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Multiobjective Design of Water-Quality Monitoring
Networks in River-Reservoir Systems

Mahyar Aboutalebi, S.M.ASCE1; Omid Bozorg-Haddad2; and Hugo A. Loáiciga, F.ASCE3

Abstract: This study develops and tests a method for multiobjective optimization of water-quality monitoring networks in river-reservoir
systems. The optimization method identifies optimal sampling locations to detect the sudden release of contaminants to a reservoir, and meets
two objectives: (1) minimizing the prediction error of methyl tert-butyl ether (MTBE) at the reservoir’s outlet valve; and (2) minimizing the
average time during which MTBE is detected at sampling locations. The optimization method considers 36 contaminant scenarios, corre-
sponding to three volumes of contaminant release, three release locations, and four different seasonal release times. The MTBE pollutant
chemograph was simulated at the outlet valve of the reservoir and at 16 possible sampling locations with the CE-QUAL-W2 model for each of
the 36 scenarios of contaminant release. A support vector regression (SVR) tool is coupled to the nondominated sorting genetic algorithm II
(NSGAII) to optimize the water-quality sampling locations. Implementation of the NSGAII-SVR method demonstrates its capacity to design
water-quality monitoring networks that meet multiple objectives in a river-reservoir system. DOI: 10.1061/(ASCE)EE.1943-7870.0001155.
© 2016 American Society of Civil Engineers.

Author keywords: Monitoring network; CE-QUAL-W2; Support vector regression; NSGAII.

Introduction

Among various reservoir optimization schemes reported in the lit-
erature (Ahmadi et al. 2014; Bolouri-Yazdeli et al. 2014; Ashofteh
et al. 2013a, 2015b), groundwater resources (Bozorg-Haddad et al.
2013b; Fallah-Mehdipour 2013a), conjunctive use operation
(Fallah-Mehdipour 2013b), design-operation of pumped-storage and
hydropower systems (Bozorg-Haddad et al. 2014a; Aboutalebi and
Garousi-Nejad 2015), flood management (Bozorg-Haddad et al.
2015b), water project management (Orouji et al. 2014), hydrology
(Ashofteh et al. 2013b), qualitative management of water resources
systems, (Orouji et al. 2013; Bozorg-Haddad et al. 2015a; Shokri
et al. 2014), water distribution systems (Seifollahi-Aghmiuni et al.
2013; Soltanjalili et al. 2013; Beygi et al. 2014), agricultural crops
(Ashofteh et al. 2015c), sedimentation (Shokri et al. 2013), and
algorithmic developments (Ashofteh et al. 2015a), a few dealt with
the design of water-quality monitoring networks in river-reservoir
systems considering multiple objectives.

Studies concerning the water-quality monitoring networks in
river-reservoir system can be divided into three general categories.
These categories are the performance assessment of water-quality
monitoring networks, data mining in water resources, and water-
quality monitoring optimization. Topics such as relocating sampling

locations fall within the first category. The use of data mining tools
and their performance in water resource problems belong in the
second category. The development and optimization models and
tools to optimize the design of monitoring network belong to the
third category.

Concerning the first category, Ning and Chang (2001) studied
the assessment of quality monitoring network in the Kao-Ping
River located in southern Taiwan. Naddeo et al. (2007) analyzed
the frequency of sampling of riverine water quality. Khalil and
Ouarda (2009) examined statistical methods for assessing and re-
designing existing surface water-quality monitoring networks.
Afshar and Marino (2012) used the ant colony optimization algo-
rithm (ACO) to assess monitoring stations in a water distribution
network in Iran.

