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Abstract

The tripartite motif (TRIM) family of E3 ubiquitin ligases is well known for its roles in antiviral

restriction and innate immunity regulation, in addition to many other cellular pathways. In

particular, TRIM25-mediated ubiquitination affects both carcinogenesis and antiviral

response. While individual substrates have been identified for TRIM25, it remains unclear

how it regulates diverse processes. Here we characterized a mutation, R54P, critical for

TRIM25 catalytic activity, which we successfully utilized to “trap” substrates. We demon-

strated that TRIM25 targets proteins implicated in stress granule formation (G3BP1/2), non-

sense-mediated mRNA decay (UPF1), nucleoside synthesis (NME1), and mRNA

translation and stability (PABPC4). The R54P mutation abolishes TRIM25 inhibition of

alphaviruses independently of the host interferon response, suggesting that this antiviral

effect is a direct consequence of ubiquitination. Consistent with that, we observed dimin-

ished antiviral activity upon knockdown of several TRIM25-R54P specific interactors includ-

ing NME1 and PABPC4. Our findings highlight that multiple substrates mediate the cellular

and antiviral activities of TRIM25, illustrating the multi-faceted role of this ubiquitination net-

work in modulating diverse biological processes.

Author summary

Ubiquitin E3 ligases each interact with and ubiquitinate a subset of cellular proteins,

thereby regulating specific cellular processes. Tripartite motif containing protein 25

(TRIM25) is one such E3 ligase involved in carcinogenesis and antiviral innate immunity.

TRIM25 catalytic activity is indispensable for the host antiviral response against
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alphaviruses, an arthropod-borne group of RNA viruses possessing expanding distribu-

tions and pandemic potential. However, it remains poorly understood which TRIM25

substrates mediate viral inhibition. To complicate the matter, identification of E3 ligase

substrates is technically challenging, given the transient nature of ligase-substrate interac-

tions. Here, we present the first comprehensive ubiquitinome study utilizing a novel “sub-

strate-trapping” approach to identify TRIM25 target proteins. We found that TRIM25

ubiquitinates key players in translational and nucleic acid metabolic processes, specifically

involving stress granule formation, nonsense-mediated mRNA decay, nucleotide synthe-

sis, and translation initiation. In addition, TRIM25 ligase activity is critical for its inhibi-

tion of diverse alphaviruses through viral translation suppression, highlighting the

importance of ubiquitination in driving antiviral activity in this context. Our study both

provides new insights into understanding the innate immune and cell biology roles of

TRIM25 and paves the way forward for identification of novel TRIM substrates at large.

Introduction

Addition of ubiquitin, or ubiquitination, is a post-translational modification that is highly con-

served in eukaryotic organisms, and operates in myriad cellular pathways. Ubiquitin is a small,

76 amino acid protein that must be activated by E1 enzymes, passed to E2 carrier enzymes,

and finally covalently attached to lysines on substrates by E3 ligases. Though only one enzyme

is needed at each step, their numbers vary widely. Humans encode 2 E1 enzymes, about 40 E2

enzymes, and upwards of 600 E3 ligases [1,2]. This vast number of E3 ligases is needed because

they determine substrate specificity; however, the means by which E3 ligases identify their sub-

strates and the array of substrates ubiquitinated by any given E3 ligase remain largely

unknown.

The tripartite motif containing protein (TRIM) family is one of the largest families of E3

ligases, with over 70 TRIM genes in humans [3]. TRIMs share three common domains at their

N-terminus–the catalytic RING domain, 1 to 2 B-Box domains, and a coiled-coil domain–but

differ in their C-termini [3]. These varied C-termini determine TRIM substrate specificity,

allowing this large family of proteins to regulate diverse cellular processes, including but not

limited to viral restriction, immune signaling, stress responses, proliferation, and differentia-

tion [4–7]. Mutations in TRIM genes have been associated with rare genetic diseases, including

developmental, muscular, and neurological disorders [8,9]. However, development of targeted

therapeutic approaches has been hindered by not only the lack of knowledge on their specific

substrates, but also the frequent involvement of TRIMs in multiple cellular processes. One

prime example is TRIM25, which functions in both cancer and antiviral innate immunity

[10,11]. When examined in the context of cancer, TRIM25-mediated ubiquitination primarily

targets varied proteins for proteolytic degradation, which can either enhance or hinder carci-

nogenesis [12–16].

Many of the TRIM proteins are upregulated by interferon (IFN) and play significant roles

in the host innate immune response [7]. Upon detection of viral infection by the host cell, type

I IFN is produced, inducing expression of hundreds of IFN-stimulated genes (ISGs) to estab-

lish an antiviral environment [17,18]. TRIM25 is one such ISG which not only stimulates

innate immune signaling by ubiquitinating and activating the dsRNA sensor RIG-I, but also

functions as a critical co-factor of another ISG, zinc finger antiviral protein (ZAP) [19–21].

While TRIM25 has been shown to complex with ZAP in the context of several different viral

infections [22], its ligase activity has only been tied to its participation in blocking translation
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of incoming RNA genomes of alphavirus (family Togaviridae) [20]. Given that ubiquitination

of ZAP or lack thereof fails to affect its viral translation inhibition [20], it is likely that TRIM25

antiviral involvement depends on its ubiquitination of other cellular proteins. Interestingly,

both TRIM25 and ZAP not only bind viral RNA but also interact with other RNA binding pro-

teins, implying that proteins involved in RNA processes may feature prominently among

TRIM25 substrates [23–26].

In light of this question, we set out to identify novel TRIM25 substrates that may play a role

in translation and RNA processes. Because identification of E3 ligase substrates is technically

challenging due to the transient nature of ligase-substrate interactions, we utilized a “substrate

trapping” approach similar to previously reported [27] to capture TRIM25 interactors in a co-

immunoprecipitation (IP)/mass spectrometry (MS) experiment. We sought to generate a

TRIM25 mutant that would be unable to interact with the upstream E2 carrier enzyme, thus

simultaneously rendering it incapable of ubiquitination and prolonging its interactions with

substrates. We identified a point mutation, R54P, in the TRIM25 RING catalytic domain,

which almost completely abolishes its autoubiquitination in cells.

While almost all of the more highly enriched interactors are shared by both TRIM25-WT

and -R54P, we found that TRIM25-R54P enriches for additional interactors as compared to

TRIM25-WT. Further characterization of some of the most highly enriched interactors, Ras-

GTPase-activating protein SH3-domain binding proteins (G3BP) 1 and 2, RNA helicase up-

frameshift protein 1 (UPF1), nucleoside diphosphate kinase 1 (NME1), and poly-adenylate

binding protein cytoplasmic 4 (PABPC4), has validated their identification as novel TRIM25

substrates. We identified NME1 and PABPC4 as TRIM25-R54P-specific interactors during

viral infection. Moreover, upon characterization of its antiviral activity, the TRIM25-R54P

mutant demonstrates a complete loss of inhibition against a panel of Old World and New

World alphaviruses albeit higher IFN and ISG expression compared to WT, suggesting that

ubiquitination of TRIM25 substrates directly leads to activation of an antiviral state. Alto-

gether, we have identified both known and novel interactors as TRIM25 substrates, and dem-

onstrated the validity of this “substrate trapping” approach in identifying bona fide E3 ligase

substrates. We have shed light on the ways that TRIM25-mediated ubiquitination might target

substrates to modulate translation, nucleic acid metabolism, and antiviral response, paving the

way for further work characterizing the critical role of TRIMs in diverse cellular and viral

processes.

Results

Point mutations in TRIM25 RING domain almost completely abolish

TRIM25 auto-polyubiquitination

It is technically challenging to identify E3 ligase-substrate interactions as they are often tran-

sient, resulting in proteasomal degradation or a change in localization or activity of the sub-

strates. In order to enrich for transient E3 ligase-substrate interactions, we turned to a less

conventional co-IP approach that makes use of E3 mutants unable to interact with E2 conju-

gating enzymes. This prevents ubiquitin transfer to E3 substrates and their subsequent target-

ing to other cellular pathways and as a result, “trapping” these substrates. This approach

successfully identified the cellular ‘structural maintenance of chromosomes’ (Smc) complex

Smc5/6 as being targeted by hepatitis B virus X protein for ligase-mediated degradation [27].

We hypothesized that a similar approach would serve to identify TRIM25 substrates, which

will be immunoprecipitated more robustly with a TRIM25 E2 binding mutant than with

TRIM25-WT, as the former is unable to mediate transfer of ubiquitin from E2 to substrates.
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Residues important for the RING-E2 interaction and thus necessary for ligase activity have

already been identified in the RING E3 ligase MDM2 [28]. We aligned the structure of the

TRIM25 RING domain complexed to E2-ubiquitin (Ub) to the analogous MDM2-E2-Ub

structure and identified two conserved critical E2 interaction residues in TRIM25 RING, I15

and R54 (Fig 1A). To assess loss of ligase activity, we transfected HA-tagged Ub and FLAG-

tagged TRIM25 into 293T cells and immunoprecipitated TRIM25 in denaturing conditions.

We then blotted for HA-Ub, wherein polyubiquitination manifests as a ladder of bands. These

TRIM25 E2 binding mutants (I15K and R54P), are deficient in auto-polyubiquitination, sug-

gesting successful crippling of ligase activity (Fig 1B). Individual E2 binding mutants retain a

mono-Ub band (Fig 1B), so we generated the double mutant I15K/R54P, which did not display

further reduction in ligase activity (Fig 1B). Therefore, we selected the R54P mutant for future

co-IP/MS studies since this mutation has previously been shown to reduce TRIM25 catalytic

activity and polyubiquitin chain formation [29].

Substrate trapping approach enriches for novel TRIM25 interactors

Next, we asked what proteins are modified by TRIM25, as identification of these substrates

will elucidate how ubiquitination facilitates TRIM25-mediated cellular and antiviral activities.

We first used CRISPR-Cas9 to generate a TRIM25 KO 293T cell line (S1 Fig). We then stably

integrated doxycycline (dox) inducible FLAG-tagged TRIM25 wild-type (WT) and mutant

R54P using the ePiggyBac (ePB) transposon system [31], where both TRIM25-WT and

TRIM25-R54P are similarly induced in a dose-dependent manner (Fig 2A). TRIM25 protein

levels are comparable upon detection using a FLAG or TRIM25-specific antibody (Fig 2A).

To capture TRIM25 substrates, we performed two independent co-IP/MS experiments

using our reconstituted TRIM25 KO 293T cell lines (Fig 2B). We induced TRIM25-WT or

-R54P expression in the presence or absence of the prototype alphavirus Sindbis virus (SINV),

Fig 1. Individual TRIM25 RING residues required for TRIM25 autoubiquitination. (A) Alignment of the RING E3 ligases MDM2 (dark blue) and

TRIM25 (light blue) in complex with ubiquitin (red) and the E2 UbcH5 (gray), performed using UCSF Chimera [30]. Highlighted in gold (TRIM25)

and yellow (MDM2) are homologous residues. PDB: 5MNJ (MDM2), 5EYA (TRIM25). (B) Western blot of 293T cells transfected with FLAG-TRIM25

mutants and HA-ubiquitin (Ub). Lysates were subjected to FLAG IP. Data representative of three independent experiments.

https://doi.org/10.1371/journal.ppat.1010743.g001
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Fig 2. TRIM25 co-IP/MS identifies TRIM25 interactors. (A) Western blot of TRIM25-WT and -R54P doxycycline (dox)-inducible 293T cell lines in the

presence of increasing amount of dox (0, 0.001, 0.01, 0.1, 1, and 10 μg/mL). Data are representative of two independent experiments. (B) Schematic of co-

IP/MS experiment to identify TRIM25 interactors. (C-D) Volcano plots of proteins significantly enriched over TRIM25 KO background in

TRIM25-R54P co-IP/MS in the (C) absence or (D) presence of viral infection. Data representative of two independent experiments. Blue dots represent

proteins that were also significantly enriched in TRIM25-WT co-IP and red dots represent proteins that were only enriched in TRIM25-R54P co-IP.

