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Results of three searches are presented for the production of supersymmetric particles decaying into final
states with missing transverse momentum and exactly two isolated leptons, e or μ. The analysis uses a
data sample collected during the first half of 2011 that corresponds to a total integrated luminosity of
1 fb−1 of

√
s = 7 TeV proton–proton collisions recorded with the ATLAS detector at the Large Hadron

Collider. Opposite-sign and same-sign dilepton events are separately studied, with no deviations from
the Standard Model expectation observed. Additionally, in opposite-sign events, a search is made for an
excess of same-flavour over different-flavour lepton pairs. Effective production cross sections in excess of
9.9 fb for opposite-sign events containing supersymmetric particles with missing transverse momentum
greater than 250 GeV are excluded at 95% CL. For same-sign events containing supersymmetric particles
with missing transverse momentum greater than 100 GeV, effective production cross sections in excess
of 14.8 fb are excluded at 95% CL. The latter limit is interpreted in a simplified electroweak gaugino
production model excluding chargino masses up to 200 GeV, under the assumption that slepton decay is
dominant.

Open access under CC BY-NC-ND license.
1. Introduction

Many extensions to the Standard Model (SM) predict the exis-
tence of new states that decay to invisible particles. New coloured
particles, such as the squarks (q̃) and gluinos ( g̃) of supersym-
metric (SUSY) theories [1], are among those predicted. These
new particles could be accessible at the Large Hadron Collider
(LHC). In R-parity conserving [2] SUSY models, the lightest su-
persymmetric particle (LSP) is stable and weakly interacting, and
SUSY particles are pair-produced. The LSP escapes detection, giv-
ing rise to events with significant missing transverse momentum
(Emiss

T ). The dominant SUSY production channels at the LHC are:
squark–(anti)squark, squark–gluino and gluino pair production. The
squarks and gluinos are expected to decay into quarks and the
SUSY partners of the gauge and Higgs bosons, charginos, χ̃± , and
neutralinos, χ̃0. Weak gauginos and sleptons may also be pair-
produced, albeit with smaller cross sections, and dilepton searches
are potentially very sensitive to direct electroweak gaugino pro-
duction: χ̃±

1 χ̃0
2 , χ̃±

2 χ̃0
1 , χ̃±

1 χ̃∓
1 and χ̃0

2 χ̃0
2 .

SUSY events can produce charged leptons with high transverse
momentum (pT) through the decays of neutralinos and charginos.
The main processes are: (a) χ̃0

i → l±νχ̃∓
j , (b) χ̃±

i → l±νχ̃0
j ,

✩ © CERN for the benefit of the ATLAS Collaboration.
� E-mail address: atlas.publications@cern.ch.

(c) χ̃0
i → l±l∓χ̃0

j and (d) χ̃±
i → l±l∓χ̃±

j , where l is an e, μ or
τ lepton (only e and μ are considered in this Letter). These decays
can be direct, or proceed via an intermediate slepton.

In each SUSY event there are two independent cascade decays.
Two leptons are produced in events in which two gauginos de-
cay via cascade (a) or (b), or events in which one gaugino decays
via cascade (c) or (d). In the former case, the events may con-
tain same sign leptons and the lepton flavour may differ. In the
latter case, the leptons will have the same flavour, and searching
for an excess of opposite-sign same-flavour dilepton events over
different flavour events offers one of the best routes to the model-
independent measurement of SUSY particle masses via end-points
in the dilepton invariant mass distribution [3–5].

Previous results of SUSY searches at the LHC for final states
with two leptons, electrons or muons, can be found in Refs. [6–9].
This Letter presents updated results using data recorded during
2011 from each of the three ATLAS searches for SUSY in events
with exactly two leptons and significant missing transverse mo-
mentum. The two inclusive searches for opposite- and same-sign
lepton pairs and the search for an excess of events with same-
flavour lepton pairs proceed similarly to those reported in Refs. [6]
and [7], with minor modifications. The latter is termed a “flavour
subtraction” analysis, and considers the subtraction of different-
flavour dilepton events from those of same-flavour. In the 2011
analyses, the rejection criteria for cosmic ray muons are stricter
and the method for estimating their contamination to the signal

0370-2693 © 2012 CERN. Published by Elsevier B.V.
doi:10.1016/j.physletb.2012.01.076
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regions is modified. Lepton kinematic selection criteria are also
adjusted to match the single lepton triggers used in 2011. The ex-
perimental environment differs significantly from that of 2010 due
to the higher rate of multiple proton–proton collisions per bunch-
crossing (pile-up) produced by the LHC.

In 2010, the dilepton analyses set limits in high-Emiss
T signal

regions, Emiss
T > 100(150) GeV for opposite-sign (same-sign) anal-

yses. In this 2011 analysis, a wider variety of signal regions is
considered, placing requirements on Emiss

T , but also on the number
of high-pT jets (see Table 1). Additionally, exclusion limits are set
in a simplified model of electroweak gaugino production (in these
simplified models the LSP is bino-like and the effect of a Higgsino
admixture in the chargino and neutralino states not considered).
Previous limits on electroweak gaugino production can be found
in Refs. [35–42]. These limits are not directly comparable to those
in this Letter because of the assumptions made for the simplified
models considered.

