
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
From Default Mode Network to the Basal Configuration: Sex Differences in the Resting-
State Brain Connectivity as a Function of Age and Their Clinical Correlates

Permalink
https://escholarship.org/uc/item/40d153s6

Authors
Conrin, Sean D
Zhan, Liang
Morrissey, Zachery D
et al.

Publication Date
2018

DOI
10.3389/fpsyt.2018.00365
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/40d153s6
https://escholarship.org/uc/item/40d153s6#author
https://escholarship.org
http://www.cdlib.org/


ORIGINAL RESEARCH
published: 13 August 2018

doi: 10.3389/fpsyt.2018.00365

Frontiers in Psychiatry | www.frontiersin.org 1 August 2018 | Volume 9 | Article 365

Edited by:

Amit Anand,

Cleveland Clinic Lerner College of

Medicine, United States

Reviewed by:

Simon Surguladze,

King’s College London,

United Kingdom

Signe Bray,

University of Calgary, Canada

*Correspondence:

Alex D. Leow

alexfeuillet@gmail.com

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Neuroimaging and Stimulation,

a section of the journal

Frontiers in Psychiatry

Received: 26 May 2018

Accepted: 23 July 2018

Published: 13 August 2018

Citation:

Conrin SD, Zhan L, Morrissey ZD,

Xing M, Forbes A, Maki P, Milad MR,

Ajilore O, Langenecker SA and

Leow AD (2018) From Default Mode

Network to the Basal Configuration:

Sex Differences in the Resting-State

Brain Connectivity as a Function of

Age and Their Clinical Correlates.

Front. Psychiatry 9:365.

doi: 10.3389/fpsyt.2018.00365

From Default Mode Network to the
Basal Configuration: Sex Differences
in the Resting-State Brain
Connectivity as a Function of Age
and Their Clinical Correlates
Sean D. Conrin 1†, Liang Zhan 2,3†, Zachery D. Morrissey 1, Mengqi Xing 1,4, Angus Forbes 5,

Pauline Maki 1, Mohammed R. Milad 1, Olusola Ajilore 1, Scott A. Langenecker 1 and

Alex D. Leow 1,4*

1Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States, 2Department of Electrical and

Computer Engineering, University of Pittsburgh, Pittsburgh, PA, United States, 3Department of Engineering and Technology,

University of Wisconsin-Stout, Menomonie, WI, United States, 4Department of Bioengineering, University of Illinois at

Chicago, Chicago, IL, United States, 5Department of Computational Media, University of California, Santa Cruz, Santa Cruz,

CA, United States

Connectomics is a framework that models brain structure and function interconnectivity

as a network, rather than narrowly focusing on select regions-of-interest. MRI-derived

connectomes can be structural, usually based on diffusion-weighted MR imaging,

or functional, usually formed by examining fMRI blood-oxygen-level-dependent

(BOLD) signal correlations. Recently, we developed a novel method for assessing

the hierarchical modularity of functional brain networks—the probability associated

community estimation (PACE). PACE uniquely permits a dual formulation, thus yielding

equivalent connectome modular structure regardless of whether positive or negative

edges are considered. This method was rigorously validated using the 1,000 functional

connectomes project data set (F1000, RRID:SCR_005361) (1) and the Human

Connectome Project (HCP, RRID:SCR_006942) (2, 3) and we reported novel sex

differences in resting-state connectivity not previously reported. (4) This study further

examines sex differences in regard to hierarchical modularity as a function of age and

clinical correlates, with findings supporting a basal configuration framework as a more

nuanced and dynamic way of conceptualizing the resting-state connectome that is

modulated by both age and sex. Our results showed that differences in connectivity

between men and women in the 22–25 age range were not significantly different.

However, these same non-significant differences attained significance in both the 26–30

age group (p = 0.003) and the 31–35 age group (p < 0.001). At the most global

level, areas of diverging sex difference include parts of the prefrontal cortex and the

temporal lobe, amygdala, hippocampus, inferior parietal lobule, posterior cingulate, and
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precuneus. Further, we identified statistically different self-reported summary scores

of inattention, hyperactivity, and anxiety problems between men and women. These

self-reports additionally divergently interact with age and the basal configuration between

sexes.