Proteins were counted as enriched when log2FC>1.5 and -log10Pvalue>1.3 (Pvalue<0.05). The R package EnhancedVolcano [32] was used to generate

volcano plots. (E) Gene ontology terms significantly enriched in all unique TRIM25-WT and TRIM25-R54P interactors. Analysis performed for GO

terms in biological processes using DAVID [33,34].

https://doi.org/10.1371/journal.ppat.1010743.g002
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performed a FLAG IP to enrich for TRIM25, and analyzed the resultant protein mixture using

MS. TRIM25 KO 293T cells with dox added were used as a control, since previous work by

our lab found that dox treatment nonspecifically affects viral replication in other systems [35].

We found that this “substrate trapping” approach enriches for interactors specific to

TRIM25-R54P under both mock and infected conditions (Fig 2C and 2D, red circles). These

TRIM25-R54P-specific interactors tend to have lower fold change in abundance over back-

ground than interactors common to both TRIM25-WT and TRIM25-R54P (Fig 2C and 2D,

blue circles), suggesting that the TRIM25-R54P co-IP/MS captures weaker interactions not

identified with TRIM25-WT. After filtering for interactors enriched in both independent

experiments, we found that TRIM25-R54P enriches for 14 unique interactors under mock

conditions (Table 1) and that almost all TRIM25-WT interactors (25 of 30) are also present as

TRIM25-R54P interactors (Table 2), indicating that TRIM25-R54P is otherwise functionally

similar to TRIM25-WT. During viral infection, TRIM25-R54P enriches for all TRIM25-WT

interactors in addition to 16 unique interactors (Tables 3 and 4), suggesting an effective “sub-

strate trap.” Interestingly, we found that the number of TRIM25 interactors drastically

decreases during viral infection for both TRIM25-WT (29 to 7 interactors; Tables 2 and 4) and

TRIM25-R54P (38 to 23 interactors; Tables 1 and 3). We used DAVID bioinformatics

resources [33,34] to find that TRIM25 interactors are highly enriched in GO terms involved in

translation, RNA metabolism, and viral transcription (Fig 2E). This is in line with our hypoth-

esis that TRIM25 substrates mediate diverse cellular and viral processes as a consequence of

ubiquitination.

TRIM25 interacts with G3BP1 and 2 through a conserved binding motif

and modifies them with predominantly K63 polyubiquitin chains

Among the most enriched TRIM25-R54P interactors in the presence and/or absence of SINV

infection (Tables 1 and 3), we identified the core stress granule proteins G3BP1 and 2, RNA

helicase UPF1 (Fig 2C and 2D, blue arrows), metastatic suppressor and nucleoside kinase

NME1, and poly(A) binding protein PABPC4 as high priority candidates given our interest in

RNA metabolic and translation processes (G3BP1 and 2, UPF1, PABPC4) and TRIM25’s role

in regulating carcinogenesis (NME1). Next, we asked whether any of these are TRIM25 ubi-

quitination substrates.

Both G3BP1 and G3BP2, hereafter collectively referred to as G3BP, associate very strongly

with TRIM25 in the co-IP/MS (Tables 1–4; G3BP1, log2FoldChange 2.5–6.5; G3BP2, log2-

FoldChange 5.5–9.5). G3BP normally function in stress granule (SG) assembly, interacting

with RNA and other cellular proteins to induce SG formation [36,37]. Interestingly, the Old

World alphaviruses exploit G3BP to promote their own replication [38–41]. These viruses uti-

lize their non-structural protein 3 (nsP3) to recruit G3BP into viral replication complexes,

which disrupts antiviral SG formation [42], clusters viral replication complexes [41], and

recruits translation initiation machinery [43]. By doing so, alphaviruses enhance viral replica-

tion at the cost of endogenous G3BP function.

Previous work identified an FGDF peptide motif in alphavirus nsP3 which binds with high

affinity to G3BP [42,44]. More recent work characterizing viral-host interaction motifs has

uncovered a conserved G3BP-binding motif, FxFG (where F is a hydrophobic residue) [45].

This G3BP interaction motif is present in both viral and host proteins, such as the cellular SG

protein and known G3BP interactor USP10, and is remarkably similar to the alphavirus

nsP3-G3BP interaction motif, FGDF, but likely binds with lower affinity [45]. Moreover,

TRIM25 was identified as a G3BP1 interaction partner [45]. Mutating the latter two amino

acids in the TRIM25-specific motif (404-PTFG-407), to alanine (404-PTAA-407) was
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sufficient to abolish TRIM25-G3BP1 interaction [45]. Meanwhile, TRIM25 and G3BP2 have

previously been shown to interact in the context of prostate cancer [46]. To examine whether

this motif is also necessary for TRIM25-G3BP2 interaction, we co-transfected myc-tagged

G3BP into TRIM25 KO 293T cells along with FLAG-tagged TRIM25-WT, -R54P, or -PTAA,

and performed a FLAG IP to pull down TRIM25. While both TRIM25-WT and -R54P

robustly associate with both G3BP1 and 2, TRIM25-PTAA does not associate with either

G3BP1 or 2 (Fig 3A), validating our co-IP/MS identification of G3BP as TRIM25 interactors.

Table 1. TRIM25-R54P interactors in the absence of virus. Interactors pulled down in both independent experiments shown here; proteins also enriched in

TRIM25-WT co-IP are italicized and bolded. Fold change = FC. In EXP #2, the “i” prefacing log2FC and Pvalue refers to how missing data values were imputed.

Protein EXP #1 log2FC EXP #2 ilog2FC EXP #1 -log10Pvalue EXP #2 -log10iPvalue

TRIM25 12.39 7.51 4.29 2.12
G3BP2 8.11 5.55 4.48 1.50

G3BP1 6.50 4.03 3.78 1.73
PABPC1 5.93 5.10 4.55 3.28
UPF1 5.50 4.79 3.60 1.44
RPL27 5.34 3.69 1.84 1.55

ZC3HAV1 5.32 5.31 2.83 1.42

ZCCHC3 5.12 3.75 1.85 1.78
RPL36 4.98 3.48 2.88 1.79

MOV10 4.91 4.49 1.64 1.80

RPLP2 4.13 5.86 1.96 1.55
SSB 3.89 4.48 1.91 1.71
RPS3A 3.79 2.69 2.16 1.89
MRPL11 3.77 5.47 2.66 1.40
RPL3 3.66 2.15 2.24 1.79

RPS12 3.66 3.49 2.76 1.89
NME1 3.61 4.79 2.39 1.79
IGF2BP3 3.56 3.28 1.98 1.50
RPS8 3.26 3.27 2.19 1.75
DNAJA1 3.17 3.92 2.61 1.91

RPL21 3.06 2.39 1.48 1.47

DDX21 3.05 1.89 1.59 1.73
RPL7A 3.04 2.52 2.05 1.73
DDX50 3.03 3.66 1.48 1.53
RPL14 3.01 2.79 1.83 1.79
HSPA9 2.98 2.54 3.10 1.73
RPL8 2.95 2.64 2.62 1.50
RPL4 2.95 1.93 1.80 1.50
RPL30 2.92 4.99 1.86 1.81
RPL6 2.88 1.95 1.97 1.50

RPL19 2.77 5.27 1.34 1.36

CXorf56 2.62 2.59 1.71 1.34

MRPS25 2.56 3.34 2.61 1.54
POLDIP2 2.24 2.45 3.07 1.64

IGF2BP2 2.20 3.23 2.15 1.46
HSPA5 2.10 2.61 2.56 1.79
NCL 1.95 2.58 1.78 2.63

HSPA8 1.64 2.01 2.45 1.79
RTRAF 1.60 1.76 1.84 1.31

https://doi.org/10.1371/journal.ppat.1010743.t001
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We then used the ePB transposon system to reconstitute TRIM25 KO 293T cells with dox

inducible TRIM25-PTAA. To establish that TRIM25 ubiquitinates G3BP and that the

TRIM25-G3BP interaction is necessary for ubiquitination, we co-transfected myc-tagged

G3BP with HA-Ub into TRIM25-WT, -R54P, and -PTAA inducible cell lines. After inducing

TRIM25 expression, we performed a myc IP and probed for the presence of ubiquitinated

G3BP. We found that both G3BP1 and 2 are robustly polyubiquitinated only in the presence of

TRIM25-WT (Fig 3B), again validating our co-IP/MS identification of G3BP as TRIM25 sub-

strates. No ubiquitination is detected in the presence of ligase-deficient TRIM25-R54P,

whereas ubiquitination is dramatically diminished in the presence of G3BP-interaction defi-

cient TRIM25-PTAA (Fig 3B). Interestingly, TRIM25 appears to more robustly ubiquitinate

G3BP2 as compared to G3BP1 (Fig 3B). Given the TRIM25-mediated polyubiquitination of

G3BP1 and 2, we then characterized G3BP ubiquitination linkage type. To do so, we trans-

fected our TRIM25-WT inducible cell line with myc-G3BP1 or -2 and different forms of

HA-Ub: -WT, -K48, and -K63. Ub-K48 and -K63 have all lysines mutated to arginine except

Table 2. TRIM25-WT interactors in the absence of virus. Interactors pulled down in both independent experiments shown here; proteins also enriched in

TRIM25-R54P co-IP in both independent experiments are italicized and bolded. Fold change = FC. In EXP #2, the “i” prefacing log2FC and Pvalue refers to how missing

data values were imputed.

