



The study of critical metrics for FL  ie. Bach-flat metrics, has been fruitful. The class
of Bach-flat metrics contains, as shown in [5], familiar metrics such as locally conformally

Einstein metrics and scalar flat (anti) self-dual metrics.

Another conformally invariant functional for a 4-dimensional Riemannian manifold (M, g)

is given by

Fole) = /M Q(g) dVy,

where Q(g) is a scalar quantity introduced by Branson in [7] called the @) curvature. Via the
Chern-Gauss-Bonnet theorem, this functional is related to ]-"%/ by fé) — 82y (M) — 21[.7-—1%[/
The Bach tensor is also the gradient of Fé. Unlike the Weyl tensor, the () curvature is not

pointwise conformally covariant.

One can generalize the () curvature to a scalar quantity defined on n dimensional Riemannian

manifolds (M, g), where n is even. Consider the functionals defined for n even by

Folg) = /M Q(g) dVy.

These functionals are conformally invariant. The gradient of .7-"5 is a symmetric 2-tensor O,
introduced by Fefferman and Graham in [18], called the ambient obstruction tensor. This
tensor arises in physics: for example, Anderson and Chrusciel use O in [1] to construct global
solutions of the vacuum Einstein equation in even dimensions. In dimension 4, O is just the
Bach tensor. The ambient obstruction tensor is conformally covariant in n dimensions.
This is in contrast to the n dimensional generalization of the Bach tensor, which is only
conformally covariant in dimension 4. This fact follows from a result in Graham-Hirachi
[21] stating that in even dimensions 6 and greater, the only conformally covariant tensors
essentially are W and O. Extending the 4-dimensional case, Fefferman and Graham showed

in [19] that O vanishes for Einstein metrics for all even dimensions. However, there also



exist non conformally Einstein metrics for which O = 0, as shown by Gover and Leitner in
[20]. The conformal covariance of O and the fact that obstruction flat metrics generalize
conformally Einstein metrics suggest that studying the critical points of .7-"5 via its gradient
flow may aid in the study of optimal metrics on M. Our main goal is to establish fundamental

results for this gradient flow.

1.2 Main Results

1.2.1 Fundamental Results

We will continue the study of a variant of the gradient flow of FJ, that was introduced by
Bahuaud and Helliwell in [3], establishing fundamental results. This flow, which we will refer
to as the ambient obstruction flow (AOF), is defined for a family of metrics g(¢) on a
smooth manifold M by
n _ n
Org = (—1)20 + 552 .
9(0) =h.

The conformal term involving the scalar curvature was added in order to counteract the
invariance of O under the action of the conformal group on the space of metrics on M.
In the papers [3, 4] they proved the short time existence and uniqueness, respectively, of
solutions to AOF given by (1.1) when M is compact. Mantegazza and Martinazzi provided
an existence proof for parabolic quasilinear PDE on compact manifolds in [35]. Kotschwar
has given in [30] an alternate uniqueness proof via a classical energy argument without using

the DeTurck trick.



Gradient flows have been studied extensively since Hamilton in [23, 25, 24] and Perelman in
[37, 38, 39] (expositions are given in [9, 29, 36]) used the Ricci flow to study the geometry
of 3-manifolds. In the past fifteen years, these have begun to include higher order flows.
Mantegazza studied a family of higher order mean curvature flows in [34], Kuwert-Schétzle
studied the gradient flow of the Willmore functional in [31], Streets studied the gradient
flow of [;, IRm|? in [42], Chen-He studied the Calabi flow in [11, 12], and Kisisel-Sarioglu-
Tekin studied the Cotton flow in [28]. Bour studied the gradient flows of certain quadratic

curvature functionals in [6], including some variants of [y, |W|?.

Our first result gives pointwise smoothing estimates for the C? norms of the derivatives
of the curvature. Since the AOF PDE (1.1) is of order n, the maximum principle cannot
be used to obtain these estimates. Instead, we first use interpolation inequalities derived
by Kuwert and Schétzle in [31] in order to derive local integral Bernstein-Bando-Shi-type
smoothing estimates. Then, we use a blowup argument adapted from Streets [44] in order
to convert the integral smoothing estimates to pointwise smoothing estimates, as stated in
the following theorem. During the proof, we use the local integral smoothing estimates to

take a local subsequential limit of renormalized metrics.

Theorem 1.2.1. Let m > 0 and n > 4. There exists a constant C = C(m,n) so that if

(M"™, g(t)) is a complete solution to AOF on [0,T] satisfying

max [ 1, sup |Rm|| <K,
Mx[0,T]

then for all t € (0,7,

2\ 12
sup [V"Rm|,) < C (K + t_N> .
M



We obtain from the pointwise smoothing estimates two additional theorems. The first theo-
rem gives an obstruction to the long time existence of the flow. Since the pointwise smoothing
estimates do not require that the Sobolev constant be bounded on [0,7"), we rule out that

the manifold collapses with bounded curvature.

Theorem 1.2.2. Let g(t) be a solution to the AOF on a compact manifold M that ezists on

a mazimal time interval [0, T) with 0 < T < oco. If T < oo, then we must have

hr?T;up HRmHCO(g(t)) = 00.

The second theorem allows us to extract convergent subsequences from a sequence of solu-
tions to AOF with uniform C? curvature bound and uniform injectivity radius lower bound.
We prove this in section 4 by using the Cheeger-Gromov compactness theorem to obtain
subsequential convergence of solutions at one time. Then, after extending estimates on the
covariant derivatives of the metrics from one time to the entire time interval, we obtain

subsequential convergence over the entire time interval.

Theorem 1.2.3. Let {(M}}, g (t), Op)}ren be a sequence of complete pointed solutions to

AOF fort € (a,w), with tg € (a,w), such that
1. ]Rm(gk)|gl€ < Cy on My x (a,w) for some constant Cy < oo independent of k
2. injgk(to)(Ok) > 1o for some constant 1o > 0.
Then there exists a subsequence {jj }ren such that {(Mjk;’ iy (1), Ojk)}keN converges in the

sense of families of pointed Riemannian manifolds to a complete pointed solution to AOF

(ML, goo(t), Oxo) defined fort € (a,w) as k — oc.

We use this compactness theorem to prove two corollaries. For a compact Riemannian

manifold (M, g), let Cg(M,g) denote the L? Sobolev constant of (M,g), defined as the

5



smallest constant Cg such that

_2
12 20 < Os (19172 + VA1),
Ln—

where V = vol(M, g), for all f € C1(M). The following result states that if the Sobolev
constant and the integral of ()-curvature are bounded along the flow, there exists a sequence

of renormalized solutions to AOF that converge to a singularity model.

Theorem 1.2.4. Let (M",g(t)), n > 4, be a compact solution to AOF that exists on a
mazimal time interval [0,T) with T < co. Suppose that sup{Cq(M,g(t)) : t € [0,T)} < occ.
Let {(zj,t;)}ien € M x [0,T) be a sequence of points satisfying t; — T, |Rm(z;,t;)| =
sup{|Rm(z,t)| : (z,t) € M x [0,¢;]}, and \; — oo, where \; = |Rm(x;,t;)|. Then the

sequence of pointed solutions to AOF given by {(M, g;(t), z;) }ien, with
~3 2
9i(t) = Nig(t; + A, 2t), t€[=A7t;,0]

subsequentially converges in the sense of families of pointed Riemannian manifolds to a
nonflat, noncompact complete pointed solution (Moo, goo(t), Too) to AOF defined for t €

(—00,0]. Moreover, if n =4 or

sup / Q(g(1)) dVy(py < 00,
tel0,7)J M

then O(goo(t)) =0 for all t € (—o0,0].

The next result states that if a nonsingular solution to AOF does not collapse at time
oo and the integral of @)-curvature is bounded along the flow, there exists a sequence of
times ¢; — oo for which g¢(¢;) converges to an obstruction flat metric. We note that in
cases (2) and (3), the boundedness of the integral of the @) curvature along the flow implies

that goo(t) is obstruction flat. However, this does not imply that d;goc = 0. Rather,



n
Otgoo = (—1)”/2C(n)(A7_1R)goo, i.e. the metric is still flowing by the conformal term of

AOQOF within the conformal class of goo(0).

Theorem 1.2.5. Let (M, g(t)) be a compact solution to AOF on [0,00) such that

sup ||Rm|| < 00.
te[0,00) g(t)

Then exactly one of the following is true:

1. M collapses when t = oo, 1i.e.

li f =0.
R RO

2. There exists a sequence {(z;,t;)}ieny € M X [0,00) such that the sequence of pointed

solutions to AOF given by {(M, g;(t), z;) }ien, with

subsequentially converges in the sense of pointed Riemannian manifolds to a complete
noncompact finite volume pointed solution (Mso, goo(t), oo) to AOF defined for t €

(—00,00). If n =4 or

av [ ayavyg <o
t€[0,00)

then goo(t) is obstruction flat for all t € (—o0,00).

3. There exists a sequence {(x;,t;) ey € M x [0,00) such that the sequence of pointed

solutions to AOF given by {(M, g;(t), z;) };ieN, with

9i(t) = g(t; +1), te€[~t;00)



subsequentially converges in the sense of pointed Riemannian manifolds to a compact
pointed solution (Mo, goo(t), Too) to AOF defined for t € (—o0,00), where My is
diffeomorphic to M. If n =4 or

sup )/M Qg(t)) dVy(p) < o0,

te[0,00

then goo(t) is obstruction flat for all t € (—oo,00) and there exists a family of metrics
Goo(t) conformal to goo(t) for all t € (—00,00), with joo(t) = §oo(0) for all t €

(—00,00), such that Goo(0) is obstruction flat and has constant scalar curvature.

1.2.2 Rigidity Result

We can gain further insight into noncompact singularity models for AOF by studying the
rigidity of such spaces. The rigidity of obstruction - flat metrics has been studied in the past
twenty years, especially in dimension four, in which the ambient obstruction tensor and the
Bach tensor coincide. Let (M, ¢g) be a Riemannian manifold. The Bach tensor in dimension

n > 4 is given by
1 kol 1 kl
Bz’j = mv \Y% Wkijl + mR Wkijl'

We note that, in all dimensions greater than 3, the Bach tensor is (derivative) order 4 in g,
whereas the ambient obstruction tensor is, in dimension n, order n in g. Let Y = Y[g] denote

the Yamabe constant of the conformal class [g]:

In(IVul® + 525 Ru?) dV

™ e N
ugéo <fM un=2 dV>



Here, all geometric objects are with respect to the conformal representative g. Kim proved
in [27] that if (M, g) is a noncompact complete Bach - flat Riemannian 4-manifold with (the
scalar curvature) R = 0 and Y > 0, then there exists €y > 0 such that if ||Rm||% < €, then

Rm = 0.

Let Rm denote the traceless curvature tensor:
(Rm); 51 = Riikt — L(girg:1 — 9i19:%)
ijkl ijkl — 12\9ik951 — 9il9jk)-

Streets proved in [43] a similar result labeled Theorem 3, replacing Rm with Rm and the
Yamabe constant with the Sobolev constant, as follows. If (M, g) is a noncompact, complete
4-manifold that is critical for the L2 flow, and satisfies R = 0 and C g < 00, then there exists

€g > 0 such that if ||Rm||% < €0, then Rm = 0.

Chu generalized in [16] the result of Kim given above by showing that if (M, g) is a noncom-
pact complete Bach - flat Riemannian 4-manifold with R > 0 and Y > 0, then there exists
€o > 0 such that if HRmH% < €, then (M, g) has constant sectional curvature. Chu and Feng

generalized further to n-dimensional Riemannian manifolds:

Theorem 1.2.6 (Chu and Feng [17], Theorem 1.1). Let (M", g) (n > 4) be an n-dimensional
complete noncompact Bach - flat Riemannian manifold with constant scalar curvature and

positive Yamabe constant. Assume that [ym |Rorn]2dVg is finite when n > 5 and one of
(i)-(11i) holds:

(i) The scalar curvature R > 0.

(ii) The scalar curvature R = 0.

(i1i) The scalar curvature R <0 and n > 9.



Then there exists a small number ¢y such that if [ym |Rm|"/2 dVy < c1, then (M"™,g) is a

space of constant curvature.

Streets used the rigidity results proved in [43] to rule out bubbles (curvature is concentrated
in a small ball) along the L? flow in the proof of his convergence result, therein labeled
Theorem 1. This theorem states that 4-manifolds with positive Yamabe constant and small
traceless curvature tensor L? energy converge under the L2 flow to a spherical space form.
We believe that our rigidity results may be similarly useful in a proof of a sphere theorem

for AOF.

The next theorem states that if noncompact singularity models possess sufficiently small
energy, they are actually flat. Let (M", g) be a complete noncompact Riemannian manifold,

where n is even and n > 4. Denote the open geodesic ball of radius p about x € M by

B(z,p,g). Also let S(p) = 0B(x,p) and A(a,b) = B(x,b) \ B(x,a). Define || - ||, for
L<p<ooby|lp=I"lrr(rrg)-

Definition 1.2.7. The L? Sobolev constant of a noncompact Riemannian manifold (M, g)

is the smallest C'g such that Hf||22n < Cg||Vf|3 for all f € CL(M).
n—2

Definition 1.2.8. We say that (M, g) possesses a volume growth upper bound if there

exist g € M and Cy > 0 such that vol B(zg, p,g) < Cy - p" for all p > 0.

Definition 1.2.9. Fix g € M. If z,y € M, let d4(x,y) denote the distance between z and
y with respect to the metric g. Define p by p(x) = dy(zg, z) for x € M. We say that (M, g)

has quadratic curvature decay if there exists C > 0 such that |[Rm| < C) - p~2on M.

Theorem 1.2.10. Let (M™,g) be a complete noncompact Riemannian manifold. Suppose

that n is even and n > 6. Assume that

1. (M, g) is obstruction-flat and has constant scalar curvature.

2. The L? Sobolev constant C's of (M, g) is bounded.

10



3. (M, g) possesses a volume growth upper bound.
4. There exists K > 0 such that |[Rml|co < K.

5. (M, g) has quadratic curvature decay.
Then there ezists e = €g(n, Cg) > 0 such that if HRmH% < €, then (M, g) is flat.

In dimension 4, we can omit the volume growth upper bound, the L°° bound on Rm, and

the quadratic curvature decay on Rm to obtain the following stronger result:

Theorem 1.2.11. Let (]\447 g) be a complete noncompact Riemannian 4 - manifold. Assume

that

1. (M, g) is obstruction-flat and has constant scalar curvature.

2. The L? Sobolev constant C'g of (M, g) is bounded.
Then there ezists ey = €g(Cg) > 0 such that if |[Rmlj2 < €g, then (M, g) is flat.

By assumption, we can choose g € M for which there exists Cy, > 0 such that vol B(zg, p) <
Cy - p" for all p. We also assume that at the same point zg, there exists Cp > 0 such that

[Rm| < Cg - p~2 on M. We define a cutoff function ¢ for each R > 0 by

(a) ¢ =1 on B(xg, R)
(b) ¢ =0o0on M\ B(zg,2R)
() IVelloo < Ap~! for all p > 0, where A > 0 is independent of p.

We prove our rigidity results via a Liouville theorem type argument, using integral estimates,

n
in a manner similar to the method of proof in Streets [43]. First, we estimate ||V771Rm||%

11



n_
by (A2 1Rc, Re) and lower order terms. This estimate allows us to apply the fact that M
n_
is obstruction-flat and has constant scalar curvature to replace (A2 1Rc, Re) with a sum of
lower order terms in Rm. The various lower order terms can be estimated via interpolation

for R> 1 by
0160/ o2V 2 "Rm|? + CyegR 2, (1.2)
M

where C1 = C1(n, s,Cg) and Cy = Cy(n, A, Cg, Cy).

We explain the dependence of C1, Co on the constants C'g, A, Cy, Cg. We employ interpola-
tion results that we derived from a Sobolev inequality and interpolation results (dependent
on A) from Kuwert and Schétzle [31]. A bound on the Sobolev constant is needed to gen-
eralize the Sobolev inequality from R™ to complete noncompact manifolds. Since we only
assumed a bound on ||[Rm||,, 5, we used our volume growth upper bound to control [[Rm||q
for o < 5. We used these two types of estimates in the derivation of our interpolation results.
We also needed to estimate via interpolation terms in Rm containing derivatives of orders
at most n — 4. While the Sobolev constant bound and volume growth upper bound were
sufficient to estimate terms of derivative order at most % — 1, we were not able to estimate
in this fashion terms with orders between % — 1 and n — 4. Instead, we integrate by parts,
which eventually yields a sum of integrals whose integrands are of order at most 4 — 1. This
process generates several error terms containing V. The quadratic curvature decay bound

induces pointwise decay bounds for all derivatives of Rm, which suffice to control these error

terms.

n
We choose ¢ small enough in inequality (1.2) to allow us to bound HVT_IRmH% by CoegR™2;
g only depends on n and Cg (we choose s sufficiently large so that the exponent of ¢ remains
n
nonnegative throughout the proof). Our bound on |]V7_1Rm||% by CoegR~2 implies that we

n
can bound ||[Rm||2 by CoegR™2 as well. We estimate |[Rm]||2 by vaflRmH% and CyegR™2

12



n
via a Sobolev inequality. Then, our previous estimate of ||V§_1Rm||% by CoegR™2 allows
us to bound |[Rm||2 by CyegR™2. Letting R — 0o, we conclude that [|[Rm||2 = 0 and M is

flat.

1.3 Background

1.3.1 Q Curvature

Here we recall a description of @) curvature given by Chang et al. in [10]. The @ curvature
was introduced in four dimensions by Riegert in [41] and Branson-Orsted in [8] and in
even dimensions by Branson in [7]. It is a scalar quantity defined on an even dimensional
Riemannian manifold (M",g). If n = 2, we define @) to be Q = —%R = — K, where K is
the Gaussian curvature of M. The Gauss-Bonnet theorem gives [ QdV = —2mx(M). The
() curvature of a metric g = e2f g is given by e2f @ =Q + Zf, where the Paneitz operator
2 introduced by Graham-Jenne-Mason-Sparling in [22] is given by £ f = Af. If n =4, we
define () to be

Q=—LtAR— 1RPR, + LR%.
The Chern-Gauss-Bonnet theorem gives
/de = 872y (M) — }I/|W\2dv.

In particular, if M is conformally flat, then [ QdV = 8m2x(M). The Q curvature of a metric

g=e*gis given by eAf é =Q + Zf, where the Paneitz operator & is given by
Pf=VaVIVP +2RY — 2RgIV, .

13



In general when n is even, we are only able to write down the highest order terms of () and

K

1 ﬂ_l n
Q= —mAQ R+1lots, Zf=A2f+lots.

Nonetheless, () still has nice conformal properties. Under a conformal change of metric
G = e2f g, we have "/ @ = Q+Zf. The integral of @) is conformally invariant. In particular,

if M is locally conformally flat, we have an analogue of the Gauss-Bonnet theorem:

/de = (—1)Z(% — 1127 e 2 (M),

1.3.2 Ambient Obstruction Tensor

Fefferman and Graham proposed in [18] a method to determine the conformal invariants
of a manifold from the pseudo-Riemannian invariants of an ambient space it is embedded
into. They introduced the ambient obstruction tensor O as an obstruction to such an
embedding. They subsequently provided a detailed description of the properties of O in

their monograph [19].

We define several tensors that we will use to express . The Schouten tensor A, Cotton

tensor C', and Bach tensor B are defined as

Aij = kg (Rij = gy Raig). - Cigr = ViAyj = Vikie,  Bij = Vi Cijp = AWy
We obtain via the identity Vlkakijl =(3— n)VkC'ijk that

1 I—k 1 kl
Bij = 5=V Vi Wit + 9= BY Wi

14



We define the notation P;"*(A) for a tensor A by

PlMA)= Y V1Ax--xV'kA
i1+t =m

The following result describes O. The form of the lower order terms is implied by the proofs.