2. The ATLAS detector

The ATLAS detector [10] is a multi-purpose particle physics ap-
paratus with a forward–backward symmetric cylindrical geometry
and nearly 4π coverage in solid angle.1 It contains four super-
conducting magnet systems, which comprise a thin solenoid sur-
rounding the inner tracking detector (ID), and barrel and endcap
toroids supporting a muon spectrometer. The ID consists of a sili-
con pixel detector, a silicon microstrip detector (SCT), and a tran-
sition radiation tracker (TRT). The muon spectrometer surrounds
the calorimeters and consists of a system of precision tracking
chambers (|η| < 2.7), and detectors for triggering (|η| < 2.4). In
the pseudorapidity region |η| < 3.2, high-granularity liquid-argon
(LAr) electromagnetic (EM) sampling calorimeters are used. An
iron-scintillator tile calorimeter provides coverage for hadron de-
tection over |η| < 1.7. The end-cap and forward regions, spanning
1.5 < |η| < 4.9, are instrumented with LAr calorimetry for both EM
and hadronic measurements.

3. Trigger and data sample

The data used in this analysis were recorded between March
and June 2011, with the LHC operating at a centre-of-mass energy
of 7 TeV. Application of beam, detector and data-quality require-
ments gives a total integrated luminosity of 1.04 fb−1, with an
estimated uncertainty of 3.7% [11].

Events must pass either a single electron or a single muon trig-
ger. The pT thresholds of these triggers are 20 GeV and 18 GeV
respectively. These triggers reach full efficiency for electrons with
pT > 25 GeV and muons with pT > 20 GeV, with typical efficien-
cies for leptons selected for offline analysis of 96% for electrons,
and of 75% and 88% for muons in the barrel (|η| < 1.05) and end-
cap (1.05 < |η| < 2.4) regions, respectively.

4. Monte Carlo

Monte Carlo (MC) simulated event samples are used to de-
velop and validate the analysis procedure and to help evalu-
ate the SM backgrounds in the various signal regions. Produc-
tion of top quark pairs is simulated with MC@NLO [12], using
a top quark mass of 172.5 GeV and the next-to-leading order

1 ATLAS uses a right-handed coordinate system with its origin at the nominal in-
teraction point in the centre of the detector and the z-axis along the beam pipe.
Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the az-
imuthal angle around the beam pipe. The pseudorapidity η is defined in terms of
the polar angle θ by η = − ln tan(θ/2).

(NLO) parton distribution functions (PDF) CTEQ6.6 [13], which
are used with all NLO MC codes in this analysis. Samples of W
production and Z/γ ∗ production, with accompanying jets, are pro-
duced with ALPGEN [14].2 Diboson (W W , W Z , Z Z ) production
is simulated with HERWIG [15], W +W + j j production with Mad-
Graph [16] and single top production with MC@NLO. Fragmen-
tation and hadronisation for the ALPGEN and MC@NLO samples
are performed with HERWIG, using JIMMY [17] for the under-
lying event. ALPGEN and POWHEG [18] samples are used to as-
sess the systematic uncertainties associated with the choice of
generator for tt̄ production, and AcerMC [19] samples are used
to assess the uncertainties associated with initial and final state
radiation (ISR/FSR). The simplified electroweak gaugino produc-
tion models are simulated using HERWIG++ [20], with cross sec-
tions calculated at NLO using PROSPINO [21]. Samples of QCD
jet events are generated with PYTHIA using the MRST2007LO*
modified leading-order PDF [22], which are used with all leading-
order MC codes in this analysis. The QCD jet MC is only used for
cross-checks of components of the data-driven background estima-
tion.

The MC samples are produced using the ATLAS MC10b param-
eter tune [23] and a GEANT4 [24] based detector simulation [25].
MC samples are reweighted so that the number of interactions per
bunch crossing agrees with that in data.

5. Object reconstruction

Electrons are reconstructed from clusters in the electromagnetic
calorimeter matched to a track in the ID. Electrons are required to
pass the “medium” [26] electron definition (selection criteria based
mainly on lateral shower shape requirements in the calorimeter)
and have pT > 20 GeV and |η| < 2.47. Electrons within 0.2 < �R <

0.4 of any jet are discarded, where �R = √
(�η)2 + (�φ)2. When

the jet-electron distance is below 0.2, the jet is removed. For elec-
trons in the signal region, the quality criterion is raised to “tight”
by placing additional requirements on the ratio of calorimetric en-
ergy to track momentum, and the number of high-threshold hits
in the TRT. Furthermore, the electrons are required to be isolated:
the pT sum of tracks above 1 GeV within a cone of size �R < 0.2
around each electron candidate (excluding the electron candidates
themselves) is required to be less than 10% of the electron’s pT. If
the electron is the highest pT lepton in the pair, the pT require-
ment is raised to 25 GeV.