Protein EXP #1 log2FC EXP #2 ilog2FC EXP #1 -log10Pvalue EXP #2 -log10iPvalue

TRIM25 12.35 7.21 4.29 2.36
NME1 5.89 5.69 3.19 2.11
PABPC1 5.18 4.36 4.32 2.65
UPF1 4.15 4.99 3.13 1.56
G3BP1 3.84 4.38 2.89 2.08
SSB 3.67 5.28 1.82 1.67
RPS12 3.52 3.02 2.70 2.24
DDX21 3.52 1.60 1.79 2.07
ZCCHC3 3.41 2.47 1.50 1.50
MRPL11 3.11 4.50 2.36 1.83
MRPS25 3.11 5.37 2.93 1.81
RPS3A 3.02 1.92 1.82 2.11
RPL14 2.91 2.56 1.78 1.71
RPS8 2.86 3.07 1.99 2.11
RPL23A 2.83 2.50 1.42 2.29

LARP1 2.82 2.72 1.75 1.65

HSPA9 2.78 2.55 2.98 1.98
DDX50 2.78 5.52 1.38 1.87
RPLP2 2.71 5.81 1.37 1.36
RPL7A 2.68 2.05 1.87 2.11
RPL8 2.67 1.91 2.46 1.46
IGF2BP3 2.67 3.65 1.56 1.66
HSPA5 2.36 2.77 2.75 2.05
FMR1 2.16 2.14 1.38 1.56

RPL4 2.09 1.96 1.33 2.08
RPL30 1.98 4.99 1.33 2.66
RPL32 1.91 2.10 1.44 2.05

IGF2BP2 1.73 2.16 1.80 1.45
HSPA8 1.66 2.26 2.46 1.65
FXR1 1.52 4.86 2.66 1.59

https://doi.org/10.1371/journal.ppat.1010743.t002
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K48 and K63, respectively, such that only K48 or K63 polyubiquitin chains are able to be

formed [47]. We found that both G3BP1 and 2 are most robustly ubiquitinated in the presence

of Ub-K63, suggesting that TRIM25 primarily mediates K63-linked ubiquitination of both

proteins (Fig 3C). Interestingly, while both G3BP1 and 2 exhibit a lower level of ubiquitination

in the presence of Ub-K48, G3BP1 possesses more K48-linked polyubiquitin chains as com-

pared to G3BP2 (Fig 3C), indicating that TRIM25 is able to distinguish between and differen-

tially ubiquitinate these related proteins.

Table 3. TRIM25-R54P interactors during viral infection. Interactors pulled down in both independent experiments shown here; proteins also enriched in

TRIM25-WT co-IP in both independent experiments are italicized and bolded. Fold change = FC. In EXP #2, the “i” prefacing log2FC and Pvalue refers to how missing

data values were imputed.

Protein EXP #1 log2FC EXP #2 ilog2FC EXP #1 -log10Pvalue EXP #2 -log10iPvalue

TRIM25 13.82 6.87 5.83 1.28
G3BP2 9.50 7.66 4.71 1.40

G3BP1 5.25 2.51 4.58 1.92

NME1 4.81 3.43 2.84 1.40

H1FX 4.65 4.49 3.14 1.46
UPF1 4.64 5.24 3.44 1.94
ZC3HAV1 4.47 2.77 2.77 1.42

RPL8 4.26 2.98 2.36 1.80

PABPC4 4.25 2.67 3.42 1.42

PABPC1 4.24 3.54 2.44 1.44

HP1BP3 4.00 4.09 3.44 1.50
LARP1 3.93 4.59 4.32 1.61
DDX50 3.74 4.14 2.08 1.47
RPL21 3.40 3.45 1.50 1.44

RPL29 3.38 2.53 2.48 2.06

HSPA9 3.28 2.04 4.15 2.05
ZCCHC3 3.23 4.49 1.95 1.54
RPS3A 3.18 1.53 1.36 1.38

GLYR1 3.01 2.59 1.43 1.59

YBX1 2.61 1.73 1.44 1.44

GNL3L 2.47 5.28 2.35 1.58

RPL19 2.44 2.90 2.39 1.75

MRPS26 1.98 1.90 1.49 1.31

MRPS9 1.58 2.56 2.02 1.38

https://doi.org/10.1371/journal.ppat.1010743.t003

Table 4. TRIM25-WT interactors during viral infection. Interactors pulled down in both independent experiments shown here; proteins also enriched in

TRIM25-R54P co-IP in both independent experiments are italicized and bolded. Fold change = FC. In EXP #2, the “i” prefacing log2FC and Pvalue refers to how missing

data values were imputed.

Protein EXP #1 log2FC EXP #2 ilog2FC EXP #1 -log10Pvalue EXP #2 -log10iPvalue

TRIM25 13.19 6.43 5.75 1.15
H1FX 3.95 3.23 2.87 1.74
UPF1 3.86 5.51 3.13 1.62
HP1BP3 2.75 3.84 2.82 1.75
ZCCHC3 2.65 4.90 1.78 1.41
HSPA9 2.63 2.35 3.77 1.41
LARP1 2.62 4.61 3.63 1.42
DDX50 2.44 5.21 1.47 1.46

https://doi.org/10.1371/journal.ppat.1010743.t004
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We then asked whether TRIM25-G3BP interaction and G3BP ubiquitination are required

for TRIM25 antiviral activity. We found that overexpression of TRIM25-PTAA suppresses

SINV replication (S2A Fig) and translation (S2B Fig) similarly to TRIM25-WT, suggesting

that loss of TRIM25-G3BP interaction or G3BP ubiquitination is not sufficient to restore

Fig 3. TRIM25 interacts with and polyubiquitinates G3BP. (A) Western blot of TRIM25 KO 293T cells transfected with myc-G3BP1/2 and

FLAG-TRIM25-WT, -R54P, or -PTAA. Lysates were subjected to FLAG IP. Data are representative of three independent experiments. (B) Western blot of

TRIM25 KO and TRIM25-WT, -R54P, or -PTAA inducible cells transfected with myc-G3BP1/2 and HA-Ub-WT in the presence of 1 μg/mL dox. (C)

Western blot of TRIM25-WT inducible cells transfected with myc-G3BP1/2 and HA-Ub-WT, -K48, or -K63 in the presence of 1 μg/mL dox. (B-C) Lysates

were subjected to myc IP. Data are representative of three independent experiments.

https://doi.org/10.1371/journal.ppat.1010743.g003
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SINV infection. It has been demonstrated that different alphaviruses display differing degrees

of dependency on G3BP for their replication, wherein SINV is partially reliant and chikungu-

nya virus (CHIKV) is completely reliant on G3BP [41,48]. We hypothesized that a more

G3BP-reliant virus such as CHIKV might be more sensitive to any antiviral mechanisms that

are dependent on G3BP. In such a system, TRIM25-PTAA, which is unable to interact with

and efficiently ubiquitinate G3BP to potentially disrupt their pro-viral functions, may not be

as antiviral as TRIM25-WT. Interestingly, inhibition of CHIKV infection is also dependent on

TRIM25 with functional ligase activity as TRIM25-R54P restores virion production to similar

levels as TRIM25 KO (S2C Fig). However, we found no significant difference between

TRIM25-WT and TRIM25-PTAA in their ability to suppress virion production (S2C Fig).

Overall, though we validated G3BP interaction with and ubiquitination by TRIM25, we did

not find that the TRIM25-G3BP axis is sufficient for TRIM25 antiviral activity.

TRIM25 interacts with and mono-ubiquitinates UPF1 at K592

Moreover, UPF1 associates very strongly with TRIM25 in the co-IP/MS (Tables 1–4, log2Fold-

Change 3.9–5.5), supporting a role for UPF1 as a novel TRIM25 interactor. UPF1 is best

known for its central role in nonsense-mediated mRNA decay (NMD), where it is recruited to

premature termination codons to catalyze the NMD pathway, inhibiting further translation

and recruiting other RNA-degrading enzymes [49]. UPF1 has also been implicated in serving

an antiviral role in the context of alphavirus infection [50]. The authors of this study found

that depletion of NMD components, including UPF1, promotes viral replication; further

investigation revealed that UPF1 likely destabilizes incoming viral RNA genomes [50].

We first validated that TRIM25 interacts with UPF1. To do so, we transfected V5-tagged

UPF1 into TRIM25 inducible cell lines, then induced for TRIM25-WT or -R54P expression with

dox, and performed a FLAG IP to pull down TRIM25. We found that UPF1 is robustly detected

only when TRIM25 is induced (Fig 4A), validating the TRIM25-UPF1 interaction identified in

our co-IP/MS. To test the hypothesis that TRIM25 ubiquitinates UPF1, we co-transfected

V5-tagged UPF1 with HA-Ub into our TRIM25 inducible cell lines and induced TRIM25 expres-

sion. We then performed a V5 IP and probed for the presence of ubiquitinated UPF1. We found

that UPF1 is more robustly mono-ubiquitinated only in the presence of TRIM25-WT and not

ligase-deficient TRIM25-R54P (~50% more by ImageJ quantification, Fig 4B), suggesting that

TRIM25 mono-ubiquitinates UPF1. We then identified putative ubiquitination sites by selecting

residues that are both identified in a previously published ubiquitinome [51] and predicted via

UbPred to be ubiquitinated (Score> 0.70) [52], and mutated these sites to arginine (K281R,

K592R). Whereas ubiquitination is unchanged in UPF1 K281R, the introduction of K592R abol-

ishes UPF1 ubiquitination in the presence of TRIM25-WT (Fig 4C). Together, these results vali-

date our co-IP/MS identification of UPF1 as a novel TRIM25 substrate.

Next, we asked whether UPF1 plays a role in TRIM25 antiviral activity. We tested several

UPF1 siRNAs and selected the one with the most efficient knockdown (S2D Fig). We observed

that UPF1 knockdown only has a significant effect on SINV replication when TRIM25 is

absent, though trends toward an effect when TRIM25-WT is induced (S2E and S2F Fig).

Together, these data suggest that UPF1 could be antiviral independent of TRIM25 and that it

is not critical for the TRIM25 antiviral response.

TRIM25 polyubiquitinates NME1 but only interacts with endogenous, not

ectopically expressed NME1

Finally, we asked whether TRIM25-R54P specific interactors identified in our co-IP/MS were

bona fide TRIM25 substrates. We identified NME1 as one of the most enriched TRIM25-R54P
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interactors in the presence of SINV infection (Table 3, log2FoldChange 3.4–4.8). NME1 is a

nucleoside diphosphate kinase and a major synthesizer of non-ATP nucleoside triphosphates,

perhaps best characterized in its role in inhibiting cell migration and proliferation of tumor

cells via inhibition of MAPK signaling [53]. However, the role of NME1 in viral replication is

not well studied [54].

Given its well-characterized role as a metastatic suppressor, we decided to validate NME1

as a TRIM25 ubiquitination substrate. We first set out to validate TRIM25 interaction with

Fig 4. TRIM25 interacts with and mono-ubiquitinates UPF1. (A) Western blot of TRIM25 inducible cells transfected with V5-tagged UPF1 in

the presence or absence of 1 μg/mL dox. Lysates were subjected to FLAG IP. Data are representative of three independent experiments. (B-C)

Western blot of TRIM25 inducible cells transfected with (B) V5-UPF1 or (C) V5-UPF1 WT and mutants (K281R, K592R) and HA-Ub in the

presence of 1 μg/mL dox. Lysates were subjected to V5 IP. Data are representative of two independent experiments for (B) and of three

independent experiments for (C).

https://doi.org/10.1371/journal.ppat.1010743.g004
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NME1 as identified in our co-IP/MS (Tables 1–3). To do so, we transfected myc-tagged NME1

or UPF1 to serve as a positive control in our TRIM25 inducible lines, induced for TRIM25-WT

or -R54P expression, and performed a FLAG IP to pull down TRIM25. We then probed for

any associated UPF1 or NME1. While we saw robust association of UPF1 with both

TRIM25-WT and -R54P in line with our previous results (Figs 4A and 5A; MW ~135 kDa), we

did not identify NME1 (Fig 5A, MW 20–25 kDa). We also performed the reverse IP where we

pulled down myc-tagged NME1, but were unable to find any TRIM25 interacting with NME1

(Fig 5B). We hypothesized that this lack of TRIM25-NME1 interaction could be due to func-

tional differences between ectopically expressed myc-NME1 and endogenous NME1, given

our successful validation of the other robust TRIM25 interactors from our co-IP/MS, G3BP

and UPF1 (Figs 3 and 4). To test this hypothesis, we performed a FLAG IP using our TRIM25

inducible lines and probed for co-IP of endogenous NME1 along with endogenous G3BP and

UPF1 as positive controls. In line with our co-IP/MS results, endogenous G3BP, UPF1, and

NME1 enrich robustly with TRIM25 pulldown, despite a low level of non-specific binding of

NME1 to the FLAG IP in TRIM25 KO 293T cells (Fig 5C).

