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Measurement of exciton correlations using electrostatic lattices

M. Remeika,1 J. R. Leonard,1, ∗ C. J. Dorow,1 M. M. Fogler,1 L. V. Butov,1 M. Hanson,2 and A. C. Gossard2

1Department of Physics, University of California at San Diego, La Jolla, CA 92093-0319, USA
2Materials Department, University of California at Santa Barbara, Santa Barbara, CA 93106-5050, USA

(Dated: April 6, 2016)

We present a method for determining correlations in a gas of indirect excitons in a semiconductor
quantum well structure. The method involves subjecting the excitons to a periodic electrostatic
potential that causes modulations of the exciton density and photoluminescence (PL). Experimen-
tally measured amplitudes of energy and intensity modulations of exciton PL serve as an input
to a theoretical estimate of the exciton correlation parameter and temperature. We also present
a proof-of-principle demonstration of the method for determining the correlation parameter and
discuss how its accuracy can be improved.

I. INTRODUCTION

Indirect excitons (IXs) in coupled quantum well struc-
tures (CQW)1,2 is a model system for exploring diverse
physical phenomena including pattern formation,3 spon-
taneous coherence and condensation,4–8 transport,9–20

spin transport and spin textures,21 and localization-
delocalization transitions.22–24 The CQW consists of a
pair of parallel quantum wells separated by a narrow tun-
neling barrier and the IX is a bound state of an electron
and a hole confined in the opposite quantum wells. Inter-
actions play a key role in the physics of IX systems. In
the first approximation, the exciton-exciton interaction
potential is given by

v(r) =
2e2

κ

(
1

r
− 1√

r2 + d2

)
, (1)

where d is the center-to-center separation of the two wells
in the CQW and κ is the dielectric constant of the semi-
conductor. At r � d this potential has the form of the
dipole-dipole repulsion, v(r) ' e2d2/κr3. A hallmark of
interacting IXs is the increase of its photoluminescence
(PL) energy E with density n, which has been known
since early spectroscopic studies of CQWs.25,26 At small
n, where the interactions are negligible, this energy ap-
proaches the creation energy E(0) of a single IX. As n
increases, a pronounced PL blue shift

∆E(n) = E(n)− E(0) > 0 (2)

develops. The physical origin of this energy shift is the
renormalization of the IX dispersion. The bare dispersion
is given by

ε̄k = E(0) +
~2k2

2mx
, (3)

where k is the exciton momentum, see Fig. 1(a). (In this
paper the bare quantities are denoted with bars.) The
renormalized dispersion εk is the solution of the equation
εk = ε̄k+Σ′(εk), where Σ′ is a real part of the self-energy

Σ(ε) = Σ′(ε) + iΣ′′(ε) . (4)

The simplest theoretical model of the self-energy is the
Hartree approximation. It assumes that Σ is equal to the
energy-independent, real constant

Σc = nṽ, ṽ ≡
∫
v(r)d2r =

4πe2d

κ
, (5)

so that the PL energy shifts by the same amount:

∆E = Σc =
4πe2

κ
nd . (6)

Equation (6) is colloquially known as the “capacitor” for-
mula27 because it is similar to the expression for the volt-
age on a parallel-plate capacitor with surface charge den-
sity ±en on the plates. The capacitor formula provides
a qualitative explanation for the observed monotonic in-
crease of ∆E with photoexcitation power. However, an-
alytical theory beyond the Hartree approximation28–35

and Monte-Carlo calculations36,37 suggest that the ca-
pacitor formula significantly overestimates ∆E(n). The
same conclusion follows from the analysis of the small-n
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FIG. 1. (Color online) (a) Bare and renormalized exciton
dispersions (thin and thick solid lines, respectively; both are
schematic). The dashed line is the light dispersion; the shaded
region to the left of it is the radiative zone. (b) The range
of values for exciton self-energy Σ (shaded). The upper solid
line is the Hartree (capacitance) self-energy Σc to which Σ is
normalized in this plot. The lower solid line is a lower bound
estimated from the self-energy of an exciton crystal with pa-
rameters d = 1.2 ae, ae = 10 nm, and mh = 2me suitable for
GaAs CQW studied in this work. A hydrogenic exciton wave-
function φ(reh) = exp(−reh/ a) was assumed with a = 2.9 ae.
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FIG. 2. (Color online) Illustrations of indirect exciton phases:
(a) crystal (b) liquid with short-range correlations (c) hypo-
thetical uncorrelated liquid or gas. The blue (red) patches
represent electrons (holes) confined in separate 2D layers. The
bottom row shows the schematic plots of two-body correlation
functions G(r) = n−2〈n(r)n(0)〉− δ(r) for each of the phases.

and the large-d limits, where IX should form, respec-
tively, a correlated liquid and a crystal, see Figs. 2(a)
and (b). In such phases the IXs avoid each other, which
lowers their interaction energy per particle as well as Σ′

compared with the uncorrelated gas-like state assumed
in the Hartree approximation, Fig. 2(c).