Data mining is a systematic search for new and valuable infor-
mation in large databases. Data mining has two primary aims: clas-
sification and forecasting. The most important tools in data mining
are artificial neural network (ANN), genetic programming (GP),
and support vector machine (SVM). These three tools are widely
used in classification and forecasting. A study involving these three
tools in water resource systems is described in this paper. Behzad
et al. (2009) evaluated the performance of ANN and support vector
regression (SVR) in forecasting runoff of the Bakhtiyari River in
Iran and showed that the SVR method exhibited better performance
in runoff forecasting than ANN and hybrid ANN with genetic al-
gorithm (ANN-GA). Yoon et al. (2011) applied ANN and SVR to
predict the groundwater level in coastal aquifers located in Korea.
Their results indicated the better performance of SVR than that of
ANN. Singh et al. (2011) used SVR for water-quality management
in the city of Lacknow, India. These authors used support vector
classification (SVC) and SVR in the prediction of biochemical oxy-
gen demand (BOD) and concluded that the SVR method had better
performance than kernel versions of the discriminant analysis,
kernel partial least squares, linear discriminant analysis, and partial
least squares. Wei (2012) predicted water surface elevation of the
Tanshui River in China by using a wavelet kernel function in SVR
and reported that the predictive skill of SVR with wavelet kernel
function was better than that of SVR with Gaussian kernel function.
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Maity et al. (2013) evaluated the ability of SVR in predicting the
monthly river flow discharge of the Mahanadi River in India and
concluded that predictions with SVRwere more accurate than those
achieved with autoregressive moving average (ARMA). Abouta-
lebi et al. (2016) simulated the methyl tert-butyl ether (MTBE) pol-
lutants chemograph in the Karaj river-reservoir located near the city
of Karaj, Iran, by coupling the genetic algorithm (GA) with SVR
(SVR-GA) to achieve optimal SVR parameters. Aboutalebi et al.
(2016) compared the SVR-GA with the ANN and GP, and results
indicated the superior performance of SVR-GA. More comprehen-
sive discussions about applications of data mining tools in water
resources management are found in Bozorg Haddad et al. (2013a,
2014b).

The design of optimal water-quality monitoring networks is
essential to the management of surface and groundwater resources
that supply water to municipalities, industry, and agriculture. Icaga
(2005) applied the GA to optimize a water-quality monitoring net-
work in the Gediz River, Turkey, and concluded the number of
existing of monitoring stations could be reduced from 33 to 14
while maintaining the monitoring capacity of the network. Park
et al. (2006) applied the GA and geographic information systems
(GIS) to design water-quality monitoring networks in large rivers,
showing that only 35 of 110 stations were properly located in the
Nakdong River, South Korea. Kollat et al. (2008) presented a multi-
objective evolutionary algorithm (MOEA) to design a groundwater
monitoring network. The name of this algorithm was Epsilon-
dominance hierarchical Bayesian optimization algorithm. Their
results showed that the performance of the (ε-HBOA) was better
than that of the Epsilon-dominance nondominated sorting genetic
algorithm II (ε-NSGAII). Telci et al. (2009) proposed that the de-
sign of riverine water-quality monitoring network includes locating
the sampling stations and determining the frequency of sampling
and reported a new method to achieve optimal sampling locations
based on minimizing the detection time of pollutants in the Alta-
maha river in Georgia. Yongqian et al. (2011) optimized water-
quality monitoring with principal component analysis (PCA)
and cluster analysis (CA) in the Yangtze river, China and concluded
that only five stations are necessary to monitor several water-
quality characteristics instead of the existing 16 stations. Mei et al.
(2011) determined the optimal sampling locations in the Tangue
River, China, by using continuous longitudinal monitoring data
(CLMD) and cluster analysis (CA). The results indicated that the
method is effective in determining the optimal locations for water-
quality monitoring.

Khalil et al. (2011) divided the monitoring area for the Nile
River’s catchment area within Egypt into subcatchments and deter-
mined the optimal number of quality monitoring places in each
subcatchment by using a stratified optimum sampling strategy, and
results established that only 39 among 50 existing monitoring stations
are necessary for river monitoring. Cetinkaya and Harmancioglu
(2012) determined the optimal number of monitoring stations in
the Gediz River, Turkey, by means of dynamic programming (DP),
concluding that only 10 of 14 stations are properly located and that
four monitoring stations could be removed from the network. Lee
et al. (2014) reported an algorithm based on Shannon’s entropy
theory (Shannon 1948) and GA to optimize the sampling locations
of water-quality monitoring in the Albert and Logan Rivers,
Australia. The advantage of this algorithm relative to the GA
and simulated annealing (SA) was that the algorithm was computa-
tionally faster and more accurate than the GA and SA.