Muons are reconstructed using either a full muon spectrometer
track matched to an ID track, or a muon spectrometer track seg-
ment matched to an extrapolated ID track. Muons are required to
have pT > 10 GeV, |η| < 2.4, and to be well reconstructed, with
sufficient hits in the pixel, SCT, and TRT detectors. Muon tracks re-
constructed independently in both the ID and muon spectrometer
are required to have a good match and a compatible momentum
measurement in both detectors. Muons within �R < 0.4 of any jet
are discarded. In order to reject muons resulting from cosmic rays,
tight cuts are applied to the origin of the muon relative to the pri-
mary vertex (PV): muon tracks are required to have a longitudinal
impact parameter |z0| < 1 mm and a transverse impact parameter
|d0| < 0.2 mm. Muons in the signal region must be isolated: the
pT sum of tracks within a cone of size �R < 0.2 around the muon
candidate (excluding the muon candidate itself) is required to be
less than 1.8 GeV. If a muon in a signal region is the highest pT
lepton in the pair, the pT requirement is raised to 20 GeV.

2 The MC samples for Z/γ ∗ + jets are divided into two invariant mass windows.
The first cover 10 < mll < 40 GeV and are referred to in this Letter as “Drell–Yan”
events. The second cover the region mll > 40 GeV and are referred to as Z + jets.
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Jets are reconstructed using the anti-kt jet clustering algo-
rithm [27] with a distance parameter of 0.4. The inputs to
the jet algorithm are clusters formed from energy deposits in
the calorimeter. Jets are required to have pT > 20 GeV and
|η| < 2.8. Events with any jet that fails quality criteria de-
signed to remove noise and non-collision backgrounds [28] are
rejected.

The missing transverse momentum (Emiss
T ) in this analysis is the

magnitude of the vector sum of the pT of reconstructed objects in
the event. The objects considered are jets with pT > 20 GeV, sig-
nal leptons, any additional non-isolated muons (for example from
semi-leptonic decays of hadrons in jets) and calorimeter clusters
with |η| < 4.5 which are not associated to any of the aforemen-
tioned objects.

6. Event selection

The primary vertex (the vertex with the highest summed track
p2

T) in each event is required to have at least five associated
tracks. Due to readout problems in the LAr calorimeter for a sub-
set of the data, events in data and MC containing a jet with
pT > 20 GeV or an identified electron with −0.1 < η < 1.5 and
−0.9 < φ < −0.5 are rejected (resulting in a loss of less than 2%
of the data). Each selected event must contain exactly two re-
constructed leptons, e or μ, satisfying the conditions described
in Section 5. Events containing exactly two electrons (muons)
must satisfy the electron (muon) trigger. For events containing ex-
actly one electron and one muon: those with an electron with
pT > 25 GeV must satisfy the electron trigger, while events with
no such electron must have a muon with pT > 20 GeV and sat-
isfy the muon trigger. Events containing an electron with pT >

25 GeV which do not satisfy the electron trigger are recovered us-
ing the muon trigger provided the pT of the muon is greater than
20 GeV.

Additionally, both leptons in each pair must satisfy the sig-
nal region requirements. To remove low-mass dilepton resonances,
the invariant mass (mll) of the lepton-pair must be greater than
12 GeV. The selected events are then classified as opposite-sign or
same-sign, depending on the respective charges of each lepton in
the pair.

The various signal regions defined for the opposite-sign (OS-x),
same-sign (SS-x) and flavour-subtraction (FS-x) analyses are given
in Table 1. The opposite-sign and same-sign signal regions are de-
signed to provide sensitivity to R-parity conserving SUSY models
with high-Emiss

T (OS-inc and SS-inc) and electroweak gaugino pro-
duction (SS-inc). Signal regions that introduce requirements on the
multiplicity and pT of jets in the events (OS-3j, OS-4j and SS-
2j) exploit the expected presence of jets in cascade decays from
coloured SUSY particle production. The three latter regions are op-
timised by considering their potential reach in the parameter space
of mSUGRA/CMSSM [1] models.3 For the flavour-subtraction analy-
sis, the signal regions aim to fully exploit the natural cancellation
of tt̄ and other flavour-symmetric background events and to have
a minimum contamination from Z/γ ∗ + jets and diboson events.
The contamination from flavour-asymmetric background is reduced
with either a veto on events with mll near the mass of the Z bo-
son (FS-no Z), requirements on jet multiplicity and pT (FS-2j) or
very high-Emiss

T (FS-inc).

3 These models have varying universal scalar and gaugino mass parameters m0

and m1/2, but fixed values of the universal trilinear coupling parameter A0 = 0 GeV,
ratio of the vacuum expectation values of the two Higgs doublets tan β = 10, and
Higgs mixing parameter, μ > 0.