Keywords: brain connectivity, sex differences, human connectome project, modularity, resting-state fMRI,

default-mode network, community structure

INTRODUCTION

In efforts to better understand the human connectome, various
approaches have been used to identify and measure the
modularity of brain connectivity. In these efforts the brain is
generally divided into a collection of communities or “modules.”
Frequently, these modules can be sub-divided into submodules,
which then demonstrate hierarchical modularity and near
decomposability (the autonomy of modules from one another)
(5). Modules and sub-modules are comprised of a series of
nodes with tight interconnectivity, whereas nodes of different
modules have lesser connectivity. The connections between
nodes are referred to as edges and can be either positive
or negative in fMRI Connectomics. A positive edge indicates
that the activity in one node is positively correlated with
that in the connected node, whereas a negative edge indicates
the presence of an inverse relationship between the two (6).
When these concepts are applied to fMRI-derived networks,
network organization identifies functionally related or “coupled”
regions.

The complexity and volume of data associated with large
networks is enormous and thus much work has been done
to develop algorithms that better characterize and measure
modularity (7). In the popular approach of maximizing the
Q modularity metric, which is an NP-hard problem, typically
the speed of computation comes with a compromise (8). For
example, the very efficient fast unfolding method does not
guarantee global optimization, and yields a varying number of
communities with each run (9). Another area of variations is how
positive and negative edges are accounted for. More frequently,
the focus of computation is based on the recognition andmeasure
of positive edges as this is fitting for many types of networks
(10, 11). However, inmeasuring brain connectivity through fMRI
networks, which usually focuses on fMRI blood-oxygen-level-
dependent (BOLD) signal correlations, positive and negative
edges co-exist.

Most published studies have employed variable approaches of
ignoring, thresholding, binarizing, or arbitrary down-weighting
to account for these negative edges (12–14). Although quite
different in their approaches, the common similarity is that the
data involving negative edges is in some degree heuristically
accounted for.

To better address negative edges, we recently developed
and published a novel method for assessing the modularity
of functional brain networks—the probability associated
community estimation (PACE) (4). Most importantly, PACE
permits a dual formulation, thus yielding equivalent connectome
modular structure regardless of whether one considers positive

or negative edges, by exploiting how frequent BOLD signal
correlation between two regions is positive vs. negative
(the edge “positivity” and “negativity”). This method was
rigorously validated using resting-state fMRI data from the
1,000 functional connectomes or F1000 project data set (F1000,
RRID:SCR_005361) (1) and the Human Connectome Project
(HCP, RRID:SCR_006942) (2, 3) and we demonstrated that
negative correlations alone are sufficient in understanding
resting-state connectome modularity.

Further, we explored whether our approach might be useful in
the study of sex-based differences in healthy brain function, with
the understanding that this might contribute to the discussion of
how andwhymen andwomen differ in their expression ofmental
illness both in prevalence and type. When compared to various
existing Q maximization based formulations applied to the same
two data sets, PACE yielded results that are both consistent
with existing methods yet more stable and reproducible than
alternative methods. Moreover, as a result of its superior
reproducibility (and thus robustness), PACE was able to detect
novel subtle sex differences in resting-state connectivity that
were not previously reported with Q-based methods (4). These
differences are conceptualized to be the end product of sexual
development through hormones, socialization and specialization.
Given this and our understanding that brain development may
extend into adulthood, in this study we further examined sex
differences in resting-state connectome as a function of age
(15, 16).

In this study, we comprehensively explored how these
differences relate to parcellation resolution as it regards to the
validity of these differences. Further, as secondary analyses we
investigated how PACE-derived modularity during the resting
statemay relate to self-reports of common psychopathology traits
in relation to mood and anxiety in terms of the sexes. Last, we
then proposed amore nuanced framework of conceptualizing the
resting state human connectome, termed the basal configuration
framework, that generalizes and broadens the narrowly defined
and perhaps more restrictive concept of default mode network;
this new framework would allow us to better capture the complex
dynamic inter-relationship between different brain regions at rest
that is further modulated by both age and sex.