To test whether TRIM25 ubiquitinates NME1, we transfected myc-tagged NME1 into

TRIM25-WT and -R54P inducible cells, induced for TRIM25 expression, and performed a

myc IP. We found that NME1 is more robustly polyubiquitinated in the presence of

TRIM25-WT as compared to TRIM25-R54P, although we cannot yet rule out the possibility

that TRIM25 might mono-ubiquitinate NME1 at multiple sites (Fig 5D).

TRIM25 interacts with PABPC4 and predominantly modifies it with K63

polyubiquitin chains

We chose PABPC4 as a second example of TRIM25-R54P specific substrate, which was identi-

fied as a TRIM25-R54P interactor in the presence of SINV infection (Table 3). PABPC4 is a

member of the poly(A) binding protein (PABP) family, which functions in translation initia-

tion by binding the mRNA poly(A) tail, thus regulating mRNA translation and stability [55].

PABPs have been shown to localize to SGs and to inhibit recruitment of UPF1 to 3’UTRs

[55,56]. Given their key roles in translation and mRNA metabolism, PABPs are frequently tar-

geted and manipulated by viruses during infection [57]. Interestingly, PABPC4 was recently

found to broadly inhibit coronavirus replication by recruiting an E3 ligase to ubiquitinate the

viral nucleocapsid protein and target it for degradation [58].

We first validated the TRIM25-PABPC4 interaction by transfecting myc-tagged PABPC4,

induced for TRIM25-WT or -R54P expression, and performed a FLAG IP to pull down

TRIM25. We then probed for any associated PABPC4. We found that PABPC4 is robustly

detected when either TRIM25-WT or TRIM25-R54P is induced (Fig 6A), validating the

TRIM25-PABPC4 interaction identified in our co-IP/MS. We also found that both

TRIM25-WT and -R54P interact with endogenous PABPC4 (Fig 6B).

We then asked whether TRIM25 ubiquitinates PABPC4. We transfected myc-PABPC4 into

TRIM25-WT and -R54P inducible cells, induced for TRIM25 expression, and performed a

myc IP. We found that PABPC4 is more robustly polyubiquitinated in the presence of

TRIM25-WT as compared to TRIM25-R54P (Fig 6C). Upon characterizing ubiquitination via

transfection of Ub-K48 or -K63, we found that like G3BP, PABPC4 is most robustly ubiquiti-

nated in the presence of Ub-K63, suggesting that TRIM25 primarily mediates K63-linked ubi-

quitination of PABPC4 (Fig 6D).

Taken together, these results suggest that TRIM25-R54P specific interactors identified in

our co-IP/MS, such as NME1 and PABPC4, function as bona fide TRIM25 substrates, and that

TRIM25 is able to utilize a range of ubiquitin linkages dependent on the substrate context.
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Fig 5. TRIM25 interacts with and polyubiquitinates NME1. (A) Western blot of TRIM25 KO and TRIM25 inducible cells transfected with myc-tagged

UPF1 or NME1 in the presence of 1 μg/mL dox. Lysates were subjected to a FLAG IP. Data are representative of two independent experiments. (B) Western

blot of TRIM25 inducible cells transfected with myc-NME1 in the presence or absence of 1 μg/mL dox. Lysates were subjected to a myc IP. Data are

representative of two independent experiments. (C) Western blot of TRIM25 KO and TRIM25 inducible cells in the presence of 1 μg/mL dox. Lysates were

subjected to a FLAG IP. Data are representative of two independent experiments. (D) Western blot of TRIM25 KO and TRIM25 inducible cells treated with

1 μg/mL dox and transfected with myc-NME1 and HA-Ub-WT. Lysates were subjected to myc IP. Data are representative of three independent experiments.

https://doi.org/10.1371/journal.ppat.1010743.g005
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Fig 6. TRIM25 interacts with and polyubiquitinates PABPC4. (A) Western blot of TRIM25 KO and TRIM25 inducible cells transfected with myc-tagged

PABPC4 in the presence of 1 μg/mL dox. Lysates were subjected to a FLAG IP. Data are representative of two independent experiments. (B) Western blot of

TRIM25 KO and TRIM25 inducible cells in the presence of 1 μg/mL dox. Lysates were subjected to a FLAG IP. Data are representative of two independent

experiments. (C) Western blot of TRIM25 KO and TRIM25 inducible cells treated with 1 μg/mL dox and transfected with myc-PABPC4 and HA-Ub-WT.

Lysates were subjected to myc IP. Data are representative of two independent experiments. (D) Western blot of TRIM25-WT inducible cells treated with

1 μg/mL dox and transfected with myc-PABPC4 and HA-Ub-WT, -K48, or -K63. Lysates were subjected to myc IP. Data are representative of two

independent experiments.

https://doi.org/10.1371/journal.ppat.1010743.g006
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TRIM25 antiviral activity is dependent on its ligase activity

Given our identification of diverse host factors as TRIM25 substrates (Figs 3–6), many of

which function in translational and RNA processes (Fig 2E) and several of which have known

roles in alphavirus replication, we hypothesized that TRIM25 ligase activity is critical for

orchestrating an antiviral response.

We used TRIM25 inducible cell lines in the KO background (Fig 2A) to characterize the

requirement of ligase activity in TRIM25-mediated viral inhibition. We found that

TRIM25-WT, which retains ligase activity, represses SINV replication, whereas ligase mutant

TRIM25-R54P does not (Fig 7A). Overexpression of TRIM25-WT (Fig 7A, solid light blue

line) dramatically represses SINV replication by 7–15 fold at earlier timepoints (6–12 hours

post infection (h.p.i.)) to 43–52 fold at later timepoints (24–40 h.p.i.) compared to TRIM25

KO 293T cell lines (Fig 7A, dotted lines). Interestingly, some replicates fail to initiate infection

in the presence of TRIM25-WT, causing seemingly large variability in viral replication. In con-

trast, overexpression of ligase-deficient TRIM25-R54P (Fig 7A, solid dark blue line) restores

SINV replication to levels even higher than the TRIM25 KO background (Fig 7A, dotted

lines). Overexpressed TRIM25-R54P may act in a dominant negative manner by binding to

and sequestering ZAP, preventing ZAP from interacting with its other co-factors. Similarly,

we found that overexpression of TRIM25-WT robustly represses virion production by approx-

imately 36–250 fold at 24–40 h.p.i., whereas overexpression of TRIM25-R54P restores virion

production to comparable levels as the TRIM25 KO background (Fig 7B, compare solid light

blue line to solid dark blue line).

We then investigated at which step TRIM25 may be acting to inhibit SINV infection. Previ-

ous work done by our lab showed that TRIM25 synergized with ZAP in blocking SINV trans-

lation [20]. We utilized a temperature-sensitive replication-deficient SINV luciferase reporter

virus to characterize the requirement of ligase activity in TRIM25-mediated inhibition of viral

translation, since luciferase activity in infected cell lysates represents translation of the incom-

ing viral genome. Overexpressed TRIM25-WT inhibits viral translation by 6 fold at 6 h.p.i.

(Fig 7C), supporting our hypothesis that TRIM25 blocks alphavirus replication by inhibiting

translation of incoming viral genomes.

While we already examined TRIM25 antiviral activity against the Old World alphavirus

CHIKV, wherein TRIM25-WT inhibits robustly and TRIM25-R54P fails to inhibit (S2C Fig),

we then asked whether ligase-deficient TRIM25-R54P remains active against other alpha-

viruses. We tested other Old World (Ross River virus, RRV; o’nyong-nyong virus, ONNV)

and New World (Venezuelan equine encephalitis virus, VEEV) alphaviruses. TRIM25-WT

remains potently antiviral against all alphaviruses tested (Fig 7D, light blue shaded bar), while

overexpression of TRIM25-R54P either has no effect on or restores viral replication to levels

higher than the TRIM25 KO background (Fig 7D, dark blue shaded bar). Taken together,

these data clearly demonstrate that TRIM25-dependent ubiquitination is required for inhibi-

tion of alphavirus replication, specifically through a block in viral translation.

TRIM25-mediated viral inhibition is independent of changes in the type I

IFN response

To exclude the complementary possibility that TRIM25 is exerting antiviral effects through

affecting type I IFN or ISG production, we quantified the mRNA of IFN-β and the prominent

ISGs IFIT1, ISG15, and OAS2 in the presence of poly(I:C), a dsRNA mimetic and stimulator

of innate immune signaling. If TRIM25 antiviral activity is mediated through a strengthened

IFN response, we would expect that both IFN and ISG production to increase when

TRIM25-WT is induced and to be lower in the presence of TRIM25-R54P due to its defective
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antiviral activity. Poly(I:C) stimulation works well, inducing IFN-β robustly in the presence

and absence of TRIM25 induction (S3 Fig). Surprisingly, we found that overexpression of

either TRIM25-WT or TRIM25-R54P significantly suppresses production of IFN-β, IFIT1,

ISG15, and OAS2 mRNA in the presence of poly(I:C) (Fig 7E). We also observed that induc-

tion of TRIM25-WT results in a more drastic suppression of the ISGs as compared to

TRIM25-R54P (Fig 7E, compare light blue to dark blue shaded bar), leading to a higher type I

Fig 7. Point mutation in TRIM25 RING domain cripples TRIM25 antiviral activity. (A-C) Dox inducible TRIM25-WT or -R54P cells were induced for

TRIM25-WT or -R54P expression at 1 μg/mL dox. Cells were infected with (A) SINV Toto1101/Luc at an MOI of 0.01 plaque forming unit (PFU)/cell, and

lysed at 6, 12, 24, 32, and 40 hours post infection (h.p.i.); data combined from three independent experiments, error bars indicate range; or (B) Sindbis virus

(SINV) Toto1101 at an MOI of 0.01 PFU/cell, harvesting supernatant at 6, 12, 24, 32, and 40 h.p.i. for plaque assays; data representative of two independent

experiments, error bars indicate range; or (C) SINV Toto1101/Luc:ts6 at an MOI of 1 PFU/cell and lysed at 6 h.p.i. for measurement of luciferase activity; data

representative of two independent experiments, error bars indicate standard deviation. (D) Percent infected cells (GFP+) at MOI of 0.01 PFU/cell (SINV 24 h.

p.i.; Ross River virus (RRV) 24 h.p.i.; o’nyong-nyong virus (ONNV) 22 h.p.i.; Venezuelan equine encephalitis virus (VEEV) 10 h.p.i.) were normalized to that

of the respective cell line without dox (set to one-fold). Asterisks indicate statistically significant differences, calculated using (A-B, D) Two-way ANOVA and

Tukey’s multiple comparisons test: ��, p<0.01; ���, p<0.001; ����, p<0.0001; (light blue compares WT +/- dox, dark blue compares R54P +/- dox) or (C)

Two-way ANOVA and Šidák’s multiple comparisons test: ����, p<0.0001. Data for each virus (demarcated by dashed lines) was statistically analyzed

independently. (E) TRIM25 inducible cells were treated with poly(I:C) in the presence or absence of dox, and RNA was harvested for RT-qPCR analysis.

mRNA levels of IFN/ISGs in TRIM25-WT or R54P were normalized to that of the respective cell line without dox (set to one-fold, horizontal dotted line).