Theorem 1.3.1 (Fefferman-Graham [19], Theorem 3.8; Graham-Hirachi [21], Theorem 2.1).
Let n > 4 be even. The obstruction tensor Oy; of g is independent of the choice of ambient

metric g and has the following properties:

1. O is a natural tensor invariant of the metric g; ie. in local coordinates the components

1

of O are given by universal polynomials in the components of g, g+, and the curvature

tensor of g and its covariant derivatives, and can be written just in terms of the Ricci

curvature and its covariant deriwatives. The expression for O;; takes the form

n/2
Oj = A2 (AA; — V; VAR + 37 P (R
j=2
. n/2 _
AZTVIVEW + 3 PP (Rm),
=2

1
3—n

where A = vivi and lots denotes quadratic and higher terms in curvature involving

fewer derivatives.
2. One has O;' =0 and vjoij =0.

3. Oyj is conformally invariant of weight 2 —n; ie. if 0 <Q € C°(M) and g;; = Q2gij,
then O;; = Q27"0;;.

4. 1f gij 1s conformal to an Einstein metric then O;; = 0.

C.R. Graham and K. Hirachi express the gradient of () in terms of O:

15



Theorem 1.3.2 ([21], Theorem 1.1). If g(t) is a I-parameter family of metrics on a compact

manifold M of even dimension n > 4 and h = O¢|i—g g(t), then

n—2

] et avyy = 0B22 [0t vy,

0
ot
Define the adjusted ambient obstruction tensor O to be

21

(a3

n (—1)3

(’3:(—1)?(’)+2(n_1)( R)g. (1.3)

2)

We rewrite O in terms of the Ricci and scalar curvatures.

Proposition 1.3.3. If (M, g) is a Riemannian manifold, then

n/2
n_q 1 n_9 o n—2j
=A2 "A— —A2 P. 1.4
O TCRY VR+Z ' (Rm) (1.4)
7j=2
n n_q n/2
~ (=12 oy (—1)2 n_9_9 n—2j
=—"—A2 ——— A2 P. )
0="—3 Re+ 50— VR+JZQ 7~ (Rm)
Proof. First, we re-express O:
k 1 ik 1 ik
A" = 5= [gj Ryj = 551y B¢’ gkj]
1
= it | B~ e
1
=5
and
" n/2 .
0ij = A2 2(AA; = V;ViAK) + > PP (Rm)
j=2

16



n/2

n_9 ~9j

A2 VjViR—I—E P;L J(Rm).
J=2

— AT 1A
B Y 2(n—1)

Next, we re-express O using (1.4):

- (—1)2 n_
0 = (-1)20+ 5oy = (AT R)g
) Ba%-1,, (5D _1A ~292p n/2Pn 2R
= (-1) +2(n—1) —|—J:ZQ i (Rm)
(-D2 ma
T nmon A7 B
(-1)2 11 (~p2' o, (-pZ
=2t Rt o= M9t 5T
(-1)* L B
Ty L0 R)g+j§2Pjn /(Rm)
= (_1)%A3—1R - (_U%_lm QV2R+nZ/2PT‘ % (Rm)
n—2 2(n—1) = J

17



Chapter 2

Short Time Existence and Uniqueness

2.1 Preliminaries

We collect some facts about Riemannian manifolds that will be used to derive the evolution

equations.
Lemma 2.1.1. (Hamilton [23], Lemma 7.2) On any Riemannian manifold, the following

identity holds:

ARjpim =V jVmBiy = VViRpg + ViV Rinj — ViV Rj + R,

We prove a proposition that allows us to move k covariant derivatives past [ Laplacians.

Proposition 2.1.2. If A is a tensor on a Riemannian manifold and k,1 > 1, then
2l+k-2

VEALA = AlVEA + > V2R =2-iRm « VA,
1=0

18



Proof. First we claim that VA'A = AlVA + 2 1 v2=1=1Rm % V' A. For any tensor A,

VAA=V;VIV;A
=VIV;V;A+Rm*VA
= VIV, V;A+VRm+ A+ Rm*VA

= AVA+ VRm* A+ Rm *x VA.

Suppose the claim is true for [ — 1. Then

21—-3 21—-3
V2D VIS TR« VIA) =V ) (VETE R x VIA + V23 Rm « VITLA)
1=0 1=0
20—3
=V | > V2 Rm*V'A+Rm« V24
1=0
21—-3
= > (VH T Rm « VA + V2 Rm « V1 4)
1=0
+ VRm * v2i=2 4 + Rm * v2i=14
21-3
=) V1 Rm« V'A+ VRm + V224 + Rm « V214
1=0
20—1
=Y V1 Rm« VA,
1=0
Next,

VAlA = VAAISL A

— AVATA - VRm + V24 - Rm+ VH 14

21-3
=A[ATIVA+ Y VI Rm viA) + VRm x V* 724+ Rm + V¥ 714
1=0
21-1
=AVA+ Y VI Rm « VIA + VRm « V¥ 724 + Rm « V2714
1=0

19



20—1
— Alva + > V2 -1-iRy « VA,
=0

We have proved the claim. Assume the proposition holds for £ — 1. Then

2l4+k—3 2l+k—3
VvV Y VIS RM A vIA= Y VIR £« VA 4 Rm o« VETR24
i=0 i=0
20+k—2
_ Z v2l+k—27iRm » ViA.
1=0
Lastly,

VEALA = wVFIALA

2014+k—3
=v | alvFlay Y VIR A VA
1=0
21—1 2014+-k—3
_ Alvvk—1A+ Z v?l—l—iRm " Vlvk—lA_'_ \V4 Z V?H—k—?}—iRm* VZA
=0 1=0
201 201+k—2
_ Alva—{- Z V?l—l—iRm* vi+k—1A+ Z V?H—k‘—Q—iRm* V’LA
=0 =0
20+k—2
= A'VFA 4+ Z V2AHE=2-IRy « VI A,
i=0

We prove a proposition that allows us to move k covariant derivatives past [ covariant

derivatives.

Lemma 2.1.3. Let | > 1. Then, for any tensor A,
-1

VViA=ViVA+ > VI lRm % VYA,
1=0

20



Proof. The lemma is true for [ = 1 since
Assume that the lemma is true for all integers at most [ — 1. The inductive hypothesis yields

V,ViA=v,v, Vit

= V,VpVI T A+ Rm+ VITlA

-2
=Rm =V 14+V, |[VIV,A+) V2 R« VA
=0
-2
—Rm* VT A+ VIV A+ (VI Rm « VA + V727 Rm 4+ Vit A)
0

o~ .

—2 -1
=V'VpA+Rm+ VA +Y VI Rm« VIA+ ) VI Rm < VA
1=0 1=1
-1
=V'V,A+) VI R« VAL
1=0
We have obtained the desired equation. O]

Proposition 2.1.4. Let k,l > 1. Then, for any tensor A,
el =2 ‘ .
VIVIA=VIVFA+ Y V2R« VAL

1=0

Proof. We apply the inductive hypothesis:

ViViA = v(VEIV A)

k+1-3
=V |VIVFA+ Y v Rm A viA
1=0
k+1-3
=V(VIVFA) + v | Y VEH TR« viA
=0

21



We expand the two terms on the right side of the last equality. Using Lemma 2.1.3, we

expand the first term:

V(VIVF4) = vWi(vF—14)

-1
=VIUVFIAL Y VI Rm < VI A
i=0
k=2 ' |
=VivFA+ Y VTR A VAL
i=k—1
We expand the second term:
k13 . ‘ k13 . ‘ | ‘
v Z vk-i—l—?)—ZRm * VZA _ Z (Vk‘l-l—Q—ZRm * VZA + Vk+l—3—ZRm " v2+1A)
1=0 1=0
k+1—3
= ) VI Rm A VA
1=0
k=2 | '
+ Z VFH=2-iRm « ViA
=1
k+1—2
= Z VFH=2-1Rm « VI A.
1=0
Finally,
k13 . ‘
Vkle _ v(vlvk71A> 4V Z VkJrlfoZRm * VZA
1=0
kel —2 | k42 . ‘
_ vlva_'_ Z Vk+l—2—ZRm % VZA—l— Z vk-l-l—?—ZRm* VZA
i=k—1 1=0
k-2 _ '
=VIvFA+ Y VT Rm A viA
=0
We have obtained the desired equation. O]
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Proposition 2.1.5. Let M be a manifold and g(t) be a one-parameter family of metrics on

M. If A is a tensor on M and k > 1, then

k—1
OVFA=VFR A+ VI(Voyg » V1 4).
7=0

Proof. First

r

VA= 828,5/1]“1’% B Z [atrl“ Akl"'ks

31+ dr Jm jl"'jm—lljerl"'jr +T atA~

1Im 31 dm—1 i1 dr
m=1

S

kp kp-ky_ 1kt ks L ky-ky_1qky1 ks

P p—19"p+ P p—1"p+

+ Z:l {aﬁriq Ajyir +Lig Oy
p:

=VohA+I'x A

= VOrA+ Vg x A,
so the proposition is true when k£ = 1. Assume the proposition holds for £ — 1. Then

ovFA =09, vvFE14

=VoVFA+ Vo« VA

k—2
= VEQ A+ Vg x VFTA+ VY~ VI (Vg + VF~271 4)
7=0
k-2 j
= VEQ A+ Vg« VFIA+ VY Y Vit g vE2TIA
7=01=0
k-2 j
= VEQA+ Vg » VF A+ N (V25,95 VE2714
7=01:=0
+ VHlatg * Vk_l_iA)
k-2 J
=V A+ Y Vo« VETITIA 4 Vg« VA
j=01i=0

23



k—2
+ Z Vj+28tg % Vk‘—?—jA

j=0
k-2 J
=V A+ N Vg« VI AL Vo g« VA
j=0 i=0
k—1
+ Z Vj—l—latg % Vk_l_jA
j=1
k=2 j k—1
=VFA+Y N VIO« VALY VIt g g VETIT A
j=01i=0 §=0
k—2
= VEQA+ D VI (Vg = VF1774) + VF1(Voyg « A)
j=0
k—1
= VF A+ VIV« VF174).
7=0

2.2 Evolution Equations

We derive the equations for 9 VFRm for every k > 0.

Proposition 2.2.1. If (M, g(t)) is a solution to AOF, then

(— )%H n fag n—2j-+2
=2

Proof. Let g(t) be a one-parameter family of metrics on M and h = 0¢g. The evolution of

Rm is given by ([23], Theorem 7.1)

OiRijpy = 3[ViVihj + V¥V hix — ViV — V;Vgh] + Rm o« b,

24



n
If h = A2 1R then, using Proposition 2.1.2 in the second line and Lemma 2.1.1 in the

third line,
1 n_1q n_1 n_1q n_1q
atRijkl = Q[VivaQ le + Vjle2 R;. — V,; VA2 Rjk - VjvaQ Ril]
n_q
+Rm+ A2 "Re
n_q
= %AQ [VinRﬂ + VleRik — ViVlek — VijRil]

n—2
+) V"2 Rm * V'Re + Py %(Rm)
=0
n
= IAZ T ARy + Ru'?) + PP (Rm)

n
1A7RZ~W + Py 2(Rm).

-2

n
Ifh=A2"2V2R then, using Proposition 2.1.2 in the second and fourth lines,

ORiip = LViVRAT T2V, ViR + V; VA2 2V, VR - V,V,A2 2V, VR

n_9 222
— VjvaQ ViViR|+ Rmx A2 °“V*R
= %A%_Q[VinVjVZR +V;ViV;VLR~V;V|V;Vi R - V,;V.V;VR]
n—2 ‘ .
+> V" Rm# V'V2R + Py %(Rm)

1=0
= LASTV,V,V,V R+ Y,V VYR — ViV VYR — V;V,.V,V,R]

+ PgLiQ(Rm)
= %A%‘Q[vivkvjvlﬁ’ +V;ViViViR~V;V;V;VIR - V,;V,V;V.R

+ VRm * VR + Rm * V2R + Py %(Rm)

= P}72(Rm).
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1t h=Y21"% P (Rm), then

n/2 n/2
—2j —2j
&Rm = V> Z Pjn J(Rm) + Rm * Z P;.l J(Rm)
=2 =2
n/2 n/2

=S PR (R + Z P (Rom),

Combining these results, we conclude that if h = O then

(-n2*!
2(n —2)
n/2 n/2
n72j+2 n—2j
IR ST
=2
(_1)%4_1 Tl/2—|—1

. .
_ 7% A%R P22 Rm).
20n —2) m + ; ] (Rm)

;R = AZRm + PP2(Rm) + PP 2(Rm)

Proposition 2.2.2. If (M, g(t)) is a solution to AOF, then

k ()2t g e A+k+2
9 VFRm = © L~ _ATVFR P2 (Rm).
Vi Rm = gy AV R ZZ; (Rm)
Proof. We compute:
k=1 ‘ k-1 n/2 .
> VI (Vg # VF 1 IRm) = > v [>T P2 (Rm) « VAT Rm
=0 =0 1=2
= ks 2l4+-k—
_ n—20+ J
ZWZPZH Rm)
J=0 =
k— 1n/2
_ 2l+k
ZZP;}H (Rm)
7=01=2

26



n/2

n—20+k
Z P (Rm)

n/2+1
_ Z Pln—2l+k+2(Rm)_
=3

Then, using Proposition 2.1.5 in the first line, Proposition 2.2.1 in the second line, and

Proposition 2.1.2 in the third line, we get

k—1
O VFRm = VO Rm + > VI (Vg + V¥ 17IRm)
j=0
( 1)%+ n/2—|—1
_\— k 2 n—2542
CC) )v A2 R +VF > P; (Rm)
j=2
n/2+1
=3
n/2+1
(-1)2"! k k-2 n—2j+k+2
ZWA V¥R;jk + Pyt (Rm) + JZ_:Q P (Rm)
n/2+1
=3
(_1)%+1 n/2+1

2(n — 2) ikl % ( )-

2.3 Short Time Existence and Uniqueness

The ambient obstruction flow is a quasilinear flow of order n in the metric g. E. Bahuaud

and D. Helliwell have shown the following existence and uniqueness result for AOF:
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Theorem 2.3.1 ([3] Theorem C, [4] Theorem C). Let h be a smooth metric on a compact
manifold M of even dimension n > 4. Then there is a unique smooth short time solution to

the following flow:

n
0g=0=(-1)30+ N2 _

9(0) = h,

where O is the ambient obstruction tensor on M and R is the scalar curvature of M.

We briefly illustrate that applying the DeTurck trick to the system (2.1) results in a strongly
parabolic system. Due to the diffeomorphism invariance of M, the system (2.1) is not
strongly parabolic. We define the following vector fields:

VE = g" (T — T(R))

(-n2~" n
=~ 77 A2
XSt
Yy = ﬂ(vﬁ—%)ﬁ

4(n—1)
W=X+Y.

We show that the following system is strongly parabolic:

dg =0+ Lyrg (22)

9(0) = h.

We show this by computing the principal symbol o of the linearization of O+ Lywg at h.

We know from Proposition 1.3.3 that

(—1)% n (_1)%71 n n/2

A ~1 909 n—2j
=-—72_"A2 — A2 °V .

@) - 2A Re + 2(n 1)A R+jE2PJ (Rm).
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We then rewrite the system (2.2) as follows:

n n_q n/2
( 1)2 R_1 ( 1)2 922 n—2j
= 7 A? + + —A2 “V°R+ Lyg+ g P. .
Org —" Re+ Lxg 2 —1) R+ Lyyg f (Rm)

J=2

Let ¢ € T*M. The principal symbol of the first two terms of (2.3) is given by

_1yn/2-1 _

= LoD 1)(Q) - o[D(=2Re + Ly g)) () (1)
_1\n/2
e

(2.3)

We used the fact that the Ricci-DeTurck flow is strongly parabolic (Chow-Knopf [14], The-

orem 3.13). The highest order terms of the next two terms of (2.3) cancel each other out,

and the remaining terms are of lower order. Therefore the principal symbol of the system

n/2—1
(2.2) is %mnh, implying that this system is strongly parabolic.

We show that we can pull back the short time solution of (2.2) to give a solution of (2.1)

that exists for ¢ € [0,¢€). It follows from the parabolicity shown above that there exists € > 0

for which the solution to (2.2) exists for ¢ € [0,€) via parabolic PDE theory. Next, there

exists a family ¢ : M — M of diffeomorphisms satisfying

0
% - _W(Spb t)

for t € [0,€). The existence of the ¢y follows from the existence and uniqueness theorem for

nonautonomous ODE on manifolds, and the uniform e follows from bounds on W that result

from the compactness of M. We now show that ¢} ;g satisfies (2.1):

(¢} g) = Os|s=0(@sst9(s + 1))

29



errg(s+1) — ©ig(t)

= lim
5—0 S
Fag(s+ 1) — o g(t “a9(t) — ofglt
i Pert9 D — 0500 85149 — w9 (t)
5—0 S 5—0 S

= 0109 + Os|s=0(pf159(t))
= GHl(-1)20(9) + g (A2 R(g(1)]g(t) + Liwrg (1)
+ as|s:0[<80t_1 ° 90t+3)*902<9(t)]

= (-1)20(p}9(1)) + grpa=g (A2 R(oFg(0)]eta(t) + o5 (Lwo(®))

31 R(ptg(t)eta(t):

Since pg(0) = g(0) = h, @;g(t) satisfies (2.1). Therefore these diffeomorphisms pull back

the short time solution of (2.2) to give a solution of (2.1) that exists for ¢ € [0, €).

30



Chapter 3

Smoothing Estimates and Long Time

Existence

3.1 Local Integral Estimates

In this section, let (M",g) be a Riemannian manifold that is a solution to the AOF on a
time interval [0, 7). We give local L? estimates for VFRm for all k € N. We need to use local
L? estimates since we can only convert L2 estimates to pointwise estimates locally. These
local pointwise estimates are used in the proof of the pointwise smoothing estimates given in
Theorem 1.2.1. Specify the Laplace operator by A = —V*V. Let ¢ € CZ°(M) be a cutoff

function with constants A, A; > 0 such that

sup |Vl <A,  max sup [Vig| <A
te[0,T) 0<i<% tel0,T)

Lemma 3.1.1. Suppose M, ¢ satisfy the above hypotheses. Let A be any tensor and p >

1,q > 2. Then
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/ PATA, A) = / ZP‘” * VA% VIA
M [p

2q—2
/ Z WPV Rm % VA « A.

Proof. We first claim that if ¢ > 2, then

2q—2
AIA = (—1)1(V*)IVIA+ Y V27 Rm « V' A,
1=0

If ¢ =2, we get, using Proposition 2.1.2, that

A2A = —V*VAA
= —V*AVA + V*[VRm x A + Rm * VA]

= (V*)’V2A + V?Rm * A + VRm * VA + Rm = V24,
which agrees with the claim. Suppose the claim is true for every integer less than ¢q. First,

AIA = —V*VAI 14
2q—3
=-V* |ATIVA+ Y VI Rm« VA
1=0
2q—3
= —VATIYA L Y |92 R« VA 4 VA R VLA
1=0
2q—3 2q—2
VAT A ¢ Z V24—27Rm 5« VIA + Z V227 1Rm x« VA
=0 =1
2q—2
= —V*AIIVA+ )" V2 R« V/A,
1=0

32



Applying the last equation above and then the inductive hypothesis,

2q—2
AIA = —V*ATIVA+ Y VX2 Rm+ V'A
1=0
2q—4 _ ‘
=—V* | ()T (VHIIVITIVA+ Y vH T Rm £ VIV A
1=0
2q—2 . .
+ Z V202-Rm « Vi A
=0
2q—4 ‘ . 2q—4 ‘ ‘
= (—DUVIVIA+ Y VX Rm« VI A4 Y " v Rm « VT2 A
1=0 1=0
2q—2 . .
+ > VX2 Rm« V'A
1=0
2q—3 . . 2q—2 ' _
= (—DUVIVIA+ Y VH 2 Rm«V'A+ > VX2 'Rm« V'A
1=1 1=2
2q—2 . ‘
+ > VX Rm« V'A
1=0
2q_2 B .
= (-)UV*)IVIA+ Y VH 2 Rm« V'A.
1=0

This proves the claim. We compute

q

(—1)q+1/Mv'JA*vq( PA) = (— )q+1/quA*qu—i<¢p)*viA
=0

)7+t / Z > VZA*VQA*HV iy

<p>0 i= 0|a‘ =q— {

(-1 q+1/¢>02p‘1Z )+ VA VIA.
1=0
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Finally, applying the claim,

2q—2
/M APINTA, AY /M P <(—1)Q<v*)qvu + 2% V22 iRy £ VA, A>
2q—2

:(—1)@!/ VIA* V(P A) + / D PPV R« VA % A

MZO

/ ZP“ )% VA % VIA
<p>0

2q—2
/ Z(ppVZQ 2=Rm * V'A « A.