For comparison of various theories with experiment
and with one another, we define the dimensionless corre-
lation parameter22

γ = ν̄1∆E/n , (7)

where

ν̄1 = mx / 2π~2 (8)

is the bare exciton density of states (DOS) per spin and
mx = me + mh [Eq. (3)], me, and mh, are the ef-
fective masses of, respectively, excitons, electrons, and
holes. The capacitor formula (6) predicts the density-
independent correlation parameter

γc = ν̄1ṽ =
2d

ae

me +mh

me
, (9)

which is about γc ≈ 7 for the GaAs CQW structures
studied in Ref. 22 and the present work. Here ae =
~2κ/(mee

2) is the electron Bohr radius. The interaction
part of the self-energy of a classical crystal gives a lower
bound on Σ′ and thus γ. However, this leaves one with
a large uncertainty, see Fig. 1(b). A simple remedy for
the inaccuracy of the Hartree approximation is to replace
the coefficient ṽ in Eq. (5) with a smaller number t. This
yields ∆E = Σ′ = nt and

γ = ν̄1t . (10)

The problem remains how to reliably evaluate the phe-
nomenological parameter γ. The solution of this problem

can provide both the test of available theories and a con-
venient density calibration tool in experiments.

In our previous work22 we outlined a method that al-
lows one to estimate γ experimentally. The key idea of
the method is that the same correlation parameter deter-
mines both the PL shift and the ability of IXs to screen
an external potential perturbation. In other words, the
screening efficiency of the IX gas is related to γ. In the
experimental part of this work, we infer the screening
properties of the IX gas from variation of its PL energy
and intensity as a function of coordinates. To do so we
employ a periodic external potential

U(x) =
1

2
Ul(1− cos qx) (11)

created with the help of interdigitated gate electrodes.
The “depth” Ul of this potential is controlled by the gate
voltage. As the IXs attempt to screen the potential, their
density becomes periodically modulated (Fig. 3). In our
previous work,22 we measured modulation of the IX PL
intensity and energy in such a device. Analyzing such ex-
periments using a simplified theoretical model, we arrived
at a rough estimate γ ∼ 2, which is about one-third of γc.
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FIG. 3. (Color online) Simulated PL energy and intensity of
indirect excitons in a lattice potential. (a,b) Lattice potential
[dashed line in (a)], PL energy [solid line in (a)], and exciton
density (b) for ζ = 3 meV (measured with respect to ε̄0). (c,d)
PL intensity (c) and energy (d) under the same conditions for
NA = 0.4. The depth of the lattice Ul = 4 meV, temperature
T = 4.2 K, correlation parameter γ = 7.
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FIG. 4. (Color online) Localization-delocalization crossovers.
Indirect excitons are localized in region L, localized along
x but delocalized along y in region LxDy, and delocalized
in both directions in region D. The last of these is suit-
able for measuring γ. The squares are data from our earlier

work.22 The lines are empirical fits ∆E =
(
0.82 + 0.5U2

l

)1/2
and ∆E = 0.8 (in units of meV).

This analysis requires large enough Ul > Γ ∼ 0.8 meV
to ensure that the lattice potential dominates over the
random potential of disorder. In addition, sufficient IX
density producing ∆E higher than Ul and Γ is required
in order to overcome localizations effects of both these
potentials (Fig. 4) as detailed in Sec. II. In the present
work we expand these earlier efforts into a fully fledged
method for determining correlations in a gas of IXs from
the measured modulations of exciton PL in a periodic
electrostatic potential. Our refined model takes into ac-
count optical resolution effects neglected in Ref. 22.

It is worthwhile to note that a conceptually similar
technique has been previously employed for cold atoms
in magnetic traps. The equilibrium density profile of the
atomic gas in the trap can be understood as a result of
screening the trapping potential by the atoms. Further-
more, it has been shown that such density profiles can
be measured optically and used to determine the equa-
tion of state of the gas.38,39 By analogy, one can think
of our external potential U(x) as a periodic array of in-
dividual traps. This geometry offers certain advantages
compared to single traps. One is the redundancy of the
experimental data, which reduces stochastic errors of the
measurements using uniform arrays. Another advantage
is the simplicity of modeling the optical resolution effects
in a periodic geometry.

The remainder of the paper is organized as follows. In
Sec. II we define the model and derive the main equations
of the theory. In Sec. III we present a proof-of-principle
demonstration of the method for determining the corre-
lation parameter. In Sec. IV we discuss how to improve
the accuracy of the method.

