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Hypothesis Testing and Associative Learning in Cross-Situational Word Learning: 

Are They One and the Same? 
 

Chen Yu, Linda B. Smith, Krystal A. Klein and Richard M. Shiffrin ({chenyu}@indiana.edu) 
Department of Psychological and Brain Sciences, and Cognitive Science Program, Indiana University 

Bloomington, IN 47405 USA 
 

 

Abstract 

Recent studies (e.g. Yu & Smith, in press; Smith & Yu, 
submitted) show that both adults and young children possess 
powerful statistical computation capabilities -- they can infer 
the referent of a word from highly ambiguous contexts 
involving many words and many referents. This paper goes 
beyond demonstrating empirical behavioral evidence -- we 
seek to systematically investigate the nature of the underlying 
learning mechanisms. Toward this goal, we propose and 
implement a set of computational models based on three 
mechanisms: (1) hypothesis testing; (2) dumb associative 
learning; and (3) advanced associative learning. By applying 
these models to the same materials used in learning studies 
with adults and children, we first conclude that all the models 
can fit behavioral data reasonably well. The implication is 
that these mechanisms – despite their seeming difference --
may be fundamentally (or formally) the same.  In light of this, 
we propose a formal unified view of learning principles that is 
based on the shared ground between them. By doing so, we 
suggest that the traditional controversy between hypothesis 
testing and associative learning as two distinct learning 
machineries may not exist.  

Keywords: language acquisition, word learning, 
computational modeling. 

Introduction 

There are an infinite number of possible word-to-world 

pairings in naturalistic learning environments. Quine (1960) 

illustrated this indeterminancy problem with this example: 

Imagine an anthropologist who goes to a foreign country 

and observes a native speaker saying “gavagai” while 

pointing in the general direction of a field with a rabbit in it. 

The intended referent (rabbit, grass, the field, or rabbit ears, 

etc.) is indeterminate from this experience. Hard as it seems 

to be to infer referents correctly from such data, typically 

developing children have no problem using data of this sort 

to learn their native vocabulary smoothly and effortlessly.  

For 30 years, research on the indeterminacy problem has 

concentrated on single trial learning such that a language 

learner – despite the logical ambiguity pointed out by Quine 

– nonetheless correctly and rapidly maps the word to the 

intended referent on that trial and by most accounts does so 

on the basis of social, linguistic and/or representational 

constraints (e.g. Gleitman, 1990; Tomasello, 2000).  

However, most previous experiments showing such fast-

mapping of a word to a referent were conducted in highly 

constrained laboratory environments. A typical scenario is 

like this: an experimenter presents one or two objects to 

young subjects and utters a simple phrase, such as “look, 

this is a toma!” Everyday learning contexts are much more 

cluttered than this with many candidate objects for a word 

and many candidate words for an object, and in the 

discourse context many shifts in attention among the 

candidate words and referents. These highly ambiguous 

learning environments with many words and many objects 

may significantly limit the plausibility of fast-mapping 

solutions.   

There is, however, an alternative way that learners might 

solve the indeterminacy problem, not in a single encounter 

with a word its referent, but across many trials and 

simultaneously for many words and referents.  This solution 

is possible if learners can accumulate the statistical evidence 

across multiple learning situations. A learner who is unable 

to unambiguously decide the referent of a word on any 

single learning trial could nonetheless store possible word-

referent pairings across trials, evaluate the statistical 

evidence, and ultimately map individual words to the right 

referents through this cross-trial evidence. For example, a 

young learner (an infant perhaps) might hear the words 

“bat” and “ball” in the context of seeing a BAT and BALL.  

Without other information, the learner cannot know whether 

the word form “ball” refers to one or the other visual object.  

However, if subsequently, while viewing a scene with the 

potential referents of a BALL and a DOG, the learner hears 

the words “ball” and “dog” and if the learner can combine 

the conditional probabilities of co-occurrences from two 

streams of data across trials, the learner could correctly 

map “ball” to BALL. This mechanism seems to be quite 

straightforward. However, until recently, there was no 

evidence as to whether human learners perform these kinds 

of statistical computations.  