]
Proposition 3.1.2. Suppose M, p satisfy the above hypotheses. If p > 1,k > 0, then
9 ] g—i—k’ 1
el PIVFRmZ = - | WPIVIFRm|2 +
gy Mgo|Van|— n_2/90]V2 R / ZPn+kl+2 m)
M M
A
2 n_, . Ja
+ / > B (¢)* VFRm « V" 2Rm. (3.1)
[p>0) =

Proof. First, we have

2/ ¢p|VkRm]2d%:2/ o { L 9FRm, VFRm ) av,
ot Iy M ot

0

k 2 99

d
+/M¢P|v Rm n Vy.

We can expand the first integral by substituting Proposition 2.2.2, which states that for our

flow,
Z+1
ot “2m-—2) —
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Applying Lemma 3.1.1 to the first term of %V’“Rm gives that

n
+1 +1 2
Qr/sz?p AkaRm VkRm )" / ZP7 *Vk+ZRm
ga>0
+ VP 3 R

n—2
+ / Z @PV"‘Q—iRm « VFHRm x VFRm
1 Dtk 12
- —n=9 gop\VQ le

—1

n . o
P7 (p)x V¥ Rm « V" 2Rm

Substituting the second term of %VkRm into the inner product gives that

/ <kam Z P 20-4h+2 (R > /spp Z P 202k (R
M
Bik-1
/Sﬁp Z P”+k 2 (Rm).
Since
n
dg 1 209 2
e —AZ 'Re+ AT %Y R+ZP” “(Rm)

1=2
n
= V" Rm + V" **?Rm + > P/ *(Rm)
1=2

n
2
ZPTL 21 Rm

1
=1

.
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we have

n

2
) .
k 209 k 2 -2
/ ©P IV Rm| E/ ©P(V¥Rm)* E P'""“"(Rm)

1=1

/ Z P 221+2k (Rm)

7+2
_ / P S PR Ry
Mo =3

n
2+k‘ 1

/90p Z P”+k l+2 Rm).

Combining all of these results yields

0 1 Nk
a/@mkamF = —m/s@pW?* Rm|2
M

M
51
%71’ k+1 k+
+ ZPP (p) * VF'Rm « V¥ " 2Rm
[p>0] =
F+k—1
n-+2k—2 21
1 L A COR ED SI T
M M I=k
GAk—1
D 21
+/90 P72‘+k 1+o(Rm)
i 1=k
1 n
_ /¢p|v2+’“Rm|2
n—2
M
51
TR R——
+ Py () * V'TRm +« V" 2Rm
[p>0] =0
GAk—1
D 21
+ / ¥ Py k142(Rm)
i 1=k
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We estimate the last two terms of (3.1). First, we recall two corollaries from the paper [31]

of E. Kuwert and R. Schéitzle.

Proposition 3.1.3 ([31], Corollary 5.2). Suppose M, ¢ satisfy the above hypotheses. Let A

be a tensor. If 2 < p < oo and s > p, then for every e > 0,

1 1 1

D D p
([ ware) <e( [ |v2A|Pso5+p)p+f( / |A\%Sp> ,
M M € [>0]

where ¢ = ¢(n, p, s, \1).

Proposition 3.1.4 ([31], Corollary 5.5). Suppose M, ¢ satisfy the above hypotheses. Let A

be a tensor. Let 0 < iy,...,ip <k, 11+ ---+ 1 =2k, and s > 2k. Then

'/ (psvilA*"'*virA‘ < CHAH252 </ SpslvaFdV-i- HAH% [<p>()]) )
M M |

where ¢ = c(k,n,r,s,A1).

We estimate the last term of (3.1).

Lemma 3.1.5. Suppose M, p satisfy the above hypotheses. If I > 1,q > 0, then for every

e >0,

/902”q|lem\2§e/ @2Hq+2|VZ+1Rm!2+%/ @|Rml?. (3.2)
M M € Jp>0]

where C'= C(n,l, A1, q).

Proof. We prove the inequality (3.2) by induction on I. If [ = 1, the inequality (3.2) follows

immediately from Proposition 3.1.3. Assume that [ > 2 and (3.2) is true for all integers at
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most [. Then, applying Proposition 3.1.3 in the first line and the inductive hypothesis in the

second line,

C
/ P22 g Ry 2 < / S02z+4+q|vz+2mm|2Jr_/ P27 R 2
M M € Jm

€
2
€ C ¢
5/ 902”4+‘1|v”2Rm|2+——/ P2 g Ry 2
M € 2C Jur
ccC
€ e Jlp>0)
€ 1
_ _/M s021+4+q|vz+2Rm|2Jr_/M P2 g Ry 2

IN

Y|Rm|?

2 2

C / 9
4+ —— ©?|Rm|~.

Collecting terms, we see that (3.2) is also true for [ + 1. O

Lemma 3.1.6. Suppose M, ¢ satisfy the above hypotheses. If ¢ > 0 and 0 <1 < q, then for

every € > 0,

/ 302l+T|VlRm|2 < Eq—l/ S02q—&—7"|qum|2 + Ce_l/ gOr|Rm|2.
M M [p>0]
where C' = C(n,l,Aq,r).
Proof. Let m = ¢ — . The desired inequality is equivalent to
/ P2 2mAT a2 < / ST |G Rm|2 4 (M / SRmE. (3.3)
M M [p>0]

We prove this inequality by induction on m. If m = 0 the inequality is true:

/ g02q+T|Vqu|2§/ g02q+r|Vqu|2+C’e_q/ ©" |Rm|?.
M M [p>0]
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Assume the inequality (3.3) is true for every integer less than m. Then

/M P2 2mAT |7 a R 2 < E/M P20 2mr 42 g m AL R 2
+Cem_q/ ¢"|Rm|?
[p>0]

Seem_l/ ¢2q+r|qum|2+€C€m—q—1/ s07“|Rm|2
M [>0]

+C’€mq/ ¢"|Rm|?
[»>0]

= em/ 2477 | VIRm|? +Cem_q/ ©"|Rm|?.
M [¢>0]

We applied Lemma 3.1.5 in the first line and the inductive hypothesis in the second line. [J

Lemma 3.1.7. Suppose M, ¢ satisfy the above hypotheses. Let 0 < i < %—1 and p > n+2k.

Then for every d > 0,

i i+k Bk Bikn 12
/ Py (p)* V" Rm* V2 RmSC'(S/ ©PIV2"Rm|
M M

—n—2i—4k
+C5 n=2 / 2K Rm|?,
[p>0]

where C'= C(n, k,p, \,i).
Proof. We apply the Cauchy-Schwarz inequality:

n_. . . .
/ P} Z((p) « VP Rm « V2 T Rm < C’(A)/ |gop_(%_l) « VTP Rm « V%+kRm|
M M
< C’e/@/ g0p|V%+kRm|2
M

+ Ce—ﬁ @p_n+2i|vi+kR,m|2.
[p>0]
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The second term can be estimated using Lemma 3.1.6:

P2 iR Ry 2 / PR H(p—n—28) | itk 2
[>0]

Seg—z‘/ ’vg+kRm’2+C€—i—k/ P12k Ry 2.
M [p>0]

[p>0]

) —2i 4
Ifg=4—i-0, thenﬁzn—i—m. If we set 6 — ¢ 1 Z,thene:5n—2i and

: 4 (2i—m_._ —n—2i—A4k

Therefore

5 i+k Bk 8 5 HR Ry [2
/ Py (¢)* VT"Rm* V2""Rm < Ce / ©P|V2 TR
M M
+C6_B+g_i/ \V%+kRm\2
M
+C€—ﬁ—i—k/ @p_n_2k|Rm|2
[>0]
< 05/ oP|V 2 Rm|?
M

—n—2i—4k
L5 % / P 2F| Rm|?.
[>0]

We estimate the penultimate term of (3.1).

Lemma 3.1.8. Suppose M, satisfy the above hypotheses. Let K = max{l,||Rml/co}. If

p>n+2kandk <1< G +k—1, then for every 0 satisfying 0 < 6 < 1,

n

n 21
+ CK 26 2=n=2K | Runl[3 .
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where C' = C(n, k,p,A1,1).
Proof. Since p > n + 2k > n + 2k —2 = 2(4 + k — 1), Proposition 3.1.4 implies

G4k—l 9
[ ot < g ([ Rl 4 i g )
2
Let e = K~16n+2k=21. We have p — 21 > n + 2k — (n + 2k — 1) = 1. Via Lemma 3.1.6,

Dkl Noyg g N n
M M

n
+ oK 2R / ¢~ |Rm|?
[»>0]

n
205/ ¢n+2k+p72l‘vj+k‘Rm‘2
M

n 21
+ CK 2 TRs=n=2% / 2| Rm|?.
[>0]

Since k <I<§+k—-land 0 <6 <1, weget §20-n-2k > ¢ n >1and K2 < K2.

Therefore
/ o P k- 1o (Rm) §C5/M =2 g2 gy 2
21
L oK S thgarn -2k / A2 R 2

[p>0]

Dyk—1
+ K3 Rm3

< 05/ @p+n+2k_2l|v7+kRm|2
M

n 21
+ CK 2§ I=n=2% |[Rm|3
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Proposition 3.1.9. Suppose M, p satisfy the above hypotheses. Let
K = max{1, |[Rm||}.
If p > n+ 2k, then for every § satisfying 0 < 6 <1,

p 9 otk 2 Dk 2
8t||902kam||2 < _2(n1_2) [p2V?2 RmHQ + CK?2 ||Rm||2,[<p>0]

where C' = C(n, k,p,\).

Proof. Applying the estimates from Lemmas 3.1.8 and 3.1.7 to the equation (3.1) in Propo-

sition 3.1.2, we obtain

D b_n. ;.
el VFRm||3 < —725]l92 V2 Rm|f3
G+k—1 ol
P.n _ n n 1 —
+ ) [015Hg02+2+k lvﬁkRmy%+01K2+’“52Z—n—2ky|Rm\|g[@0]}
=k

n
7—1

p_n —n=2i—4k ~p_n_
+ X [Catlle BB Rl 4 o E 8 E R
1=0

¢>W}’
where C1 = Cy(n, k,p, A1) and Cy = Co(n, k,p, A1,7). From the inequalities

2n—|—4.k:§_n+4k7 2—n—2k§1+ n + 2k S—%
n— 2 n 2 2l —n — 2k n

1—-n—-2k<1—
we conclude

2l —n-2i—4k .
max({(sﬂ—n—% k<I<G+Ek—-1}U{é n-2 :0§i§%—1}> = T
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Therefore

p P n ~ P n
912 VFRm|3 < — L5102V 2 TFRm|3 + O] 02 V2 T Rm|[3

Dtk 1—-n—2k
+CK2Thgt—n ||Rm||2 lp>0]

Dtk 2 Dtk
||902V2 Rm|5+ CK?2 ||Rm||2 [p>0]
where

+k 1
C = Z Co, 5Emin{2(+_2)0_1,1}.
:k‘ ) —

N3
N3

~
o

Proposition 3.1.10. Suppose M, ¢ satisfy the above hypotheses. Suppose

max{||Rm|~, 1} < K
n
for allt € [0, 2]. Then

n n m
lp2" VI Rmls < CEC T sup Rl

),[p>0]’
te[0,aK 2]

where C' = C(m,n,a, N), for allt € (0,0zK_%].

Proof. Let f, for 0 < k < m denote constants given by S = (2n — 4)™ Fm!/k!. Define

m—1

D(k+1) Rk
R+ Y ButFlle2 V2 Rm3
k=0

G(t) = ™| p2 (Mg am
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Using Proposition 3.1.9,

e
S <t B E R 3
n 1) 2 1 5 1
+ " (= gl 2 IV Rm 3 4 g 2D Rl )
el D (k+1) o 2k
+ 3 Bkt jp2 MU 2FRm| 3
k=1

m—1
n(k Dk 5(k
+> ﬁktk<_ 2(n—1_2)\|902( vz ERry|3 +C%kK2< H)”Rm”g,[wo])

n n n
< mt™ 2"V 2 Rl + 7 (o, B2V [Rmf3 )
m—2
k w2 (k+1
+ 37 Braa o+ )F |2 B2 R 3
k=0

m—1
Dk+1) o B (k+1 L(k+1
+ 3 6 (— gl EIVEE ORmE + o BED R Z ).

Choose tg € [0, ozK_%] such that

HRmHLQ(tO),[g»O} = sup ||Rm||L2 ), Jo>0]"
tel0,aK 2}

Our choice of the constants (3. yields

dG m m+1
%<amK 0y K2 Rl

TL

n n
+Zﬁka 2P0 K2 Rl

= ZﬁkC’nka KQHRmHQ o>0)
k=0

= CK2 HRmHL2 (to),le>0]"
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Therefore

2" IVE R < G < BollRm|Z ) o+ OK Ry
< (B0 +a0)[RmlZy
- O”Rm”L?(to),[wor
proving the proposition. ]

Proposition 3.1.11. Let (M™, g(t)) be a solution to the AOF fort € [0,T). Let p € C°(M)

be a cutoff function such that

max sup ||[Vig|| 0(1s <A
0<z<2 te[0,7) CH(Mg(t))

Suppose maX{HRmHCO(M,g(t))’ 1} < K forallt e [0,@[(7%]. Then, for every ! > 0 and all
te (O,aK_%],

¢ 29 Rl o 0y o) S CO+EM2) sp R
n

Mg(t) = o Rl 22 g g0
te[0,aK 2]

where C'= C(l,n,a, \).

Proof. Let | = gm +r,1 <r < %. Then, applying Lemma 3.1.6 and Proposition 3.1.10, we

get

/ S0n(m+1)+2r|vg‘rrLJrern|2S/ SOn(m+2)|v72‘(m+1)Rm|2JFC// " |Rm|2
M M [v>0]

< (mtheoe? 4 ¢'e?

n _m—+1
I "2V Rm|l o, < O(CH 2 +C),

45



where

o= s [Rml
tel0,aK 2]

£),lp>0]"

3.2 Pointwise Smoothing Estimates

Let (M, g(t)) be a solution to AOF and let ¢ be a cutoff function on M. We give estimates
of |Vig0|g(t) for 1 <i < § that depend on spacetime derivatives of the metric and |Vigo|g(0)

for 0 <4 < &. We then give a proof of the pointwise smoothing estimates given in Theorem

1.2.1.

Lemma 3.2.1. Let M be a manifold and g(t) be a one-parameter family of metrics on M.

For a function ¢ € C*(M) and i > 2,

1—1
Vo= V' g% V.
j=1
Proof. Apply Proposition 2.1.5 with k =7 — 1 and A = V. m

Proposition 3.2.2. Let M be a manifold and g(t) be a one-parameter family of metrics on
M. For a function ¢ € C*(M) and i > 1,
)

(9t|Vi<p|3<t) = Z Vi I0,g % VI« Vip.
=1
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Proof. We compute, using the preceding Lemma 3.2.1 in the second line:

WV el = 09 x V'™ + 0V x Vi
1—1
=0 * V'™ + ) VIO« Vg Ve
j=1

)
= Z Viij&;g * ngo * Vigo.

J=1

]

Proposition 3.2.3. Let M be a Riemannian manifold with a one-parameter family of
metrics {g(t)}ejo,r) and ¢ € C(M). Fiz i = 1. Suppose that, for each j satisfying
0 <j <i—1, there exists Kj > 0 such that \Vjﬁtg(a:,t)\g(t) < K onsuppyp x [0,T] and,
for each j satisfying 1 < 5 < 1, there exists C’J’- > 0 such that |ng0]g(0) < C’; on supp .

Then there ezists a constant C; such that, for everyt € [0,T],
|Vi<p]§(t) < Cj = Ci(Ky, ..., Ki_1,CY,...,CLT).

Proof. Let ¢« = 1. Then Proposition 3.2.2 gives
at’VSO@(t) = 019 % V*? < CKOW@’;@)-

Solving the differential inequality, we get
Vel2 iy < IVl geF0T = CF

which proves the proposition for ¢ = 1.
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Fix ¢ > 2 and suppose that the proposition is true for every j satisfying 1 < j <7 — 1. Let

f(t) = |Vig0|3(t). Then, via Proposition 3.2.2,

fi’; < sz J0pg x Vi Vi

i—1
< IV 09|Vl V| + (19| |V o]

1
<> CK;_jCijf2 +CKyf
=1
SC(K07"'7Ki—1701a"'7ci—1)(1_'_f)
C(Ko,..., Ki_1,C,...,Cl_,T)1 + f).

Solving the differential inequality, we get

1+ (1) < (1+ £(0))eCT
|Vi€0’§(t) < (1+ |Vi€0’§(o))€CT

< (1+(C)2)elT = ¢2.

]

Proposition 3.2.4. Let (M",g(t)) solve AOF on [0,T], where n > 4. Fizr > 0. Suppose

there exist v € M, r > 0, and K > 0 such that

3n/2-3
max |1, sup HRmHCO(Bg(T)(:L’,QT),g(t)) + Z sup HVJRmH

(0,77 j=1
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Then for all 1 >0 and t € (0,7,

SC’(1+t_m/nV2) sup ||[Rm||

l
IVl 25,y .00 o) L Py @2ne®)

where C' = C(n,l, K,T,r).

Proof. Let ¢ be a cutoff function that is equal to 1 on Bg(T)(:E, r) and supported on
Bgyr)(z,2r). The inequality (3.4) provides CY bounds for the first 5 —1 covariant derivatives

of Rm, so that

J < C'(n, K,r). 3.6
o2y IV ot argr) < € Kor) 30
The inequality (3.6) provides bounds for the first % covariant derivatives of ¢ at time 7,
and the inequality (3.4) induces bounds on the first & — 1 covariant derivatives of 0. We
therefore are able to, for each ¢ € [0,77] and j satisfying 0 < j < %, to obtain via Proposition

3.2.3 bounds given by

HVjQOHC'O(M,g(t)) < Cj(n, K,n,T).