METHODOLOGY

Data
The data we used in this study is 811 subjects’ resting state
fMRI connectome data from the Human Connectome
Project (released in December 2015, named as HCP900
Parcellation+Timeseries+Netmats, https://db.humanconnec
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tome.org/data/projects/HCP_900). Three different spatial
dimensions of brain networks are explored: 100 × 100, 200 ×

200, and 300 × 300, all derived using independent component
analysis or ICA. For study design, recruitment, and enrollment
as well as human subject consent and protection, please refer to
(3). For details of the dataset and the procedure for connectome
construction, please refer to HCP’s official website and respective
references (3, 17, 18). The study subjects’ demographics are
shown in Table 1.

Community Estimation
In this study, we adopted the probability associated community
estimation (PACE) (4) framework to extract the hierarchical
modularity of the resting-state functional connectome (FC).
Mathematically represented as an undirected graph FC(V ,E),
where V is a set of nodes (e.g., ROIs) and E the set of edges
and given a collection of functional connectomes S on V, for
each edge ei,j in E PACE considers the probability pair: (1) P+i,j:
the probability of observing a co-activating relationship between
node i and node j in S (i.e., the tendency that the two regions are
active at the same time), and (2) P−i,j, the probability of observing
an anti-activating relationship between node i and node j in S.
To estimate this probability pair for each edge, we simply use
the ratio between the number of connectomes in S having a
positive (or negative) correlation values and the total number
of connectomes in S. Naturally, the P−- P+ pair satisfies the
following relationship:

P−i,j + P+i,j = 1, ∀
(

i, j
)

, i 6= j

Then, given C1, C2,. . . , CN that collectively form an N-way
partition of V, PACE denotes the mean intra-community edge

positivity or negativity P± (Cn) for the n-th community Cn as:

P± (Cn) =

∑

i, j∈Cn, i<j P
±
i,j

|Cn| (|Cn| − 1) /2

Here |Cn| denotes the number of nodes in Cn. Similarly, the
mean inter-community edge positivity and negativity (between
communities Cn and Cm) are defined as:

P± (Cn, Cm) = P± (Cm, Cn) =

∑

i∈Cn, j ∈Cm P±i,j

|Cn| |Cm|

The PACE-modularity is then the partition of V,
C1 ∪ C2 ∪ . . . ∪ CN = V , (Ci ∩ Cj = ∅ for all i 6= j)
that maximizes the following benefit function 9 that computes
the difference between mean inter-community and mean
intra-community edge negativity (note due to the elementary
relationship between P− and P+, PACE can be equivalently
thought of as maximizing the difference between the mean intra-
community and the mean inter-community edge positivity):

9 = argmax
C1∪C2∪...∪CN=V ,Ci∩Cj=∅for alli6=j

{

∑

1≤n<m≤N P− (Cn, Cm)

N (N − 1) /2
−

∑

1≤n≤N P− (Cn)

N

}

= argmax
C1∪C2∪...∪CN=V ,Ci∩Cj=∅for alli6=j

{

∑

1≤n≤N P+ (Cn)

N
−

∑

1≤n<m≤N P+ (Cn, Cm)

N(N − 1)/2

}

Constructing the Pace Null Model and
Testing the Statistical Significance of Each
Bifurcation and Between Sexes
In our current implementation, a top-down hierarchically
bifurcating tree is constructed. For each branch at a specific
hierarchical level PACE further splits that branch into 2
subsequent groups by maximizing 9 with respect to that level
using simulated annealing (19, 20). Then, a nonparametric
procedure is used to determine the level of statistical significance
for such a split. Note that by stopping a branch from further
splitting when there is no evidence in support of this bifurcation,
PACE can in theory yield any number of communities (i.e.,