II. THEORETICAL MODEL

Our objective is to describe PL characteristics of an
exciton gas subject to a periodic external perturbation,
Eq. (11), which makes the exciton density modulated.
However, it is instructive to start with the case Ul = 0
where the exciton gas is uniform and the in-plane mo-
mentum k is still a good quantum number.

A. Uniform exciton gas

The PL intensity spectrum Ĩ(ω) in our model is given
by the formula

Ĩ(ω) = Bf(ω − µ)A0(ω) , (12)

where B is a constant related to the exciton-photon ma-
trix elements,

f(ε) =
1

eβε − 1
(13)

is the Bose-Einstein distribution function, β = 1/T is
the inverse temperature, and µ is the exciton chemical
potential. The optical density (OD) A0(ω) is the k = 0
part of the spectral function

Ak(ω) = −2 Im
1

ω − ε̄k − Σk
. (14)

Derivation of Eq. (12) can be found in earlier works
on the subject.40–45 When interactions and disorder are
present in the system, the functional form of OD may
be complicated and qualitatively different in the canon-
ical phases of bosonic matter: normal fluid, superfluid,
and Bose glass.46,47 We focus on the intermediate density
range,

nd & n� T

t
=
nd
gγ

, (15)

in which excitons are expected to form the normal fluid.
Parameter g in Eq. (15) is the number of exciton spin
flavors (g = 4 in GaAs) and

nd = gν̄1T (16)

is the density scale corresponding to the onset of quan-
tum degeneracy. We assume that the interactions and
disorder shift the exciton energies by the k-independent
amount Σ′ = nt, so that

εk = ε̄k + nt , (17)

and that the exciton scattering rate |Σ′′| is small com-
pared to the temperature T . Under these simplifying
assumptions, the OD as a function of ω can be approxi-
mated by a single sharp peak centered at the renormal-
ized exciton band edge ε0 = ε̄0 + nt.
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We restrict our analysis to the two most basic charac-
teristics of the PL spectrum, the total intensity and the
average energy, which we define using the moments of
the lineshape:

I(m) ≡
∞∫

0

ωmĨ(ω)
dω

2π
. (18)

Specifically, the PL intensity is the zeroth moment and
the energy is the ratio of the first and zeroth moments:

I = I(0) , E ≡ I(1)/I(0) . (19)

It is easy to find the relations among the key quantities
in this model:

n = −nd ln
[
1− eβ(µ−ε0)

]
, µ = µ̄+ nt , (20)

I =
B

eβ(ε0−µ) − 1
= B

(
en/nd − 1

)
, (21)

E = ε0 = ε̄0 + nt . (22)

Equation (20) follows from

n = g

∞∫
−∞

ν1(ω)f(ω − µ)dω (23)

where ν1(ω) = ν̄1 θ(ω−ε0) is the renormalized DOS. [By
virtue of Eq. (17), the renormalization is simply a shift
of the argument by nt.] The first equality in Eq. (21)
comes from Eq. (12) and the normalization condition

∞∫
−∞

A0(ω)
dω

2π
= 1 (24)

for the OD. Equation (22) establishes the correspondence

E(0) = ε̄0 , ∆E(n) = nt (25)

with the notations introduced in Sec. I. While the density
dependence of E is linear, that of µ is not, see Fig. 5(a).
The nonlinear relation between µ and µ̄ at several dif-
ferent γ is illustrated by Fig. 5(b). This relation charac-
terizes screening properties of the exciton fluid discussed
next in Sec. II B.

B. Periodically modulated exciton gas

Let us examine the effect of the external potential U(x)
[Eq. (11)] on the exciton normal fluid. If U(x) does not
vary too rapidly, then the semiclassical Thomas-Fermi
approximation (TFA) is valid. Within the TFA the self-
energy is considered to be position-dependent, Σ(x) =
n(x)t + U(x). It plays the role of the effective potential

n
/n

d

(a)

−2 0 2
0

0.05

0.1

0.15

0.2

µ̄
(m

eV
)

(b)

−2 0 2
−2

−1.5

−1

−0.5

0

µ (meV)

ε
−
1

∗

(c)

−2 0 2
0

0.5

1

FIG. 5. (Color online) Exciton density, chemical potentials,
and effective dielectric constant. (a) Density n as a function
of the (renormalized) chemical potential µ for (left to right)
γ = 0.7, 3.5, 7.0. (b) The bare chemical potential as a function
of the renormalized one for the same γ (solid lines). (c) Inverse
ε∗ as a function of µ. The dashed lines in (b, c) depict the
γ → 0 limit. T = 4.2 K for all the curves.

acting on the excitons. The renormalized band edge ε0(x)
is also position-dependent, tracking Σ(x):