In a series of recent experiments, we showed that both 

adults (Yu & Smith, in press) and 12 month-old infants 

(Smith & Yu, submitted) do calculate cross-trial statistics 

and find correct word-referent mappings amidst highly 

ambiguous learning contexts, and they do so with 

impressive accuracy over relatively few trials. Cross-

situational statistical learning is clearly within the repertoire 

of human learners. This paper intends to go beyond 

demonstrating what language learners can do, and focus on 

investigating the internal learning mechanisms that may 

underlie their powerful statistical learning capabilities. What 

is the nature of the underlying learning processes? Can we 

provide a formal account of cross-situational learning?  

Traditionally, two classes of cross-situational learning 

mechanisms have been considered. One is associative 

learning. Across trials, the learner could accrue associations 

between words and their potential referents by strengthening 

and weakening associative links between experiences of 
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names and objects (see Plunkett, 1997, for review and 

discussion). Building on the “ball/bat” example above, the 

learner could on trial 1, equally associate “ball” with BALL 

and BAT. But after trial 1, and based on the experience of 

“ball” in the context of BALL and DOG, the association 

between “ball” and BALL would be much stronger than that 

between “ball” and BAT.  Over enough trials, these 

association strengths would converge on the real world 

statistics and yield the right word-referent pairs. The success 

of such a learning mechanism would seem to depend 

heavily on constraints on the kind of associations potentially 

formed given the logically infinite number of referents in 

any scene (e.g. Regier, 2003). 

    An alternative way that learners could use cross-trial 
information is through hypothesis testing, by formulating 
and evaluating hypotheses about which names map to which 
referents (e.g., Siskind, 1996; Tennenbaum & Xu, 2000).  
Building on the “ball/bat” example above, the learner could 
wrongly hypothesize on the initial trial that “ball” refers to 
BAT but correct that hypothesis on trial 2 which presents 
disconfirming evidence.  Across trials, the co-occurrence 
probabilities would support the “right” hypotheses for the 
language over others.  These kinds of learning mechanisms 
also require constraints on the kinds of hypotheses that can 
be formed, given the infinite number of logically correct 
hypotheses true of any single datum (see also Quine, 1960).  
   Based on the above two learning principles, this paper 

first presents three computational models as simulated 

learners who receive the same training data that human 

subjects received in Yu and Smith (in press) experiments. 

Given highly ambiguous learning trials with many possible 

words to be learned and many possible referents, simulated 

learners need to keep track of and memorize many word-

referents pairs and accrue cross-situational evidence just as 

the human learners did.  At the end of training, the 

simulated learners are tested on the same tests that were 

used with the human learners. In this way, we can directly 

compare human and simulated learners. Moreover, we use 

simulated learners to explore a variety of potential 

constraints and to systematically evaluate their importance 

in word learning. Based on this comparative study of three 

computational models, we propose a unified view of 

hypothesis testing and associative learning, suggesting these 

two can be treated as variants of the very same learning 

mechanism.  
 

Experimental Data for Simulation 
This section presents the results in (Yu & Smith, in press) 

which are used as empirical data in the current simulation 

study. In our first experiment, we asked how easily adults 

could simultaneously learn 18 word-referent pairs from 

learning trials that are individually highly ambiguous. The 

experiment included three conditions that manipulated 

within-trial ambiguity: 2 words and 2 possible referents, or 

3 words and 3 possible referents, or 4 words and 4 possible 

referents on each trial. The 2× 2 condition yields 4 possible 

word-referent associations per trial. The 3× 3 condition 

yields 9 potential associations per trial. The 4× 4 condition 

yields the seemingly overwhelming number of 16 word-

referent associations per trial. Although there is no 

information on any individual trial as to which label goes 

with which word, across trials the underlying word-referent 

mappings are certain in that individual labels are presented 

in a training trial if and only if the referent is also presented.  