not restricted to powers of 2). This nonparametric procedure
leverages the interchangeability of edge positivity/negativity
between any two edges under the null distribution given the
observed data (since under null there exists no connectome
modularity and thus two edges can be randomly selected and
exchanged). Thus, assuming there are no modular patterns
of co-/anti- activation we could sample the distribution of
the PACE benefit function 9 by first randomly choosing two
edges and exchanging their edge negativity/positivity probability
pairs (randomization is iterated over the entire connectome)
followed by re-computing the PACE trees by maximizing 9 with
reshuffled edges. Then, this entire process is repeated for 1,000
times, yielding 1,000 samples of 9 under null. Last, to determine
the significance of each split, the actual9 achieved by the original
data is compared to the 1,000 sampled 9 values under null at the
same PACE level; if the former lies within the top 5% of the latter,
such a split is determined to be significant (P < 0.05) (Figure 1).

To test if PACE modularity differs between sexes, we
employed a similar permutation testing approach. Specifically, by
permuting with respect to sex (under null the sex of a person
is interchangeable) we could recalculate the probability pairs:
P−i,j, P+i,j at each edge specific to each sex, thus allowing us to
generate samples of male/female hierarchical modularity under
the null. The difference between sexes is then quantified using
the normalized mutual information (NMI) computed between
the two sex-specific PACE modular structures and the actual
realized sex difference is compared to the resampled differences,
thus yielding a p value indicating the level of statistical
significance.

Clinical Correlates of Connectome
Modularity: Relate Systems-Level Pace
Modular Structure to Subject-Level
Characteristics
Firstly, in order to determine the statistical significance of
the observed differences between sexes, a 10,000-permutation
testing was performed within each age bracket, by first randomly
reassigning each subject’s sex and then re-computing PACE in
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TABLE 1 | Participant demographics.

Age Male

(Age in years)

Female

(Age in years)

ASR

Depressive

Problems

Raw score

Mean ± std

(Range)

ASR

Anxiety

Problems

Raw score

Mean ± std

(Range)

ASR

Inattention

Problems

Raw score

mean ± std

(Range)

ASR

Hyperactivity

Problems

Raw score

Mean ± std

(Range)

22–25 n = 106

(23.45 ± 1.08)

n = 70

(23.66 ± 1.11)

4.32 ± 3.60

(0–19)

4.05 ± 2.62

(0∼11)

3.54 ± 2.44

(0∼11)

2.80 ± 2.17

(0∼10)

26–30 n = 152

(27.91 ± 1.37)

n = 197

(28.09 ± 1.48)

4.28 ± 3.74

(0–22)

3.79 ± 2.77

(0–14)

3.03 ± 2.27

(0–14)

2.54 ± 2.04

(0–11)

31–35 n = 106

(32.44 ± 1.24)

n = 180

(32.86 ± 1.37)

3.62 ± 2.86

(0–15)

3.61 ± 2.43

(0–12)

2.93 ± 2.32

(0–11)

2.24 ± 1.90

(0–8)

order to control for multiple comparisons using the procedure
described in Section Constructing the PACE Null Model and
Testing the Statistical Significance of Each Bifurcation and
Between Sexes.

Then, as part of the HCP data release for behavioral data,
we downloaded and used, under the category of Psychiatric
and Life Function1, the already de-identified Achenbach Adult
Self-Report, Syndrome Scales and DSM-Oriented Scale. Here,
the Achenbach Adult Self-Report for Ages 18–59 (21) was
administered to obtain a broad variety of self-report psychiatric
domains. Specifically, the 123 items from Section VIII were
used to generate the ASR Syndrome Scales and the ASR DSM-
Oriented Scales, and in this study, we primarily focused on Adult
Self-Report (ASR) DSM Depressive, Anxiety, Inattention, and
Hyperactivity Problems scores (Table 1) and tested if there are
sex differences after controlling for age. In particular, using a
general linear model incorporating an intercept, main effects, as
well as a sex-age interaction term, the statistical significance of a
sex effect is tested by centering age within the age range 22–35
across all subjects, for all ASR scores.