ε0(x) = ε̄0 + Σ(x) = ε̄0 + n(x)t+ U(x) . (26)

The local chemical potential µ(x) is defined such that
Eq. (20) is unaltered. Finally, the occupation factors in
Eqs. (12), (23), etc., change from f(ω − µ) to f(ω − ζ),
where

ζ = µ(x) + U(x) (27)

is the electrochemical potential. One should not confuse
ζ, which is x-independent in equilibrium, with the spa-
tially varying bare µ̄(x) and renormalized µ(x) chemical
potentials. By examining the last two we can analyze the
screening of the external potential by the IXs. Indeed,
from the above formulas we deduce

ε0(x) = (ε̄0 + ζ)− µ̄(x), (28)

µ(x) = ζ − U(x) . (29)

Therefore, the plot of ε0 vs. U can be obtained from
the plot of µ̄ vs. µ by inversion and a shift of the axes.
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This construction is illustrated in Fig. 6(b) and (e). The
derivative

ε∗ ≡
∂U

∂Σ
=
∂µ

∂µ̄
= 1 + t

∂n

∂µ̄

= 1 + gγ
(
en/nd − 1

)
= 1 + gγ

[
exp

(
ε0 − ε̄0

gγT

)
− 1

] (30)

can be regarded as an effective dielectric constant. It
describes how much variations of the effective potential
Σ(x) are reduced compared to those of the external one,
U(x). According to Eq. (30), at fixed n stronger inter-
action (higher γ) leads to stronger screening (larger ε∗).
Conversely, at fixed ε0, higher γ result in lower ε∗, even-
tually approaching the interaction-independent limit

ε∗ = 1 +
ε0 − ε̄0

T
. (31)

If the fixed parameter is γ, the screening evolves from
negligible (ε∗ → 1) to perfect (ε∗ → ∞) as either n, ε0,
or µ increases. The last case is illustrated by Fig. 5(c).

Small changes in n and U , which are related by

δn(x) = −δU(x)
1− ε−1

∗
t

, (32)

are anti-correlated: maxima of U(x) coincide with min-
ima of n(x), see Fig. 6(d). In the strong screening case,
the density n(x) is given, in the first approximation, by

n(x) ≈ ζ − U(x)

t
θ
(
ζ − U(x)

)
, ε−1

∗ � 1 . (33)

Thus, the density profile is a mirror reflection of the ex-
ternal potential, except for intervals where U(x) > ζ if
they exist. In those “depletion regions” the density is al-
most zero (exponentially small). To obtain the accurate
solution for n(x), we combine Eqs. (20) and (27) into

exp

(
µ̄− ε̄0

T

)
+ exp

(
U − ζ
gγT

+
µ̄− ε̄0

gγT

)
= 1 , (34)

which can be solved numerically48 for µ̄ at given ζ and
U , and then ε0 and n can be found. An example is shown
in Fig. 3. The profile of ε0(x) [Fig. 3(a)] is seen to have
a relatively flat minima, where screening is stronger and
relatively sharp maxima, where screening is weaker. The
screening is overall very efficient as the modulation of
ε0(x) is almost an order of magnitude smaller than that
of the external potential U(x). Since ζ > Ul in this
example, no depletion regions exist and the profile of n(x)
is nearly sinusoidal [Fig. 3(b)].

Consider now the modulation of the PL spectrum Ĩ =
Ĩ(x, ω). Combining Eqs. (12) and (26) gives

Ĩ(x, ω)
?
=Bf(ω − ζ)Ā0

(
ω + ε̄0 − ε0(x)

)
. (35)

In order to account for the optical resolution, the convo-
lution with the point-spread function (PSF) of the opti-
cal system must be added. For an ideal circular lens it is
given by49 PSF(x) = H1(2Qx)/(πQx2), where

Q = NA× k0 (36)

is the largest momentum admitted by the lens, NA < 1
is the numerical aperture, and

k0 = ω / ~c (37)

is the photon momentum in vacuum. The plot of the
PSF for NA = 0.24, which is typical of our experimental
setup, is shown in Fig. 7(a). It implies that the char-
acteristic width of the PSF is comparable to the lattice
period Λ = 2π/q = 2µm, so that accounting for the op-
tical resolution effects is important. Having to evaluate
the Struve function50 H1(z) makes working with the PSF
inconvenient. Instead, we can write the desired convolu-
tion as the Fourier series,

Ĩ(x, ω) =
∑
k

Ĩk(ω) cos kx , (38)

where k = 0, q, 2q, 3q, . . . are the Fourier momenta and

Ĩk(ω) = (2− δk,0)BOTFk f(ω − ζ)

×
〈
Ā0

(
ω + ε̄0 − ε0(x)