7. Background evaluation

The background from cosmic rays must be evaluated in all sig-
nal regions. Muons from hard scattering processes typically have
very low values of |z0| and |d0| since they originate from the PV
of the event. The distributions of both |z0| and |d0| for cosmic rays
are broad. In the μμ channels the expected numbers of cosmic
ray events in each signal region are evaluated using the |z0| dis-
tribution of muons in dimuon events for which the |z0| and |d0|
requirements have been relaxed. The region 1 < |z0| < 100 mm is
populated with cosmic rays. Due to the fall off of the tracking effi-
ciency at large z0, this region can be well described by a Gaussian
fit. This fit can be used to evaluate the number of cosmic rays in
the region |z0| < 1 mm, given the estimated number in the region
1 < |z0| < 100 mm after the application of the signal region selec-
tion cuts. This procedure yields contributions from cosmic rays of
< 10−3 events in each signal region. The coincidence of a single
reconstructed collision electron and a single reconstructed cosmic
ray muon is much less likely than the probability of reconstruct-
ing a cosmic ray event as two reconstructed muons in coincidence
with a collision event. This sets a conservative estimate of the con-
tribution in the eμ channels of < 10−3 events.

The SM backgrounds to each search are evaluated using a com-
bination of MC simulation and data-driven techniques. Contribu-
tions from single top and diboson events are evaluated using the
MC samples described in Section 4, scaled to the luminosity of the
data sample. The former must be evaluated only in OS-x and FS-x
signal regions, while the latter must be evaluated in all signal re-
gions. Contributions from Z/γ ∗ + jets and tt̄ events (which must
be estimated in OS-x and FS-x signal regions, but not SS-x regions)
are evaluated using MC samples normalised to data in appropriate
control regions (CR). SM processes generating events containing at
least one fake or non-isolated lepton are collectively referred to as
“fake lepton” background, generally consisting of semi-leptonic tt̄ ,
single top, W + jets and QCD light and heavy-flavour jet produc-
tion. The fake lepton background is obtained using a purely data-
driven technique for all signal regions. The background from charge
misidentification (from electrons in events which have undergone
hard bremsstrahlung with subsequent photon conversion) is im-
portant in the same-sign signal region and is estimated using a
partially data-driven technique.

The following paragraphs first describe the evaluation of the
backgrounds which contribute only to the opposite-sign (and
flavour-subtraction) signal regions. The fake lepton background for
all signal regions is then described. Lastly, details are given of how
the background from charge misidentification is estimated for each
same-sign signal region.

The fully leptonic tt̄ background in the signal regions is ob-
tained by extrapolating from the number of tt̄ events in a suit-
able control region, after correcting for contamination from non-tt̄
events, into the signal regions using the ratio of the number of
MC tt̄ events in the signal region to those in the control region.
The numbers of tt̄ events in a given control region are determined
using a “top-tagging” algorithm. The top-tagging requirement is
imposed through the use of the variable mCT [29]. This observ-
able can be calculated from the four-vectors of the selected jets
and leptons:

m2
CT(v1, v2) = [

ET(v1) + ET(v2)
]2 − [

pT(v1) − pT(v2)
]2

, (1)

where vi can be a lepton (l), a jet ( j), or a lepton-jet com-
bination ( jl), transverse momentum vectors are defined by pT

and transverse energies ET are defined as ET =
√

p2
T + m2. The

quantities mCT( j, j), mCT(l, l) and mCT( jl, jl) are bounded from
above by analytical functions of the top quark and W boson
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Table 1
Criteria defining each of the three signal regions for the opposite-sign (OS-x) analysis, each of the two signal regions for the same-sign analysis (SS-x) and each of the three
regions for the flavour-subtraction (FS-x) analysis. Regions OS-inc and FS-inc are identical.

Signal region OS-inc OS-3j OS-4j SS-inc SS-2j FS-no Z FS-2j FS-inc

Emiss
T [GeV] 250 220 100 100 80 80 80 250

Leading jet pT [GeV] – 80 100 – 50 – – –
Second jet pT [GeV] – 40 70 – 50 – – –
Third jet pT [GeV] – 40 70 – – – – –
Fourth jet pT [GeV] – – 70 – – – – –

Number of jets – � 3 � 4 – � 2 – � 2 –
mll veto [GeV] – – – – – 80–100 – –
masses. A top-tagged event must have at least two jets with pT >

20 GeV, and the scalar sum of the pT of at least one combina-
tion of two jets and the two leptons in the event must exceed
100 GeV. Furthermore, top-tagged events are required to possess
mCT values calculated from combinations of jets and leptons con-
sistent with the expected bounds from tt̄ events as described in
Ref. [30] (mCT( j j) in the allowed area of the mCT( j j)–pT ( j j) plane,
mCT(l1, l2) in the allowed area of the mCT(l1, l2)–pT (ll) plane and
mCT( jl, jl) compatible with t̄t) as well as lepton-jet invariant mass
values consistent with top quark decays (m( j1l1) < 155 GeV and
m( j1l2) < 155 GeV). The contributions in each opposite-sign sig-
nal region are obtained using three separate control regions (one
for each signal region). All three control regions (for OS/FS-inc, OS-
3j and OS-4j) require, in addition to the top-tagged lepton pairs,
60 < Emiss