Separately, for each of the three resolutions available for
HCP (100-ROI, 200-ROI, 300-ROI) we applied PACE to extract
modularity (separately for each sex as well as for the combined
total sample) and determined the optimal level of bifurcation
using the null-model procedure introduced above, thus at the
most global level (i.e., 1st level of PACE) yielding two modules.
Operationally, as one of the two modules includes regions
traditionally considered DMN we will use the term PACE-
derived task negative network (TNN) in the remainder of the
paper while the other module will be denoted the PACE-
derived task positive network (TPN). To summarize the overall
activity of TNN and TPN, for each individual we computed
the average correlation value within TNN (avg-TNN) and TPN
(avg-TPN).

As secondary analyses and to validate our PACE-derived
1st level modules, we explored behavioral correlates of TPN
and TNN, we conducted partial correlations, controlling for

1 https://wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+

Public-+Updated+for+the+1200+Subject+Release#HCPDataDictionaryPublic-

Updatedforthe1200SubjectRelease-RestrictedInstrument:LifeFunction(Achenbach

AdultSelf-Report,SyndromeScalesandDSM-OrientedScale).

age, between avg-TNN and avg-TPN and each of the four
ASR DSM Problems scores. Previous studies have demonstrated
cognitive and affective correlates of TPN and TNN activity
associated with the same domains in the ASR DSM scales
(22–25).

RESULTS

ASR DSM Problems Scores
For ASR DSM Inattention and Hyperactivity Problems scores
men are significantly higher (assessed at mean age of 28.75 years:
for Inattention Problems men higher than women by 0.36 points,
standard error SE = 0.17, p = 0.031; for Hyperactivity Problems
men higher than women by 0.33 points, SE= 0.026, p= 0.0023),
while women’s self-reported ASR Anxiety Problems scores are
significantly higher (assessed at mean age of 28.75 years: women
higher than men by 0.83 points, SE = 0.19, p = 8.5e-06). In
addition, overall there are age effects for both Anxiety and
Hyperactivity Problems scores (lower scores as age progresses:
for Anxiety Problems beta=−0.107, SE= 0.034, p= 0.0017; for
Hyperactivity Problems beta= −0.080, SE = 0.026, p = 0.0023)
but not for Inattention Problems score.

For ASR DSM Depressive Problems, there is a significant
age effect (beta = −0.137, SE = 0.045, p = 0.0026) but not a
significant sex difference.

Pace Modularity Results
Across the entire sample, PACE-derived modularity at the most
global level (yielding two modules operationally defined as the
TPN, in red, and the TNN, in green) is shown in Figure 2

for each sex and each of 3 parcellation resolutions (100-, 200-,
and 300- ROIs). As expected, sex differences are visually more
easily appreciated for the higher resolutions (P-value of sex-
differences= 0.0001 for 100 ROIs, and <0.0001 for both 200 and
300 ROIs).

Second, Figure 3 details the corresponding complete
hierarchical modularity for men and women across all three
age groups, visualized as bifurcation trees, after applying our
null-distribution procedure (see Section Constructing the PACE
Null Model and Testing the Statistical Significance of Each
Bifurcation and Between Sexes). Interestingly, we identified an
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FIGURE 1 | Testing the statistical significance of each bifurcation for the PACE hierarchical modularity tree. First, we derive the community structure from the observed

data by maximizing 9, defined as the difference between mean inter-community edge negativity and mean intra-community edge negativity. Then under null we

assume edge interchangeability, thus allowing us to sample the null distribution of 9 by randomly shuffling edges to create 1,000 permutations. For each permutation,

we re-run PACE to obtain bifurcation trees and record the corresponding 9 values (and conduct max-pooling for level 2 and up), yielding the null distribution of ψ for

each level. Then the bifurcation of the original data at each split will be treated as significant only when the ψ achieved by the original data lies within top 5% with

respect to the null distribution.
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FIGURE 2 | Sex differences in resting-state modularity revealed using the probability associated community estimation (PACE). Slices obtained from 100-ROI,