)
cos kx

〉 (39)

are the Fourier amplitudes. Neglecting the broadening of
the spectral function once again, Ā0(ω) → 2πδ(ω − ε̄0),

n

µζ

(a)

µ̄ µζ

(b)

U

x

Ul 0

0

(c)

n

x0

(d)

ε0

x0

(e)

FIG. 6. Illustration of the relations among spatial modula-
tions of the basic quantities in the problem. (a, b) Schematic
reproductions of Fig. 5(a, b) for one particular γ. (c, d, e)
Variations of the lattice potential U(x), exciton density n,
and the exciton band edge ε0 over one lattice period. Note
the reversed axes direction in (b) and (c).
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FIG. 7. Optical resolution functions. (a) Point-spread func-
tion for NA = 0.24. (b) Optical transfer function. Parameter
Q [Eq. (36)] is the largest momentum k admitted by the opti-
cal imaging system. (c) Optical transfer function as a function
of the numerical aperture for the principal Fourier harmonic
of momentum q = 2π/Λ, Λ = 2µm.

the corresponding spectral moments are

Ĩ
(m)
k = (2− δk,0)BOTFk

×
〈
f
(
ε0(x)− ζ

)
[ε0(x)]m cos kx

〉
.

(40)

Here and below 〈z(x)〉 ≡ Λ−1
∫ Λ

0
z(x)dx is the average of

a given function z(x) over a lattice period. The optical
transfer function49 OTFk is the Fourier transform of the
PSF:

OTFk =

∫
d2k′

πQ2
θ(Q− |k′|) θ(Q− |k′ − kx̂|) (41)

=
2

π

[
arccos

(
k

2Q

)
− k

2Q

√
1− k2

4Q2

]
(42)

for k < 2Q. Note the normalization: OTF0 = 1. At k ≥
2Q, OTFk is defined to be zero, which means that such
harmonics are not resolved. The plot of OTFk is shown in
Fig. 7(b). The minimal numerical aperture necessary to
observe at least the principal harmonic k = q is therefore

NAmin =
q

2k0
. (43)

In our experiments (Sec. III) we are quite close to this
lower limit, with NA ≈ 0.24 and OTFq ≈ 0.07, see
Fig. 7(c). This once again confirms that accounting for
the optical resolution effects is important. Under the
condition 1 < NA/NAmin < 2, which is satisfied in the
experiment, all higher harmonics of spatial modulation
are unobservable. Hence, the spectral moments I(m)(x)
have the sinusoidal form, e.g.,

I(x) = Iavg +
δI

2
cos qx , (44)

Iavg = Ĩ
(0)
0 , δI = 2Ĩ(0)

q , (45)

δI

Iavg
= 4 OTFq

〈
f
(
E(0)− µ̄(x)

)
cos qx

〉〈
f
(
E(0)− µ̄(x)

)〉 , (46)

Because of smallness of OTFq, the local PL energy is also
approximately sinusoidal:

E(x) =
Ĩ

(1)
0 + Ĩ

(1)
q cos qx

Ĩ
(0)
0 + Ĩ

(0)
q cos qx

≈ E(0) + ∆Eavg −
δE

2
cos qx .

(47)
Since U(x) is correlated positively with E(x) but neg-
atively with I(x), the modulation amplitudes δI and
δE are positive. Once the electrochemical potential ζ
is known, these amplitudes can be calculated numeri-
cally using µ̄(x) found by solving Eq. (34). We carried
out such calculation for several sets of representative pa-
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FIG. 8. (Color online) Parameter dependence of the PL en-
ergy δE and the normalized intensity δI/Iavg modulations.
(a,b) δE and δI/Iavg as functions of NA for T = 4.2 K,
Ul = 4 meV, γ = 7. (c,d) δE and δI/Iavg as functions of
temperature for NA = 0.4, Ul = 4 meV, γ = 7. (e,f) δE
and δI/Iavg as functions of the lattice depth for T = 4.2 K,
NA = 0.4, γ = 7. (g,h) δE and δI/Iavg as functions of the
correlation parameter γ for T = 4.2 K, NA = 0.4, Ul = 4 meV.
The average “blue shift” ∆Eavg for each color is indicated in
the legend of panel (b).
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rameters, see below. In each set we fixed ∆Eavg, the
directly measurable quantity. The corresponding ζ was
determined by the standard root-searching algorithms.48

The results are presented in Fig. 8. As one can see, the
dependences of δI and δE on NA exhibit a threshold
at NAmin and an approximately linear growth thereafter
[Figs. 8(a) and (b)]. These trends are inherited from the
OTFq (Fig. 7). Figures 8(e) and (f) show that δE and
δI scale linearly with the lattice potential depth Ul when
it is small enough. The analytical expressions in this
linear-response regime,

∆Eavg � gγT , Ul � T + ∆Eavg , (48)

are as follows:

δE ' OTFq
UlT

T + ∆Eavg
,

δI

Iavg
' δE

T
. (49)

In this regime the modulation amplitudes are roughly
independent of γ; however, they depend on the exciton
temperature T and the ratio of measured δI/Iavg and δE
can be used to determine it.