T < 100 GeV, except in the e±e∓ and μ±μ∓ channels
of OS-inc, where 80 < Emiss

T < 100 GeV is required. In the first (a
control region for OS/FS-inc), no requirement is placed on the jets,
while in the second (for OS-3j) and third (for OS-4j), three jets and
four jets with pT > 40 GeV are required respectively. In these con-
trol regions the numbers of observed events (1010, 238 and 52
in control regions one through to three, respectively) are in good
agreement (better than 1 σ ) given statistical and systematic uncer-
tainties with the expected rates from tt̄ and non-tt̄ SM processes,
resulting in ratios of data to MC in the control regions compatible
with one. The contamination from non-tt̄ events lies between 15
and 20%. In the first two signal regions for the flavour subtraction
analysis (FS-no Z and FS-2j), the contribution from fully-leptonic tt̄
is taken from MC.

Similarly, the contribution from Z/γ ∗ + jets events in the signal
regions is estimated by extrapolating the number of Z/γ ∗ + jets
events observed in a control region into the signal region using ra-
tios derived from MC. All Z/γ ∗ control regions contain lepton-pair
events satisfying the same selection criteria as the signal region
but with Emiss

T < 20 GeV and an additional 81 < m�� < 101 GeV
requirement. Three distinct control regions are necessary for the
three different opposite-sign signal regions: the first (a control re-
gion for OS/FS-inc) places no requirements on the number of jets
in the event, while the second and third (for OS-3j and OS-4j re-
spectively) require jets with pT as described in Table 1. Similarly,
in the control regions for the flavour-subtraction signal regions (FS-
no Z and FS-2j), the corresponding jet requirements in Table 1 are
used. In these control regions the numbers of observed events are
in good agreement with the expectation from MC, given the sys-
tematic and statistical uncertainties on the MC expectation. The
predicted numbers of Z/γ ∗ + jets events in each signal region are
compatible with the MC expectation (within 1 σ ).

The probabilities of fake leptons being reconstructed as prompt,
isolated leptons are evaluated from suitable control regions. Puta-
tive fake leptons are identified as those satisfying a loose set of
identification requirements, and the fraction of these that pass the
tight identification requirements used for signal leptons is mea-
sured. For muons, the looser identification requirements are iden-

tical to those of the signal muons, except the isolation requirement
is dropped. Looser electrons must be both “medium” as defined in
Ref. [26] and not isolated, but are otherwise identical to the sig-
nal electrons. The probability of identifying a heavy-flavour decay,
light-jet or photon conversion as a prompt electron is evaluated
from events with a single electron satisfying the relaxed identi-
fication requirements, Emiss

T < 30 GeV, at least one jet and �φ

between the lepton and Emiss
T directions less than 0.5 (reducing

W backgrounds). The corresponding control region for estimat-
ing the prompt muon misidentification probability also requires
Emiss

T < 30 GeV and selects events with two same-sign muons sat-
isfying the relaxed identification requirements. The contamination
from processes producing prompt, isolated leptons has been stud-
ied in MC simulations and is small. With this “lepton” definition,
both control regions and signal regions have a similar composition
and are dominated by heavy-flavour decays, light-jets, and photon
conversions. In each signal region (OS-x, SS-x and FS-x) the ob-
served numbers of events in data with two loose leptons, two tight
leptons, or one of each are counted. Systems of linear equations are
then constructed for each signal region relating the observed num-
bers of events with two fake leptons, two real leptons, or one of
each to the observed event counts, using the measured probabili-
ties of misidentification for fakes and efficiencies for identification
of real leptons. The latter are obtained for electrons and muons
separately from events with a single same-flavour opposite-sign
lepton pair with mll within 5 GeV of the Z mass. Simultaneous so-
lution of these equations in each signal region yields the expected
number of events in each which contain fake leptons. This method
is the “matrix-method” described in Ref. [31].

The contribution from charge misidentification in each SS-x re-
gion is studied using Z → e+e− MC events. The probability of
charge misidentification is ascertained by comparing the charges of
generator level electrons to those of reconstructed electron candi-
dates following the application of the same-sign signal region cuts.
The misidentification probability is calculated as a function of elec-
tron rapidity and transverse momentum and applied to tt̄ → e±l∓
(l = e,μ) MC events to evaluate, in each signal region, the number
of same-sign events from incorrect charge assignment. The charge
misidentification probabilities in the Z → e+e− and tt̄ MC sam-
ples are consistent. A single scaling factor is used to correct for
discrepancies between the charge misidentification rates in data
and simulation. The pT distributions in data and MC are in good
agreement. The probability of misidentifying the charge of a muon
and the contributions from charge misidentification of Z/γ ∗ + jets
and other SM backgrounds are negligible.