A review of published works on water-quality monitoring net-
work revealed that network optimization for the purpose of
detecting the sudden release of pollutants has not been addressed.
This study’s primary goal was to locate the sampling stations of a

water-quality monitoring network in a river-reservoir system to de-
tect suddenly released pollutant (MTBE) into the system at various
locations and times. The problem of designing the water-quality
monitoring network has two objective functions: (1) minimizing
the root-mean square error (RMSE) of the predictions of MTBE
at the reservoir outlet; and (2) minimizing the average time during
MTBE is detected at sampling locations. The first objective is jus-
tified because the most important chemograph of MTBE in the
river-reservoir system is that at the outlet valve of the reservoir,
which is used to devise pollutant-management strategies by operat-
ing the outlet valve to control water release. In this manner the che-
mographs monitored at sampling locations can be used to simulate
the chemograph of the reservoir outlet with SVR. The second ob-
jective assures that the water-quality monitoring network can detect
pollutants present in water. The SVR is applied to simulate the che-
mograph of MTBE at the reservoir outlet valve based on a database
created from simulations of MTBE concentration in the river-
reservoir system using the CE-QUAL-W2model. NSGAII is applied
to select the best water-quality sampling locations and to optimize
the parameters of the SVR.

Methodology

This section presents a brief description of the CE-QUAL-W2
model, the theoretical foundations of SVR, and NSGAII. More de-
tailed descriptions are available in Aboutalebi and Bozorg Haddad
(2015) and Aboutalebi et al. (2015a, b).

CE-QUAL-W2

CE-QUAL-W2 is a two-dimensional water quality model that
simulates water-quality characteristics in the longitudinal/vertical
directions, and can predict water surface elevations, velocities, tem-
peratures, and a number of water quality features. CE-QUAL-W2
routes water through cells in a grid network and solves multiple
equations for each time step of the simulation. In this model, water
bodies can be mapped through multiple branches and cells. Inflows
to the water body and outflows from the water body can be point
or nonpoint sources, branches, precipitation, and other variables.
There is a convenient analysis tool in this model that provides op-
tions for calculating results with versatility.

Support Vector Machine

The theory of SVM was introduced by Vapnik et al. (1995) as a
method for classification; and subsequently, Vapnik et al. (1998)
developed SVM as a forecasting or predicting tool. The regression
form of SVM (SVR) is described next.

Support Vector Regression

SVR was introduced by Vapnik et al. (1998) as a method for re-
gression analysis. Vapnik et al. (1998) considered two functions for
defining SVR. The first function is called the error function and
calculates the SVR error between observed and predicted values
of a variable of interest, in this case, MTBE concentrations in a res-
ervoir. The second function predicts output values based on input
data, weights, and bias. The epsilon insensitive (e-intensive) function
or error function defined by Vapnik (1998) for SVR is as follows:

jy − fðxÞj ¼
�
0 if jy − fðxÞj ≤ κ

jy − fðxÞj − κ ¼ ξ otherwise
ð1Þ

where x = vector of input variables; y = value of the observed output
(in this study, this is the MTBE concentration simulated with the

© ASCE 04016070-2 J. Environ. Eng.
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water-quality model CE-QUAL-W2); fðxÞ = predicted value of
MTBE concentration calculated by SVR; κ = sensitivity of predic-
tion error jy − fðxÞj (this is a SVR parameter); ξ = penalty for the
values that are outside the range (−κ, þκ); and j : : : j = absolute
value operator. In the e-insensitive function, there is no error or
penalty if y is located between fðxÞ þ κ and fðxÞ − κ. Otherwise,
ξ is considered as a penalty.

The second (linear) function is the computational function of
SVR that predicts MTBE concentrations to be compared with ob-
served concentrations (simulated with CE-QUAL-W2). The second
function is given by

fðxÞ ¼ wT · xþ b ð2Þ

where the vector w = values of the weights of the vector of variables
x; b = value of the bias of the dot product wT · x; and T = trans-
pose sign.