As Ul increases and reaches Ul ∼ T+∆Eavg, the linear-
response formulas cease to be valid. The density profile
develops depletion regions around the maxima of U(x),
e.g., x0 < x < Λ − x0 where cos qx0 = 1 − (2ζ/Ul).
Outside the depletion regions, for example, at |x| < x0,
the density profile can be approximated by a vertically
shifted cosine function: n(x) ∝ cos qx− cos qx0. The lo-
cal energy ε0(x) at |x| < x0 is close to ζ and no longer
tracks Ul. For this reason, the energy modulation δE
goes through a maximum and then decreases. Concomi-
tantly, δI/Iavg levels up at a plateau, see Figs. 8(e) and
(f). Under the described conditions,

δI

Iavg
' OTFq

2qx0 − sin 2qx0

sin qx0 − qx0 cos qx0
, (50)

which is a function of the ratio ζ/U0 and independent
of T or γ. The maximum possible δI/Iavg = 4 OTFq,
which is approximately 1.5 for NA = 0.4, is reached in
the limit of Ul → ∞ or T → 0 or γ → 0, see Figs. 8(f),
(d), and (h), respectively. The energy modulation δE
vanishes in each of these three limits, see Figs. 8(c) and
(g). We conclude that the dependence of δI/Iavg on the
interaction parameter γ is weak at both small and large
Ul. However, this dependence is reasonably strong at the
crossover point Ul ∼ T+∆Eavg from the linear to nonlin-
ear screening regime, see Fig. 8(h). This is also the “sweet
spot” in terms of the γ-dependence of δE, see Fig. 8(g).
Similarly, it appears that the intermediate temperature
range T ∼ Ul offers the best conditions for estimating
γ from the measured δE and δI. Below in Sec. III, we
present an experimental test of this estimation method.

III. EXPERIMENTS

Our experiments were performed on CQW structure
grown by molecular-beam epitaxy. Two 8 nm-wide GaAs
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FIG. 9. Sample structure and experimental results for indirect
excitons in electrostatic lattices. (a) Schematic of the CQW
sample (top) and its band diagram (bottom). GaAs quantum
wells are positioned within the insulating Al0.33Ga0.67As layer
(white) surrounded by conducting n+ GaAs layers (gray) at
the bottom and interdigitated electrodes on the sample sur-
face at the top. Labels “e” and “h” indicate an electron an a
hole bound into an indirect exciton. (b) Electrode schematic
(top) and the lattice potential profile (bottom) for V0 = 3 V
and δV = 0.5 V from electrostatic simulations. (c) Top: mea-
sured PL intensity profile of indirect excitons. Bottom: the
same data after subtraction of a smooth background and nor-
malization, showing the periodic modulation more clearly. (d)
Top: PL energy profile of indirect excitons. Bottom: the same
data after subtraction of a smooth background. Experimental
parameters for (c) and (d) are: bath temperature Tbath = 1 K,
lattice depth Ul = 4.8 meV, photoexcitation power P = 8µW.

quantum wells separated by a 4 nm-thick Al0.33Ga0.67As
barrier were positioned 100 nm above the n+-type GaAs
layer within an undoped 1µm-thick Al0.33Ga0.67As layer.
The conducting n+ GaAs layer at the bottom served as
a ground electrode, see Fig. 9(a). Semitransparent inter-
digitated top electrodes were fabricated by magnetron
sputtering a 90 nm indium tin oxide layer. These elec-
trodes generate a laterally modulated electric field per-
pendicular to the quantum well plane, which couples to
the static dipole momentum ed of the IXs.22–24,51 The av-
erage potential was fixed by the average voltage V0 = 3 V
and the lattice depth Ul was controlled by the voltage dif-
ference δV , Fig. 9(b). The measurements were performed
in an optical dilution refrigerator. The refrigerator had
high stability with the vibration amplitude well below
the lattice period Λ = 2.0µm. The IXs were generated
by a cw 633 nm laser focused to an excitation spot of di-
ameter ∼ 10µm. The exciton density was controlled by
the laser excitation power.

