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ABSTRACT: Engineered nanomaterials (ENMs) are a rela-
tively new strain of materials for which little is understood about
their impacts. A species sensitivity distribution (SSDs) is a
cumulative probability distribution of a chemical’s toxicity
measurements obtained from single-species bioassays of various
species that can be used to estimate the ecotoxicological impacts
of a chemical. The recent increase in the availability of acute
toxicity data for ENMs enabled the construction of 10 ENM-
specific SSDs, with which we analyzed (1) the range of toxic
concentrations, (2) whether ENMs cause greater hazard to an
ecosystem than the ionic or bulk form, and (3) the key
parameters that affect variability in toxicity. The resulting
estimates for hazardous concentrations at which 5% of species
will be harmed ranged from <1 ug/L for PVP-coated n-Ag to >3.5 mg/L for CNTs. The results indicated that size, formulation,
and the presence of a coating can alter toxicity, and thereby corresponding SSDs. Few statistical differences were observed
between SSDs of an ENM and its ionic counterpart. However, we did find a significant correlation between the solubility of
ENMs and corresponding SSD. Uncertainty in SSD values can be reduced through greater consideration of ENM characteristics
and physiochemical transformations in the environment.

■ INTRODUCTION

Engineered nanomaterials (ENMs) represent a new and
emerging class of pollutants but we understand relatively little
about their effects in the environment. ENMs are used in a variety
of consumer products including electronics, textiles, cosmetics,
medicine, and food.1 They are also used in energy, aeronautics,
and military applications. The International Organization for
Standardization (ISO) classifies ENMs into three main groups:
(i) nanoparticles, for which all three dimensions are between 1
and 100 nm; (ii) nanoplates, for which only one dimension is
between 1 and 100 nm; and (iii) nanofibers, for which two
dimensions are between 1 and 100 nm.2 Seven major classes of
ENMs are carbonaceous nanomaterials (e.g., CNTs), semi-
conductors (ex. Quantum dots), metals (ex. n-Ag), metal oxides
(ex. TiO2), nanopolymers (ex. dendrimers), emulsions (ex.
acrylic latex), and nanoclays. Various ENMs exist as single,
aggregated, or agglomerated particles and can be manufactured
with different shapes, coatings, and surface functionalities.
Additionally, some ENMs dissolve in the environment, which
can result in toxic effects similar to those of the dissolved ion,
while other ENMs may not dissolve. In the latter case, toxic
effects are usually related to ENM size, reactivity, and coating,3

resulting in toxicity from the ENM that can exceed that of the
ionic or bulk form signifying a nanotoxic effect.4

ENMs are released into the environment either during their
use, through spillages, by intentional release for environmental
remediation applications, or as end-of-life waste.5 Increasing
production and use of ENMs enhances the potential for release

into the environment, thus increasing environmental exposures
and incentives to better understand and quantify the ecosystem
impacts of ENMs.6 Substantial effort is now being made to
quantify releases, exposures, and toxicity of ENMs throughout
their industrial lifecycle.7−9

A few studies have developed preliminary estimates of the
range of ENM exposure concentrations3,9 and the few
environmental concentrations that have been measured
empirically fall within the same order of magnitude as those
predicted by models.7,10−12 What we do not yet adequately
understand is the impacts of exposure to biological receptors
under natural environmental conditions. To provide predictions
of the potential biological impacts in nature the relatively large
volume of information from laboratory toxicity tests with ENMs
can be used to generate species sensitivity distributions (SSDs),
which model the range in sensitivities of different species to a
wide range of ENMs.13,53 SSDs provide an estimate of the
potentially affected fraction (PAF) of species that will be harmed
from exposure to ENMs, and are used to establish threshold
concentrations, which, when exceeded, indicate that manage-
ment actions should be taken. For example, the lower fifth
percentile of the SSD indicates that 95% of species are not
impacted by a pollutant and thus, hypothetically, provides
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environmental concentrations that are expected to safeguard
most species, and thus an ecosystem’s structure and function.13

While our understanding of ENM toxic effects is still relatively
limited, progress is being made in determining toxic concen-
trations for a wide-variety of both terrestrial and aquatic
species.54