Data representative of two independent experiments. mRNA fold change for each gene (demarcated by vertical dashed lines) was statistically analyzed

independently. Asterisks indicate statistically significant differences as compared to the -dox condition (Two-way ANOVA and Šidák’s multiple comparisons

test: �, p<0.05; ���, p<0.001; ����, p<0.0001).

https://doi.org/10.1371/journal.ppat.1010743.g007
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IFN response in the TRIM25-R54P inducible cell line. Together, these data support our

hypothesis that TRIM25 antiviral activity is not mediated through the IFN response.

Identifying TRIM25-R54P specific interactors as critical for viral inhibition

As we showed that the loss of antiviral activity of TRIM25-R54P does not correlate with the

levels of IFN and ISG expression, suggesting a direct consequence of TRIM25-mediated ubi-

quitination of target proteins, we then decided to examine TRIM25-R54P interactors identi-

fied in our co-IP/MS that are not consistently present in the TRIM25-WT enrichment (non-

bolded and non-italicized proteins; Tables 1 and 3). These candidate proteins likely exhibit

weaker or more transient interactions with TRIM25 and are ubiquitinated by TRIM25. We

hypothesized that if any of these interactors are critical for TRIM25 antiviral activity, loss of

their expression would result in increased viral replication even in the presence of overex-

pressed TRIM25-WT. While we initially also assessed a subset of ribosomal proteins identified

as TRIM25-R54P interactors, their knockdown results in high cytotoxicity and therefore are

excluded from subsequent analyses. We validated most of the TRIM25-R54P interactors that

are not present on the TRIM25-WT lists (Tables 1–4) in the absence (Table 1 and Figs 8A and

S4A) or presence of viral infection (Table 3 and Figs 8B and S4B). While knockdown of multi-

ple interactors trends towards restoring SINV replication, only loss of RTRAF (Table 1, log2-

FoldChange 1.6–1.8) and NME1 (Table 3, log2FoldChange 3.4–4.8) significantly restores

SINV replication (Fig 8A and 8B). Moreover, knockdown of MOV10 (Table 1, log2Fold-

Change 4.5–4.9) approaches significant restoration of SINV replication (Fig 8A, p = 0.0631).

We decided to de-convolute the siRNA pools for both NME1 and PABPC4, given our veri-

fication of them as bona fide TRIM25 interactors and substrates (Figs 5 and 6). Moreover, loss

of NME1 results in the most significant restoration of SINV replication (Fig 8B). We hypothe-

sized that siRNAs that induced greater knockdown of NME1 or PABPC4 expression would

also result in greater SINV replication. Therefore, we de-convoluted both NME1 and PABPC4
siRNA pools in both our inducible TRIM25-WT cell line and in the parental 293T cell line

with endogenous TRIM25 and ZAP expression. There, we observed that both the degree of

NME1 and PABPC4 mRNA expression (Fig 8C and 8D) significantly and negatively correlate

with increase of viral replication (Fig 8E and 8F), supporting a role for both NME1 and

PABPC4 in TRIM25-dependent alphavirus inhibition. This correlation is more robust in the

presence of inducible TRIM25-WT (NME1: r = -0.83, p<0.001; PABPC4: r = -0.87, p<0.001)

than in the presence of endogenous TRIM25 (NME1: r = -0.82, p<0.01; PABPC4: r = -0.74,

p<0.01). Altogether, these results suggest that the antiviral activity of TRIM25 is mediated by

multiple substrates. Though knockdown of most individual interactors on their own does not

significantly restore SINV replication, the fact that several have demonstrated a phenotype

implies that together they may have a larger impact on viral replication. Further studies need

to be performed to determine their synergistic effects on viral infection and functional conse-

quences of their ubiquitination by TRIM25.

Discussion

Many TRIMs are involved in and ubiquitinate components of multiple cellular and antiviral

processes [3–6]. In this study, we set out to identify TRIM25 substrates by generating a point

mutation in the TRIM25 RING domain, R54P, which is predicted to abolish its interaction

with E2 carrier enzymes and is sufficient to cripple TRIM25 ligase activity (Fig 1). We reported

identification of TRIM25 substrates involved in nucleic acid metabolism and translation (Fig

2E), in line with its role in blocking viral translation [20]. We characterized the ubiquitination

of the most enriched TRIM25 interactors, G3BP (Fig 3) and UPF1 (Fig 4), as well as two
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Fig 8. Knocking down TRIM25-R54P-specific interactors identifies essential substrates for TRIM25 antiviral activity. (A-B) TRIM25 inducible

cells were transfected with pooled siRNAs for either (A) hits specific to TRIM25-R54P in the absence of viral infection or (B) hits specific to

TRIM25-R54P in the presence of viral infection. Cells were induced for TRIM25-WT expression at 1 μg/mL dox, infected with Toto1101/Luc at an

MOI of 0.01 PFU/cell, and lysed at 24 h.p.i. for measurement of luciferase activity. Asterisks indicate statistically significant differences as compared to

the NT pool siRNA (One-way ANOVA, Dunnett’s multiple comparison test; ��, p<0.01; ����, p<0.0001). Unlabeled comparisons are not significant.

Data are either (A) pooled from or (B) representative of two independent experiments. (C-F) Parental 293T cells (TRIM25: endogenous) or TRIM25

inducible (TRIM25: inducible) cells were transfected with individual siRNAs for (C,E) NME1 or (D,F) PABPC4, induced for TRIM25-WT expression

at 1 μg/mL dox, and (C-D) had RNA extracted for RT-qPCR analysis or (E-F) infected with Toto1101/Luc at an MOI of 0.01 PFU/cell. Cells were lysed

at 24 h.p.i. for measurement of luciferase activity. Asterisks indicate statistically significant differences as compared to the NT pool for each cell line.
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TRIM25-R54P specific interactors during infection, NME1 (Fig 5), and PABPC4 (Fig 6).

These represent proteins with essential cellular functions, some of which with prior involve-

ment in alphavirus infection [50,59]. We also used the TRIM25-R54P mutant to definitively

show the critical role of ubiquitination in TRIM25 antiviral activity that is independent of IFN

production and signaling (Fig 7). We then examined proteins that display a preference for

association with TRIM25-R54P under mock and viral infection conditions, and found that

several of these are necessary for TRIM25 antiviral activity (Fig 8), identifying them as poten-

tial TRIM25 substrates mediating viral inhibition. Our results suggest that targeting of any sin-

gle substrate by TRIM25 is insufficient to mediate the entirety of its cellular and antiviral

activities, illustrating the powerful, multi-faceted role of this ubiquitination network in diverse

biological processes.

We propose that the success of this “substrate trapping” approach in identifying TRIM25

ubiquitination substrates hinges on preservation of protein structure. Previous reports that

unearthed the importance of TRIM25 ligase activity in the ZAP antiviral response depend on

either deleting the entire TRIM25 RING catalytic domain or disrupting formation of the zinc

finger motif, potentially having an adverse effect on protein folding overall and potentially

affecting other TRIM25 cellular functions or interactions [20,21]. The R54P point mutation

we generated has been demonstrated to preserve protein structure and cognate interactions in

other contexts [29], instilling greater credibility in our identification of novel TRIM25 sub-

strates. Moreover, this mutation is predicted to abolish the E3 ligase-E2 conjugating enzyme

interaction [29], preventing any downstream ubiquitination events and thus prolonging tran-

sient ligase-substrate interactions. The TRIM25-R54P specific hits may have weaker, more

transient, or infection-specific interactions not easily detected by the conventional co-IP/MS

approach. Other “substrate trapping” approaches depend on fusing a polyubiquitin binding

domain to the ligase of interest [60], which may either disrupt native protein-protein interac-

tions or result in false-positive identification of ubiquitinated proteins. Moreover, this type of

approach would fail to identify substrates that are not polyubiquitinated, given that ligases can

mono or multi-monoubiquitinate their substrates [61].

For the first time, we identified G3BP1/2, UPF1, NME1, and PABPC4 as bona fide TRIM25

substrates (Figs 3–6). Furthermore, we were able to characterize TRIM25 polyubiquitination

of G3BP and PABPC4 as primarily utilizing K63 linkages (Figs 3C and 6D). This type of link-

age is commonly used to build signaling scaffolds, as TRIM25 does to activate RIG-I [19], and

could potentially play a role in either SG assembly or disassembly by recruiting SG compo-

nents in the former or generating steric hindrance in the latter. Additionally, our validation of

K592 as a mono-ubiquitination site on UPF1 (Fig 4C) overlaps with a predicted acetylation

site on the same residue, and neighbors a predicted phosphorylation site at T595, potentially

modulating these other post-translational modifications of UPF1 [62]. These residues lie

within the AAA ATPase domain of UPF1, suggesting that ubiquitination of UPF1 by TRIM25

might affect its ATP hydrolysis, thus hindering UPF1 in its NMD target discrimination and

efficient translation termination [63,64]. Interestingly enough, G3BP1 and UPF1 cooperate to

mediate structure-mediated RNA decay [65]. It is entirely possible that TRIM25-mediated ubi-

quitination could affect this process by modulating their interaction with one another, though

further experiments are required to explore this hypothesis.

Though UPF1 and G3BP have previously been implicated as antiviral and pro-viral factors

in alphavirus replication, respectively [50,59], we did not find a role for either in the

293T and TRIM25-WT inducible cell lines were statistically analyzed independently from one another (One-way ANOVA, Dunnett’s multiple

comparison test; �, p<0.05; ����, p<0.0001). Data are representative of two independent experiments for each cell line.

https://doi.org/10.1371/journal.ppat.1010743.g008
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TRIM25-ZAP antiviral response. UPF1 may have an antiviral role independent of TRIM25,

given that its knockdown only significantly rescued viral replication when TRIM25 was absent

(S2D Fig). This hypothesis is supported by a previous report which found that UPF1 was

involved in regulating half-life stability of viral RNA [50], which TRIM25 does not affect [20],

On the other hand, G3BP is known to cluster replication complexes and recruit translation ini-

tiation machinery [59], which might be disrupted through G3BP ubiquitination by TRIM25,

resulting in translational suppression. Alternatively, given that the G3BP interaction motifs in

TRIM25 and nsP3 are similar [45,66], it is tempting to speculate that TRIM25 may compete

with the viral nsP3 for G3BP interaction and recruitment, resulting in diminishment of G3BP

pro-viral effects. However, the pro-viral roles of G3BP did not seem to be affected by TRIM25

ubiquitination or lack thereof, given that abolishing TRIM25-G3BP interaction through over-

expression of the TRIM25-PTAA mutant did not rescue SINV replication and translation nor

CHIKV virion production (S2A–S2C Fig). Nevertheless, we noted that the TRIM25-PTAA

mutant still preserves some ubiquitination of G3BP despite completely abolishing the

TRIM25-G3BP interaction (Fig 3A and 3B). Further studies are warranted to fully elucidate

the role of G3BP ubiquitination in TRIM25 antiviral activity.