Examples of the PL energy and intensity profiles mea-
sured for IXs in the lattice are presented in Fig. 9. Fig-
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FIG. 10. (Color online) Measured and simulated modulation
of energy and emission intensity of indirect excitons in a lat-
tice. (a,b) Measured energy (a) and emission intensity (b)
modulation for indirect excitons as a function of the lattice
depth for different laser excitation powers (shown in the leg-
end). Tbath = 1 K. (c,d) Simulated energy (c) and emission
intensity (d) modulation. For each curve, the electrochemical
potential is selected to correspond to the measured exciton
interaction energy at the excitation power in (a,b). γ and T
are optimized to obtain best fit to the experimental energy
and intensity modulation curves.

ures 10(a) and (b) depict δE and δI/Iavg as a function
of Ul for several different excitation powers. The same
quantities computed using the model of Sec. II are shown
in Fig. 10(c) and (d). For each simulated curve, the elec-
trochemical potential was adjusted to match the average
PL energy in the excitation spot center. The parameter
γ and IX temperature were optimized to obtain best fit
to the experimental data for both energy and intensity
modulation curves (Fig. 10a,b).

IV. DISCUSSION

IX gas in CQW is a model system for studying dipolar
matter because many of its basic physical parameters can
be controlled experimentally. For example, the range of
accessible n can span several decades. This opens an op-
portunity to experimentally test various theoretical pre-
dictions regarding how many-body correlations of dipo-
lar bosons evolve as a function of the particle density.
Such a comparison with theory requires the development
of a method for accurately determining the exciton den-

sity n in absolute units that remains a challenging prob-
lem. For example, estimation of n from time-integrated
exciton emission suffers from large uncertainties.52 The
method for determining exciton density by measuring the
Landau level filling factors of electrons and holes53 is ac-
curate, however it requires high magnetic fields. In that
regime the exciton properties are strongly modified com-
pared to the zero-field case. In fact, in the limit of high
magnetic field the interaction between spatially direct ex-
citons vanishes54 that was verified experimentally.55 The
recently proposed technique of remote electrostatic sens-
ing is promising but challenging to implement.56 Com-
pared to all of the above, the lattice-based method pro-
posed in our earlier work22 and developed further in the
present article appears to be an attractive alternative.

The qualitative agreement of experimental and simu-
lated δE (Fig. 10a,c) and δI/I (Fig. 10b,d) constitutes
a proof-of-principle demonstration of the method. The
accuracy of the data is still low as seen by the large data
scattering in Fig. 11. The presented theory and experi-
ment provide a guide for improvement. Since both mod-
ulation amplitudes increase with NA (Fig. 8a,b), it is
advantageous to use an objective with a highest possible
NA. Larger period of the lattice potential may also be
helpful. Although the fitted values of the exciton tem-
perature T (Fig. 11, inset) are in agreement with those
from earlier studies,13–15,57–59 the accuracy of the method
can be further improved if T is known independently.
This can be achieved by measuring the exciton PL after
a pulsed excitation in a time interval of the order of a
few nanoseconds after the excitation pulse. Under such
conditions, the IXs cool down and their temperature ap-
proaches the bath temperature.14,15 Using a defocused
laser excitation spot to create an IX cloud with a more
uniform density may also be beneficial. Such improve-
ments of the proposed method is a subject for future
experiments.

On the theory side, better understanding of the disor-
der effects on the exciton PL spectrum is necessary. This
may be particularly important for correctly interpreting
the data points for low powers [such as 1µW and 2µW,
black squares and red dots in Fig. 10(a) and (b)]. Here
we confine ourselves to the following brief discussion. As
mentioned in Sec. I, efficient loading of excitons into the
lattice requires working with systems where the blue shift
∆Eavg is higher than the characteristic energy scale of the
disorder. In this case the interaction of excitons with ran-
dom potential of disorder can be treated perturbatively.
Thus, we can use the linear-response (effective) dielectric
function ε∗(k) to determine how the exciton gas screens
this random potential. The zero-k limit of ε∗(k) is given
by Eqs. (30) and (31), while its large-k behavior can be
shown to be of the form60 ε∗(k) = 1 + (8πγn/k2). Since
ε∗ depends on n, so does the disorder-induced self-energy
correction Σd. Assuming the bare random potential is a
white noise of bare strength v̄d, we use the first Born
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FIG. 11. (Color online) Estimated IX correlation parameter
γ obtained from fitting the experimental data for both energy
and intensity modulation curves in Figs. 10(a) and (b). The
values of γ are normalized to γc = 7 [Eq. (9)]. The inset
shows the temperature values for these fits.

approximation to get

Σd(ω) =

∫
d2k

(2π)2

v̄d
ω − ε̄k

[
1

ε2∗(k)
− 1

]
' −iΓ +

Γ

π
ln

(
2ent

ω − ε̄0

)
, Γ ≡ ν̄1vd .