Fully-leptonic tt̄ production is the dominant SM background
in the search for opposite-sign dileptons, making up at least
50% of the total SM event yield. Smaller contributions arise from
Z/γ ∗ + jets, diboson and single-top production, and events con-
taining at least one fake or non-prompt lepton. In all but the
highest jet multiplicity opposite-sign signal regions, Z/γ ∗ + jets
events are the next most significant contribution. After flavour
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Table 2
A summary of the dominant systematic uncertainties on the estimates of the fully-
leptonic tt̄ event yields in each opposite-sign signal region. The uncertainties are
different in each signal region, because each has a different control region.

Signal region OS-inc OS-3j OS-4j

MC & CR statistics 7% 10% 21%
JES 11% 6% 6%
JER 1% 11% 15%
Generator 16% 13% 58%
ISR/FSR 20% 16% 26%

Total 27% 25% 68%

subtraction, flavour-symmetric backgrounds like tt̄ naturally can-
cel. Events with a fake lepton dominate the same-sign signal
samples. Other significant backgrounds come from diboson pro-
duction and charge mismeasurements. The estimate of the dibo-
son background includes the process W +W + j j, but neglects ttW
which has been found to be insignificant. The relative size of each
SM background component in each signal region is illustrated in
Fig. 1.

8. Systematic uncertainties

The primary sources of systematic uncertainty on the back-
ground event estimations are: the jet energy scale (JES), the jet en-
ergy resolution (JER) and theory and MC modelling. Uncertainties
in lepton reconstruction and identification (momentum and energy
scales, resolutions and efficiencies) give smaller contributions. The
JES and JER uncertainties are jet pT and η dependent. They are
measured using the complete 2010 dataset using the techniques
described in Ref. [32], with an additional contribution (7%) added
to the JES uncertainty to account for the effect of higher pile-up
in the 2011. Theoretical and MC modelling uncertainties are de-
termined by using different generators and varying the amount of
ISR/FSR (for tt̄), as described in Section 4. Additional uncertainties
arise from limited MC statistics. An uncertainty on the luminosity
of 3.7% is included [11].

The main systematic uncertainties on the tt̄ background in each
OS-x region are summarised in Table 2. The largest uncertainties
(generator and ISR/FSR) affect only the scale factor relating the
number of MC tt̄ events in the control region to the signal re-
gion. Since tt̄ dominates the event yields in these regions, these
uncertainties make up most of the total systematic uncertainty on
the estimated opposite-sign background. For the evaluation of the
(smaller) contributions from Z/γ ∗ + jets events, a large statistical
uncertainty on the MC predictions in the control regions domi-
nates the error. The uncertainties on the single top (in OS-x and
FS-x) and diboson (in OS-x, SS-x and FS-x) backgrounds are dom-
inated by the JES and JER contributions. The uncertainties on the
yields in all signal regions from events containing fake leptons are
dominated by the knowledge of the mis-identification probabili-
ties. This uncertainty makes up most of the total uncertainty on
the background yields in SS-x.

Systematic uncertainties on the signal expectations are evalu-
ated through variations of the factorisation and renormalisation
scales in PROSPINO between half and twice their default val-
ues, and by including the uncertainty on αs and on the PDF pro-
vided by CTEQ6. Uncertainties are calculated for individual SUSY
processes. In the relevant regions of the illustrated mass plane
the resulting uncertainties on the signal cross sections are typ-
ically 4–8%. Further uncertainties on the numbers of predicted
signal events arise from the JES uncertainty (1–18%), luminos-
ity (3.7%) and finite statistics of the signal Monte Carlo sam-
ples.

Table 3
Predicted number of background events, observed number of events and the corre-
sponding 95% CL upper limit on A × ε × σ , calculated using the CLs technique, for
each opposite-sign and same-sign signal region.

Background Obs. 95% CL

OS-inc 15.5 ±4.0 13 9.9 fb
OS-3j 13.0 ±4.0 17 14.4 fb
OS-4j 5.7±3.6 2 6.4 fb

SS-inc 32.6 ±7.9 25 14.8 fb
SS-2j 24.9 ±5.9 28 17.7 fb

9. Results and interpretation

9.1. Opposite and same-sign inclusive

The expected and observed numbers of opposite-sign and
same-sign lepton-pair events in each signal region are compared
in Table 3 to the background expectation. Good agreement is ob-
served. These results are used to set limits on the effective pro-
duction cross section, the product of the cross section for new
phenomena, the kinematic and geometrical acceptance and recon-
struction and event selection efficiencies. Limits are set using the
CLs prescription, as described in Ref. [33], and setting the upper
limit on the effective production cross section as the limit on the
number of observed signal events divided by the integrated lumi-
nosity. The results are given in Table 3 in each signal region.