Calculation of w and b in SVR constitutes an optimization prob-
lem. The target of the optimization problem is minimizing the
epsilon intensive function with respect to the weighting vector w
and the bias b. Besides calculating these two objects (w and b), the
calculated responses are located in the range (−κ, þκ), which is
defined as a constraint in the optimization model. There are two
approaches to defining these constraints in SVR: the hard margin
and the soft margin. This study relies on the soft margin approach
of SVR, in which case the optimization model with constraints is
defined as follows:

Minimize
1

2
kwk2 þ C

Xm
i¼1

ðξ−i þ ξþi Þ ð3Þ

Subject to:

ðwT · xþ bÞ − yi < κþ ξþi ; i ¼ 1; 2; : : : ;m

yi − ðwT · xþ bÞ ≤ κþ ξ−i ; i ¼ 1; 2; : : : ;m ξþi ; ξ−i ≥ 0

ð4Þ

where C = coefficient of penalty (this is an SVR parameter); m =
number of training data (75% of outlet chemographs in this study);
ξ−i , ξþi = violation values that are located below and above the range
of (−κ, þκ), respectively; and yi ¼ ith observed (calculated
with CE-QUAL-W2) value. To solve the optimization problem
[Eqs. (3) and (4)], the Lagrange of objective function (L) is formed.
Its partial derivatives with respect to variables b and w are formed
and set equal to zero and solved for b and w. The SVR-predicted
MTBE value can then be obtained with Eq. (2) using the calculated
values of b and w. The values of C and κ are SVR parameters that
are determined using the NSGAII according to methodology pre-
sented subsequently.

Nonlinear Support Vector Regression

The MTBE data can be transformed using transfer functions into a
space in which linear functions can be fitted to the data whenever
linear functions [Eq. (2)] do not fit the rawMTBE data. The transfer
function is called the kernel function. Dibike et al. (2001) used dif-
ferent kernel functions to process rainfall-runoff with SVR and
showed that the radial basis function (RBF) kernel had better per-
formance than other functions. Han and Cluckie (2004) concluded
that the RBF produced the best performance in a study of transfor-
mation effectiveness for regression analysis. The RBF equation is
given by

Kðx; xiÞ ¼ exp

�
− jx − xij2

2γ2

�
i ¼ 1; 2; : : : ;m ð5Þ

where γ = RBF parameter, which is the parameter to handle
nonlinear regression. The kernel functions convert the nonlinear
behavior of the data to approximate linear behavior for fitting pur-
poses using linear function of the type shown in Eq. (2).

Determination of the SVR Parameters

The SVR parameters are the SVR’s C, κ, and the parameter γ of the
RBF kernel function. The performance of SVR depends on these
three parameters. Therefore, their optimal choice is essential.
Several approaches, such as grid search algorithms and metaheur-
istic algorithm, are used to calculate the SVR parameters. The
parameters are considered as decision variables, and the objective
function is the maximization of the accuracy of the data mining tool
in metaheuristic algorithms. The SVR parameters are determined
by means of NSGAII in this study, following the work of Abou-
talebi and Bozorg Haddad (2015).

Criteria for evaluating the results of SVR

Eq. (6) is used to measure the effectiveness of SVR

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
i¼1 ðHydobs −HydsimÞ2

n

r
ð6Þ

where n = number of observed data in the MTBE chemograph
at the outlet valve of the reservoir for testing date set; Hydsim =
chemograph at the outlet valve of the reservoir predicted with
SVR; and Hydobs = concentration of MTBE simulated with
CE-QUAL-W2 model at the outlet valve of the reservoir.

Nondominated Sorting Genetic Algorithm II

Aboutalebi and Bozorg-Haddad (2015) linked the nondominated
sorting genetic algorithm II (NSGAII) to SVR and proposed a
new tool called SVR-NSGAII. This tool has the capability of cal-
culating the optimized SVR parameters (C, κ, and γ) considering
various objective functions. This tool is implemented in this study
to optimize the three parameters of the SVR and to find the optimal
locations of the sampling stations. The NSGAII introduced by Deb
(2001) uses a concept called nondominated sorting. The NSGAII
starts with the generation of a random parent population of
solutions.

The NSGAII combines one generation of parent solutions and
one of children solutions to produce a set of solutions R. Set R is
determined based on crossover and mutation processes (Deb 2001).
The best members of set R are chosen as the parents of the next
generation, and the other members of the set R are removed from
further consideration. The process of combining a generation of
parent and children solutions to produce a new generation of parent
solutions is called elitism in the NSGAII. Fig. 1 illustrates the pro-
cess of elitism in the NSAGII.