TRIM25-mediated ubiquitination of NME1 and PABPC4 may interfere with RNA meta-

bolic processes by altering their stability or ability to bind RNA. Both of these proteins have

previously been demonstrated to be ubiquitinated by other E3 ligases. Ubiquitination of

NME1 by the E3 ligase SCF-FBXO24 targets it for degradation [67]. Seeing as TRIM25 is able

to modify G3BP with both proteolytic K48- and non-proteolytic K63-polyubiquitin linkages,

TRIM25 may also be targeting NME1 for degradation, thereby hindering nucleotide synthesis

and general RNA metabolic processes. On the other hand, ubiquitination of PABPC4 by the

E3 ligase MKRN decreases its affinity for binding mRNA poly(A) tails [68]. It is interesting to

speculate that TRIM25-mediated polyubiquitination of PABPC4 could regulate PABPC4 bind-

ing to the poly(A) tail on viral RNAs, thus modulating the stability of the RNA and reducing

its ability to form translation initiation complexes.

We also utilized the TRIM25-R54P mutant to define the requirement for ligase activity in

TRIM25 inhibition of alphavirus replication. We found that TRIM25 ligase activity is abso-

lutely required for its inhibition of diverse alphaviruses through a block in viral translation

(Fig 7A–7D). Interestingly, overexpression of both TRIM25-WT and -R54P results in a damp-

ened IFN response in our hands (Fig 7E), contrasting with the previously established role of

TRIM25 in activating RIG-I signaling and implicating TRIM25 as a negative regulator of the

type I IFN response [69]. Moreover, TRIM25-R54P with a complete loss of antiviral activity

actually exhibits relatively more production of IFN and a subset of ISG mRNAs (Fig 7E). Still,

these data together suggest that the robust TRIM25 antiviral activity against alphaviruses is not

mediated through an augmented IFN response, but through its ligase activity and subsequent

ubiquitination network.

Our examination of the contribution of a subset of TRIM25-R54P specific interactors to

TRIM25 antiviral activity has yielded several hits, namely RTRAF (Fig 8A), NME1 (Fig 8B),

and PABPC4 (Fig 8B). Though only pooled siRNA knockdown for RTRAF and NME1 gave

statistically significant restored viral replication, pooled siRNA knockdown of PABPC4 still

restored viral replication by approximately 5 fold (Fig 8B). Additionally, both NME1 and

PABPC4 expression significantly and negatively correlated with viral replication (Fig 8C–8F).

RTRAF, also known as hCLE or C14orf166, is an RNA binding protein involved in cellular

transcription, translation, and RNA transport, and is required for influenza virus replication

[70–72]. Notably, RTRAF is a member of a cap-binding complex that activates mRNA transla-

tion [71]. Given RTRAF’s role in facilitating translation of mRNAs, it is therefore tempting to

speculate that RTRAF may be required for translation of alphavirus RNA, and
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TRIM25-mediated ubiquitination of RTRAF may affect its ability to do so. The novel bona

fide TRIM25 substrate NME1, which functions as a major synthesizer of non-ATP nucleoside

triphosphates, upon ubiquitination may inhibit alphavirus replication via a similar mechanism

as the potent restriction factor SAMHD1, which depletes deoxynucleotide pools, effectively

preventing replication of varied DNA viruses and reverse transcription of HIV-1 [73]. On the

other hand, TRIM25-mediated ubiquitination of NME1 may inhibit its metastatic suppressor

activities, potentially serving as a novel mechanism for TRIM25’s previously described roles in

carcinogenesis. Finally, TRIM25-mediated ubiquitination of PABPC4 could inhibit translation

initiation by interfering with necessary protein-protein interactions to form the mRNA closed

loop structure for ribosomal recruitment. Alternatively, it is possible that PABPC4 could

inhibit alphavirus replication in a manner similar to its general block of coronavirus replica-

tion by recruiting TRIM25 to target alphavirus proteins for degradation [58]. Further studies

need to be carried out to elucidate the functional consequences of these TRIM25 substrates in

blocking viral translation and other cellular processes.

The novelty of this work lies within our innovative approach to uncover the multifaceted

TRIM25 ubiquitination network, which is likely involved in mediating TRIM25 cellular and

antiviral functions. Many questions remain unanswered as to how TRIM25-mediated ubiquiti-

nation modulates the activity of these substrates. In contrast to the more binary consequences

of K48-linked dependent degradation, other types of ubiquitin linkage may effect more

nuanced cellular changes by modulating substrate activity and localization [61]. Given

TRIM25 proclivity for K63 linkages in the context of alphavirus infection and innate immunity

[19–21], we are tempted to speculate that TRIM25 eschews a simple degradation approach in

favor of a more refined modulation of substrate activity and localization. Current therapeutics

that harness E3 ligases focus on their degradative power, generating compounds that bring

ligases in close proximity to a target protein for degradation [74]. Further research is war-

ranted to explore the utility of alternate modes of ubiquitination in biological therapeutics.

Materials and methods

All resources utilized in this study are compiled below (Table 5) and referenced in the relevant

methods in the following sections.

Cell culture, viruses, and infections

ZAP KO 293T cells (clone 89) and its respective parental 293T cells were generously provided

by Dr. Akinori Takaoka at Hokkaido University [82]. 293T (parental, ZAP KO, and TRIM25

KO (see below) with or without inducible expression of TRIM25) were cultured in Dulbecco’s

Modified Eagle Medium (DMEM; Thermo Fisher Scientific, Waltham, MA) supplemented

with 10% fetal bovine serum (FBS; Avantor Seradigm, Radnor, PA). Baby hamster kidney 21

(BHK-21; American Type Culture Collection, Manasass, VA) cells were cultured in Minimal

Essential Media (Thermo Fisher Scientific) supplemented with 7.5% FBS.

Wild-type SINV (Toto1101), temperature-sensitive SINV (Toto1101/Luc:ts6), SINV

expressing firefly luciferase (Toto1101/Luc), SINV expressing EGFP (TE/5’2J/GFP), CHIKV

vaccine strain 181/clone 25 (generously provided by Scott Weaver, The University of Texas

Medical Branch at Galveston), ONNV expressing EGFP (generously provided by Dr. Steve

Higgs, Kansas State University), RRV expressing EGFP (generously provided by Dr. Mark

Heise, University of North Carolina), and VEEV vaccine strain TC-83 (generously provided

by Dr. Ilya Frolov, University of Alabama at Birmingham) have been previously described

[75–80]. Viral stocks and titers for multiplicity of infection (MOI) calculations were generated

in BHK-21 cells as previously described [79]. Viral infections and plaque assays were
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Table 5. Key resources.

Reagent type (species) or

resource

Description Source or reference Identifiers Additional information

strain (Chikungunya virus) CHIKV strain 7142.181/25 [75]

strain (O’nyong-nyong
virus)

ONNV-GFP [76] GenBank

AF079456

SG650 genome

strain (Ross River virus) RR64-GFP [77]

strain (Sindbis virus) Toto1101 [78]

strain (Sindbis virus) Toto1101/Luc [79]

strain (Sindbis virus) Toto1101/Luc:ts6 [79]

strain (Sindbis virus) TE-5’2J/GFP [80]

strain (Venezuelan equine
encephalitis virus)

VEEV-GFP [81] vaccine strain

TC-83

Antibody anti-actin-HRP, mouse monoclonal Sigma-Aldrich A3854 WB (1:20,000)

Antibody anti-EFP/TRIM25, mouse monoclonal BD Biosciences 610570 WB (1:5,000)

Antibody anti-FLAG, mouse monoclonal Sigma-Aldrich F1804 WB (1:20,000)

Antibody anti-G3BP1, mouse monoclonal Santa Cruz sc-365338 WB (1:500)

Antibody anti-G3BP2, rabbit polyclonal Assay Biotech C18193 WB (1:1,000)

Antibody anti-HA, rat monoclonal Roche Life Science 3F10 WB (1:1,000)

Antibody anti-myc, rabbit polyclonal Cell Signaling Technology 2272S WB (1:2,500)

Antibody anti-NM23A (NME1), rabbit monoclonal Abcam ab171935 WB (1:10,000)

Antibody anti-PABPC4, rabbit polyclonal Proteintech 14960-1-AP WB (1:2,000)

Antibody anti-UPF1, rabbit monoclonal Cell Signaling Technology 12040 WB (1:1,000)

Antibody anti-V5, mouse monoclonal Invitrogen MA5-1523 WB (1:5,000)

Antibody donkey anti-rat HRP Jackson ImmunoResearch 712-035-153 WB (1:20,000)

Antibody goat anti-mouse HRP Jackson ImmunoResearch 115-035-146 WB (1:20,000)

Antibody goat anti-rabbit HRP Thermo Fisher Scientific 31462 WB (1:20,000)

Chemical compound, drug poly(I:C) HMW InvivoGen tlrl-pic

Chemical compound, drug Poly-L-lysine hydrobromide Sigma-Aldrich P2636

Chemical compound, drug Roche cOmplete Mini, EDTA-free

Protease Inhibitor Cocktail

Sigma-Aldrich 11836170001

Commercial assay or kit DharmaFECT 1 Transfection Reagent Horizon Discovery T-2001-01

Commercial assay or kit Dynabeads Protein A for

Immunoprecipitation

Invitrogen 10-002-D

Commercial assay or kit EZview Red ANTI-FLAG M2 Affinity Gel Sigma-Aldrich F2426

Commercial assay or kit EZview Red ANTI-MYC M2 Affinity Gel Sigma-Aldrich E6654

Commercial assay or kit KOD Hot Start Master Mix Sigma-Aldrich 71842

Commercial assay or kit Luna Universal qPCR Master Mix New England Biolabs M3003X

Commercial assay or kit Mini-PROTEAN TGX Gels, 4–15%, 15

well

Bio-Rad 4568086

Commercial assay or kit NuPAGE MOPS SDS running buffer Invitrogen NP0001

Commercial assay or kit ProSignal Full-Range Prestained Protein

Ladder

Genesee Scientific 83–650

Commercial assay or kit ProSignal Pico ECL Reagent Genesee Scientific 20-300B

Commercial assay or kit Protoscript II First Strand cDNA Synthesis

Kit

New England Biolabs E6560L

Commercial assay or kit Q5 Site-Directed Mutagenesis Kit New England Biolabs E0552S

Commercial assay or kit Quick-DNA Miniprep-Plus kit Zymo Research D4068

Commercial assay or kit Quick-RNA kit Zymo Research R1055

Commercial assay or kit QuikChange II XL Site-Directed

Mutagenesis Kit

Agilent 210518

(Continued)
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performed as previously described [79]. TRIM25 inducible cells (see below) were induced for

TRIM25 expression and infected with EGFP expressing viruses at an MOI of 0.01 plaque form-

ing units (PFU)/cell, harvested at 10–24 hours post-infection (h.p.i.), and fixed in 1% parafor-

maldehyde for flow cytometry analysis. Data was acquired using a MACSQuant Analyzer 10

(Miltenyi Biotec, Auburn, CA) and analyzed using FlowJo (BD Biosciences, Franklin Lakes,

NJ). Percent infected (GFP+) cells was calculated and normalized to the -dox condition of

each respective cell line.