Therefore, via Proposition 3.1.11,

IV Rl 205, gt < " 2V R 27,0
<O+ S IR L2 uppe g 0)
— O(1 4+ ¢ [2/m1/2) t:[%,pT] IIRm||L2(Bg(T) (2.2r),9(1))
where C = C(n, I, K, T, 7). -

We are now able to prove the pointwise smoothing estimates given in Theorem 1.2.1.
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Proof of Theorem 1.2.1. We adapt the proof of Theorem 1.3 in Streets [44]. We will show
that if this inequality fails, we can construct a blowup limit that is flat and has nonzero

curvature. Consider the function given by
_ 7 Jj+2

It suffices to show that

(2.t 9) < C (K + i) (3.7)
t

3o

since for every [ satisfying 1 <[ < m,

2 m 2

I T2 e~ 1

7 Ran(o(a, D535 < D2 19 Rante )13} = Futont) < € (K " t—Q)
]:
and
142 m+2

I 1) 2 1) 2

IV Rm(g(z, 1))y < C | K+ = <C|K+— .
tn tn

Suppose that the inequality (3.7) fails. It suffices to take m > 37n — 3. Without loss of

generality, for each ¢ € N there exists a solution to AOF (M, g;(t)) and (x;,t;) € M; x (0, 7]

such that

b0 t. o
i< fm(xzy zaé(]z) —  sup fm(l’y 79@)

5~ < 0.
K+t 7 MxOT] K+¢7n

and define a new sequence of blown up metrics by

n
Gi(t) = Nigi(t; + A, 2t),
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where \; = fin(z;,t;,9;). We will show in the proof of Theorem 1.2.4 that these metrics also
n
solve AOF. These metrics, which are defined for ¢t € [—)\?ti, 0], are eventually defined on

[—1,0] since as i — o0,

t, " K+t "

Replace the sequence of AOF solutions {(M;, g;(t)) };en with the tail subsequence for which

n
)\22 t; > 1. The curvatures of these manifolds converge to 0 since as i — o0,

S

[Rm(gi)|g, < +— = < — 0. (3.8)

(@i ti i) = fm(xi tis 9i)

K K K+t
Ai

Furthermore, there is a uniform C"" estimate on the curvature given by

VN

i th 2 g
fm(x,t,ﬁi)zfm(x i1 791
Ai
_n
fm(@, i +1\; 2. g)

fm(xia ti7 gl)

n

—5._2
K+ (t; —i—t)\i ) n
< 2
K+t "
_2 2
K+t "(1+5)™n
= _2
K+t "
2

for all i € N and (z,t) € M; x [—1,0].

Let B(0,1) be the open Euclidean ball in R" centered at 0 with radius 1, ¢; : B(0,1) — M;
be given by exp, with respect to gi(0) for each i € N, and h;(t) = ¢} g;(t). The uniform

€Y bound on Rm(g;(t)) given by (3.9) induces a uniform bound on (g;)s (see Petersen [40])
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which permits the uniform C" estimate (3.9) on Rm(g;(¢)) to lift to a uniform C™ estimate

on Rm(h;(t)). Furthermore, h;(t) solves AOF for all ¢ since ¢; does not depend on t.

Since m > 37” — 3, we have uniform C” bounds on Vj@(h(t)) for 0 < j <5 —1. Via
Proposition 3.2.4, we obtain uniform bounds on the LQ(Bhi(O)(Oa %))—norms of all covariant
derivatives of Rm(h;(0)). Since the metrics h;(0) are uniformly equivalent to the Euclidean
metric, the Sobolev constant of B h; (0) (0, %) is uniformly bounded for all 7. Via the Kondrakov
compactness theorem, we thus obtain uniform bounds on the CO(Bhi(O)(O, %))—norms of
all covariant derivatives of Rm(h;(0)). The Taylor expansion for h; in terms of geodesic
coordinates about 0 with curvature coefficients can then be used to obtain uniform bounds
on the CY(By. (0 0)(0, 1)) -norms of all partial derivatives of h;(0). Finally, by the Arzela-
Ascoli theorem, after taking a subsequence, still named {h;(0)};cn, we get h;(0) — hoo in
C°°(B(0, % ) for some Riemannian metric hoo. We have already shown with inequality (3.8)

)
that (B(0, %) hso) is flat. However, for all i € N,

m 2
5
xz: 0 gz Z |V‘] Rm gz xZﬂ O)|gz—|{3)
. 2
m _J+2 2+j
= Z <)‘1 2 |ijm(x17tz>|g(t ))
=1
m %
= Z A; 1‘V‘7Rm($z7tz)’g(tij)
j=1
=\ =1

Also, fin(0,0,h;) =1 for all i since (¢;)« is the identity map at 0 = cpz_l(xz) Therefore

fm(0,0, hoo) = 1. This is a contradiction, thereby proving the inequality (3.7). ]
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3.3 Long Time Existence

In this section, we prove that if a solution (M, g(t)) to the AOF only exists for a finite time
T, then HR'mHCO(g(t)) becomes unbounded along a sequence {(zp,t,) o2 C M x[0,T) with

tp, TT. We will prove this theorem by showing that if actually

R: = K < oo, 3.10
tes[l(;,%”) | mHCO(g(t)) o0 ( )

then the solution g¢(t) exists past the time 7. In order to show this, we show that (3.10) and
the pointwise smoothing estimates on [V*Rm| ¢(t) iInduce bounds on IVFg(t)] g with respect to
some fixed background metric g and connection V. We also show that (3.10) implies uniform
convergence of g(t) to some continuous metric g(7'). The bounds on |@kg(t)\g imply that
g(T) is smooth, so that we can extend the solution g(¢) past the time T via the short time

existence Theorem 2.3.1.

We first show that if (3.10) holds, the metrics ¢g(t) converge uniformly as ¢ 1 7" to a continuous

metric g(T') equivalent to each g(t). The following lemma is from Chow-Knopf [14]:

Lemma 3.3.1. Let M be a closed manifold. For0 <t <T < oo, let g(t) be a one-parameter
family of metrics on M depending smoothly on both space and time. If there exists a constant

C < oo such that

r

for all x € M, then

x,t) at < C

—g(
ot g(t)

e_Cg(x,O) < g(z,t) < ecg(a:,())

53



for allx € M and t € [0,T). Furthermore, ast 1 T, the metrics g(t) converge uniformly to

a continuous metric g(T) such that for all z € M,
e~Co(2,0) < g(z,T) < Cy(x,0).

Lemma 3.3.2. Let M be a compact manifold and let (M, g(t)) be a solution to AOF on
[0,T) such that

R = K < o0.
o, IRl o) >

Then g(t) converges uniformly ast 1 T to a continuous metric g(T) that is uniformly equiv-

alent to g(t) for every t € [0,T].

Proof. Since Proposition 1.3.3 states that

0 (—1)% n (—1)%_1 n n/2

g -1 —2-2 n—27

2L -2 "7 A2 ~ 2 A2 VYV + .

5 P A Re + 20n— 1) A R jE_QP] (Rm),

in order to apply the preceding Lemma 3.3.1 it suffices to show that |VkRm] g(t) is bounded
on M x [0,T) for all k satisfying 0 < k < n — 2. Using the smoothing estimate provided in

Theorem 1.2.1, we get

NS

~ 2
max  sup |VkRm|g(t) < max sup |VkRm|g(t) +C(K +(5H)n)z,

<k<n— T o<k<n—
0<k<n 2M><[O,T) 0<k<n 2M><[O,%]

where C' = C(n) and K = max{K, 1}.

So % is bounded on M x [0,7) and the metrics g(¢) converge uniformly as ¢ 1 7" to a

continuous metric g(7") uniformly equivalent to each g(t). O
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Since M is a compact manifold, we can obtain bounds on |?k g(t)|g by taking the maximum
of bounds taken on finitely many coordinate patches. On such a coordinate patch, we can
assume that the fixed metric is just the Euclidean one. Thus we will only need to bound the

partial derivatives of g and o.

Lemma 3.3.3. Let M be a compact manifold and let (M, g(t)) be a solution to AOF on
[0,T). Let U be a coordinate patch on M. Fiz m > 0. Suppose that for 0 <i<m+mn—1,
there exist constants C; such that |V;(t)Rm(g(t))|g(t) < Cj on M x [0, T). Then for all
(x,t) e U x [0,T),

|amg(x7 t)|g(t) < 61 (9(0)7 007 s 7Cm+n—1)

07O, Dl g(z) < Ca(9(0), Co, -, Consn—):
Proof. We prove this by induction. First we bound dg. We have
009 = 00,9 = (V +T) % 9yg = VO + T % O.

From the definition of (’3, we obtain the bound |V(5| < C(Cy,...,Cp_1). Then, since
Wl'=Vog = V@, I can be bounded in terms of the initial metric and VO after integrating.

So 90 = 0¢0g is uniformly bounded by C'(g(0),Cy, ...,Cp_1), and so is Jg after integrating.
Assume that m > 2 and
0°g] < C(9(0), Co, -, Cian—1) for 0 < i <m—1,

00| < C(g(0),Cp, ..., Cipq) for 0<i <m—1,

10'T| < C(g(0),Cp, ..., Cipn_q) for 0 <i<m—2.

We wish to bound 0""g. It suffices to bound om0 since O0"g = I"M0g = 9mO. We define

P7(T') to be a polynomial in T', ... , 01T where each term contains m partial derivatives
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of ¢:

r(r) =

Z 0T % - % OUT.

I+iq -+ tij=m

1<I<k

We can express 0O as

m—1

om0 =V"O+ Y 9O« PITUT). (3.11)

1=0

We prove equation (3.11) by induction. First, the equation holds when m = 1: 00 =

(V+T) %O =VO+T xO. Assume the equation (3.11) holds for 0 < i < m. Then

vm—Fl@ —

0+ I)V™O

i+1

m—1
= "0+ "0 T+ ) [ai“@ « PIH(D) +0'0 « PITD)

1=0

m
=m0+ om0 T + Y 9O« P HIT +Za@o*Pm+1 i(r)

1=1

m
_ am+1é\+ Zaz@* Pm—l—l l(r)

i+1
=0

From the equation (3.11), we see that in order to bound 9O, we only need to bound ™ 1T.

We have

10,01 =

o™ 1or)
= 0" g™« VO)
m—1
= [9'VO =" g|
1=0
m—1 o
< C(9(0),Co, ..., Crngn—2) Y _ 10'VO|. (3.12)
=0
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We bound 9°VO via the equation

1
AU i
I'VO = V"0 + Y VIO« P (T). (3.13)
j=1

In order to verify this via induction, we have that for i = 1, VO = V20 + T« VO. If

equation (3.13) holds for the ith partial derivative,

oHIvO = (v+r)vz+1o+32wo* Pt

1—j+1
7=1
v2+20+v1+1o*r+2 (V+T)VIO«PIZT(T ZVJO P/
j=1
1+1 2 )
42 7 i+1 1 ]+ i—j+
= V20 + VO« + 3 VIO« P +ZWO*PZ ()
j=2 j=1
+2
+Zv30 PI- s
j=1
141
= V20 + Y VIO «PTI).
J=1

If 0 <i < m— 1, then the highest partial derivative of I" that appears in equation (3.13)
is of order at most m — 2, so 9'VO is bounded in terms of covariant derivatives of @ and
previously bounded partial derivatives of I'. Therefore, via equation (3.12), 1T and omoO
are bounded. O

Proof of Theorem 1.2.2. Suppose that equation (3.10) holds. By Lemma 3.3.2, the metrics
g(t) converge uniformly to a continuous metric g(7') as t T 7. We show that g(7) is C°° on
M. Tt suffices to show for each k € N that ¢(T) is C* on any coordinate patch since we can

take a maximum over finitely many of them to show that ¢(7') is C* on M. We have

t/\
0 +/ O(r)dr
0
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Taking limits as ¢t 1T, we get
T ~
g(T) = ¢(0) +/O O(t)dr.
This permits us to take the kth partial derivative:
T ~
O g(T) = 8% ¢(0) +/ *O(r) dr.
0

The bounds on 8%¢ and 9%O from Lemma 3.3.3 therefore imply a bound on Bkg(T ). So

g(T) is C*° on M. Furthermore, since
T ~
0h(T) - 9(0) < [ 1050 dr < C(T ~ ),
t

the metrics g(t) converge in C* to ¢g(T'). So g(t) is a C'*° solution to AOF on [0,7]. Then
the short time existence Theorem 2.3.1 applied to g(t) with initial metric g(7") allows us to

extend ¢(t) past T. This contradicts the assumption that 7" was the maximal time for the

solution (M, g(t)). O
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Chapter 4

Compactness and Convergence

4.1 Compactness

In this section, we give compactness results for AOF similar to Hamilton’s compactness
theorem for solutions of the Ricci flow. We first prove a proposition that states that for
a sequence of metrics, uniform bounds on the spacetime derivatives of curvature and the
derivatives of the metric at one time extend to uniform bounds on the spacetime derivatives
of the metric. This is used to prove the compactness Theorem 1.2.3 for a sequence of
complete pointed solutions of AOF. We then give the proofs of Theorem 1.2.4, which allows
us to obtain a singularity model from a singular solution, and Theorem 1.2.5, which describes

the behavior at time oo of a nonsingular solution.

The type of convergence of manifolds we will consider is pointed C'°° Cheeger-Gromov con-

vergernce.

Definition 4.1.1 (C°° Cheeger-Gromov convergence ([13] Definition 3.5)). A sequence
{(M7, g1, O.) }ken of complete pointed Riemannian manifolds converges (in the Cheeger-

Gromov topology) to a complete pointed Riemannian manifold (M2, goo, Oxc) if there exist
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1. an exhaustion {Uy, }ren of Moo by open sets with O € Uy,

2. a sequence of diffecomorphisms ®;, : U, — V), := &1 (U}) C M}, with &4.(Ox) = Oy,
such that <Uk., i [gk|VkD converges in C°° to (Mxo, goo) uniformly on compact sets
in M.

The following compactness result of Hamilton allows us to extract a convergent subsequence

of manifolds at a fixed time.

Theorem 4.1.2 (Cheeger-Gromov compactness theorem ([25] Theorem 2.3)). Let

{(M7, g1, O) Y e be a sequence of complete pointed Riemannian manifolds that satisfy
[VERmy |, < Cp on My,
for all p > 0 and k where C) < 00 is a sequence of constants independent of k and

injg, (Of) > 10

for some constant 1y > 0. Then there exists a subsequence {jj}ren such that

{Mjk;’gjk’ Ojk)}keN converges to a complete pointed Riemannian manifold

(M, 9o, Oco)
as k — 00.

The following proposition allows us to extend bounds on the derivatives of a sequence of

metrics at one time to bounds that are uniform over an interval.

Proposition 4.1.3. Let (M, g) be a Riemannian manifold and L be a compact subset of M.
Let {g;};en be a collection of Riemannian metrics that are solutions of AOF on neighborhoods

containing L x [B,v]. Let tg € [B,v] and fix k > n—2. Let unmarked objects such as V and

60



| - | be taken with respect to g, and let objects such as V. and | - | be taken with respect to

gi- Suppose that:

1. The metrics g;(tg) are uniformly equivalent to g for every i € N: for some By > 0,

Bytg < gi(to) < Byg.

2. For each 1 < p < k, there exists a uniform bound Cp on L independent of i such that

[VPgi(to)] < Cp.

3. For each 0 < p+q < k +n — 2, there exists a uniform bound O;{Lq on L x [,

independent of i such that |8gV§iRm(gi)|gi <Cpq
Then:

1. The metrics gi.(t) are uniformly equivalent to g for every i € N and t € [5,¢]: for

some B = B(t,tg) >0, B~1g < g;(t) < By.

2. For every p,q satisfying 0 < p+ q < k, there is a uniform bound 6’p,q on L x [B,v]

independent of i such that |0fVPg;(t)| < @,,q.

Proof. We adapt the proof of Lemma 3.11 in Chow et. al. [13]. The uniform equivalence
of the g and g on L x |3, ¢] follow from the given bounds for |VZZ. Rm(g;)[g;, on L x [B,¢].
Define the bounds 6j for j satisfying 0 <7 <j—n+2 by
. n—2+j
IViOk < Y apCCh o =0T

p=J

Suppose that (p, ¢) = (1,0). Hamilton showed in Theorem 7.1 of [23] that 9T = ¢~ 1« Vdyg.
Then

10¢(Ty, — D) < CIVOk|p < CCy.
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It follows that

V()] < B(t,t0)> %V gr (t)
< B(¢, B)%/22|T4(t) — Ty

< B(y, )/ (CC1|6 - | + 3B *C1) = Crp.
Next, we prove the lemma for p satisfying p < k when ¢ = 0. We will show that for p > 1,
VPOigi| < CpIVPgrl +C)', [VPg] < Cpo. (4.1)
If p=1, then

[Vorgi(t)] < B(t,10)*?|(V — V1) 0hgy, + V1 0bx i
< B(t,10)*2C|0 — Tyl |0rgili + [ViOrgrl
< B(t,t9)*/2C|Vg;,|Co + C1
and we have already shown that |Vg;| < C~’170.

Let N > 2 and assume that (4.1) is true for 0 < p < N — 1. The telescoping identity

N
VNA-VYA=> VN (V-Vvpv,ta
=1

results in the following inequality:

N
VN Ougr| < VYUY = Vi)agel + > IVN TV = V)V gkl + IV Ol (4.2)
1=2
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Using the induction hypothesis and the given estimates for |V§Z Rm(g;)g,, we estimate the

terms of the preceding inequality (4.2). Collecting terms yields
V¥ Orgyl < ORIV il + O
Applying the preceding inequality, we get

VY gr* = 200,V g1, VN i)
<0V gi? + VN g2

< (L4 2CR)IV g +2(CR)%
After solving an ODE, we obtain

TN g 2(8) < AFACRID@0) | oy i(l _ [HACKHI =By

=%
1+2(C%)? N0

This completes the inductive proof of (4.1) and the proof of the proposition when ¢ = 0.
Since 8?Vp g = Vpﬁg gk, a similar procedure may be used to prove the proposition when

q > 0. ]

We are now able to prove the compactness Theorem 1.2.3 for solutions of the AOF via a
modification of the proof given by Hamilton in [25] of the compactness theorem for Ricci

flow. We need the following lemma.

Proposition 4.1.4. (Chow et al. [13] Corollary 3.15) Let (M™, g) be a Riemannian manifold
and let L C M™ be compact. Furthermore, let p be a nonnegative integer. If {gi.}ren is a

sequence of Riemannian metrics on L such that

sup  sup |V < C < o0
0<|a|<p+1zEL
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and if there exists 6 > 0 such that g, (V,V) > dg(V, V) for all V € T M then there exists a
subsequence {g;.} and a Riemannian metric goo on L such that g;. converges in CP to g as

k — o0.

Proof of Theorem 1.2.3. Since we are given a uniform bound on |Rm(gk)|gk, the pointwise
smoothing estimates given by Theorem 1.2.1 furnish uniform bounds on
vaz(to)Rm(gk(tO))HCO(gk(tO)) for all m € N. Therefore, since the (M}, g;.) are complete, the
Cheeger-Gromov compactness Theorem 4.1.2 yields a subsequence of {(My, gi(t), Op) }reN,
also called {(Mp, gi(t), Or) }ren, for which {(My, gi(to), Ok) }ren converges to a complete
pointed Riemannian manifold

(M2, h, Oso).

Fix a compact subset L of My, and a closed interval [3,v], with tg € (8,v) of (o, w). Since
{(My, 91.(t0), Op) }ren converges to (Moo, h, Ox), by definition there exists an exhaustion
{Uk}ren of Mo by open sets with O € U}, and a sequence of diffeomorphisms @, : U, —
Vi = Op(U)) C My with @(Os0) = Oy, such that if hy, = &% [gk(t0)|vk] , then (Uy, hy,)
converges in C* to (Mso, h) on compact sets in Ms,. Since the U, exhaust My, L C Up
for some k. So the metrics hj are uniformly equivalent to h on L. We also obtain from the
C™° convergence that for each p > 1, there exists a C independent of # € L and %k such

that [V hglp, < Cp.

Let G},(t) = @}, [gk(t)|vk] ; then hy, = G.(to). From the pointwise smoothing estimates given
by Theorem 1.2.1, for each p we obtain a bound C]’),O uniform on L X [§, 9] independent of k
such that |V%kRm(Gk)|Gk < C}; g on L x [3,v]. Using the expression of 0tV%kRm(Gk) in
terms of covariant derivatives of Rm(G},) given by Proposition 2.2.2, for each (p, ¢) we obtain
a bound Cj, , uniform on L x [f,4] independent of k such that lﬁgV%kRm(Gk)\Gk <Cpgq

on L x [8,7%]. We then conclude via Proposition 4.1.3 that the metrics G}, are uniformly
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equivalent to h on L X [3, ] and that for every p,q > 0, there is a constant C~’p7q independent
of k such that |agV]ZGk|h < Cpgqon L x[B,9].