200-ROI, and 300-ROI resolutions using the Human Connectome Project (HCP) data. At PACE Level 1, two brain modules are extracted, here shown as the red

community (corresponding to task positive network or TPN) and the green community (corresponding to task negative community or TNN). Mixing of communities is

shown in the overlay in yellow (since HCP parcellation is ICA-based, components may overlap thus resulting in the mixing of TPN and TNN). As expected, with

increasing spatial resolution (from 100 to 300 ROIs), sex differences also become more significant (for both 200-ROI and 300-ROI resolution p < 0.0001; significant

after Bonferroni correction with a p value cut-off 0.05/3). Differences between the sexes (boxed) include precuneus, hippocampus, and amygdala. MNI coordinates:

x = 12, y = −14, z = 22.

additional split in men during this procedure (resulting in 8
modules for women and 9 for men).

Pace Modularity as a Function of Age
Next, we explore connectome modularity as a function of
age, with results shown in Figure 4 where we visualize the
sex-specific modularity in each of three age groups (22–25,
26–30, and 31–35). Although sex-differences did not reach
statistical significance in the 22–25 years old age group, visual
differences were noted in several areas. Sex-differences then
reached statistical significance in the 26–30 years old age
group (p = 0.003) and even more significant in the 31–
35 age group (p < 0.001). Interestingly, female modularity
remains largely stable across the three age groups (a head-
to-head comparison between the 22 and 25 y/o group and
the 31–35 y/o group was indeed statistically not statistically
significant), whereas males exhibit different patterns across
age groups, particularly from the 26–30 to 31–35 age groups.
Also, the areas of significant differences in men are in brain
regions where “transitions” occur, as they age, gradually from
more probabilistically task-negative (green) into task-positive
(red) (including the precuneus, the inferior parietal lobule,

the prefrontal cortex, the hippocampus, the amygdala, and the
middle temporal gyrus; see Supplemental Video).

Secondary Analyses: Correlation Between
Pace Modularity and ASR DSM Problems
Scores
Secondary post-hoc partial correlation analyses (controlling for
age) confirmed that avg-TPN is negatively correlated with ASR
Anxiety and Inattention Problems scores in men, but not in
women; all other correlations are statistically non-significant
(r=−0.131 and p= 0.01 for Anxiety Problems, r = −0.127 and
p= 0.015 for Inattention Problems; p-values uncorrected).

Last, across the entire sample, avg-TPN also positively
correlates with avg-TNN (r = 0.37 and p= 1.4e−28, Figure 5).

DISCUSSION

In this study, using the F1000 and the HCP dataset we
comprehensively examined resting-state connectome sex
differences over the course of early adulthood, in particular how
they are modulated by age as well as their clinical correlates.
Our findings lead to a more nuanced picture elucidating: (1)
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FIGURE 3 | A graphical representation of the PACE-derived male and female hierarchical modular structure, optimally determined using the proposed null-model

procedure. Female communities are displayed in the top row of each level with their male counterparts displayed on the bottom row. Axial and sagittal slices are

shown for each community. Note that while female community bifurcation was no longer significant after PACE Level 3 (eight total communities), a further significant

bifurcation was observed in males (third community from left at PACE level 3; p = 0.006), yielding nine total communities. MNI coordinates: x = 12, z = 22.

how fMRI-derived brain connectivity exhibits both sex-specific
configuration and age-dependent dynamic re-configuration,
the latter primarily in men, from early twenties to mid-thirties,
and (2) how this sex-by-age configuration during the resting
state relates to self-reports of common psychopathology traits in
otherwise healthy subjects.