After the new parent generation is produced in the NSGAII, the
nominees for reproduction for the next generation are chosen by the
use of a crowed tournament selection operator, and generation of
children solutions is produced by using crossover and mutation
operators.

A stopping criterion is needed to indicate the end of the search
for a solution by the NSGAII. A commonly used stopping criterion
is to set a maximum allowable number of iterations of the algo-
rithm. Once the number of iterations of the algorithm reaches a

© ASCE 04016070-3 J. Environ. Eng.
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certain value, the algorithm is stopped, and the optimal Pareto fron-
tier (the set of nondominated solutions) for the component objec-
tive functions of the overall objective function is calculated. Fig. 2
depicts the NSGAII steps.

According to Fig. 2, the initial population is produced in the
NSGAII, and the objective function values are calculated and
evaluated to produce a population. Next, the parent generations are
modified, and crossover and mutation are applied to obtain the pop-
ulation of children solutions. At this stage, the objective function
values are calculated and evaluated again, and the combination of
parent and children generations are sorted. Then the crowding dis-
tance for all Pareto frontiers is calculated. Based on the criteria of
crowding distance and ranking, the parent generation is selected. If
the stopping condition is satisfied, the search algorithm stops; oth-
erwise, the objective function value for the selected parent population
is re-evaluated, and the search process for a solution continues.

Optimization Model

The optimization problem must be defined mathematically to
integrate the SVR simulations with the NSGAII optimization.
Eqs. (7)–(10) describe the optimization model

ming1 ¼ RMSEðHydsim:test;Hydobs:testÞ ð7Þ

ming2 ¼ MeanðTdetÞ ð8Þ

Hydsim ¼ Datamining½HydðSampÞ;Hydobs;PDM� ð9Þ

1 < Samp ≤ 16 ð10Þ
where g1 = first objective function (accuracy of outlet valve chemo-
graph simulation by SVR based on RMSE);Hydsim:test = chemograph

Fig. 1. Elitism process of the NSGAII

Fig. 2. Steps of the NSGAII

© ASCE 04016070-4 J. Environ. Eng.
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at reservoir outlet valve simulated by SVR for the testing data set;
Hydobs:test = chemograph at reservoir outlet valve simulated by
CE-QUAL-W2 for the testing data set; g2 = second objective func-
tion (mean detection time of MTBE); Samp = vector of sampling
locations that are selected by NSGAII; Tdet = vector of detection
time of MTBE at sampling locations presented by NSGAII;
Hydsim = chemograph of reservoir outlet valve that is simulated by
SVR; PDM = vector of SVR parameters; and Data mining denotes
the data mining tool, which is SVR.

Case Study

The situation dealt with in this study is the accidental, sudden re-
lease of three possible volumes of MTBE equal to 15,000, 30,000,
and 60,000 L at three possible places in the Karaj river-reservoir
system (upstream location, middle of the reservoir, and downstream
location), in four seasons (summer, autumn, winter, and spring).
The combination of three volumes of release with three release
locations and four release times creates (3 × 3 × 4 ¼Þ36 release
scenarios in the Karaj river-reservoir system.

Simulation of MTBE Transport in the Karaj Reservoir

The model CE-QUAL-W2 was implemented to simulate MTBE
transport in the Karaj river-reservoir (Shokri et al. 2014) for each
of the 36 scenarios of MTBE release to the Karaj river-reservoir
(Aboutalebi et al. 2016). Shokri et al. (2014) considered a grid com-
posed of 21 segments and 46 layers for the Karaj river-reservoir
system in the MTBE simulations with CE-QUAL-W2. Fig. 3 dis-
plays a cross-sectional view of the possible MTBE release locations
and of the reservoir grid used in the simulations.

Cells numbered 1–16 in Fig. 3 are possible sampling locations,
and Cell 17 is the location of the outlet valve of the reservoir. The
simulation/optimization steps of the method applied in this study
are depicted in Fig. 4.