Plasmids and transfections

Addgene plasmids for HA-tagged ubiquitin (pRK5-HA-Ubiquitin-WT, #17608; pRK5-HA-U-

biquitin-K48, #17605; pRK5-HA-Ubiquitin-K63, #17606), UPF1 (pCW57.1-Tet-UPF1WT,

#99146), and PABPC4 (pDESTmycPABPC4, #19877) were used [47,83,84]. Full-length

TRIM25 was generously provided by Dr. Jae U. Jung at the University of Southern California

[19]. Dr. Gerald McInerney at the Karolinska Institutet, Sweden, generously provided

pGFP-G3BP1 and pGFP-G3BP2a [59]. The coding sequence of NME1 isoform a

(NM_198175.1) was synthesized as a gene fragment (Integrated DNA Technologies, Coralville,

IA), where the ends were flanked by restriction enzyme sites NotI and XbaI, and random

nucleotides were incorporated to maintain the open reading frame. Dr. Oliver Fregoso kindly

gifted us a pcDNA3.1-3XFLAG plasmid. The 3XFLAG tag was swapped out for a V5 tag or a

myc tag using BamHI and HindIII restriction sites to generate V5-pcDNA3.1 or myc-

pcDNA3.1, respectively. The plasmid pcDNA3.1-3XFLAG was used as an expression vector

for TRIM25, pcDNA3.1-V5 for UPF1, and pcDNA3.1-myc for G3BP1, G3BP2, NME1, and

PABPC4. TRIM25 was cloned into pcDNA3.1-3XFLAG using XhoI and XbaI restriction sites,

while UPF1, G3BP, NME1, and PABPC4 were cloned into either pcDNA3.1-V5 (UPF1) or

pcDNA3.1-myc (G3BP, NME1, and PABPC4) using the NotI and XbaI restriction sites.

TRIM25 RING domain mutants (I15K, R54P, I15K/R54P) were generated by mutagenesis of

pcDNA-3XFLAG-TRIM25 using the QuikChange II XL Site-Directed Mutagenesis Kit

Table 5. (Continued)

Reagent type (species) or

resource

Description Source or reference Identifiers Additional information

Commercial assay or kit RNeasy mini kit Qiagen 74104

Commercial assay or kit X-tremeGENE9 Transfection Reagent Sigma-Aldrich 6365787001

Sequence-based reagent DNA primers for molecular cloning This work S1 Table

Sequence-based reagent RT-qPCR oligonucleotides PrimerBank S3 Table https://pga.mgh.harvard.edu/

primerbank/

Sequence-based reagent siRNA Ambion S2 Table

Software, algorithm Database for Annotation, Visualization

and Integrated Discovery v6.8

Frederick National Laboratory for

Cancer Research, Frederick, MD

https://david.ncifcrf.gov/home.

jsp

Software, algorithm EnhancedVolcano Clinical Bioinformatics Research LTD,

United Kingdom

https://github.com/kevinblighe/

EnhancedVolcano

Software, algorithm FlowJo BD Biosciences, Franklin, NJ https://flowjo.com

Software, algorithm Geneious Prime (2021.2) Biomatters, San Diego, CA https://geneious.com

Software, algorithm GraphPad Prism 9 (v.9.2.0) GraphPad Software, San Diego, CA https://graphpad.com

Software, algorithm ImageJ National Institutes of Health, Bethesda,

MD

https://imagej.net/

Software, algorithm RStudio software (v.1.4.1106) RStudio, Boston, MA https://rstudio.com

Software, algorithm UCSF Chimera University of California, San Francisco,

San Francisco, CA

https://www.rbvi.ucsf.edu/

chimera/

https://doi.org/10.1371/journal.ppat.1010743.t005
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(Agilent Technologies, Santa Clara, CA), while the TRIM25-PTAA mutant was generated

using the Q5 Site-Directed Mutagenesis Kit (New England Biolabs, Ipswich, MA), by perform-

ing sequential mutagenesis reactions to individually mutate each residue to alanine. TRIM25

was cloned into a 3XFLAG expressing ePiggyBac transposon plasmid at the ClaI and NotI

restriction sites. For cloning and mutagenesis primers, see S1 Table. All plasmids were verified

by sequencing (Genewiz, South Plainfield, NJ).

Cells were transfected using X-tremeGENE9 DNA Transfection Reagent (Roche Life Sci-

ence, Basel, Switzerland) at a ratio of 3 μL to1 μg DNA according to the manufacturer’s

instructions. Empty vectors (pcDNA3.1-3XFLAG, V5, or myc) were transfected as necessary

to keep total plasmid amount in co-transfections constant.

TRIM25 targeting by CRISPR

The MIT Optimized CRISPR Design portal (crispr.mit.edu) and CHOPCHOP [85] (chopchop.

cbu.uib.no) were used to design guide RNAs (gRNAs) targeting exon 1 of the human TRIM25
gene (S1A Fig). The guide with the highest ranking in both scoring programs (5’-CGGCGCAA

CAGGTCGCGAACGGG-3’) was selected for cloning into the PX459 vector (Addgene,

#62988), a non-lentiviral construct that also delivers Cas9 [86]. Oligos containing the gRNA

sequences (5’- CACCGCGGCGCAACAGGTCGCGAAC-3’ and 5’- AAACGTTCGCGAC

CTGTTGCGCCGC-3’) were ligated and cloned into PX459 linearized with BbsI. 293T cells

were transiently transfected with PX459 expressing TRIM25 gRNA and selected with 1 μg/mL

puromycin the next day to eliminate untransfected cells. Following two days of puromycin

selection, surviving cells were counted, diluted to 0.3 cell/well in a 96-well plate, and seeded in

10% FBS DMEM. Single cell clones were expanded and treated with or without puromycin.

Clones sensitive to puromycin, indicating failure to integrate gRNA expressing vector, were har-

vested for immunoblot analysis to assess TRIM25 expression. Five clones (3, 6, 8, 9, and 10)

were selected based on western blotting results indicating complete loss of TRIM25 protein

expression (S1B Fig). Viral replication within these clones was characterized by infection with a

luciferase-expressing SINV (Toto1101/Luc). Clone #8 was selected for generation of TRIM25

inducible cell lines based on its intermediate viral replication phenotype (S1C Fig), similar to

previous TRIM25 siRNA data [20]. A 600-bp amplicon flanking the gRNA targeting site was

amplified from genomic DNA isolated from each clonal population using a Quick-DNA Mini-

prep Plus kit (Zymo Research, Irvine, CA) and KOD Hot Start Master Mix (Millipore Sigma).

Amplicons from clone #8 were sent to Massachusetts General Hospital Center for Computa-

tional and Integrative Biology DNA Core for Complete Amplicon Sequencing, confirming that

CRISPR targeting results in deletions in exon 1 of TRIM25, leading to frameshift mutations and

premature stop codons in both alleles (S1D Fig).

Generation of TRIM25 inducible cell lines

To reconstitute TRIM25 expression (WT and R54P) in our TRIM25 KO 293T cell line (clone

#8; see above for details), we used the enhanced PiggyBac (ePB) transposable element system

provided by the Brivanlou laboratory at the Rockefeller University, as previously described

[87,88]. TRIM25 KO 293T cells were transfected with 1:1 ePB transposon vector encoding

TRIM25-WT or TRIM25-R54P and the transposase plasmid. Two days post-transfection,

1.5 μg/mL of puromycin was used to select a population of TRIM25 KO 293T cells inducible

for TRIM25-WT, -R54P, or -PTAA, which were then expanded and treated with different

amounts of dox (0.001, 0.01, 0.1, 1, and 10 μg/mL) to confirm TRIM25 inducible expression

by immunoblotting.
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Mass spectrometry (MS)

To identify TRIM25 substrates, three 15-cm dishes per condition were seeded with 7.5x106

TRIM25 inducible or TRIM25 KO 293T cells each in the presence of 1 μg/mL dox. Two days

later, cells were mock infected or infected with Toto1101 at an MOI of 1 PFU/cell. Six hours

post infection, cells were trypsinized, spun down, and lysed in 3 mL of FLAG IP buffer. Super-

natant was transferred to a new 15 mL tube and supplemented with 5 mL of FLAG IP buffer

before incubating with 80 μL of anti-FLAG beads for 45 min at 4˚C, rotating. Immunoprecipi-

tates were washed three times in FLAG IP buffer before elution with 130 μL of 8M urea in 100

mM Tris-HCl, pH 8, shaken for 10 min at 1200 rpm. Supernatant was carefully transferred to

a new tube and proteins were precipitated by addition of 4 volumes of -20˚C acetone and incu-

bation at 4˚C overnight. After centrifugation at 16,100 g for 30 min at 4˚C, pellets were washed

with -20˚C acetone and centrifuged again.

Dried pellets were processed at the UCLA Proteomics Core. Protein samples were reduced

and alkylated using 5mM Tris (2-carboxyethyl) phosphine and 10mM iodoacetamide, respec-

tively, and then proteolyzed by the sequential addition of trypsin and lys-C proteases at 37˚C

as described [89]. Digested peptides were resuspended in 5% formic acid and fractionated

online using a 25cm long, 75 μM inner diameter fused silica capillary packed in-house with

bulk C18 reversed phase resin (length, 25 cm; inner diameter, 75 μM; particle size, 1.9 μm;

pore size, 100 Å; Dr. Maisch GmbH) [90]. The 140 min water-acetonitrile gradient was deliv-

ered using a Dionex Ultimate 3000 UHPLC system (Thermo Fisher Scientific) at a flow rate of

300 nL/min (Buffer A: water with 3% DMSO and 0.1% formic acid and Buffer B: acetonitrile

with 3% DMSO and 0.1% formic acid). Fractionated peptides were ionized and analyzed by

tandem mass spectrometry (MS/MS) Orbitrap Fusion Lumos mass spectrometer (Thermo

Fisher Scientific). Label-free quantitation was performed using the MaxQuant software pack-

age [91]. The mass spectrometry proteomics data have been deposited to the ProteomeX-

change Consortium via the PRIDE [92] partner repository with the dataset identifier

PXD034024. The EMBL Human reference proteome (UP000005640 9606) was utilized for all

database searches. Statistical analysis of MaxQuant output data was performed with the artMS

Bioconductor [93] package which performs the relative quantification of protein abundance

using the MSstats Bioconductor package (default parameters). Intensities were normalized

across samples by median-centering the log2-transformed MS1 intensity distributions. The

abundance of proteins missing from one condition but found in more than 2 biological repli-

cates of the other condition for any given comparison were estimated by imputing intensity

values from the lowest observed MS1-intensity across samples and p-values were randomly

assigned to those between 0.05 and 0.01 for illustration purposes. Significant hits were defined

as interactors that possessed a log2FoldChange of>1.5 and a -log10Pvalue > 1.3.