Although sex-differences were not identified at a level of
statistical significance in the 22–25 years old age group, a
trend difference is observed in several areas in the brain.
Specifically, in areas either designated as or functionally
closely coupled with DMN we identified a gradually shifting
connectome configuration over time in men (vs. women),
away from probabilistically more “task negative” and toward
probabilistically more “task positive.” In this sense, our
probabilistic framework frees up a brain region from having
to be hard-parsed (e.g., DMN vs. non-DMN), thus allowing
functional brain units (i.e., modules) to work synergistically at
times, and to act nearly-decomposable at other times. Of interest,

at the same time that basal configuration differences are identified
with increasing statistical significance with age, the differences
also show increasing statistical significance within individual age
groups with increasing image resolution.

What might contribute to the sex differences observed in
the present study? Some studies have shown that hormones
like estrogens and progesterone might modulate the resting-
state functional connectivity within the DMN (26, 27). Further
in support of the argument that hormones play a role in
connectivity differences, oral contraceptives taken by women are
known to impact functional activation to emotional stimuli and
resting state functional connectivity (26, 28, 29), while women on
oral contraceptives may have smaller hippocampal volume (30).

The results of our study indicate that the differences between
men and women do not appear statistically significant until we
reach the 26–30 years old age range and the trend appears to
increase into the 31–35 years old age group. This is well past
the age of puberty and so the first question to arise is why
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FIGURE 4 | Sex differences across three age groups (visualized at PACE Level 1): 22-25 (M: 106, F: 70), 26-30 (M: 152, F: 197), and 31-35 (M: 106, F: 180) years-old

(cf. Table 1) from the 300-ROI HCP data. Sex differences were not statistically significant in the 22-25 years old group, but reached statistical significance in the 26-30

years old group (p=0.003; significant after Bonferroni correction at a p value cut-off of 0.05/3) and is also statistically significant in the 31-35 group (p<0.001). Areas

of significant differences are in brain regions where transitions occur from TNN (green) to TPN (red) in men but not in women (boxed areas: black: precuneus; blue:

inferior parietal lobule; magenta: prefrontal cortex; orange: middle temporal gyrus). F=female; M=male. MNI coordinates: x= −48, y= −62, z=22. Note, instead of

indicating voxel-wise differences between sexes, the highlighted areas localize where modularity as a network property differs significantly.

do these differences gain statistical significance at an age range
substantially older than the onset of puberty?

One likely hypothesis is that men move to develop sexual
dimorphism in function later in adulthood, perhaps through later
development of white matter connections than women. Along
these lines, one recent study suggested that the 20–25 years old
age range may be a point of inversion of earlier sex differences
in cortical thickness and folding differences, however this study
was limited in that they did not have a cohort extending into
the 30s to fully probe this potential interaction between age and
sex (31).

Given these sex-based age-dependent differences in otherwise
healthy people, a natural further course of inquiry is to ask how
these differences might relate to the known differences in the
prevalence and symptom expression of mental illness between
the sexes. Among clear differences between men and women
in terms of mental health is that women are much more likely

than men to experience episodes of depression (32–35) Examples
of frequently investigated factors are differences in: hormonal
development, societal roles, communication patterns and ways of
coping with stressors. However, the lack of definitive conclusions
to date suggests that additional and unrecognized factors might
be at play (34). As such, it may be useful to consider whether
sex-based differential brain network connectivity might be one
of these unrecognized factors. Clearly it is a complex picture and
it is important to note again that exposure to sex hormones is
already known to affect brain network connectivity. One example
of this is discussed by Ottowitz et al., that addition of estrogen
to post-menopausal women is shown to increase connectivity
between the hippocampus and the prefrontal cortex, which as
part of the fronto-limbic circuitry known to play important
roles in depression, (36) while Maki et al. provide another
example in which they find that perimenopausal women exposed
earlier to hormone replacement therapy perform better in various
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FIGURE 5 | This figure plots the average Fisher’s z-transformed correlation

within TNN (avg-TNN) against that computed within TPN (avg-TPN) across the

entire sample. There is a highly significant positive correlation (r=0.37 and

p=1.4e-28) between the two, suggesting a synergistic relationship between

them than antagonistic.

cognitive tasks than those who are exposed after a longer time
untreated (37).