The uniform equivalence of the Gy, to h and the uniform bounds |0§I V]ZGM n < C'p,q allow
us to apply an Arzela-Ascoli type Proposition 4.1.4 to the metrics Gy, (t) + dt? on L x (B, V]
and obtain a subsequence that converges in C*°(L x [3, 9], h + dt?) to a metric goo(t) + dt?
such that geo(0) = h; we relabel the convergent subsequence as {GJ,(t) + dt?} pen. It follows
that geo(t) 4+ dt? is uniformly equivalent to G1(t) + dt? on L x [,9]. Then goo(t) + dt? is
uniformly equivalent to h + dt? on L x [, 4] since G1(t) + dt? is uniformly equivalent to
h+ dt? on L x [3,4]. Since (M, h) is complete, (M x (o, w), h + dt?) is also complete. The
uniform equivalence of goo(t) + dt? to h 4 dt? on compact subsets of M x (a,w) and the

Hopf-Rinow theorem imply that (Mso X (o, w), goo(t) + dt?) is complete.

Since (Moo X (o, w), goo(t) + dt2) is complete, compact sets are equivalent to closed, bounded
ones. A compact set in My X (o, w) is contained in the compact set that is the product of a
closed geodesic ball in My, and a closed interval in (a,w). So the metrics Gy (t) + dt? subse-
quentially converge in O (Mo X (o, w), b + dt?). Let {G},(t) + dt?}pen be the convergent
subsequence. Then {(My, gi(t), Op) }ren converges to (Mo, goo(t), Ox). It follows that for
each p,q, OfVh G — O}V goo and O(G}1) = O(goo) in C(Mao x (a,w), goo(t) + dit?).

Therefore (Mo, goo, Oxo) is a complete pointed solution to AOF for t € (a,w). O

4.2 Convergence to Singularity Models

As our first corollary of the compactness theorem 1.2.3, we show that under suitable condi-

tions, we can obtain a singularity model for the ambient obstruction flow.
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Proof of Theorem 1.2.4. We first show that the g; are also solutions to AOF by showing that

if g = A\g and g satisfies AOF, given up to constants by

n/2
Org= A2 'Re+ A2 V2R P (Rm),
j=2
then g satisfies
. n n/2 .
Og=A2 "Re+ A2V R+ Y PP (Rm). (4.3)
j=2

We evaluate the first term of the right side of (4.3):
T e 1192\ 3 7! 1-2 21
A2 Rc:<)\ g V) Re=X" 2A2 "Re.

_n n_
Similarly, the second term is equal to A T2A27Re. The remaining terms are contractions

of terms of the form
ViRm® - ® VJRm

with 2 < j < & and i +---+ ij =n—2j. In order to contract on all but two indices of the
above term, we need to contract %(11 4 +ij+3j —j—2) =5 — 1 pairs of indices. This
. . n—2j 5\ \1-% n-2j . . 1-L

implies that P (Rm) =\""2 P, (Rm). The left side of (4.3) is equal to A™ 2 0¢g. So

g satisfies (4.3).

n/2

We have [Rm(g;)|g; <1 on M x [=);"7¢;,0] for each i since the definition of the ); implies

’Rm(gi)@i = )\i_z\RmP < )\i_2>‘z2 <1

Let k € N. There exists i, such that if i > 7., then )\?/2ti > k. Then {gi}izik is a sequence

of complete pointed solutions to AOF on (—k,0]. Since the Sobolev constant is scaling
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invariant, the uniform bound of Cg(M,g) on [0,7) implies a uniform bound independent
of i of Cq(M,g;) on [0,7). We conclude from Lemma 3.2 of Hebey [26] that there exists

a uniform lower bound independent of i for inf,cps vol(Bg,(z,1)). This and the bound
n/2

[Rm(g;)lg; <1 on M x[=X;""t;,0] for all i give a uniform lower bound independent of i for

injg (o) (x;) via the Cheeger-Gromov-Taylor theorem.

The proof of the compactness theorem 1.2.3 is unchanged if we replace (o, w) with (—k,0].

Thus, by theorem 1.2.3, we obtain subsequential convergence of

{(M, gi(t), 2) Yizi,

to a complete pointed solution (Mso,goo(t), o) to AOF for t € (—k,0]. By taking a
further diagonal subsequence over the k, we get that {(M,g;(t),z;)};>1 subsequentially
converges to a complete pointed solution (Mo, goo(t), Too) to AOF for t € (—o0,0]. The

limit (Moo, goo(t)) is not flat since

[Rm (900 (0)) (200) | o (0) = 1

by the definition of the g;(t).

We show that My is noncompact. Lemma 3.9 of Chow-Knopf [14] states that for a one
parameter family of Riemannian manifolds (A, ¢g(t)), the volume element evolves by 0;dVy =

% g Otgi;j- Applying the fact that O is traceless and the divergence theorem,

—-vol(M, g(t)) = 5 /M 97—+ dVy)

ot 2 0
1 5 i D15, gj
=3 M[(—1)29 Oy + C(n)(A27"R)g" g;5] dVyy)

= C(n) /M A2 RV,

=0.
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Therefore the volume of (M, g(t)) is preserved along the flow. Since \; — oo,

vol(Mxo, goo(t)) = lim vol(M, g;(t)) = lim /\ n/2 vol(M, g(t; —I—)\2 t)) =00

1—00 1—00

for all ¢t € (—00,0]. So the volume of (M, goo(t)) is infinite for all ¢ € (—o0,0]. The uniform
volume lower bound for the (M, g;) passes in the limit to a uniform volume lower bound for

(M, goo). Therefore My, is noncompact by Lemma 8.1 of Bour [6].

Next, we show that the integral of the Q)-curvature is nondecreasing along the flow on M.

Along the flow, the derivative of [ @ is given by

5] a- "‘2/M<O,atg>
1 5

nn—2

=(-1)2

where the third line holds since O is traceless. So the integral of the )-curvature does not

decrease along the flow.

Suppose that

sup / Qg < Q.
t€[0,T)

This is always true when n = 4 since the Chern-Gauss-Bonnet theorem gives that for all

€[0,7),

/M Q = sny(M) — /M W2 < 8x2y(M).
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So if the integral of the ) curvature is bounded along the flow,

[ for= [ 5 0
—%1/ Qg —/MQ(Q(O))

Let {(M,g;(t),x;)}i>1 be the convergent subsequence previously found in the proof. Fix

k € N. Since t; — T and \; — 0o, we can choose a subsequence of times {tij }jen as follows:

Sivo

2
11 = inf {z t; > 7,)\1 > (%)”}, ij = inf {2 it > %(T—ktij_l),/\i > (T—?ik. 1)
j—

}

for j > 2. We relabel {tij }jen as{t;}ien. Then

¢ 2 2
> [ |OP < 0% < oo,
=tk 2 Im 0 JMm

9
implying that, using the scaling law O(\g) = )\ﬁfn(’)(g),

t.
0:.lim/l _n/ 0(g)[2 dVyy dt
i=oo Jt;—kx, 2 M

0 , —1 -1
= lim /k/M/\ﬂO(giﬂgi/\i N Vg, dt

1—00 J —

1—00 J

0
_ 1 2
- [ /M 0(g5) 2, dVy d.

Since O(g;) = O(goo) in C*° on compact subsets, this implies that O(gc) = 0 on [—k, 0].
So for each k € N, there exists a sequence of pointed solutions to AOF that converge to an
obstruction flat pointed solution to AOF on [k, 0]. By taking a further diagonal subsequence
over the k, we obtain a sequence of pointed solutions to AOF that converge to an obstruction

flat complete pointed solution to AOF on (—o0, 0]. [
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Finally, we provide a corollary of the compactness theorem 1.2.3 characterizing limits of

nonsingular solutions to AOF.

Proof of Theorem 1.2.5. Suppose M does not collapse at oo. Then there exists a sequence
{(x;,t;) }ieny € M x [0,00) such that inf; injg(ti)(xi) > 0. Let g;(t) = g(t+t;) for t €
[—t;j,00). Let k& € N. Then there exists i € N such that ¢; > k for all ¢ > i;. Since
SUP;[0,00) IRm||0 < oo and inf; injgz,(o) (z;) > 0, we apply Theorem 1.2.3 to obtain subse-
quential convergence in the sense of families of pointed Riemannian manifolds of

{(M, g;(t), %) }i>i, to a complete pointed solution (Mo, goo(t), Zoo) to AOF on (—Fk,c0).
By taking a further diagonal subsequence over the k, we get that {(M, g;(t),z;)};>1 subse-

quentially converges to a complete pointed solution (Mso, goo(t), Too) to AOF on (—oo, 00).

If M is compact, then by the definition of convergence of complete pointed Riemannian
manifolds, My is diffeomorphic to M. Just as in the proof of Theorem 1.2.4, the volume of

(M, g(t)) is preserved along the flow. So for all ¢ € (—o0, 00),

vol(Mwo, oo (t)) = lim vol(M, g;(t)) = lim vol(M, g(t; +t)) < oc.

1— 00 1—00

Suppose that

sup )/M Qg(t)) dVy () < oo.

te[0,00

This is always true when n = 4 by the Chern-Gauss-Bonnet theorem. Using the same

argument as in the proof of Theorem 1.2.4, we obtain

o0
/ / 0% < 0.
0 M
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Let {(M, g;(t),z;)};>1 be the convergent subsequence previously found in the proof. Since

t; — 0o, we can choose a subsequence of times {tij }jen as follows:
ip=inf{i:t; >k}, i =inf{i:t; >t | + 2k}

for j > 2. We relabel {tij }jen as{t;}ien. Then

0 ti+k o0
Z/ /|@|2</ /|0\2<oo
— Jti—k Jm 0o Ju

implies that

‘ t;+k 9 ' k 5
0= lim /M |O(g)[5 dVgdt = lim » /M |O<gi)|gi dVyg, di.

1—00 ti—k 1—00

Since O(g;) = O(goo) in C° on compact subsets, this implies that O(go) = 0 on [—k, k.
So for each k € N, there exists a sequence of pointed solutions to AOF that converge to an
obstruction flat pointed solution to AOF on [—k, k|. By taking a further diagonal subsequence
over the k, we obtain a sequence of pointed solutions to AOF that converge to an obstruction
flat complete pointed solution to AOF on (—o0,00). Since goo solves the conformal flow
Otgoc = (—1)”/20(n)(A%71R)g, we see that goo(t) is in the conformal class of g (0) for
all t € (—00,00). If M is compact, we can solve the Yamabe problem for (Mso, [go0(0)]);
the Yamabe problem was solved by Aubin, Trudinger, and Schoen (see [2, 33]). Due to the
conformal covariance of O, we obtain a obstruction flat, constant scalar curvature complete

pointed solution (Mso, §oo(t)) to AOF with §oo(t) = Goo(0) for all t € (—o0, 00). O
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Chapter 5

Rigidity in Dimension Four and

Initial Sobolev Estimate

5.1 Proof of Theorem 1.2.11

The arguments in the proof of the gap theorem for 4-manifolds given by Theorem 1.2.11
are a special case of the arguments used for n-manifolds with n > 6, and do not require
the machinery we develop in subsequent sections. In particular, we need neither a volume
growth upper bound nor a quadratic curvature decay bound. Therefore, we will present the

proof of Theorem 1.2.11 in this section. All manifolds in this section are 4-dimensional.

Proposition 5.1.1. Suppose M, ¢ satisfy the above hypotheses. Suppose s > 1. For every

0 > 0, there exists C' such that

/ ©** "Wy« VRm * Rm < 5/ ©%*|VRm|? + CA226 1 R2.
M M

72



In particular, there exists C' such that
/ ©** "IV« VRm % Rm < 60/ ©**|VRm|? + CA%egR2.
M M

Proof. The Cauchy-Schwarz inequality gives

CA2

25—2 2
— © |Rm|*.
SR?

/ 0?71V % VRm *« Rm < (5/ ©**|VRm|? +
M M

Set 0 = ¢ to obtain the second inequality. O]

Proposition 5.1.2. Suppose M, ¢ satisfy the above hypotheses. Suppose s > 1. Then there

exists C' such that
1
(/ @45|Rm\4>2 < CCS/ 02| VRm[? + COgA22R 2.
M M
Proof. We estimate:

i Ranl ||} < Cg|VIi®[Run]]|5
< CCs¢*V[Rml||5 + CCs]|¢*[Rm| V|13
<CCs [ IVRm+CCy [ o2 RmP (v
M M

< CCg / ¢ |VRm|* + CCgA’ER™2.
M

We used the Sobolev inequality in the first line and the Kato inequality in the third line. [J

Proposition 5.1.3. Suppose M, p satisfy the above hypotheses. Suppose s > 1. Then there

exists C' such that

/ ©*Rm*? < C’C’Seo/ ©>*|VRm|? + CCSAQE%R_Q.
M M
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Proof. We apply Holder’s inequality, followed by Proposition 5.1.2:

/M S2 RS < C</M |Rm|2>1/2</M 4,04S|Rm|4>1/2

< Ceg (CC’S /M ©25|VRm|% + CCSAze%R_2>

= CCgep / ©*|VRm|? + CCgA23R2.
M

Our choice of the exponent of ¢ was sufficiently large to apply Proposition 5.1.2 since s >

1. [l

Proposition 5.1.4. Suppose M, p satisfy the above hypotheses. Suppose s > 1. Then there
erist C1 = C1(Cg) and Cy = Co(Cg, A) such that

—/ ©?*(ARm, Rm) < 2/ ©**|VRc|? +C’160/ ©**|VRm|? + CoegR2.
M M M
Proof. Let I denote
I= —/ ©**(ARm, Rm).
M
First,

. /M G2 iaghbglegniR (7 TRy, — ViV R + ViViRonj — ViV Ry)
+ / 9028Rm*3
M
S / o2 it glegmi R (7 Vg Ry, — ViV Rog) + /M 2 Rm™

= -2 / 0?0 GG R 4V NV Ry + 2 / 0?1 AR 4V iV Ry

+ / ()025 Rm*3
M

=201 4+ 2D —I—/ (,OQSRm*B. (5.1)
M
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The first line follows from an identity for ARm. Then

I = / P gk g1 g 1 Ry g7V j Rgen, + / »** "1V * VRm + Rm
M M
< / 0 g g1 I 1 Ry OV  Rygen, + €0 / ©**|VRm|* + CA%egR ™2
M M
_ 2s kb _lc_md ja ) ) 2s 2
_/MQO 9799 " VB9 (_1)(chadbj+vaad]c)+€0 /MSD |VRm|
+CA2€0R_2

= — /M Q02Sgkbglcgmdvalk(VcRdb — Vdec) + €0 /M (,02S|VRH1|2 + 060A2R_2
—Msoggzw(mcdb mbdc)+M90 ¢ * VRm * Rm
+ € / ©**IVRm|? + CA%egR™2
M
< / o2 g gl Ry g™ (Vi Ve Ry, — ViV Rae) + 260 / %5 | VRm|? + CA%egR*
M M
= / o2 g Ry (Ve VIR, — Vi VIRy,) + / P Rm*? + 2¢ / ¢%*|VRm|?
M M M
+ CAN%egR~2

:/ @25Rm*3 + 260/ g025|VRm\2 + CA260R72
M M

< Cieg /M (,025|VRIH|2 + CQEOR_2,

where C1 = C1(Cg) and Cy = C5(Cg,A). We estimated the gradient term in the second
and sixth lines via Proposition 5.1.1. The first line follows from integration by parts. The
third line follows from a Bianchi identity. The fifth line follows from integration by parts.
We obtained the seventh line by commuting derivatives. The eighth line follows from the
assumption that (M, g) has constant scalar curvature and a Bianchi identity. The ninth line

follows from Proposition 5.1.3.

Similarly,
I < /M "M R (VeRgy — Vo Rge) + Cleg /M ©**|VRm|? + Cae§ ™2
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=/ QOQS|VRC|2+/ 9023<Vdich,Rc>+/
M M

O Rm™*3 + C’leo/ ©**|VRm|?
M M

+ OQE%R_2

g/ 9028|VRc]2+C’150/ ©?*|VRm|? + CoegR ™2,
M M

where C1 = C1(Cg) and C9 = C3(Cg, A). The second line follows from integration by parts
and commuting derivatives. The third line follows from the assumption that (M, g) has

constant scalar curvature and a Bianchi identity as well as Proposition 5.1.3.

We complete the proof of the proposition by applying the estimates for /1 and I5 and applying

Proposition 5.1.3 to the initial estimate for I given by the inequality (5.1). O]

Proposition 5.1.5. Suppose M, o satisfy the above hypotheses. Suppose s > 1. Then there
exist € = €9(Cg) and Cy = Cy(Cg, ) such that, for all R > 0,

/ (,028|VRH1’2 < CQEOR_2.
M

Proof. We apply the previous estimates obtained in this section to obtain that there exist

C1 = C1(Cyg) and Cy = Co(Cg, A) such that

/ ©*|VRm|? = —/ ©>*(ARm, Rm) +/ 0?71V » x VRm * Rm
M M M

IN

- [ aRm R e [ TR+ o
M M
< 2/ (pQS’VRCIQ + Cleg/ (,028|VRH1|2 + CgeoR_Z
M M
= —2/ ©**(ARc, Re) + / ©?* 71V« VRm * Rm
M M
2s 2 -2
+ 0160/ ©*?IVRm|* 4+ CoegR
M

< -2 / ©**(ARc, Re) + Cleg / ©*|VRm|? 4+ CoegR ™2
M M

< / O Rm™*> + Cleo/ ©*|VRm|? 4 CoegR™2
M M
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< C1ep /M @23|VRH1|2 + CQGOR_Z.

We obtain the first and fourth lines by integrating by parts, and the second and fifth lines
via Proposition 5.1.1. We obtain the third line via Proposition 5.1.4. We obtain the seventh
line via Proposition 5.1.3. We justify the sixth line as follows. Since we have assumed that

(M, g) is obstruction - flat and has constant scalar curvature, we have, with n = 4,

n/2
/2 ng —2j
0=0="500 A2 Re+ 37 PP % (Rm) = JARc + Rm*2.
j=2

So the sixth line follows from substituting ARc = Rm*2.

Now, since C; = C1(Cg), we can choose ¢) = ¢3(Cyg) so that Cjeg = 1. Using this choice of

€0, the previous estimate yields

2/ ©*|VRm|? < C’leo/ ©>*|VRm|? + CoegR 2
M M
§/ ©**|VRm|? + CoegR 2
M

/ (,028’VRHI’2 < CQEOR_2

M

as desired. ]
We are now able to complete the proof of Theorem 1.2.11.

Proof of Theorem 1.2.11. We apply the Sobolev inequality given by Proposition 5.1.2 with
s = 1, followed by the energy estimate given by Proposition 5.1.5, to obtain that there exists

eg = €9(Cg) for which

lgRm| < C1]l¢VRm||3 + CoedR™% < CaegR2,

7



where C] = C1(Cg) and Oy = Cy(Cg, A). Letting R — oo, we get |[¢Rm||2 = 0, which

implies that (M, g) is flat.

5.2 Initial Sobolev Estimate

We prove the following.

Proposition 5.2.1. Suppose M, © satisfy the above hypotheses. Forp > 1 and1 < k <n—1,
there exist C1 = C(n,k,p,Cg) and Cy = C(n,k,p,Cg, A, Cy) such that

IRl < Crlle?V Rl + CoegR ™.
—+

In order to control lower order terms arising from repeated applications of the Sobolev

inequality, we use the following estimate.