Single species toxicity data from multiple species can be
combined to predict the exposure concentrations at which a
percent of species in an ecosystem will be affected.13 Specifically,
SSDs are models of the variation in sensitivity of species to a
particular stressor,13 and are generated by fitting a statistical or
empirical distribution function to the proportion of species
affected as a function of stressor concentration or dose.
Traditionally, SSDs were created using data from single-stressor
laboratory toxicity tests, such as median lethal concentrations
(LC50). The key assumption in applying SSDs is that the species
toxicity data represent a random sample from a statistical
distribution that is representative of a community or ecosystem,
with the idea that limited toxicity testing of only a handful of
species can allow us to extrapolate to a community level of risk
associated with a specific toxicant. As more data become available
for various species, the accuracy of SSDs in predicting ecosystem
toxicity effects will increase.
Many SSDs have been developed for a variety of organic and

inorganic pollutants15,16 with many focused on pesticides17−20

and herbicides.21,22 There are a few examples of SSDs
constructed specifically for metals. SSD and the corresponding
predicted hazardous concentration at which no species are
harmed (HC0) and at which 5% of species are harmed (HC5)
were created for zinc for aquatic species with the goal of finding
the best cumulative distribution function.23 SSDs have also been
developed for specific taxonomic groups for copper to estimate
acute-chronic ratios for different taxa.24 An acute toxicity SSD
was developed for mercury to estimate HC5 and the predicted no
effect concentration (PNEC) for freshwater species.25 SSDs can
also be used in life cycle assessments (LCAs) to determine
characterization factors (CFs) for ecotoxicity.26,27 CFs for toxic
pollutants are substance-specific, quantitative factors that convert
life-cycle emissions of toxic substances to the common unit of the
toxic impact indicator.28 As LCAs are being developed for
nanoparticles, SSDs can provide the information on PAF needed
to calculate the CF.28−30

SSDs are used in ecological risk assessment to derive
maximum acceptable concentrations of pollutants in the
environment from a limited set of laboratory based ecotoxicity
data.19,25,26 The utility of an SSD depends on the quality and
relevance of the data used, which usually are secondary data taken
from literature or a database. The objective of this study is to
develop SSDs for as many nanoparticles as possible and to
determine if, according to the SSDs, the ENMs cause greater
toxicity than the ionic or bulk form. The results of this work can
be used to begin to make judgments regarding the risk of using
and releasing different ENMs into the environment.

■ DATA AND METHODS
Data were collected from >300 published articles that explicitly
provided single species toxicity data including median lethal
concentration (LC50), half maximal effect concentration (EC50),
median lethal dose (LD50), lowest observed effect concentration
(LOEC), no observed effect concentration (NOEC), and the
half maximal inhibitory concentration (IC50). If a published
article did not specifically state one of these values, even if they
provided dose−response curves, the information was not used in

our analysis. Our initial search did not limit the types of
nanoparticles that could be included, as we needed to determine
the extent of available data across both environmental media and
ENMs. Not all ENMs or environments had enough data points
to create an SSD. However, as research progresses and more data
become available, they can be combined with the data provided
in Supporting Information (SI) Table S-1 to create improved
SSDs.
While there was sufficient data to build SSDs from EC50 values,

there were more data available across all types of ENMs to build
SSDs using LC50 values. These studies varied in length from 15
min to 28 day exposures depending on the species and end-
points. We elected not to account for the time range by using
dose as our SSD metric because concentration is the standard
metric used in SSDs. In addition, because the data cover a range
of species with very different life histories and life spans, dose is
not always a comparable metric.
SSDs are frequently based on chronic, sublethal toxic effects

because exposure to toxins in the environment is typically at low
concentrations over the long-term. However, we only had
sufficient data to develop SSDs for acute freshwater toxicity. This
was because of the limited data available on both marine and
terrestrial toxicity and the limited number of studies conducted
to date on chronic ENM toxicity across the board.29−32 In some
cases, short-term toxicity data can make use of an extrapolation
factor to accurately describe the chronic SSD.33,34 One approach
for converting data from acute to chronic is to simply use a factor
of 10 (i.e., a left shift of SSD based on LC50 to obtain an SSD for
the no observed effect concentration (NOEC)).34 Another study
found that using an acute to chronic ratio ranging from 1.6 to 4.4
was more accurate.33 We determined that there is not yet
sufficient evidence to implement a conversion factor based on
data available for ENMs.
We also collected toxicity data on freshwater species for both

the ions of the associated metals and nominal data on bulk
particles to compare to the ENM data. We did this by reviewing
data collected for the ENMs where comparative tests were often
done on ionic or bulk equivalents, through a general literature
review, and querying the EPA’s ECOTOX database by
compound. We limited the search to studies completed in a
lab as opposed to field research so as to match the ENM data set,
in freshwater systems that reported LC50 values.
To build SSDs, we implemented the Species Sensitivity