TRIM25 autoubiquitination and co-immunoprecipitation (co-IP) assay

To assess TRIM25 autoubiquitination or co-IP with proteins of interest, transfected or

untransfected cells in 6-well plates were collected and lysed by rotating for 30 min at 4˚C in

FLAG IP buffer (100 mM Tris-HCl 8.0, 150 mM NaCl, 5 mM EDTA, 1 mM DTT, 5% glycerol,

0.1% NP-40) supplemented with a complete protease inhibitor cocktail (Roche Life Science),

before spinning down at 14000 rpm for 15 min at 4˚C. Anti-FLAG beads (EZview Red ANTI--

FLAG M2 Affinity Gel, Sigma-Aldrich, St. Louis, MO) or anti-myc beads (EZview Red ANTI--

MYC M2 Affinity Gel, Sigma-Aldrich) were equilibrated by washing 3 times in FLAG IP

buffer. Three hundred μL of whole cell lysate (WCL) were incubated with 30 μL of anti-FLAG

beads for 45 min at 4˚C, rotating. Immunoprecipitates were washed 3 times with the FLAG IP
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buffer. Bound proteins were eluted with SDS loading buffer and boiled for 5 minutes for

immunoblot analysis.

Ubiquitination IP assay

To assess TRIM25 ubiquitination of putative substrates, immunoprecipitation was performed

essentially as previously described [20]. Briefly, cells were collected and lysed in 0.5% SDS

buffer supplemented with complete protease inhibitor cocktail. Three hundred μL of WCL

were diluted into 1X TNA buffer (0.25% Triton, 50 mM Tris-HCl, pH 7.5; 200 mM NaCl, 1

mM EDTA) + 2 mg/mL BSA. WCL containing V5-tagged substrates were then incubated with

1 μg of anti-V5 antibody overnight at 4˚C. The next morning, 40 μL Protein A Dynabeads

(Invitrogen, Waltham, MA) were added and incubated for 2 h at 4˚C. WCL containing myc-

tagged substrates were incubated directly with anti-myc beads for 45 minutes at 4˚C, rotating.

Following incubation with beads, both myc-tagged and V5-tagged immunoprecipitates were

washed 3 times with 1X TNA buffer + 2 mg/mL BSA. Myc-tagged NME1 underwent an addi-

tional two washes with 1X TNA buffer only. Bound proteins were eluted with SDS loading

buffer and boiled for 5 minutes for immunoblot analysis.

Immunoblot analysis

Proteins were resolved through SDS-PAGE using 4–15% precast Mini-PROTEAN TGX Gels

(Bio-Rad) and NuPAGE MOPS SDS running buffer (Thermo Fisher Scientific) before trans-

ferring to a PVDF membrane (Bio-Rad). Immunodetection was achieved with 1:5,000 anti-

ZAP (Abcam, Cambridge, United Kingdom); 1:5,000 anti-TRIM25 (BD Biosciences), 1:1,000

anti-HA (Roche Life Science), 1:5000 anti-V5 (Invitrogen), 1:2,500 anti-myc (Cell Signaling

Technology, Danvers, MA), 1:20,000 anti-FLAG (Sigma-Aldrich), 1:500 anti-G3BP1 (Santa

Cruz, Dallas, TX), 1:1,000 anti-G3BP2 (Assay Biotech, Fremont, CA), 1:1,000 anti-UPF1 (Cell

Signaling Technology), 1:10,000 anti-NME1 (Abcam), 1:2,000 anti-PABPC4 (Proteintech,

Rosemont, IL), and 1:20,000 anti-actin-HRP (Sigma-Aldrich). Primary antibodies were

detected with 1:20,000 goat anti-mouse HRP (Jackson ImmunoResearch, West Grove, PA),

1:20,000 goat anti-rabbit HRP (Thermo Fisher Scientific), or 1:20,000 donkey anti-rat HRP

(Jackson ImmunoResearch). Proteins were resolved on a 4–15% Mini-PROTEAN TGX gel

(Bio-Rad, Hercules, CA) and visualized using ProSignal Pico ECL Reagent (Genesee Scientific,

San Diego, CA) on a ChemiDoc (Bio-Rad). Quantification of western blots was performed

using ImageJ.

siRNA knockdown and poly(I:C) stimulation

Ambion Silencer siRNAs (S2 Table) and nontargeting controls (Thermo Fisher Scientific)

were reverse transfected with DharmaFECT 1 Transfection Reagent (Horizon Discovery,

Cambridge, United Kingdom) according to manufacturer protocols. Briefly, siRNAs were

mixed with DharmaFECT 1 Transfection Reagent (1:100 dilution in HBSS) and 50 μL of

siRNA mix were added to each well in a 24 well plate, or 100 μL in a 12 well plate. 1.2 x 105

cells were added per well in 250 μL in a 24 well plate or 2.4 x 106 in 500 μL in a 12 well plate,

for a final concentration of 25 nM siRNA. Plates that would be subjected to SINV infection

were first poly-L-lysine treated. Cells were induced for TRIM25 expression using a final con-

centration of 1 μg/mL dox one day post-transfection, as applicable. Cells were harvested for

RNA extraction for RT-qPCR to quantify gene knockdown or subjected to SINV infection 48

h post-transfection. To assess ISG induction in TRIM25 inducible cells upon poly(I:C) treat-

ment, cells were treated with 1 μg poly(I:C) HMW (InvivoGen, San Diego, CA) in the presence

or absence of 1 μg/mL dox per well, and harvested for RNA extraction for RT-qPCR.
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Quantitative reverse transcription PCR (RT-qPCR)

Total RNA was isolated from siRNA- and poly(I:C)-treated cells using the RNeasy mini kit

(Qiagen, Hilden, Germany) or the Quick-RNA kit (Zymo Research). 400 ng to 1 μg of input

RNA was used as a template for reverse transcription using Protoscript II First Strand cDNA

Synthesis Kit (New England Biolabs) and random hexamers, following manufacturer instruc-

tions. RT-qPCR was performed using 5 μL of 4 to 10-fold-diluted cDNA, and Luna Universal

qPCR Master Mix (New England Biolabs) in the CFX Real-Time PCR system (Bio-Rad), cour-

tesy of the UCLA Virology Core. qPCR conditions were as follows: initial denaturation step at

95˚C for 1 min, then 40 cycles of 95˚C for 15 sec followed by 60˚C for 30 sec, concluding with

a final 10 sec at 60˚C. A melt curve was then calculated by heating to 95˚C incrementally by

0.5˚C/s for 10 sec at each temperature. Transcript levels of R54P specific interactors and ISGs

were determined by normalizing the target transcript CT value to the CT value of the RPS11

transcript, an endogenous housekeeping gene. Fold change was calculated using this normal-

ized value relative to the average of cells treated with the NT siRNA control or the -dox condi-

tion for respective cell lines (CT method). For RT-qPCR primers, see S3 Table.

Statistical analysis

Statistical analyses in Figs 7 and 8, and S2 were performed on biological replicates from tripli-

cate wells, unless indicated otherwise, using GraphPad Prism. Spearman’s rho was calculated

using Microsoft Excel. For statistical analyses and numerical data underlying graphical depic-

tions, see S1 Data.

Supporting information

S1 Data. Excel spreadsheet containing, in separate sheets, the underlying numerical data

and statistical analysis for Fig panels 7A, 7B, 7C, 7D, 7E, 8A, 8B, 8C, 8D, 8E, 8F, S1C, S2A,

S2B, S2C, S2D, S2E, S2F, S3A, S3B, S4A, S4B, and for Spearman’s rho calculations for

NME1 and PABPC4.

(XLSX)

S1 Fig. Validation of TRIM25 KO in CRISPR clones. (A) Schematic of where TRIM25

sgRNA targets exon 1. (B) Western blot of TRIM25 KO CRISPR single cell clones. (C) Cells

were infected with SINV Toto1101/Luc at an MOI of 0.01 PFU/cell and lysed at 6, 12, 24, and

40 h.p.i. for measurement of luciferase activity. (D) CRISPR-targeting region in the genomic

sequence of TRIM25 is shown in clone 8. The alignment shown is in the same reading frame

of the wild-type TRIM25 protein. A red dash represents a deletion when compared to the

wild-type TRIM25 sequence.

(TIF)

S2 Fig. G3BP and UPF1 are not sufficient to mediate TRIM25 antiviral activity. (A-C)

TRIM25- inducible cells were induced for TRIM25-WT, -R54P, or -PTAA expression at 1 μg/

mL dox, infected with (A) SINV Toto1101/Luc at an MOI of 0.01 PFU/cell, and lysed at 6, 12,

24, 32, and 40 h.p.i.; or with (B) SINV Toto1101/Luc:ts6 at an MOI of 1 PFU/cell and lysed at

0, 2, 4, and 6 h.p.i. for measurement of luciferase activity; or (C) CHIKV at an MOI of 0.01

PFU/cell, harvesting supernatant at 6 and 24 h.p.i. for plaque assays. Open circles and dashed

lines indicate absence of TRIM25 induction. Data are representative of two independent

experiments. Error bars represent (A-B) range or (C) standard deviation. Asterisks indicate

statistically significant differences (Two-way ANOVA and Tukey’s multiple comparisons test:
��, p<0.01; ���, p<0.001; ����, p<0.0001). Light blue compares WT +/- dox, dark blue for

R54P +/- dox, and green for PTAA +/- dox. Unlabeled comparisons are not significant. (D)
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TRIM25-WT inducible cells were transfected with NT pool siRNA or UPF1 siRNAs in the

absence of dox. RNA was extracted 48 hours post-transfection for RT-qPCR analysis. Data are

combined from two independent experiments. (E-F) TRIM25-WT inducible cells were trans-

fected with NT pool siRNA or UPF1 siRNA #1, induced for TRIM25-WT expression at 1 μg/

mL dox, and infected with Toto1101/Luc at an MOI of 0.01 PFU/cell. Cells were lysed at 24 h.

p.i. for (E) measurement of luciferase activity or (F) quantification of UPF1 knockdown via

RT-qPCR. Data are combined from three independent experiments. Asterisks indicate statisti-

cally significant differences (Two-way ANOVA and Šı́dák’s multiple comparisons test: ����,

p<0.0001). Unlabeled comparisons are not significant.

(TIF)

S3 Fig. Poly(I:C) treatment robustly induces IFN-β mRNA expression. (A-B) TRIM25

inducible cells were treated with poly(I:C) in the presence or absence of (A) TRIM25-WT or

(B) TRIM25-R54P induction. RNA was harvested for RT-qPCR analysis. Data are representa-

tive of two independent experiments.

(TIF)

S4 Fig. Validation of pooled siRNA knockdown. (A-B) TRIM25 inducible cells were trans-

fected with pooled siRNAs for either (A) hits specific to TRIM25-R54P in the absence of viral

infection or (B) hits specific to TRIM25-R54P in the presence of viral infection. Cells were

induced for TRIM25-WT expression at 1 μg/mL dox. RNA was extracted for RT-qPCR analy-

sis.

(TIF)

S1 Table. Cloning and mutagenesis primers.

(DOCX)

S2 Table. siRNAs.

(DOCX)

S3 Table. RT-qPCR primers.

(DOCX)
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