Proposition 5.2.2. Suppose M, ¢ satisfy the above hypotheses. Assume that 2 < o < &

and s > al. For1 >0 and § > 0, there exists C = C(n,«a, s,l, A, Cy) such that
1 sl « 0 sta|wl+1 « ¢ a pn—2a—[—I
I < - - v
E /Mgo V' Rm|® < 7P Mcp V"7 Rm|* + 5ZEOR

Lemma 5.2.3. Suppose M, ¢ satisfy the above hypotheses. Then for 0 < « < %, there erists
C =C(n,a,Cy) such that

/ IRm|® < Cey R 2%,
[p>0]
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Proof. Using Holder’s inequality in the first line and the volume growth upper bound in the

second line, we get (per its definition, ¢ is nonzero on B(x,2R))

ZW@ n—nQa
/ |Rm|as</ |Rm|%> (/ 1)
[p>0] [p>0] [p>0]
o n(n—2aq)
SCEO n
— Cel RV 2,

Proof of Proposition 5.2.2. We prove this by induction on [. If [ = 0 then, by Lemma 5.2.3,

there exists C' = C(n, a, Cy/) such that

1 s Q@ a pn—2a—0
- <
Rﬁ/ ¢°|Rm|* < CegR

< / (ps+a|VRm|a+C€8Rn72a75.
M

RB—
We assume the proposition is true for all integers at most [, where [ > 0, and show that the
proposition holds for [ + 1. In particular, this means we assume that s > «(l + 1). Then,
using Proposition 3.1.3 in the first line and setting e = dR7,

1 sivl+1 o € / stawl+2 o C s—a |l o
— V Rm|* < — V Rm|™ + — V'Rm
RP /MM "= e | "t >0 | |

) C
< s+ta Vl+2R ay / S—a VIR «
A

where C' = C'(n,a, s, A). Note that s > «(l + 1) implies s — o > «l, which is required to
apply the inductive hypothesis to estimate the second term on the right hand side. We use

the inductive hypothesis, replacing ¢ with 6/(2C'), 5 with S+, and s with s—«, to estimate
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the second term on the right hand side:

C s—a ol @ C 0
< 2|
SRP+Y /[@0] o7 IV Rm[T < ) [20]{54—7—7

+ %6843"—2a—(/3+v)—lv]

/ S05.‘—0z—|—oz |Vl+1Rm|a
M

R—20—B—(I+1)y

Y

1 1+1
= gRﬂ /M ©° |V T Rm|* + WES

where C' = C(n,a, s,l, A, Cy). Collecting terms, we conclude that the proposition is true

for [ + 1 as well. O

Proposition 5.2.4. Suppose M, ¢ satisfy the above hypotheses. For(0 < q<n—2,p > q+1,
and 1 <k <n—q—1, there exist C1 = C1(n,k,p,q,Cg) and Cy = Cy(n, k,p,q,Cg, A, Cy)

such that

[PV Rm|| 0 < Cif| VI Rm||_n _+ CoegRT.
q

n
q+k+
Proof. We prove this by induction on k. Suppose k = 1. Then the proposition states
PVIRm|| n_ < O|¢PVI Rm|| n_+ CeyR™ . 5.2
IV Ry < Cll'V* Ranl_n, +Ceo 52
Using the Sobolev inequality in the first line and the Kato inequality in the third line,

Doq P74
"V R _n < Cs[[V "IV Rml] | _n,

< Clle"VIVIRm[|_n, + Cll¢" ! [V/Rm| V| _n,

< C|lPVIHRm|_n_ + C|l¢?HVIRm|Vy||_n_, (5.3)
q+2 q+2

where C' = C(n,p,q,Cg). We estimate the second term of the right side of the inequality

n

(5.3). Using Proposition 5.2.2 with o = 8 = v = o S = q%z(p —1), 1l = ¢, and
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§ = A~/ (0+2) we get

n

T CAG+2 s

[ T e v < S5 [
Ra+

n_, I n_ % _n_
< Cl/ QIT27| VI Rm|7F2 + Che ™R 0F2
M

¢~ IV Rm|Vepl|_u, < Cillg" V" Rl s, + CocoR™

with C7 = Cq(n,p,q) and Co = Co(n,p,q,A,Cy ). Our choice of the exponent of ¢ was

sufficiently large to apply the proposition since p > ¢ + 1 implies

Applying the above estimate to (5.3) and collecting terms, we conclude that the proposition

is true for k = 1.

Suppose the proposition is true for all integers at most k, where £ > 1. Using the inductive

hypothesis in the first line and the inequality (5.2) in the second line,

I VRml|_n < C1lle" V" Rml|_n_ + CocoR™!

< Clﬂgopvq”LkJrlRmH _n_+CoeR” L
+
Thus the proposition is true for £ 4+ 1 as well. O

Proof of Proposition 5.2.1. Apply Proposition 5.2.4 with ¢ = 0. m
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Chapter 6

Estimates for Certain Lower Order

Terms

Applying Proposition 5.2.1 with 1 < k < n — 1, we obtain
2 2k+2
n

n ms. o n \"n 5 o
(/ ¢"5|Rm\”) < (/ Qk+1|V Rm\k+1> + CegR™
M M

where C' = C(n,s,Cg, A, Cy). It follows that if |[VFRm|s = 0 for some k satisfying

1 <k <n-—1, then |[Rm|/s=0 as well. From now on, we assume that
V" 1 Rm||so > 0.

In particular, when k£ = § — 1, we obtain

2
n

([ erimanp)”

n
g/ P* V2 Rmf? + CG R
M

82



where C = C(n, s,Cg, A, Cy/). We wish to obtain an analogous estimate with Rm replaced

by Re. To facilitate this, in this section we obtain estimates for several lower order terms.

First, we obtain estimates for

/ QOQSV%_lRm + VFRm + V2 3 FRm
M

/ QOZSV%*?Rm * VFRm V%727kRm
M

for 0 < k < 5 —2. We then obtain estimates for gradient terms that arise when we integrate

6.1 The Cutoff = 1 Case

As an illustrative special case, we begin by deriving estimates for the case where p = 1. We

will use the following proposition.

Proposition 6.1.1 ([31], Lemma 5.1). Suppose M, ¢ satisfy the above hypotheses. Let A be a

tensor on M. Let%—l—%:— 1<pgr<ooanda+pf=1,«a,p>0. Fors > max{ag, fp}

r’

and —% <t< % there exists C' = C(n,r) such that

1 1
(/ (ps‘vA|27”> " <C / gDts(lftq)|A‘q (/ ¢s(1+tp)|V2A’p>p
M B [p>0] M
: 1
+ CAsR™! (/[ . gosaq|A|q> (/M S05510|VA|p)p .
P

We note that if y € A(R,2R), then R < p(y) < 2R, so that |[Ve| < Ap~! < AR7L.

Q=
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Lemma 6.1.2. Suppose M satisfies the above hypotheses. Let A be a tensor on M. Then

1 _2 _2k
(/ |V"3A\2T)T <o </ |A|q) (h+1)q (/ |Vk+1A|p) (k:+1)p’
M N M M

where % = (/{J—El)q + (k—Z&-ki)p’ 1 < p,q,r < 00, k > 1; and C' = C(nap7 q,T, k)

Proof. When k = 1 the lemma reduces to Proposition 6.1.1 with ¢ = 1:

(/M |VA|2T>% <c (/M |A|q)é (/M |v2A|p)fl’ | o)

1 1 . . .
where 5 = — + 7 Assume the lemma is true for all integers at most & — 1. Applying

1
p
inequality (6.1) and the inductive hypothesis, we obtain

1 1
(/ Ivk:A|27“)T <C (/ |Vk—1A|2u) 2u (/ |Vk—|—1A|p)
M M M
<o o) ([ wrap) (] wrap)”,
M M M

=

=

with
1_1+1 1_2+k:—1
r 2u p u kg kr
We solve for %:
I 1 k-1 1
r kg 2kr P
E+1 1 1
2kr kg p
1 2 2k

84



1 k-1 k+1 1 k+1 2k

r 2kr o%r * r  2%kr k+1

we obtain

k+1 1 1
(/ Iva|27“) 2kr <C (/ |A|q> kq (/ |Vk+1A|p>p
M M M
1 2 2k
(/ ’VkA|2r) oy (/ ‘A’q> (F+1)q (/ ‘Vk—i—lA‘p) (F+Dp
M M M

]

Proposition 6.1.3. Suppose M satisfies the above hypotheses. Let A be a tensor on M.

Then
3 - _2k_
T 1 . i
(/ |va‘2T) <C (/ |A|q) (k+j)q (/ |Vk+]A’p) (k+j)p :
M M M
where % = (ki]])q + (k.i]j)zy 1 S p,q,r S 00, ]7k Z 17 and C = C(napaQarajﬂ k)

Proof. We prove the proposition by induction on 5. When j = 1 the proposition reduces to
the preceding Lemma 6.1.2. Assume the proposition is true for all integers at most j — 1.
We have

J—1 k J
- + - —~ = -,
k+j—1 (k+7—-1)(k+j) k+j

Applying the inductive hypothesis in the first line and the preceding Lemma 6.1.2 in the

second line, we obtain

2(j=1)

¥ 2=l _k
(/ |vk‘A|2r>T <C (/ |A|q) (k+j—1)q (/ |Vk+j_1A|2v) (k+j—1)v
M M M
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k
2 2MHj1)]k+j1

M M

2(j—1) 2%

(
|
o (far) (et
(
(

120G k 1 2 2(k+j—-1) 1.
Where 5 = G T O v T Tl T Gy v compe
Vs VI 2k L%
roo(k+ti-Dg (k+j-Dk+j)g (k+jp
2] 2k

b+ g " (k7
0
Proposition 6.1.4. Suppose M satisfies the above hypotheses. Then for i satisfying 0 <
i<g5 -2,
[ V3RV R« VR < Cep |98 R

where C'= C(n,i,Cg).

Proof. Define rq, 19 by

1 2% —2—9) 2i 1 2i 2(% — 2 —4)

—=—= + — = + =2 .

1 (%—2)% (n_z) 211 ) o (%_2)% (n_2) 211
2 n—2 2 o)
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Proposition 6.1.3 gives

1 2(n/2—2-1)
(/ HﬁRmFﬁ)rlé(j /‘uhm%)“”}am”
M M

) L

(/ |Vg—2—iRm|2r2) 2
M

2(n/2—2—1)

n 2n n/2— n/(n—
o / |V7_2Rm|n—2)( /2=2)[2n/( 2)]7

1_ n 1 1_ n 1
g n+2 1 p n+2 ry
Then
1 1 n [1 1
—_ - — _+_
p q n+2|rg 1
_ o [23-2), 2(3-2)
n+2|(5-2%  (3-22
=1.
Since
1{2(%—2—@’)+ 24 }_2
20 (3-2)3  (5-2)5] =n
1[ 2% +m%—2—n]_n—2
| G-28 G-0&|
we have

n : 2np TQLT—% . 2ng % n ; %
(/ |Vz—2—ZRmym> ( \V’Rm|m) g(/ ]V2_2_2Rm\2r2>
M M M
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Let I denote
I = / V%72Rm * V%727iRm * VRm.
M

Applying Holder’s inequality in the first and second lines, inequality (6.2) in the third line,

and the Sobolev inequality in the fifth line,

" o n272 . om n2+2
n . . n
ISC(/ V2 2Rm|n—2 ) (/ V227" Rm « V/Rm|n+2 )
M M

2

" 2np %4_2 2nq %74_2
>W</ |V%_2_iRm|n+2> np( |V2Rm|n+2) "
M
(/ ot ) 7 (f malt)” (] 78 )
M

— ceouvr RmH?Ln
n—2

IA
Q
N\
\
2
N
pjl\:>
E
3

s

n_ojn o
< CellVZ "Rml3,

where C' = C(n,i,Cyg). O

88



6.2 General Case

We generalize the argument from the previous subsection. We will be able to avoid many

error terms since we have assumed that ||[V"~1Rm]|o > 0.

A small modification of the proof of Proposition 6.1.1 gives

Proposition 6.2.1. Suppose M, ¢ satisfy the above hypotheses. Let A be a tensor on M.
Le

~+

+i=1l1<pgr<occamda+p =1 a8>0 Fors>max{agp} and

1
q
t<

IN ==

there exists C'= C(n,r) such that

=
Q=

1 1

1 1
(/ QOS|VA|2T> " <C / g05(171561)|A‘q ! </ g0$(1HP)|VQA|I7>‘D
M B [0>0] M
+ CAsR™! / ps(1ta)—aq) 4)q ! (/ ¢S(1+tp)—ﬁp|vA|p) _
[©>0] M

Lemma 6.2.2. Suppose M, ¢ satisfy the above hypotheses. In addition, suppose that n > 8,

[=
sl

1<p,qr<oo, %:%—i—%, T<p<3%, _Il? <t< %, s Zmax{p,%}. Then there exists

Ry independent of ey such that for all R > Ry,

1 1
T q
([ ervrapr)" <cus ( / sos<”q>|Rm\Q) ([ )’
M [p>0] M

where C'= C(n,r).

=

Proof. We can apply Proposition 5.2.2 since n > 8 and 2 < p < %, taking § = AL to show

that there exists Rq such that for all R > Ry,

R—p/ Sps(l-i-tp)—p’v}{m’p < A—l/ (,08(1+tp)’v2Rm‘p+ClEORn_4p
M M

< Afl / ¢S(1+tp)’v2Rm‘p’
M
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where C1 = Cy(n,r,s,A,Cy). We justify the second inequality as follows. The term
CregR"*P — 0 as R — oo since n — 4p < 0. Therefore, since we assume ||V2Rm||s > 0,
there exists Ry independent of ¢ such that CjegR™ " is absorbed by the integral term for
all R > Ry. Applying Proposition 6.2.1, we obtain that there exist C' = C'(n,r) and Ry such
that for all R > Ry,

1

1 1
T 4 D
(/ <p8|VRm|2r) <C (/ S05(1—tq)|Rm|q> (/ st(1+tp)|v2Rm|p)p
M [>0] M
1
q
+CAR s </ gos(l_tQ)lRm|q> (/ s(1+tp) p|VRm|p)
[¢>0]
< C(14 AA L) (/ s (1=10) |Rm|q)
[>0]
% </ 908(1+tp)]V2Rm\p)
M
= C(1+s) ( / ¢S<1tQ>|Rm|Q>
[p>0]

=
Q=
=

Q=
Q=

(/ SO 1+tp ‘VQRIHV?)
M

For the rest of this paper, when there is a radius R for which an inequality holds for all

R > Ry, the radius Ry will be assumed to be independent of €.

Proposition 6.2.3. Suppose M, ¢ satisfy the above hypotheses Suppose that n > 8, 1 <

1 9 2%
- = + . 6.3
e (B+1g (k4 1)pg (6.3)

Then there exists Rg such that for all R > Ry,

2k

1
(/ - ]VkRm]Q%) < (e k+1 </ S PE) (A R ’pk) F+0p
M
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where C'= C(n, k,rp,s).

Proof. We will use induction on k. If £ = 1, the proposition reduces to Lemma 6.2.2. For a
fixed k satisfying 2 < k < § — 3, assume that the proposition is true for all integers at most
k — 1. We verify the hypotheses of Proposition 5.2.2. First, we obtain from equation (6.3)

and the inequalities m <1 < G the following:

1 k+1 1

|

i

|
21w

pk_ 2k n kn
1 <k:—|—1 2(k:—|—2) 2 k—|—3

D 2k n kn n
Also, 7= +3 > 2 since k < 5§ — 3. Therefore
n n
2 < <pr < —. 6.4
ks o PR=3 (6-4)
Finall S Ak g1kl 1
inally, since s > gy and - = opo- — g
2pk o 2 . 4k57‘k

L+tepp éﬂk Ck+ 1

implying s > 1+tkp and s(1 4+ tgpi) — pr. = p- Therefore, we can apply Proposition 5.2.2,

taking 6 = A~1, to conclude that there exists Rg such that, for all R > R,

R_pk/ S08(14-15]{:17!{:)_pk|v/€]‘:{rn|p]€ SA_l/ gps(l+tkpk)|vk+1Rm|pk
M M
+ CngkRn_(k+3)pk

< Afl / gps(1+tkpk)lvk+lRm|pk, (65)
M
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where C1 = Cy(n,k,rp,s,A,Cy). We justify the second inequality as follows. The term
CleoR”_(k+3)pk — 0 as R — oo since k—ig < pg. Therefore, since k +1 < 5§ — 2 and we
assume ||V 1Rm||sc > 0, there exists Ry such that CreoR"~F3)Pk is absorbed by the

integral term for all R > Ry.
We verify the hypotheses of Proposition 6.2.1. Define ¢;. by

1 2 k-1
— = 4 ) 6.6
q.  kq  krg (6.6)

This implies

Lot
2gr = kar "
From equation (6.6) and the inequalities m <1 < %, we obtain
1 4 k-1 2(k+2) 2k+1)
—<— : =
q.  kn k n n
1 4 k-1 4 4
—> 4. ==
qr ~ kn E n n

so that m < qx < %. We required that rj > m So 2qp, 1. > 1. From (6.4), we

: _ 2 2pg. .
have p;, > 1. From p;, < 5 in (6.4) and ¢, = 7 we get T > pp. S0 s > pp since
s> 1%. From equations (6.3) and (6.6), we obtain

— =+ —. (6.7)

Let I denote

I:/ ©*|[VFRm|?"k.
M
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We apply Proposition 6.2.1 and inequality (6.5) to obtain that there exists R such that, for
all R > Ry,

1
1 2qy,
[»>0]

1
y (/ ¢3(1+tkpk)|vk+1Rm|pk>pk
M
1
qu
+ CAR—IS / QOS(l_thqk”Vk_lRquk
[p>0]

1
M
1
2qj,
< C(1+AA ) / (0 20405) |7k~ Ry 205
[p>0]

1
« (/ @8(1+tkpk)|vk+1Rm|pk>pk
M
1

2q
S C(l +8) </ @S(l_Ztqu)lvk_lRquk) k
[»>0]

1
X (/ ¢8<1+fkpk>|vk+1Rm|Pk> Pk , (6.8)
M

where C' = C(n, ;). We wish to apply the inductive hypothesis to the integral containing

VE~IRm. We have shown that s-2— < g < %. Using equation (6.6), 1, = %, and

2(k+1)
s> i’f’f, we obtain that there exists Ry such that, for all R > Ry,
L1 ket
B 2q; 2r;.
4]67"k (/{ — 1)qk
1—-2¢t > .
s( kUK 2 o
. 4]{2(]{? — 1)qk
k1
S 4k — 1)ij
- k
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since k > 2. We obtain from equation (6.6)

(k—1Daq
1—2¢ =
Kk = 90 ¥ (k- a1
(k —Dag1 + 2ry,
142t _qrp =
Aok (k—1Daq
(1 —2tpqp) (1 +2tp_qrp) = 1. (6.9)

As a result, we can apply the inductive hypothesis to inequality (6.8) with r,_1 = ¢; and
Pr—1 = 2r): there exists Ry such that, for all R > Ry,

k—1

1 1
Ik < CE(])C (/M 808(1_2tqu)(1+2tk_lrk)|VkRm|2rk) 2krp.

1
" (/ @S(Htkpk)!kalepk)pk
M

k=1 L
(/ g05|VkRm]2rk) 2kry, </ goS(Htk‘pk)]VkHRm]pk) P
M M

1
Pk
/M gps(l+tkpk) |vk+1Rm|pk> k

2k
/ (’08(1+tkpk)|vk+1Rm|pk> F+ Loy, 7
M
where C' = C(n, k, 1, s). In the second line, we apply equation (6.9). We have obtained the
desired inequality. O]

Proposition 6.2.4. Let M, p satisfy the above hypotheses. Suppose that n > 8 and the
following hold:

(a) k>1,7>1,2<k+j<%—2

47kr
_n n 4k
() 2y <TRS TS 2 Gy
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Let q1 = 5. For eachi>1, let t; = % Define py1;j—1 by

1 2j 2k
S J (6.10)

r. (k+g)a (k+7)Pkej—1

and define v; forv >k by

i_Q(z’—i—l—k) k
ry i+ D +(i+1)vi' (6.11)

Then there exists Ry such that for all R > Ry,

1 2j
(/ (,Ds‘kam‘%k) rk S C (/ ’Rm|q1) (k+j)Q1
M M
2k

y ( / ¢3Ek+j—1|vk+ij’pk+j—l) F+)Phj—1
M

where B, =1+ t1.pg,
ket j—2
Eppjo1 = (Ut tpyjoappej—) ] (U+2t0) if5>2,
1=k

and C =C(n,j, k,ry, s).