Distribution Generator, provided by the Environmental
Protection Agency (EPA), which has been used for many other
chemicals.35,36,21,37,38 The process requires a list of exposure
intensities at which different species exhibit a standard response
to a stressor. The reported LC50 values are then ranked and
plotted along the x-axis. The cumulative probability, calculated as
the fraction of species affected at a certain concentration, is
plotted along the y-axis, along with the 95% confidence interval,
using a probability density function (PDF). We then calculated
the hazardous concentration at which 5% of species will likely be
harmed (HC5),

28 indicating that 95% of species in an ecosystem
will be protected provided that the environmental concentration
remains below that associated with the HC5. A minimum of four
data points are needed to generate an SSD, though the predictive
power of SSD models greatly increased with 10 or more data
points from published studies.10,26,28 Our ENM SSD data varied
from 8−64 data points from published studies covering a range of
species, though they did not always include a wide range of taxa,
which is also preferred when creating a SSD.13

Environmental Science & Technology Article

DOI: 10.1021/acs.est.5b00081
Environ. Sci. Technol. 2015, 49, 5753−5759

5754

http://dx.doi.org/10.1021/acs.est.5b00081


■ RESULTS

A comprehensive review of the literature on Web of Knowledge
and Google Scholar using a range of search terms to cover all
types of ENMs, environments, toxicity tests, and species resulted
in over 300 studies, although only 101 studies reported data
adequate in quality for our analysis (SI Table S1). Sufficient data
were collected to build SSDs for uncoated n-Ag, PVP-coated n-
Ag, n-Al2O3, n-C60, CNTs, n-Cu, n-CuO, n-TiO2, and n-ZnO
using acute LC50 values. For n-CeO2, we collected sufficient data
to build an SSD using only acute EC50 values.
The SSD for uncoated n-Ag (Figure 1) indicates that the ENM

was toxic to some species at ug L−1 concentrations, while other
species tolerate concentrations three or more orders of
magnitude higher, at g L−1 concentrations with a range of 1
order of magnitude for the 95% confidence interval.
We constructed separate SSDs for PVP-coated n-Ag (SI Figure

S1) and ionic silver from either AgCl or AgNO3 (SI Figure S2).

Ag+ derived from dissolving AgNO3 was considerably more toxic
than when AgCl was used, but given that the toxicity is probably
due to metal ion exposure rather than the salt, we chose to
combine the data sets to develop a more robust SSD. The ENM
SSDs were then compared to the Ag+ ion SSD to determine
whether the toxicities varied (Figure 2). While Ag+ is generally
more toxic than coated or uncoated n-Ag, at low exposure
concentrations, there are only minor differences between Ag-
PVP and Ag+. For most species, uncoated n-Ag was considerably
less toxic than PVP-coated Ag, most likely due to increased
aggregation and reduced bioavailability.27 Uncoated n-Ag has a
higher toxicity threshold than Ag+, particularly at higher exposure
concentrations.
We then constructed SSDs for two copper nanoparticles, n-Cu

(SI Figure S3) and n-CuO (SI Figure S4), and Cu2+ derived from
combining toxicity end points for CuCl2, Cu(NO3)2, and CuSO4

(SI Figure S5). The difference in Cu2+ toxicity between the

Figure 1. Species sensitivity distribution for uncoated n-Ag, based on 10 species. The 95% confidence interval is shown by the gray shaded area around
the curve, which indicates a range in values of about 1 order of magnitude.

Figure 2. Comparison of silver SSDs, including uncoated n-Ag, PVP-coated n-Ag, and Ag+ derived from dissolving AgCl and AgNO3. The 95% CI for
each curve is depicted by the corresponding shaded area.
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various copper salts was smaller than observed for the silver salts
(SI Figure S5), possibly due to the larger number of data points
for each Cu2+ SSD. However, the toxicity threshold was
significantly lower for Cu2+ from CuCl2 than from Cu(NO3) 2

and CuSO4. A comparison of the nano and ionic copper SSDs
indicated that the toxicity thresholds for n-CuO were much

higher than for n-Cu or Cu2+ (Figure 3). Additionally, the
difference between the SSDs for n-Cu and Cu2+ was smaller than
between n-CuO and Cu2+, with n-CuO consistently less toxic
than either n-Cu or Cu2+. As expected, given the much smaller
number of data points for the two nanoparticles, the confidence
intervals were much wider than for Cu2+. The lower toxicity of n-

Figure 3.Comparison of copper SSDs, including n-Cu, n-CuO, and Cu2+ derived from dissolving CuCl2, Cu(NO3)2, or CuSO4. The 95% CI is depicted
as the shaded region in color corresponding to each curve.