First, the CE-QUAL-W2 model was run for the 36 release sce-
narios, and the results of the 36 simulations calculated in Cells 1–17
cells were stored in a database of MTBE concentrations. Cells 1–16
are possible sampling locations; Cell 17 is the location of the outlet
valve of the reservoir. Then the data-mining SVR is connected to
the optimization NSGAII. The evolutionary multiobjective optimi-
zation algorithm, NSGAII, randomly produces an initial population
(a set of chromosomes). Each chromosome contains two parts:
the first part contains the numbers of sampling cells (vary from 1
through 16, as shown in Fig. 3), and the second part contains the
SVR parameters. Next, NSGAII extracts the MTBE chemograph
and the detection time of MTBE from the database of simulated
MTBE concentrations created with CE-QUAL-W2. Next, NSGAII
uses SVR and the set of SVR parameters to predict the MTBE
concentration chemograph [with Eq. (2)]. In this study, the
NSGAII has as its first objective function (denoted by g1) the min-
imization of the RMSE of predictions. Its second objective func-
tion (denoted by g2) is the minimization of the average time
during which MTBE is detected at sampling cells (average detec-
tion time). As the number of sampling location increases, the
RMSE decreases, whereas the average detection time increases,
thus creating a trade-off between the two objectives that is typical
of Pareto solutions.

The optimization problem is solved for 16 possible sampling
locations. In other words, it is first solved assuming that there is
only one possible sampling location (whose cell number is between
1 and 16). Next, it is solved allowing at most two possible sampling
locations, and so on, until solving the problem in which there are at
most 16 possible sampling locations. The last case, when there are
at most 16 sampling locations, has the largest feasible space of so-
lutions. At the end of this sequential, incremental solution process,
16 Pareto optimal solutions are obtained. Each solution contains the
numbers of the optimal sampling cells and values of the three SVR
parameters used for MTBE prediction. These solutions are repre-
sented as a Pareto frontier.

Fig. 3. Cross-sectional longitudinal view of Karaj reservoir discretization and possible release locations (Sections 4, 12, and 17)

© ASCE 04016070-5 J. Environ. Eng.
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The values of the NSGAII parameters (percentage of cross over,
the percentage of mutations, number of iteration, and the number of
initial population) were set equal to 70%, 15%, 1,000, and 50, re-
spectively. The RBF function was used in SVR, and 75% of the

data (chosen randomly) are considered as training data [m data val-
ues in Eq. (3)], and the remaining data are considered as the testing
data (n data values). The MATLAB software was used for imple-
mentation of SVR.

First Step: Set up the data base of MTBE 
transport simulations

Run CE-QUAL-W2 by using the available 
data for the year 2006 for 36 scenarios

Calculate the pollutant MTBE chemograph 
in each cell for the 36 scenarios

Calculate the average time of MTBE 
detection in each cell for the 36 scenarios

Third step: Solve the multiobjective optimal problem

Start of NSGA II 

Generate population randomly

First part
Specify the number of 

potential sampling cells

Second part
Specify the values of SVR 

parameters

Run SVR

First objective function 
g1

Second objective function 
g

Calculate the average time of 
pollutant detection in 16 

chosen cells

Stopping criteria
Construct the 

Pareto frontier

End of NSGA II 

YesNo

Calculate RMSE of the observed 
chemograph (from CE-QUAL-

W2) and calculated chemograph 
(from SVR) for 16 chosen cells

Second step: Link SVR to NSGAII 

Link the SVR to NSGA II

2

Fig. 4. Simulation/optimization steps of the study
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Results and Discussion

The results of solving the 16 optimization problems described in
the previous sections using NSGAII and the prediction tool
SVR are shown in Fig. 5. There are 16 different Pareto frontiers

in Fig. 5, each corresponding to the maximum number of sampling
cells allowed in each problem solved. Each point on a Pareto front
represents a solution to the corresponding problem. The value of
the second objective function (minimize the detection time of
the MTBE) varies between 8 and 20 h. The value of the first

Fig. 5. Sixteen extracted Paretos for maximum allowed number of sampling locations (MANSL) 1–16; extracted Pareto for MANSL = (a) 1;
(b) 2; : : : ; and (p) 16

© ASCE 04016070-7 J. Environ. Eng.