Proof. We use induction on j. If j = 1, the proposition reduces to Proposition 6.2.3. For

a fixed 7 > 2, assume the proposition is true for all integers at most j — 1. We prepare to

apply Proposition 6.2.3. We show that m < Vpyj—2 < 7. From equation (6.11), we
obtain
12— 1) k
e (k+i—Da (k+j—1)vpy o
L _ktj-1 2-1) 6.12)
Vk4j—2 kry, ka1
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n

4 n
Slnce m < TL S )

L _ktj-1 2k+2) 4G -1)

Vk+j5—-2 k n kn
_2(k+5-1)
D —
1 >/~c—|—j—1.é_4(j—1)
Vktj—2 k n kn
4
=

Therefore m < UkJrj,Q < %
Next, we show that

4k +37 — Doggj2

142t o) > 6.13
s(1+ k47—2Vk+5 2) > Kt ( )
First, we obtain from equation (6.12)
1 k+j—1 20— Dk+j—2)2 9
Vk4j—2 kry k
of . o E+75—-1 k
e N R L e [ LT Y
This yields
E+j—1 k
14+ 2t oVprio=14vp1 i o - - - 5
IR FENG D =2 (G- Dk~ 2)upy

(k+Jj—Dvggj—o k
G-Dk+i—-2)p G-D(k+j-2)
(k+Jj—1vgqj—2
=D+ —2)r
(k+J—Dvggj—2
G=Dk+j—2)r

=1+

> 1+ —1
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. 4jk7”k
Since s > T
djkr, (k47— Dvpyjo
S 2y 20h=2) 2 90 Ty - 2
jk(k + 7) Ak +J — Dvgyj—2

(k+1)(—-1)(k+7—2) k+j

We will have proved inequality (6.13) if we show that

Jk(k + )

%+1K%—U@+j—2)—l (6.14)

We have
gh(k+5) = (G = D)(k+1)(k+j—2) =k*+ (25 — Dk — (j —2)(j — 1).

We estimate the value of the larger root kg of the above quadratic in k:

(= (25— 1)+ /(2 — )2 +4(G - 2)(j - 1)
(— (25— D+ /(25— 9?)

(=27 -1)+2j—4)

ko

Nj— DN

<

DO —

|
[V

So k24 (25 — )k — (j — 2)(j — 1) > 0 for all j, k since we require that & > 1. This implies

that inequality (6.14) is true. Therefore inequality (6.13) holds.

Finally, we obtain from equations (6.12) and (6.10)

1 k+j—1( 2 2%k 2(j — 1)
= o -
Vktj—2 k (k+3)ar  (k+3)prgj ka1
2 2(k+j— 1)

(k+i)a  (k+3)ppsj-1
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We are ready to apply Proposition 6.2.3. Define
1

I= (/ (pS|VkRm|2rk)Tk
M

and V by V(k=1) =1,V (l) = Hﬁzk(l—l—Ztivi) for i > k. Then there exist C' = C(n, j, k, r}, s)
and Ry such that for all R > Ry,

2(j-1) L
[<Ce ! (/ @3V(k+9—3)(1+2tk+j—2%+j—2)|vk+j—1Rm|2vk+j—2> R+—T)vptj—2
M

2(j-1)
S 060 +]*1

2 .
X Oﬁ(]){:—i—j (/ SOSV(k+]*2)(1+tk+j_1pk+j_1)
M

k
2(k+j—1) 7 E+j—-1
: |vk+ij|Pk+j—1> (k+7)Pg4j—1

2-1) 2k
_ CeéerJ—leékﬂ—l)(kﬂ)

2%
X ( / (Psv(kﬂ‘2)(1+tk+j—1pk+j—1)|vk+J'Rm|pk+j—1) R Ei)Pr-tj-1
M

2] 2%
_ C«EéﬂJrj (/ SDSV(“J_Q)(”tkﬂ'—lpkﬂ‘—l)\v’f+ij|pk+j—1> (k+])pk+j_1 .
M

We used the inductive hypothesis in the first line and Proposition 6.2.3 in the second line.

We have obtained the desired inequality. O]

6.3 Estimates for Certain Integrals

We apply Proposition 6.2.4 to estimate the integrals from the beginning of the section.
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Lemma 6.3.1. Let M, ¢ satisfy the above hypotheses, with n > 6, and let k satisfy 0 < k <
5 — 3. Suppose s > }lnz. Then there exist C' = C(n,k,s,Cg) and Ry such that, for all

R > Ry,
/ 02| VFRm[2|W 2 3 FRm? < Ce%/ P2 V2 R,
M M

Proof. If k = 0 or k = & — 3, then the Hélder inequality and Proposition 5.2.4 imply that

there exist C' = C(n, s, Cg) and Ry such that for all R > Ry,

9 93 9 n % 2ns n_s 2n_ nT
/ ©“°|IRm|*|V2 "Rm|* < C / |Rm|2 / en—4|V2 "Rm|n—1
M M M

n
< C’e%/ ¢ V2 'Rm|?.
M

The exponent of ¢ was sufficiently large to apply Proposition 5.2.4 since, if s > %an, then

2ns S n3 n(n—4)2_n(n—4)
n—4"2n—-4) = 2(n—4) 2
n—4 n
=—-—-3+1
<5 5 +

Suppose 1 < k < % — 4. In this case, n > 10. The Holder inequality gives

n
/ap25|VkRm|2|V2_3_kRm|2
M

< (/ SDozkps|vk5Rm|2p)
M

Y=
=

(/ wﬁkqu%—S—kRqu) ,
M

where
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For 1 <k < % —4, define 7, by

_— n(n — 6) B n(n —6)
F T An—6)+2(n—8)k  2(k+2)n—8(2k +3)’

Set p =7} and ¢ = Tn/2—3—k- Then % + % = 1. Using equation (6.10), we calculate that
Pnj2—4 = %I Using equation (6.11), we calculate that

i+1 (i+2)n—4(2+3)

1+ 2t = .
2t (i +3)n — 4(2i +5)

This enables us to compute the following telescoping product:

l [+1 (k+2)n—4(2k +3)

g(HQti“i): ko (I+3)n—4(20+5)

We estimate the integral containing VFRm. First, if 1 < k < 4 — 5 then

n/2->5
H (1+2m.):n—8_(k:+2)n—4(2k+3)
iy v k n? —12n+40

Applying Proposition 6.2.4, we obtain that there exists Ry such that for all R > Ry,

- 2n/2 3 k) o0 N\ T
5 \nje=o—k)
(/ @akrk5|kam|27"k> k < OEO n/2-3 </ ¢3Ek|V%_3Rm|m) (5-3)7=7 7
M M

(6.15)
where C' = C(n, k, s),

2n
n—4

By jo_g =y aTyjo_a(1+1,/9_4Pp/o_4) =
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and for 1 <k < § -5,

2—5
n/ 2n

Ep = apri(L+tyo_appjo—a) [ (1+2t05) = —
ik

We show that the exponent of ¢ was sufficiently large to apply Proposition 6.2.4. Since

1<k<—4

(n=6)(5=3-k _(n-06(3-49 (n-6(n-8) _n?
<

E+1 - 2 4

So, the exponent of ¢ was sufficiently large to apply Proposition 6.2.4 since, if s > zlinQ,

 Akrys
AETES = n—G
_ by, (n=6)(3-3—k)
“n—=~6 k+1
4(%—3—]6)]67%
- k+1 ‘

n_g_
We estimate the integral containing V 2 3= Rm. First,

n(n — 6) n(n —6)

/23 T 4 o4+ (n—8)(n—6—2k)  n? —2(k 1 5)n + 8(2k +3)°

For 2 <k <% —4,

n/2—95
/ n—8 n? — 2(k + 5)n + 8(2k + 3)
[T +2tv)= - .
, n—6— 2k n2 — 12n + 40
i=n/2—3—k

Applying Proposition 6.2.4, we obtain that there exists R such that for all R > Ry,

1
(/ Spﬁkrn/Q—?)—k‘s‘vg3kRm‘2rn/2—3—k) "n/2—-3—k
M

101



where C' = C(n, k, s),

2n
Fy = Biryjo_a(L 41, 0_4ppjo—s) = n—4
and for 2 <k <5 —4,
n/2-5 9
n
Fy=Brnjo-3 it typapnpp-a) [ (2t = —.
i=n/2-3—k

We show that the exponent of ¢ was sufficiently large to apply Proposition 6.2.4. Since

1<k<B -4

So, the exponent of ¢ was sufficiently large to apply Proposition 6.2.4 since, if s > }LnQ,

A5 —3—Kry_5 ;s

5}#%,3,;@3 - n—=6
48 -3—-k
N (5 '3k (n—0)k
- n—=6 g—3—k+1
T B 3—k+1

Let I denote

[:/ g02s|VkRm|2]V%_3_kRm]2.
M
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Therefore there exist C' = C'(n, k,s,Cg) and R such that for all R > Ry,

1 1
I< (/ ¢akP8\kam|2p>p</ @ﬂkqsw??’kRm\?qy
M M
1

1
:( / wsa’frk\kamP%)r’“ ( / o7 krn/?—?f’f\v5—3—’“Rm\2rn/2—3—k)Tn/2—3—k
M M
n—4
9 2ns n_s 2n \ “m
SCGO /¢ﬂ|V? Rm‘ﬂ
M

n
goeg/ ©**|V2 Rm|%.
M

We obtained the third line by combining inequalities (6.15) and (6.16). We obtained the

fourth line by applying Proposition 5.2.4. O

Proposition 6.3.2. Let M, satisfy the above hypotheses, with n > 6, and let k satisfy
0<k<7%5—3. Supposes> %LnQ. Then there exist C' = C(n, k,s,Cg) and Ry such that, for
all R > Ry,

/ 0253 'Rm % VFRm * V3 3 FRm < Ceo/ o2V 2 'R,
M M

Proof. Applying the Holder inequality and Lemma 6.3.1 , we obtain

1
2
/ QOQSV%_lRm « VFRm + VZ 3 *Rm <C (/ wzs\v%_lRmF)
M M

1
B
» (/ gDQSIVkRmFIV%_?’_kleQ)
M

1

2
<C </ so%ngRmI?)
M
x Ce (/ @28\V5L_1Rm|2>
M

:Ceo/ ¢25|V%_1Rm|2.
M

D=
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Proposition 6.3.3. Let M, p satisfy the above hypotheses, with n > 4, and let k satisfy

0 < k<5 —2 Suppose that s > }an. Then there exist C' = C(n,k,s,Cg) and Ry such
that, for all R > Ry,

/ Q02SV%72RHI « VFRm + V2 2 FRm < Ceo/ @2S\V%71Rm|2.
M M

Proof. We combine the proofs of Lemma 6.3.1 and Proposition 6.3.2. If k =0 or k = & — 2,

then the Holder inequality and Proposition 5.2.4 give that there exist C' = C'(n,s,Cyg) and
Ry such that, for all R > Ry,

SN

%2 n_2 n_2 n
V2 “Rm*Rm*V2 “Rm < C |Rm|2
M M

2ns _n_o 2n_ nT_2
X (/ pn=21V Rm|ﬂ—2>
M

n
< C’eo/ ¢ V2 'Rm|?.
M

The exponent of ¢ was sufficiently large to apply Proposition 5.2.4 since, if s > %LnQ, then

2ns n3 n(n—2)2  n(n—2)
> > =
n—2"2n—-2) " 2(n—-2) 2
ST 2n oy
- 2 2 '

Suppose 1 < k < § — 3. In this case, n > 8. First, let I denote

n+2

2ns i 2n_ n_9 p 2n_\ 2n
I (/ en+2|V Rm|n+2|V2 Rm|n+2) .
M
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We obtain an interpolation estimate for /1 by arguing as in the proof of Lemma 6.3.1. Define

ag, By by

Define r; by

S n(n — 4) B n(n — 4)
P =4 +2n—6)k  2(k+2)n—4(3k +4)°

Let p = (”+2)rk, q= ("—H)rn/g_Q_k, so that % + % = 1. Applying the Holder inequality
and imitating the application of Proposition 6.2.4 in the proof of Lemma 6.3.1, we obtain

that there exist C' = C'(n, k,s,Cg) and Ry such that, for all R > Ry,

n+2 n+2

aknps 2np \ 2np Brngs n_o g 2nqg \ 2ng
go +2° |V*Rm|n+2 @ N2 |V2 Run|n+2
M

IN

I
A1

(/ sakrk|kam|2rk) 2r
M
1

" (/ OkTn/2-2-k g 52k Ry, |2’"n/22k)27"n/2—2—k
M

2ns %72
< Ce (/ pn— 2|V7 Rm|n 2) :

Let I denote

Ir = / szV%_QRm + VFRm + v2 2R
M

Therefore
n+2

s n_, 2 4= oygmps 2np \ Inp
M

105



i
2n

Bgnas ng
X / gpn—f-? \VQ TZ
M
2n TQ
:C</ pn— 2|V2 2Rm|2> " I

n—2

2n
< Ceg (/ pn2|V5" RmIQ) '
M

n
§C’eo/ ©*|V2 1Rm|?.
M

We obtained the first line by applying the Holder inequality. We obtained the third line
by applying the above bound on I;. We obtained the fourth line by applying Proposition
5.2.4. O

6.4 Estimates for Gradient Terms

In this subsection, we obtain estimates for lower order terms containing the 1-form Vi,

which we refer to as a gradient.

Let (M, g) be a complete obstruction-flat constant scalar curvature Riemannian manifold.
We recall the following definitions from section 1.2.2. Fix xg € M. If z,y € M, let dy(x,y)
denote the distance between z and y with respect to the metric h. Define p by p(z) =
dg(xg,x) for € M. The manifold M has quadratic curvature decay if there exists Co>0

such that [Rm| < Cg - ,zf2 on M. We prove the following proposition.

Proposition 6.4.1. Suppose that there exists K > 1 such that |Rm|~ < K. Suppose that
M has quadratic curvature decay. Then for all j > 1, there exists C = C(n, 7, C’Q) such that
IV/Rm| < Cp~(+2),
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Proof. We use a blowup argument to prove the proposition by contradiction. Let m > % —3.

For a point # € M and metric h on M, define fy,(z,h) as
m ' %
(@, h) =Y |V/Rm(h)]] .
j=1
Let zg be the point at which the cutoff function is centered. We have assumed that quadratic

curvature decay holds with respect to xg.

Suppose that the conclusion is false. Then there exists a sequence {y; };cn such that

W) fm(yi, g) >4, lim p(y;) = oo.
1— 00

2 — 50. We are then able to apply Theorem 8.44 in

In particular, im sup () o0 fm (2, 9)p(@)
[15], with f, replacing the scalar curvature R. This theorem provides a sequence of points

(74)52, a sequence of radii (1;)72,, and a sequence (¢;);7< such that
(a) the balls B(z;,r;,g) are disjoint
(b) lim; 00 pi/ri = 00
(c) sup{fm(z,9) : x € B(wj,ri,9)} < (1 + &) fm(xi; 9),
where p; = p(x;). We can obtain more precise information from the proof of Theorem 8.44

in [15]. Let A; and ; be as in the proof we are referencing. The proof sets e; = (1—4;) ™3 —1.

If we set A; = pgl and §; = pi_l, we obtain from the proof that

fm(wig)r? = (1= 6;)Ai02 = (1 — pi)pio; 2 = (1 — p;)p?

3 3
(pi —1)° = (pi/2)

1-!-6@':(1—(5@')73:
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Define a sequence of metrics g; by g; = \;g, where \; = fiu(x;,g). We show that

lim [Rm(g;)]; = 0

1—00

on M. We have
1 B 7“2.2
fm(zi, 9) 7’?fm z;, g)
2 2
< T _ T
T (=phe? (pi— D
T r;
o opif2

Since ||Rm(g)|loc < K and (b) from above states that lim; ., p; /7 = 00, we get

!Rm(gmgi <

as ¢ — oo. We also have a uniform C™ estimate for Rm(g;) given by

fm(x,g) _ fm(x,g)

fm(z,gi) < N fml(zig)
_ (L+€)fm(zig)
- fm(xhg)
<8

Y

for each i € N and = € B(x;, 14, 9).
Let ge denote the Euclidean metric on R". Define exponential maps for all ¢ by
@i B(0,1,g¢) = M, v expg (v).

For all 7, let h; = ¢} g;. Since g is obstruction-flat and scalar-flat, we know that (M, g) is

a stationary point for AOF. Arguing as in the blowup argument that comprises the proof
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of the pointwise smoothing estimates for AOF, we are able to extract a subsequential limit

metric hoo on B(0,1/2, ge). Since

Fm (0, hi) = fn(0,9i) = A7 A = 1

for all i, we get that f, (0, hoo) = 1 as well. We have already shown that lim; . [Rm(g;)|g; =
0 on M, which implies that fy,(0,hso) = 0. This is a contradiction, from which the propo-

sition follows. O

We use the estimates in Proposition 6.4.1 to prove the following proposition, which allows

us to estimate lower order terms that arise when we integrate by parts.

Proposition 6.4.2. Let (M, g), ¢ satisfy the above hypotheses. Suppose that s > % Let dV
denote the volume form of g. Then, for j > —1, there exists C' = C(n, j,\,Cq,Cy) such
that for all R > 0,

/ 0?1V« P;:__fj_l(Rm) dV < CR™2.
M

Proof. Let I denote
I= /M IV« PIY T (Rm) av.

Let xg be the point at which the cutoff function is centered. We have assumed that the volume
growth upper bound assumption holds for balls centered at zg. We have also assumed that

quadratic curvature decay holds with respect to zg. Let dS(p) denote the volume form of

S(p), recalling that S(p) = 0B(xq, p) and A(a,b) = B(zg,b) \ B(zg,a). Then

I= / 0> IV« PJnJ:fj_l(Rm) av
A(R2R)

2R , )
SAC(CQ)/ [/ p 1= (=2-1) ,=20+1) g5 dp
R S(p)
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We obtained the second line by applying Proposition 6.4.1 and our decay bound for . We

obtained the penultimate line by applying the volume growth upper bound. O
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Chapter 7

Elliptic Estimates and Rigidity in

Even Dimensions

7.1 Estimate of Full Riemann Tensor by Ricci Tensor

In this section, let n be even and let n > 6. Applying Proposition 5.2.1 with ¢ = § — 1, we

obtain for R > 1

([ eimar)

where C' = C(n,s,A,Cg). We wish to obtain L? estimates of V%_lRm by V%_BARm and,

3o

< c/ 2578 Rm2,
M

n
subsequently, V2 1Re for B> 1.

Proposition 7.1.1. Let M, ¢ satisfy the above hypotheses. Suppose s > len2. There exist

C1 = C1(n,s,Cg), Cy = Ca(n, A, Cq, Cy), and Ry such that, for all R > Ry,
/ 02|V 2 'Rm)? g/ ©25|V 2 3 ARm|? +CIGO/ 02|V 2 'Rm|? + CyR2.
M M M
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Proof. Let I denote
n
I:/ ©%*|V2 'Rm|?.
M
We estimate [I:

_ 25 D2 n_9 261 n_q n_o
I'=— [ (¢”AV2 “Rm,V2 “Rm) + © VexV2 "Rmx*V2 “Rm
M M

2s 22 &2 -2
< — [ (¢**AV2 "Rm,V2 “Rm) + CyR
M
n " n/2—2 o .
= —/ (¢**V2?ARm, V2 *Rm) + ) / £*V2 Rm V2 2 "R + VARm
M k=0 M
+ CQR_2

= / (¢** V2 ?ARm, V2 ’Rm) + Cepl + CoR ™2

M
= / <¢2SV%_3ARm, AV%_3Rm> +/ w?sflv(p « V%_lRm . V%_QRm
M M

+ Chegl + CQR_2
25w —3 n_3 —9
< (p°V2 °ARm, AV?2 “Rm) + Ciegl + CoR
M
n n n/2—3 " o
B / <¢28V7_3ARH1’ V?Z_SARUO + Z / @2$V7_1Rm « V2 3 "Rm « VFRm
M E—0 M
+ Cregl + 02R72

255 —3 n_3 _9
< [ (0*V273ARm, V2 3ARm) + Cyegl + CyR™2.
M

We obtained the first and fifth lines via integration by parts. We obtained the second and
sixth lines by applying Lemma 6.4.2. We obtained the third and seventh lines by commuting
derivatives via Proposition 2.1.2. We obtained the fourth and eighth lines by applying

Propositions 6.3.3 and 6.3.2, respectively. O
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Proposition 7.1.2. Let M, ¢ satisfy the above hypotheses. Suppose s > inz There exist

C1 = C1(n,s,Cg), Cy = Ca(n, A, Cg, Cy), and Ry such that, for all R > Ry,
/ 025V 2 Rm? < / 02V 2 Re|2 + C’leo/ P2V 2 Ruf? + CuR2.
M M M
Proof. Let I1 denote
I = / ¢2S|V%_1Rm]2.
M

Then there exist C1 = C1(n,s,Cg), C3 = Co(n,A,Cq,Cy), and Ry such that, for all
R > R07

25— R —3 2 —9
Ilﬁ/ 0= |IV2 °ARm|” 4+ Cepl; + CR
M

n
= /M (P?S}Vj_?) [Vijle - vjVZRmk + Vklemj - Vkvalj + Rm*Q] |2
+ Cregl1 + 023_2. (7.1)

We obtained the first line by applying Proposition 7.1.1. We obtained the second line by

applying a result of Hamilton.