Figure 4. Comparison of zinc SSDs, including n-ZnO, bulk-ZnO, and Zn2+ derived from dissolving ZnCl2 and ZnSO4. The shaded region in the color
corresponding to each curve shows the 95% CI.

Figure 5. Comparison of carbonaceous nanoparticle SSDs, including n-C60 and CNTs. The shaded region around each curve depicts the 95% CI.
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CuO in freshwater may reflect its slower dissolution at low ionic
strength and in the presence of organic matter (present in any
aquatic system with biota).39

For zinc, we compared n-ZnO (SI Figure S6), bulk ZnO (SI
Figure S7), and Zn2+ derived from ZnCl2 and ZnSO4 (SI Figure
S8). There wereminimal differences in the SSDs for Zn2+ derived
fromZnCl2 and ZnSO4. A comparison shows that the SSDs for n-
ZnO and Zn2+ are nearly identical, and that of bulk ZnO is also
similar (Figure 4), indicating that for this ENM most of the
toxicity is due to dissolved Zn2+. There was little statistical
difference between the three lines because the small sample size
results in low statistical power.
The SSDs of n-Al2O3 (SI Figure S9) and Al

3+ (SI Figure S10)
indicate that except at high concentrations, n-Al2O3 is less toxic
that Al3+ (SI Figure S11). There are some difference in toxicity
between Al3+ derived from AlCl3 and Al2(SO4)3 (SI Figure S10),
with AlCl3 slightly more toxic than Al2(SO4)3, although there is
overlap in their confidence intervals which are broad due to the
lower number of data points. For n-CeO2 (SI Figure S12) and n-
TiO2 (SI Figure S13) n-CeO2 appears to be more toxic than n-
TiO2 (SI Figure S14), even though n-TiO2 has shown
phototoxicity while n-CeO2 generally quenches photoactivity.
A recent review of n-CeO2 provides a more detailed analysis of
the behavior and toxicity of this nanomaterial.40

We collected sufficient data to develop SSDs for two
carbonaceous nanomaterials, n-C60 (SI Figure S15) and CNTs
(SI Figure S16), though there were not enough data to create
distinct SSDs for single-walled carbon nanotubes (SWCNTS) or
multiwalled carbon nanotubes (MWCNTs). Overall n-C60 is
more toxic than CNTs, with overlap in the confidence intervals
only in the higher concentrations (Figure 5). C60 has a notably
lower toxicity threshold than CNTs. It is important to note that
CNTs have a very wide range of properties (e.g., tube diameter,
tube length, surface functionalization, residual metals, chirality)
that limit the strength of our SSD. As more toxicity information
becomes available, separate SSD may be needed for different
classifications of CNTs.
One approach for considering the relative toxicity of the

ENMs is to compare their HC5. For the ENMs considered in this
study, HC5 values range over 4 orders of magnitude (from <1 ug/
L for silver nanoparticles to >3.5 mg/L for CNTs) (Figure 6).
The results confirm the hypothesis that nanoparticle solubility,
with the corresponding release of metal ions, is a strong predictor
of toxicity, as seen for n-Ag, n-ZnO, n-Al2O3, and nanocopper
compounds. For Ag and Zn there was little to no difference
between the mean of the HC5 for a nanoparticle and the HC5 for
the corresponding metal ion. For Cu and Al, the differences are
more significant, reflecting the slower dissolution rates of these
nanomaterials, particularly Al2O3. For the ENMs that are less
likely to dissolve (C60, CNTs, CeO2, and TiO2) the HC5 values
range from 0.1−10mg L−1, which are concentrations that are less
likely to be encountered, on average, in aquatic systems based on
recent estimates.4,5,26 The breadth of the range is largely a result
of availability of data; compounds with more data generally had a
much smaller range than those with fewer data available.