The stimuli were slides containing pictures of uncommon 

objects (e.g. canister, facial sauna, and hitch haul) paired 

with auditorally presented artificial words. The three 

conditions were presented within subjects and so in total, 

there were 54 unique objects and 54 unique pseudowords 

partitioned into the three sets of 18 words and referents for 

each condition. By design, the three learning conditions 

differed in the number of words and referents presented on 

each training trial (2, 3 or 4) and the number of times each 

word and referent pair was presented across trials was held 

constant at 6. Order of trials within a condition was 

randomly determined.  Order of the three conditions (a 

within-subject manipulation) was counterbalanced across 

subjects. Training was passive. The adult participants 

(n=38) just watched and listened as the trials were 

presented; they were not told that there is a one-word-one-

referent correspondence. After training in each condition, 

learning was assessed via a four-alternative forced-choice 

test; presented with one word, participants were asked to 

choose the picture to which the word referred.  The three 

foils were all drawn from the set of 18 training pictures. 

Participants learned more word-referent pairs in each 

condition than expected by chance (t(37)=8.785, p<0.001, 

one-tailed, for 4 ×  4). They discovered on average more 

than 16 of the 18 pairs in the 2× 2 condition (M=16.2, 

SD=2.5) and more than 13 of the 18 pairs in the 3× 3 

condition (M=13.6; SD=3.5), all this in less than 6 minutes 

of training per condition. Even in the 4× 4 condition with 16 

potential associations per trial, subjects discovered almost 

10 of the 18 word-referent pairs (M=9.5; SD=2.9). The level 

of performance in the three conditions is remarkable -- in a 

very short time, over relatively few trials, each highly 

ambiguous, subjects nonetheless found the underlying 

word-referent pairs. Human learners can and do keep track 

of the simultaneous co-occurrences of many labels and 

referents across trials such that they can find individual 

mappings. Moreover, this is readily accomplished in 

relatively few learning trials.  

Experiment 2 of Yu & Smith (in press) explored adult 

learning in the condition of high within-trial ambiguity -- 

the 4 × 4 condition.  We were particularly interested in 

learning under such high within-trial uncertainty as a 

function of the number of word-referent pairs to be learned. 

Accordingly, in this experiment, each condition is a version 

of the original 4 x 4 condition above.  We manipulated:  (1) 

the total number of word-referent pairs to be learned (9 or 

18) and (2) the number of repetitions of each word-referent 

pair (6, 8 or 12).  In the 9 words/8 repetitions condition, 

subjects attempt to discover a total of 9 word-referent pairs 

each repeated 8 times over the course of training.  In the 9 

words/12 repetitions condition, subjects attempt to discover 

9 word-referent pairs but are given 4 additional repetitions 
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of each word-referent pair. Finally, the third condition is a 

replication of the original 4× 4 condition, 18 word-referent 

pairs to be learned and 6 repetitions of each. Intuitively, the 

9 words/12 repetitions condition should improve the 

learning performance because, compared with the 18 

words/6 repetitions condition, the number of words needed 

to be learned are reduced while their occurrence frequencies 

are doubled. All aspects of the experiment are identical to 

the first experiment except for the composition of the three 

training conditions. 

In terms of the proportion of word-referent pairs to be 

discovered, participants performed comparably in the three 

conditions, (F(2,54) = 0.52; p > 0.5), discovering more pairs 

than expected by chance (t(27) > 6.4 in all  three conditions, 

p < 0.001). In terms of the total number of pairs learned, 

subjects actually learned more pairs in the 18 word-referent 

condition (M=9.461, SD=2.907) than in the two 9 word-

referent conditions (8 repetitions: M=5.111, SD=1.706; 12 

repetitions: M=5.481, SD=2.089). The 18 word condition 

presents the same within-trial ambiguity, more word-

referent pairs to be learned, and fewer repetitions of the 

individual word-referent pairs than the other two learning 

conditions. If numbers of co-occurrences were all that 

mattered, this condition should lead to the poorest overall 

performance. However, for statistical learners, smaller data 

sets are not as good as large ones because spurious 

correlations are more likely to occur (and thus also in the 

lower foil probabilities at test).   