The signal region SS-inc is particularly sensitive to low mass
electroweak gaugino production and the cascade decays into lep-
tons, so only this region is used to set upper limits on the cross
section for χ̃±

1 χ̃0
2 pair production. The cross section upper lim-

its on χ̃±
1 χ̃0

2 pair production, in the simplified direct electroweak
gaugino production models detailed in Ref. [34] (Section V, I), are
illustrated in Fig. 2 as a function of the χ̃±

1 and LSP (χ̃0
1 ) masses.

In this figure, the limits on the effective cross section (taking into
account the uncertainties on the signal described in Section 8) are
divided by the product of the acceptance and efficiency for each
point individually to obtain a grid of limits on the cross section
(multiplied by branching ratio). Also shown are the observed and
expected limit contours. The results in Fig. 2 are for slepton masses
between the LSP and second lightest neutralino masses and the hi-
erarchy ml̃ = mχ̃0

1
+ 1

2 (mχ̃±
1

− mχ̃0
1
) with m(χ̃±

1 ) = m(χ̃0
2 ).

In these simplified models, the squarks are very heavy (per-
mitting only direct χ̃±

1 χ̃0
2 production), the masses of slepton of

different flavours are assumed to be degenerate and the branch-
ing ratios for both χ̃±

1 → l̃±ν, ν̃l± and χ̃0
2 → l̃±l∓ decays are

set to one (with branching ratios for (χ̃±
1 → l̃ν) and (χ̃±

1 → ν̃l)
equal to 50%). Furthermore, the sleptons have equal contributions
of l̃L and l̃R , including all slepton and sneutrino flavours. The
branching ratio for (l̃ → lχ̃0

1 ) is 100% and the branching ratio for
(ν̃ → νχ̃±

1 ) 100%. In this channel, leptons are produced in the

cascades: χ̃±
1 χ̃0

2 → (νl̃±)(l±l̃∓) → (νl±χ̃0
1 )(l±l∓χ̃0

1 ) and χ̃±
1 χ̃0

2 →
(l±ν̃)(l±l̃∓) → (l±νχ̃0

1 )(l±l∓χ̃0
1 ) (with equal branching ratios). The

cross section for the line with m(χ̃±
1 ) = m(χ̃0

2 ) = 200 GeV is
0.51 pb. Models in the low-mass region have acceptances of
∼ 5–15% for χ̃0

1 –χ̃±
1 mass differences from 50 to 200 GeV, and

efficiencies of ∼ 20%. If decays to sleptons are dominant, charginos
with masses up to 200 GeV are excluded, under the assumptions
of these simplified models.

9.2. Flavour-subtraction analysis

In the flavour-subtraction analysis, limits are set on the excess
in the number of opposite-sign same-flavour events (multiplied by
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Fig. 1. The Emiss
T distributions of same-sign dilepton events before any jet requirement (a), and after requiring two high-pT jets (b) and the Emiss

T distributions of all opposite-
sign dilepton events before any jet requirement (c), after requiring 3 high-pT jets (d) and after the 4 jet requirement (e). Errors on data points are statistical, while the
error band on the SM background represents the total uncertainty. The lower inserts show the ratio between the data and the SM expectation. The component labelled
“Fake leptons” is evaluated using data as described in the text. The remaining background contributions are from MC, normalised to their respective cross sections and the
luminosity of the data sample.
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Fig. 2. 95% CL cross section upper limits (CLs) in pb and observed and expected
limit contours for χ̃±

1 χ̃0
2 production in direct gaugino simplified models.

detector acceptances and efficiencies) in the appropriate signal re-
gions. This is done using pseudo-experiments. The opposite-sign
same-flavour excess is quantified using the quantity S , defined as

S = N(e±e∓)

β(1 − (1 − τe)2)
+ βN(μ±μ∓)

(1 − (1 − τμ)2)

− N(e±μ∓)

1 − (1 − τe)(1 − τμ)
, (2)

which measures the excess of opposite-sign same-flavour events
(first two terms) over different-flavour events (third term), taking
into account the ratio of electron to muon efficiency times accep-
tance (β), and the electron and muon trigger efficiencies (τe and
τμ), under the assumption that the trigger selection adopted for
e±μ∓ events is equivalent to a logical OR of the electron and
muon triggers. This quantity, S is effectively the excess in the
number of same-flavour events multiplied by detector acceptances
and efficiencies. The ratio of acceptances and efficiencies, β , is
determined from data to be 0.75 ± 0.05, with the quoted error
including both systematic and statistical uncertainties. The muon
trigger efficiency, τμ , averaged over the barrel and end-cap is taken
to be (81.6 ± 0.3)%.