 J. Environ. Eng., 2017, 143(1): 04016070 

 D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

H
ug

o 
L

oa
ic

ig
a 

on
 0

9/
28

/2
4.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



objective (minimize the RMSE of predictions) ranges between 1
and 10 units of RMSE calculated from the SVR for MTBE predic-
tions and the CE-QUAL-W2 simulations. This range of accuracy
indicates the high predictive skill of the SVR tool in simulating
MTBE concentrations for the 36 considered scenarios. Fig. 6
portrays the Pareto fronts of the 16 different possible arrays of
sampling sites, among which, the Pareto front of the 16th array
is the most nondominated. This is so because this approach has
the largest number of possible sampling locations, and therefore,
has the largest feasible solution space.

Table 1 lists the values of the 15 Pareto solutions corresponding
to Array 16. Table 1 shows that the most frequently and least fre-
quently used sampling cells are Cells 12 and 2, respectively. The
solutions in Table 1 are listed from top to bottom in order of in-
creasing value of the first objective. Evidently, as the number of
sampling locations decreases, the first objective function (minimi-
zation of prediction error, denoted by g1) increases, whereas the

8

10

12

14

16

18

20

0 1 2 3 4 5 6 7 8 9 10

Approach 1

Approach 2

Approach 3

Approach 4

Approach 9

Approach 12

Approach 16

g
1

g 2

Fig. 6. Pareto solutions of Array 16 (at most 16 sampling cells)
compared with the Pareto solutions of several other arrays

Table 1. 15 Pareto Solutions Calculated for Array 16 (at Most 16 Sampling Cells)

Array
number Sampling cell number SVR parameters

Objective
functions

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 κ γ C g1 g2
2 1 1 1 1 1 1 1 — 1 1 — 1 1 1 0.005 5.95 106 1.15 14.84
3 — 1 — 1 1 — — — 1 — 1 — 1 — — — 0.017 12.66 28 1.42 14.50
4 — 1 — 1 1 — — — 1 — — 1 1 — — — 0.018 16.06 33 1.55 14.43
5 — — — 1 1 1 — — — — — — 1 — — — 0.028 40.05 69 1.61 13.87
6 — 1 — — 1 — 1 1 1 — 1 — 1 — — — 0.001 29.29 39 1.79 13.52
7 — 1 — — — 1 1 1 1 — 1 — 1 — — — 0.026 29.17 48 2.05 13.36
8 1 1 — 1 1 — — 1 1 — — — — — — — 0.026 39.35 65 2.20 12.00
9 1 1 — 1 — 1 — 1 1 — — — — — — — 0.021 39.23 43 2.37 11.81
10 — 1 1 1 1 — — 1 — — — — — — — — 0.020 27.31 83 2.62 11.73
11 — — — 1 — 1 — 1 — — — — — — — — 0.016 40.07 51 3.08 11.71
12 1 1 — — — 1 — 1 1 — — — — — — — 0.024 29.36 55 3.20 11.37
13 — — 1 — — 1 — — — — — — — — — — 0.004 54.67 73 4.09 10.86
14 — 1 1 — — 1 — — — — — — — — — — 0.052 56.88 52 4.88 10.81
15 — 1 — — — 1 — 1 — — — — — — — — 0.020 15.89 23 5.15 10.60
16 — 1 — — — 1 — — — — — — — — — — 0.004 46.45 48 5.84 10.37

Note: g1 = minimize prediction errors; g2 = minimize the average detection time.

Table 2. Frequency of Selections of Sampling Cells with Arrays 1–16

Array
number

Sampling cell number Pareto
points1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 0 5
2 0 0 0 0 0 5 2 1 2 1 0 0 1 1 0 2 8
3 0 2 4 1 0 8 3 1 3 3 0 0 2 3 0 0 12
4 1 1 6 2 2 6 2 1 4 1 2 0 3 3 0 1 11
5 2 4 2 2 1 7 2 5 2 1 0 0 0 0 0 3 10
6 1 1 5 4 3 10 3 2 7 0 2 0 3 2 1 0 13
7 0 2 2 6 3 10 0 4 3 2 2 0 4 0 0 1 11
8 2 12 9 4 9 6 3 5 7 0 1 1 2 1 3 4 16
9 4 2 4 1 3 3 3 2 4 0 2 1 4 0 0 0 19
10 0 5 3 2 4 7 2 3 3 0 1 0 1 0 0 2 10
11 0 4 4 2 6 4 1 2 5 0 2 0 4 0 0 0 8
12 5 20 12 2 10 18 10 15 12 3 8 7 2 9 1 6 22
13 4 10 9 3 8 7 6 7 8 2 2 3 2 2 1 0 16
14 4 11 6 2 7 10 5 7 8 1 6 2 7 1 1 1 14
15 6 10 4 5 4 9 4 5 8 1 1 0 2 0 0 3 13
16 4 12 4 8 7 10 3 8 7 0 4 2 5 1 1 1 15