One area in which differential brain network connectivity
possibly contributes to sex-based differences in depression is
rumination. Rumination is the repetitive thinking and focus on
negative mood states (38). It is also a form of self-referential
processing of information (39). Areas identified as playing a role
in self-referential processing have included: medial prefrontal
cortex, anterior and posterior cingulate cortex, insula, temporal
pole, hippocampus, and amygdala (32, 39–47); note that in our
current study we identified sex-based differences in areas highly
overlapping with these.

Another major difference recognized in our study is in
regard to self-reported inattention, hyperactivity, and anxiety
problems scores. While depression problems scores are similar
between the sexes, men have higher self-reported inattention and
hyperactivity scores thanwomen (women by contrast have higher
overall anxiety problems scores). Further, correlation analyses
revealed that overall average-TPN is positively correlated with
average-TNN, and in the male group the former further inversely
correlated with attention problems and anxiety problems scores.

Last, note that our sex-difference findings in self-reports
are generally in line with Gur and Gur’s paper in which they
found that men have earlier declines in frontotemporal areas

associated with attention, inhibition and memory (48). Indeed,
men tend to express symptoms of depression differently than
women in terms of acting-out behaviors such as substance
abuse, restlessness and suicide (34, 49). While this difference in
expression of depressive symptoms is not fully understood, it is
possible that the tendency toward higher degrees of inattention
and hyperactivity in otherwise healthy men at least partially
explains why men tend to exhibit more externalizing behaviors
when depressed. This finding is also interesting to consider in
the context of Ingalhalikar et al.’s findings regarding sex-based
connectivity differences in adolescents in which the development
of greater inter-hemispheric connectivity in females leads to
better performance in attention tasks (50).

There are a few limitations in our current study. First, while
PACE is a rigorous framework to model negative correlations
and to pinpoint modular differences in a hierarchical fashion, it is
only able to localize on a modular level where groups differ (but
not on a voxel level). Second, the fact that we did not find any
sex difference in the youngest age range may be simply due to a
smaller sample size. Similarly, the fact that we only found basal
configuration correlations with self-reports in the male group
merits more discussion. While this can be due to a lack of power
in the female group, we did find modestly robust correlations
in the male group. Alternatively, as recent lines of evidence
suggesting that in women cognition is a function of themenstrual
cycle due to differential effects of estrogen and progesterone
(51), another plausible explanation is that in women the basal
configuration and self-reports such as ASR scores are also
dependent on the menstrual cycle. If so, the lack of correlations
in the female group is merely a consequence of the fact that the
functional imaging data and the self-reports were obtained on
different days and/or were differentially dependent on phases of
the menstrual cycle. Future studies can use a repeated measures
framework to estimate the relationship between change in the
basal configuration in relation to these self-reports and other
potential factors that may develop later or differently in males.

CONCLUSION

In sum, this study contributes to a growing literature on
the limitations of our current conceptualization of resting-
state networks. Our research supports the argument that
conceptualizing the default mode network as being the network
active at rest, thus driving resting-state brain dynamics, while the
activation of other networks is responsible for taking over during
active tasks is a concept that requires continued consideration.
In time, it is possible that a more nuanced model of functioning
will be identified as the leading theory on brain connectivity.
In this fashion, we argue that the current perspective is an
oversimplification of the actual complexity of brain connectivity,
as on a subject-level with increasing default mode network
activity the functional activity in other networks (generally
considered to be “task positive” networks) increases as well.
Taken in conjunction with previously published studies in
which increasing connectivity is an important factor in overall
functionality, (18) this study lays the foundation of a more
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nuanced framework for better conceptualizing the resting state.
To this end, our results supported that: (1) the basal configuration
exhibits distinct sex-specific dynamics by mid 30s, (2) the
basal configuration diverges during early adulthood between the
sexes, in that there is globally an age-modulated reconfiguration
primarily in men but not women, (3) the basal configuration
correlates with self-reported measures of personality traits, at
least in men, (4) whereas in women the basal configuration is
further conjectured to likely exhibit a strong dependence on the
menstrual cycle.
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