■ DISCUSSION
ENMs are released into the environment at various stages during
their life-cycle, but our understanding of the environmental
implications is still quite limited.3 Our results serve to identify
concentrations of concern for various ENMs with regard to
freshwater ecological toxicity. While these SSDs are preliminary
estimates, they represent the first attempt at predicting the PAF

of species at various exposure concentrations in the aquatic
environment for multiple ENMs. Exposure models that estimate
the exposure of individuals or populations can be compared with
the HC5 values estimated here to predict the ecotoxicological
effects of ENMs and give an idea of how significant the risk
associated with their use could be.
When working with ENMs, consideration must be made for

the various possible configurations (e.g., size, shape, charge, and
presence of a coating or functional group) that can all alter
chemical behavior in the environment and impact toxicity.3 For
example, if two different Ag nanoparticles have different primary
diameters and one is spherical while the other is cubic, the LC50
values for each could be as different as if they were entirely
different chemicals (See SI Table S1 for examples). In addition,
transformations of the ENM during toxicity tests,44 or the
presence of species that can alter how ENMs interact with biota,
can influence the outcomes of single species laboratory
assays.45,46 Thus, it is important to take into consideration
both ENM characteristics and possible environmental trans-
formations that increase the uncertainty and reliability in toxic
outcomes that underlie the SSDs. As such, it would be preferable
to separate ENMs by type and structure as well as dispersion
media before building SSDs from the data. Given data
limitations, we were only able to do this for uncoated versus
PVP-coated n-Ag (Figure 2). We did not have quite enough data
to also build a separate SSD for citrate-coated n-Ag, which would
have improved our understanding of how toxicity is affected by
the presence of a coating. There was also insufficient data to
separate particles by size group (e.g., 1−10 nm, 10−50 nm, and
50−100 nm). The accuracy of the SSDs will likely improve by
incorporating some of these distinctions. For example, the SSD
for uncoated n-Ag and PVP-coated n-Ag are statistically different
at the higher exposure concentrations, but this distinction would
not have been clear had we combined all the Ag ENMs into one
SSD (Figure 2). Because we only have limited examples of each
ENM variable, our conclusions are limited in their strength.
However, as more data become available to separate ENMs into
clearly defined physico-chemically distinct groups (e.g., those
based on size, shape, or coating) when developing SSDs, we will

Figure 6. Mean and 5th and 95th percentile HC5 for nanomaterials in
black and corresponding ions in gray, listed immediately below each
ENM. Zinc, silver, aluminum, and copper nanoparticles were found to
dissolve over the course of days to weeks whereas ceria, titanium dioxide,
and carbon-based nanomaterials experience negligible dissolution in
freshwater over months or longer.3

Environmental Science & Technology Article

DOI: 10.1021/acs.est.5b00081
Environ. Sci. Technol. 2015, 49, 5753−5759

5757

http://dx.doi.org/10.1021/acs.est.5b00081


better be able to distinguish between the extent of toxic effects as
physicochemical characteristics are altered.
The accuracy and utility of an SSD depends on the quality and

relevance of the data used, which in this case are secondary data
taken from literature and the ECOTOXdatabase. Ideally, an SSD
should be not generated from the synthesis of results from
experiments that used a wide variety of protocols, for example, by
combining impacts from chronic sublethal effects on reproduc-
tion with the impacts on survival or with acute lethal test results,
all of which are commonly reported toxicity end points.37 This
limits the generation of SSDs for ENMs, especially for aquatic
species where there is a bias toward acute mortality data, despite
the likelihood that chronic sublethal effects may have enormous
impacts on the individual survival and reproduction, of
populations and thus population abundance and persistence.14

This is in part due to the difficulty in maintaining a constant state
and concentration of a nanoparticle in an aquatic experiment
over the long-term. As such, we limited our study to short-term
acute toxic effects due to the scarcity of chronic toxicity
information. More useful SSDs would be generated for each
ENM using a variety of species, for instance those that vary in
their sensitivity across a range of taxa and trophic levels, for a
specific ecosystem or region of concern. Distinguishing SSDs
between early and late life stages of a species would also be useful
as the values can differ in sensitivity with each life stage. While
there are a reasonable number of species represented in these
SSDs, the diversity in taxa and life stage is not comprehensive. It
is important to recognize the uncertainty associated with our
results as the range of sensitivities of the species we included is
quite variable from ENM to ENM, and no SSD was constructed
with enough species to represent a comprehensive ecosystem.
Despite these limitations, our results are useful in gauging and
comparing the ecotoxicological impact of different ENMs. Useful
next steps would include generating SSDs for ENMs based on
chronic toxicity data,37,47−52 and developing a robust framework
for predicting long-term effects on populations, communities, or
ecosystems.

■ ASSOCIATED CONTENT
*S Supporting Information
All data collected and used to develop SSDs are provided in
Table S1 including the ENM, the size, the species tested, and the
toxicity end point. Detailed SSDs for each ENM and the bulk and
ionic counterparts are also provided in the Supporting
Information. The Supporting Information is available free of
charge on the ACS Publications website at DOI: 10.1021/
acs.est.5b00081.
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