We will derive estimates for the integrals that arise from expanding the expression
n_
V2 3 [vjvalk = ViViRp + ViViRyj — Vkale + Rm*ﬂ

contained in the above estimate of 1. First, we estimate the terms whose integrals are of

n
the form (V7_3V2Rc)*2. We estimate the diagonal terms:

250V 93V .V, Ry V2 OV, Ry) = 25)v9 LRc2
MSO( G Vmdijf, ]mlk:>— MS0| c|”.

113



We estimate the off-diagonal terms. Let I5 denote
25 oy —3 n-3
Iy = ¢ (V2 ViV Ry, V2 OV VIR )

Then there exist C1 = C1(n,s,Cg), Co = Co(n,A,Cg,Cy), and Ry such that, for all
R > Ry,

_ 2s %—3 ) %—3 ‘
Iy = MSO (V Vjvalkavlv ijmkj>

n/2-3

+ Z / @25V%_1Rm*V%_3_ZRm*ViRm
. M
1=0

< [ (VI VR, VIV2 VR, + Crel
MSO jVmig, Vi Jitmk 1€041
— [ VIVETIV.V Ry, V2 VR,
= MSO jVmig, jmk
2s—1 5—1 52
+ %) Ve*V2 "RmxV2 “Rm+ Ciegly
M

25 o ¥ 3¢ l 3o
< - (V2 ViV V Ry, V2 v]Rmk>
M

n/2—2
+ Z / QOQSV%_2RH1 * V%_Q_ZRIH * V'Rm + Cieoll + CQR_2
. M
1=0

< Chegl + CQR_2.

We obtained the first line by commuting derivatives via Proposition 2.1.4. We obtained the
second line by applying Proposition 6.3.2. We obtained the third line via integration by
parts. We obtained the fourth line by applying Proposition 6.4.2 and commuting derivatives
via Proposition 2.1.4. The first term in the fourth line vanishes due to a Bianchi identity and
the assumption that (M, g) has constant scalar curvature. We estimated the second term in

the fourth line using Proposition 6.3.3.
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n
Next, we estimate terms of the form (Vi_S(Rm*z))*z Let I3 denote
_ 251 23— j n_3-j
I3 = intj;e="V'Rm % V2 Rm * V/Rm % V2 Rm.

We estimate using the Holder inequality and Lemma 6.3.1. There exist C; = Ci(n,s,Cyg)
and R such that, for all R > Ry,

1 1
. . 2 . _a_ 2
L<C (/ ¢25|V’Rm|2|vg_3_lRm|2) (/ 02| VIRm[?|v2 3 JRm|2>
M M

< 016%]1.

n n_
Finally, we use Proposition 6.3.2 to estimate terms of the form V2 3V2Re x V2 3(Rm*Q).

Let 14 denote
_ 2579 —3 i 2-3—i
I4 = 2 V2 vijle*v Rm x V2 Rm.
M
There exist C1 = C1(n, s,Cg) and R such that, for all R > Ry,

_ 25 —1 i 2-3—i
Iy = V2 "Rmx V'Rm *x V2 Rm < Cieply.
M

We collect the preceding estimates in order to conclude that there exist C1 = Cq(n, s, Cyg),
Uy = Cy(n, A, Cg, Cy), and Rg such that, for all R > Ry,

25| o H—3[w . . , *27 |2

» @ |V2 [VJVlek — ViViRpy + Vi ViR — ViV Ry + Rm } ‘

n
< / 9028|V7_1RC|2 + Ciegl1 + CQRfQ.
M

The desired inequality now follows from the inequality (7.1). O
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7.2 General Interpolation Estimates

In this section, let n be even and let n > 6. We prove an interpolation inequality and use
it to provide energy estimates for various lower order terms. This will enable us to use the

fact that (M, g) is obstruction-flat to complete the proof of the main theorem.

The following proposition provides estimates for terms of the form
n_ l
Rm*0 « (VRm)*1 - % (V2 2Rm) /22

containing j factors that possess n — 25 derivatives in total.

Proposition 7.2.1. Let (M, p) satisfy the above hypotheses. Suppose that

(a) niseven,n>4,s>n? 2<j<B lg>—-1,0,>0for 1 <k<% -2

22 . 9-9 ,
(b) ZZLO . =7, ZZil klp, =n —2j.

Let o = max{k : Il > 0}. Then there exist C = C(n,j,a,s,Cg) and Rg such that for all

R > Ry,
n/2-2 N\ 2(-1) n
/ S028|an‘lo—|—l H ’VkRka <C (/ |Rm]2> </ 9025\V21Rm|2> '
M P M M

(7.2)

Proof. We apply Holder’s inequality, followed by the interpolation inequality given by Propo-

sition 6.2.4. Let

n—2j—a, ala>%(n—2j)

$(n—2j), ala < 3(n—2j).
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Define ¢, v, w by the following equations:

c—1 c c—1
Zk‘lk<m§2klk, Zklk+cv:m, v+ w = le.
k=1 k=1 k=1

We also define o, for 1 <k < cand f forc <k < % — 3 as follows:

I m—k k (k+2)m—k
ap  mn/2  mn/(m+1) nm

I (k+2)n—2j—m)—k

B~ nln-2—m)

We note that

2 -y sl
vow
1=+ 1)+ Y 2 —+—+ Y 5—’“
n 1 Mk e € f=ct1 'k
and
S m—ki,  (m—cw
S — k)l -
j=l=1+1g+ ) ——
k=1
2—-2
(n—2j—m—cw " (n—2j—m—k)l
- : + > _ .
n—2—m n—2j3—m
k=c+1
Define I by
n/2—2
M

k=1

Then there exist C' = C(n, j,a, s,Cg) and Rg such that for all R > Ry,

kl

c—1 s
I= (/ |Rmylo+1) 11 o - [VF Rk
M k=1

l
(so%JIVCRm!“)
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(7.3)

(7.4)



cw n/2=2 ks
« (1o wRl® ) | TT o™ 9 Rl

k=c+1
l
2 _ k v
mlp+1) et kag.s s U
< (/ ‘Rm’g)n H (/ gprr]f’kam’Oék) K (/ @C%Slchm‘ac) ac
M k=1 WM M
w ly,
_cBes Be |m/2-2 _kBys B
x ( / w—%-mWCRmWC) CUIL ([ e R )
M o M
=c+1
k 1)1
n %(j_l) el ns n %
§C</ |Rm\7) (/ (pm+1‘vam|m+1)
M p=1 VM
c(m+1)v
ns n mn
()
M
ns n C(n—ijm—H)w
% (/ (pn_Qj_nm|Vn_2j_mRm|n—2j—m+l) (n—2j—m)n
M

n/2—2 k(n—2j—m+1)l;.
_oms .\ (m—zj—mn
% g071—2]—m—&—1 ‘V”— J—mRm’n—Qj—m—i—l

2(]‘_1) m+1
n\n ns n n
|Rm]7) (/ ¢m+1|vam’m+1)
M M

n—2j—m+1
n

DO —

ns . S —
X (/ g0n—2j—m+1 ’vn—2]—mRm|n—2j—m+1)
M

n %(j_l) n_q % n_1
<C / |Rm\2) (/ 0*|V2~ Rm]Q) (/ 0*|V2~ Rm]Q)
M M M
2,.
7(i=1)
C’(/ |Rm\g)n (/ ¢2S|Vg_lRm]2).
M M

We obtained the second line via Holder’s inequality and equation (7.3). The definition of m

IA

and equation (7.4) allow us to apply the interpolation inequality Proposition 6.2.4, which

yields the third line. We obtained the fifth line via the Sobolev inequality Proposition 5.2.4.
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It follows from the inequalities
0<m<n—25<n-—4, 32712,

and from our definitions of o, for 1 < k < c and S, for c < k < % — 3, that the exponents
of the cutoff function ¢ are sufficiently large to allow the application of Propositions 6.2.4

and 5.2.4. ]

In the proof of the following proposition, we integrate by parts to reduce the orders of the
various terms to less than 5§ — 1 so that we can apply the interpolation estimate from the
previous proposition. Since we only integrate by parts when the order of the terms is at
least % — 1, we avoid obtaining, after integrating by parts, terms (Rm)!*0 Hz;%(kam)lk‘
of the same type, i.e. the sequences (lk)z;il are equal for both of the terms (AB denotes
Ax B).

Proposition 7.2.2. Let n > 8 and 2 < j < 5. Suppose s > n2. Then there exist C =
C1(n, j,s,Cg), Cy = Ca(n, j,A,Cg,Cy), and Ry such that for all R > Ry,

/ ©**Rm * P]n_zj(Rm) < C’leo/ @28|V%_1Rm|2 + CyR™2.
M M

Proof. Let A € Rm Pjn_Qj(Rm). Then A can be expressed as

d(A)
A= (Rm)"o T (V*Rm)'k
k=1
(AB denotes A x B), where d = d(A) = max{k : [}, > 0} and

d(A) d(A)

S lp=j, Y kly=n-2j
k=0 j=0
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Let I denote

= / ©*5A.
M

Suppose that d(A) < & — 2. Then Proposition 7.2.1 provides the desired estimate: there
exist C'= C(n,j,d,s,Cg) and Ry such that for all R > Ry,

: n
I< Ce{)_l/ @28|V7_1Rm|2.
M

It follows that, for all A such that d(A) < 5 — 2, there exists a uniform C7 = Cy(n, j, s, Cg)

and R such that for all R > Ry,

n
I< C’eo/ ©%*|V2 'Rm|?.
M

We estimate the terms A € Rm Pn 2 (Rm) for which d(A) > 5 —2 by induction. We have
already estimated the terms A € Rm x Pjn 2J(Rm) for which d(A) < § — 2. Now suppose
that d(A) > § — 2 and that we have already estimated the terms B € Rm * P;.l_zj (Rm) for

which d(B) < d(A). We have d(A) > & — 1 and

d(A)

n—4>n-—2j= Zzll
1=0

Since d = d(A) = max{k : [}, > 0}, the above equation implies that [; = 1 and [;_1 = 0.

We integrate by parts:

d—2
M

k=1
1<i<d—-2 0<k<d-2
1,0 Foti, i1
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+ / PP ERm)O(VRm) [ (VFRm)k (75)
M 9<k<d—2

The fact that [;_1 = 0 ensures that none of the terms on the right hand side of the above
equation (7.5) matches the integral on the left hand side of the equation. We estimate
the term on the right hand side containing V¢ via Proposition 6.4.2: there exists C =
Ca(n, j, A, Cg, Cy) such that
d—2
M k=1
The remaining terms on the right hand side are integrals containing integrands B € Rm *
P}l_% (Rm) for which d(B) < d—1. As a result, these terms have already been estimated via

the induction hypothesis. Collecting terms, we obtain that there exist C7 = Cq(n, j,s,Cyg),
Cy = C3(n,j,A,Cp,Cy), and Ry such that for all R > Ry,

1< 0160/ QOQS‘V%_IRHI‘Q—FCQR_Q.
M

Collecting the estimates for all A € Rm P]n_Qj (Rm) yields the desired estimate. ]

7.3 Conclusion of the Proof of Theorem 1.2.10

In this section, let n be even and let n > 6. We use the assumptions that (M, ¢) is obstruction
- flat and has constant scalar curvature to obtain estimates that allow us to complete the

proof of Theorem 1.2.10.
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Proposition 7.3.1. Let M, ¢ satisfy the above hypotheses. Suppose s > n2. There exist
C1 = C1(n,s,Cg), Cy = Ca(n, A, Cg, Cy), and Ry such that for all R > Ry,

/ ¢2S|Vg_1ﬁc|2§/ ¢2S<(—1)3—1A3‘1Rc,Rc>+0160/ 02|V 2 'Rm[2+CyR 2,
M M M
Proof. Let I denote
:/ 025 ((—1)IV2 1 ATRe, v 1R,
M

We show that, for all i satisfying 0 < ¢ < § — 1, there exist C1 = C1(n,s,Cg), Cy =

Ca(n, A, Cg, Cy), and Ry such that for all R > Ry,
251y —1p.2 25w p—1 2 -2
©*°IV2 "Re|” < T+ Cre ©*°IV2 "Rm|” 4+ CyR™~. (7.6)
M M

We prove this by induction on 7. Suppose this estimate holds for all nonnegative inte-
gers at most 4, where ¢ satisfies 0 < ¢ < § — 1. There exist C1 = Cq(n,s,Cg), Cy =

Ca(n, A, Cq, Cy), and Ry such that for all R > Ry,

[ = (—1)i+! / P2 (AV2 I2ATRe, V2 2Re)
M
+ / 4,025_1Vg0 * V%—H_lRm * V%_i_QRm
M
< (—1)itt / P2 (AVZ T2 AR, V2T 2Re) + Oy R 2
M

— (-1)i+ / P25 (VI AT IR, V32 Re)
M

n/2—i—2
+ ) / 25V T 2R 5« VI 2 R« VT2 Rm + Cy B2
: M
j=0

g/ ¢28<(—1)i+1v%‘i‘2N+1RC,v%‘HR@+0160/ 02V 2 'Rm|? + CyR~2.
M M
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We obtained the first line via integration by parts. We obtained the second line via Propo-
sition 6.4.2. We obtained the third line by commuting derivatives via Proposition 2.1.2. We
obtained the fourth line via Proposition 7.2.2, since each lower order term is of the form
P?~4(Rm). Therefore, there exist C1 = C1(n,s,Cg), Cy = Ca(n, A, Cg, Cy), and Ry such
that for all R > Ry,

/ 225V 8 IRe)2 SI—I—CleO/ 25|V E Rm|? 4 CyR2
M M
g/ P25 ((—1)i+ly 2 T2 ATHIRe v TIT2Re)
M

n
+ Cieg / QD2S|V7_1RH1|2 + CQR_Q,
M

so that inequality (7.6) also holds for ¢ + 1. We conclude inequality (7.6) holds for all i

satisfying 0 <i < & — 1.

We obtain the desired inequality by setting i = & — 1 in inequality (7.6). H

Proposition 7.3.2. Let M, ¢ satisfy the above hypotheses. Suppose s > n2. There exist

Cr = C1(n,5,Cg), Co = Ca(n, A, Cq, Cy), and Ry such that for all R > Ry,
2s F—1A5—1 25 o9 —1n .2 -2
©e**((-=1)27 A2 "Re,Re) < Creg | ¢”°IV2 "Rm|* + CoR™“.
M M
Proof. Let I denote
:/ @28<(—1)%_1A%_1RC,RC>.
M

Since we have assumed that (M, g) is obstruction - flat and has constant scalar curvature,

we have
n/2 n n/2 ;
0=0=500 A2 Re+ Y P ¥ (Rm).
=2
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n
We use this equation to express A2 1Rc as a sum of lower order terms. If n > 8, then
we can apply Proposition 7.2.2 to obtain that, for each j satisfying 2 < j < %, there exist
C1 = C1(n,j,5,Cg), Co = Ca(n, j, A, Cq, Cy), and Ry such that for all R > Ry,

/ ©>Rm * P}l_%(Rm) < C’leo/ @28|V%_1Rm|2 +CyR2.
M M

Summing over the j yields that there exist C1 = C1(n, s, Cg), Cy = Co(n, A, C,Cy ), and
Ry such that for all R > R,

n/2

I = Z/ ©?*Rm * P;-%QJ(Rm) < Oleo/ g02‘9|V%71Rm|2 + CyR™2.
; M M
j=2

We give a separate argument for n = 6. We have

n/2

I= Z / ©?*Rm * Pjn_%(Rm) = / ©**[V2Rm * Rm*? + VRm*? * Rm + Rm*4].
; M M
j=2

Since

V2Rm * Rm*2 = VZ 'R + VFRm + V2% *Rm
when n =6,k =0 and

VRm*? 5 Rm = V2 2Rm + V*Rm + V22 *Rm

when n = 6,k = 1, we can apply Propositions 6.3.2 and 6.3.3, respectively, to obtain that
there exist C' = C(s,Cg) and Rg such that for all R > Ry,

/ ©>*[V2Rm * Rm*? + VRm*? « Rm] < C¢ / 02|v2 'R + CR2. (7.7)
M M
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We estimate the remaining term by applying the Holder inequality and Proposition 5.2.4:
there exist C' = C(s,Cg) and R such that for all R > Ry,

/ S025an>s<4§0/ (g02S|Rm|2)|Rm|2
M M

. C</M S065|Rm|6>515</M’Rm|3>22’)
= Cedllp*Rm|3

< Cé / ©?%|V?Rm|?. (7.8)
M

Combining the estimates (7.7) and (7.8) implies that there exist C' = C(s, Cg) and Rg such

that for all R > Ry,

n/2
_ 2s n—2j
I= Z/Mgp Rm + P~ (Rm)
j=2

= / ©*[V?Rm * Rm*? + VRm*?  Rm 4+ Rm*?
M

n
SC’EO/ ©%*|V2 1 'Rm|?.
M

So, we have obtained the desired inequality for n > 6. O]

Proposition 7.3.3. Let M, ¢ satisfy the above hypotheses. Suppose s > n2. There exist
C1 = C1(n,s,Cg), Cy = Ca(n, A\, Cq, Cy), and Ry such that for all R > Ry,

/ ©25v2 IRef2 < Cleo/ 02V 2 'Rm|2 + CyR 2.
M M
Proof. We apply Propositions 7.3.1 and 7.3.2:
/ 02V 2 R < / 025 ((—1)2 AT 'Re, Re) + C’eo/ 02V 2 'Rm|? + OR2
M M M

< Ceo/ ¢25|V%_1Rm|2 +CR 2
M
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We are now able to complete the proof of Theorem 1.2.10.

Proof of Theorem 1.2.10. Let s = n?. Propositions 7.1.2 and 7.3.3 imply that there exist

Cp = C1(n,Cg), Co = Cy(n, A, Cq, Cy), and Ry such that for all R > Ry,

/¢28|v31Rm|2g/ @28|v31Rc|2+0160/ 02V 3 'Rm|2 + CyR 2
M M M

n
< 0160/ @25]V§_1Rm|2 + CQRfQ.
M
If we let ¢g = ﬁ we obtain
n
/ p*|V2 'Rm|? < CoR72.
M
Applying the above inequality and Proposition 5.2.1 yields
2
ns n\" 251 ¥—1 2 -2
©""°|Rm)| <Cp | ¢*°|V2 "Rm|” < R~
M M

Letting R — oo, we conclude that Rm = 0, so that (M, g) is flat. We note that, since

C1 = C1(n,Cg), we have shown that we can choose ¢y to depend only on n and Clg. ]
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