The numbers of events in each signal region give N(e±e∓),
N(e±μ∓) and N(μ±μ∓) for each region. The invariant mass dis-
tributions of the dilepton events with high-Emiss

T are illustrated
in Fig. 3. To quantify the consistency between the observed S
value and the SM prediction the expected distribution of Sb in
the absence of new phenomena is determined. This distribution
possesses a mean given by S̄b and a width dominated by sta-
tistical fluctuations of the numbers of events observed in each
channel. The distributions for Sb can be determined by generating
pseudo-experiments. For each pseudo-experiment the mean num-
bers of background events in each channel and from each source
are sampled, taking appropriate account of correlations between
the uncertainties in the values of these means. The resulting num-
ber of background events in each channel is then used to construct
a Poisson distribution from which the observed number of events
in that channel is drawn. The sampled event counts in each chan-
nel are then used with Eq. (2) to determine a value of Sb , taking
care also to sample values of τe , τμ and β according to their means
and uncertainties. The distribution of Sb obtained from these hy-
pothetical signal-free experiments are characterised by a mean and
an RMS, as detailed in Table 4. The non-zero S̄b is due to the ir-
reducible background from Z/γ ∗ + jets and diboson events. The

Table 4
The observed values of S in the data (Sobs), and the mean and RMS of the dis-
tributions of the expected Sb from one million hypothetical signal-free pseudo-
experiments.

Sobs S̄b RMS

FS-no Z 131.6 ±2.5(sys) 118.7 ±27.0 48.6
FS-2j 142.2 ±1.0(sys) 67.1±28.6 49.0
FS-inc −3.06±0.04(sys) 0.7±1.6 4.5

Table 5
Consistency of the observation with the SM expectation (middle column), computed
as the percentage of signal-free pseudo-experiments giving values of S greater
than the observation, Sobs . Observed limit (right column) on the numbers of same-
flavour events from new phenomena multiplied by detector acceptances and effi-
ciencies in each signal region.

S > Sobs (%) Limit S̄s (95% CL)

FS-no Z 39 94
FS-2j 6 158
FS-inc 79 4.5

assumption that the trigger selection for different flavour dilep-
ton events is equivalent to a logical OR between the electron and
muon triggers leads to a slight underestimate of the effective ex-
cess of same-flavour events in each region (greatest at 3.5% of Sobs
in FS-inc, negligible in comparison to the RMS which drives the
limit).

The distribution of Sb values obtained in this way can be used
to evaluate the probability of observing a value of S at least as
large as Sobs . The width of the distribution is dominated by Pois-
son fluctuations in the number of events. The consistency between
data and the SM expectation in each signal region is summarised
in Table 5. The agreement is better than 2 σ in all cases.

Limits are also set on S̄s , the mean contribution to S from new
phenomena. The statistical procedure employed follows that used
to determine the consistency of the observed value of S with the
background expectation. The pseudo-experiments are modified by
adding signal event contributions to the input mean numbers of
background events in each channel. An assumption must be made
regarding the relative branching ratio of new processes into same-
flavour and different flavour final states, as adding flavour un-
correlated contributions to the same-flavour and different-flavour
channels increases the width of the S distribution. Given such an
assumption, a limit can be set on S̄s by comparing Sobs with the
distribution of S values obtained from the new set of signal-plus-
background pseudo-experiments. If the assumption is made that
the branching fractions for e±e∓ and μ±μ∓ in new physics events
are identical, and the branching fraction for e±μ∓ final states is
zero, then the limits tabulated in the right most column of Table 5
are obtained. The most stringent limits are set in FS-inc, which re-
quires Emiss

T > 250 GeV.

10. Summary

This Letter reports results of three searches for new phenom-
ena in final states with opposite-sign and same-sign dileptons and
missing transverse momentum. These searches also include sig-
nal regions that place requirements on the number and pT of
energetic jets in the events. There is good agreement for all sig-
nal regions between the numbers of observed events and the
SM predictions. Model-independent limits are quoted on the cross
section multiplied by acceptances and efficiencies for the inclu-
sive analyses, and limits on the same-flavour excess multiplied
by acceptances and efficiencies for the flavour-subtraction analysis,
all of which improve on results obtained with the 2010 dataset.
Cross sections in excess of 9.5 fb for opposite-sign events with
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Fig. 3. Distributions of the invariant mass in data together with the SM expectation for same-flavour (SF) dilepton events with Emiss
T > 80 GeV after a Z-veto requirement

(FS-no Z) (a) and 2-jet requirement (FS-2j) (b). Also shown are the different-flavour (DF) distributions. Errors on data points are statistical, while the error bands on the SM
predictions represent the total uncertainties.
missing transverse momentum greater than 250 GeV are excluded
at 95% CL. In events with missing transverse energy greater than
250 GeV a limit is set on the number of same-flavour lepton
pairs from new physics, multiplied by detector acceptance and ef-
ficiency, of 4.5. Cross sections in excess of 10.2 fb for same-sign
events, with missing transverse momentum greater than 100 GeV,
are excluded at 95% CL. Additionally, new limits have been pre-
sented on the chargino mass in direct electroweak gaugino pro-
duction modes using simplified models. Charginos with masses up
to 200 GeV are excluded, under the assumptions of these mod-
els.
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