© ASCE 04016070-8 J. Environ. Eng.
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second objective function (maximization of the average detection
time, denoted by g2) decreases.

Table 2 lists the frequency of selection of each sampling cell
corresponding to the 16 arrays. The last column of Table 2 lists
the number of Pareto solutions of each array. Table 3 lists the fre-
quency of selection of sampling cells for each array as a percentage.
Table 3 shows that sampling Cells 2, 5, and 9 are frequent choices
across all the 16 arrays. Fig. 7 shows the minimum, average, and
maximum values of the SVR parameters κ, γ, and C associated
with approaches 1–16. The optimal values of κ, γ, and C range
from 0 to 0.06, from 2 to 70, and from 18 to 105, respectively.
The average value of κ, γ, and C are 0.025, 35, and 60 nearly, re-
spectively. Their maximum values are 12, 2, and 7, respectively.

Concluding Remarks

The aim of this study was to develop and test a multiobjective op-
timization method for a water-quality monitoring network in a
river-reservoir system deployed to test sudden releases of MTBE
or other pollutants. The method presented is novel and significant
in several respects: (1) designing the monitoring network to detect
the sudden release of pollutants by relying on two objective func-
tions that maximize the accuracy of the simulated chemograph of
pollutant at the release gate of a reservoir and minimize the average
detection time of pollutant at sampling locations; (2) using SVR
and improving the accuracy of pollutant predictions; and (3) linking
the SVR tool with the NSGAII so that the prediction parameters

Table 3. Relative Frequency of Selection of Sampling Cells for Arrays 1–16 (%)

Array
number

Sampling location number

1 2 3 4 5 6 7 8 9 10 11 11 12 13 14 15 16

1 0 0 0 0 0 20 0 20 20 0 0 0 20 0 20 0 0
2 0 0 0 0 0 62 25 12 25 12 0 0 0 12 12 0 25
3 0 16 33 8 0 8 25 8 25 25 0 0 0 16 25 0 0
4 9 9 54 18 18 54 18 9 36 9 18 18 0 27 27 0 9
5 20 40 20 20 10 70 20 50 20 10 0 0 0 0 0 0 30
6 8 8 38 31 23 77 23 15 54 0 15 15 0 23 15 8 0
7 0 18 18 55 27 91 0 36 27 18 18 18 0 36 0 0 9
8 12 75 56 25 56 37 19 31 44 0 6 6 6 12 6 19 25
9 21 11 21 5 16 16 16 11 21 0 11 11 5 21 0 0 0
10 0 50 30 20 40 70 20 30 30 0 10 10 0 10 0 0 20
11 0 50 50 25 75 50 13 25 62 0 25 25 0 50 0 0 0
12 23 91 55 9 45 82 45 68 55 14 36 36 32 9 41 5 27
13 25 63 56 19 50 44 37 44 50 13 13 13 19 13 13 6 0
14 29 78 43 14 50 71 36 50 57 7 43 43 14 50 7 7 7
15 46 77 31 38 31 69 31 38 61 7 7 7 0 15 0 0 23
16 26 80 26 53 46 66 20 53 46 0 26 26 13 33 6 6 6

Fig. 7. Minimum, average, and maximum SVR parameters for Arrays 1–16: (a) κ parameter; (b) γ parameter; (c) C parameter
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reach their optimal values during the extracting of optimal sampling
locations. A database was first prepared based on the CE-QUAL-W2
model, and an SVR tool was used as a predictor to develop a rapid
method for predicting pollutant concentrations in the Karaj river-
reservoir system. The SVR and NSGAII were linked to find the
best sampling locations for water-quality monitoring in the Karaj
river-reservoir considering a various maximum number of allowed
sampling locations.
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