(51)

The next improvement is the self-consistent Born approx-
imation,61 which is obtained replacing ε̄0 in the logarithm
with its renormalized value ε0. For T � Γ, the energies

ω relevant for the PL are ω− ε0 ∼ T . The corresponding
real part of the self-energy is

Σ′d '
Γ

π
ln

(
2ent

T

)
. (52)

Using the definition (7) of γ and replacing nt by ∆Eavg,
we find that the random potential creates a fractional
correction

γd
γ
' 1

π

Γ

∆Eavg
ln

(
2e

∆Eavg

T

)
(53)

to the correlation parameter γ. For ∆Eavg = 0.5–2 meV
in Fig. 10(a) and (b), this correction can be as high as
∼ 50% assuming Γ, T ∼ 1 meV (Figs. 4 and 11).

Finally, we wish to point out that our method of de-
termining the correlation parameter of an interacting gas
is quite general. Similar techniques can be applied for a
variety of other systems that can be subjected to lattice
potentials and whose spatially modulated parameters can
be measured. Examples include cold atomic clouds,62,63

exciton polariton systems,64–66 and two-dimensional elec-
tron layers.67
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12 A. Gärtner, A. W. Holleitner, J. P. Kotthaus, and
D. Schuh, Appl. Phys. Lett. 89, 052108 (2006).

13 A. L. Ivanov, L. E. Smallwood, A. T. Hammack, S. Yang,
L. V. Butov, and A. C. Gossard, EPL 73, 920 (2006).

14 A. T. Hammack, L. V. Butov, L. Mouchliadis, A. L.
Ivanov, and A. C. Gossard, Phys. Rev. B 76, 193308
(2007).

15 A. T. Hammack, L. V. Butov, J. Wilkes, L. Mouchliadis,
E. A. Muljarov, A. L. Ivanov, and A. C. Gossard, Phys.
Rev. B 80, 155331 (2009).
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17 M. Alloing, A. Lemâıtre, E. Galopin, and F. Dubin, Phys.
Rev. B 85, 245106 (2012).

18 S. Lazić, A. Violante, K. Cohen, R. Hey, R. Rapaport, and
P. V. Santos, Phys. Rev. B 89, 085313 (2014).

19 F. Fedichkin, P. Andreakou, B. Jouault, M. Vladimirova,
T. Guillet, C. Brimont, P. Valvin, T. Bretagnon, A. Dus-
saigne, N. Grandjean, and P. Lefebvre, Phys. Rev. B 91,
205424 (2015).

20 Y. Y. Kuznetsova, F. Fedichkin, P. Andreakou, E. V. Cal-
man, L. V. Butov, P. Lefebvre, T. Bretagnon, T. Guillet,
M. Vladimirova, C. Morhain, and J.-M. Chauveau, Opt.
Lett. 40, 3667 (2015).

mailto:jleonard@physics.ucsd.edu
http://dx.doi.org/10.1016/0039-6028(90)90358-f
http://dx.doi.org/10.1016/0039-6028(90)90358-f
http://dx.doi.org/10.1038/nature00943
http://dx.doi.org/10.1038/nature00943
http://dx.doi.org/ 10.1103/PhysRevLett.97.187402
http://dx.doi.org/ 10.1103/PhysRevB.78.035411
http://dx.doi.org/ 10.1038/nature10903
http://dx.doi.org/ 10.1021/nl300983n
http://dx.doi.org/ 10.1021/nl300983n
http://dx.doi.org/ 10.1209/0295-5075/107/10012
http://dx.doi.org/ 10.1063/1.114677
http://dx.doi.org/ 10.1063/1.114677
http://dx.doi.org/10.1103/PhysRevB.58.1980
http://dx.doi.org/ 10.1134/1.1475723
http://dx.doi.org/10.1063/1.2267263
http://dx.doi.org/10.1209/epl/i2006-10002-4
http://dx.doi.org/ 10.1103/PhysRevB.76.193308
http://dx.doi.org/ 10.1103/PhysRevB.76.193308
http://dx.doi.org/ 10.1103/PhysRevB.80.155331
http://dx.doi.org/ 10.1103/PhysRevB.80.155331
http://dx.doi.org/10.1016/j.physe.2009.10.059
http://dx.doi.org/10.1016/j.physe.2009.10.059
http://dx.doi.org/10.1103/PhysRevB.85.245106
http://dx.doi.org/10.1103/PhysRevB.85.245106
http://dx.doi.org/ 10.1103/PhysRevB.89.085313
http://dx.doi.org/10.1103/PhysRevB.91.205424
http://dx.doi.org/10.1103/PhysRevB.91.205424
http://dx.doi.org/10.1364/ol.40.003667
http://dx.doi.org/10.1364/ol.40.003667


10

21 A. A. High, A. T. Hammack, J. R. Leonard, S. Yang, L. V.
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