Overall, our experimental results show the power of 

cross-situational statistical learning: Even when the referent 

of a word cannot be unambiguously determined on any 

single learning trial, across multiple trials involving many 

different words and many different potential referents, the 

word and referent will occur most systematically than any 

other. The more words and referents there are to learn and 

that may co-occur together on any learning trial, the more 

discernible the systematicity – across trials – of the 

underlying correct mappings. 

Hypothesis Testing Model (HTM) 
There is no information at the beginning of learning to 

guide learners; thus it is quite plausible that on the first trial 

learners randomly select word-referent pairs as their initial 

hypotheses, gradually justifying or replacing these 

hypotheses as more trials ensue. Following this general 

principle, the specific questions for such a hypothesis 

testing mechanism are (1) how hypothesized pairs are 

selected and stored from a trial? (2) how subjects justify 

whether a word-object pair is correct? (3) whether they use 

the mutual exclusivity constraint if two working 

hypothesized pairs are not compatible? and (4) whether they 

use previously learned pairs to help the learning of new 

pairs in subsequent trials?  

Our first simulation study attempts to answer these 

questions and also to generate a dynamic picture of the real-

time learning when the simulated learner is fed with the 

same set of ordered trials as the adult learners. Here we use 

the 4�4 condition as an example to show how the model 

works because this condition has been tested in two 

completed experiments. The simulations on other conditions 

are achieved by applying the corresponding stimuli to the 

same model. 

In the 4× 4 condition, the 18 novel word-picture pairs 

can be represented as )},),......(,(),,{( 18182211 wpwpwp . In the 

ith trial, the stimuli are },,,,,,,{
43214321 iiiiiiiii wwwwppppT =  

while 
321 ,, iii and 

4i can be selected from 1 to 18. And there is 

no information as to which picture goes with which name. 

We also assume that the simulated learner maintains a list of 

hypothesized pairings as learned results from previous trials. 

Thus, its lexical knowledge at the ith trial can be then 

represented as a list of pairs ),,{(
11 mn wpM =  

)},(),......,,(
22 kk mnmn wpwp while 

jn and 
jm can be selected 

separately from 1 to 18, and the equivalence of these two 

indicates a correct pairing. At the beginning, the simulated 

learner randomly picks one word and one picture from a 

trial and builds a hypothesized pairing. With more trials, 

more pairings are built and stored in the memory. Two 

additional mechanisms are utilized to make this learning 

process more effective. First, one important constraint in 

adding new pairs is to maintain the consistency of 

hypothesized pairings so that one word can be associated 

with only one picture. This constraint explicitly encodes 

such proposals as mutual exclusivity (Markman, 1990) and 

contrast (Clark, 1987) into the learning machinery and by 

doing so makes learning more efficient because without 

such a constraint,  the simulated learner would randomly 

select many conflicting (and therefore incorrect) word-

picture pairs across multiple trials. Second, the model keeps 

track of the frequency of each hypothesized pair. When the 

number of occurrences of a pair is above a certain threshold, 

this pair will be treated as a learned lexeme and then used to 

filter out the input in subsequent trials; this significantly 

simplifies the learning task. For instance, if a learned pair 

occurs in a new trial, it will be removed from the stimuli to 

reduce a 4�4 condition into a 3�3 condition. More 

importantly, subjects in empirical studies informed 

experimenters that they used a similar filtering strategy in 

the later part of the training phase when they were confident 

that some word-picture pairs were correct. 

   We applied the same training and testing data in the two 

adult experiments to the model. For each condition, the  

simulation was run for 5000 times. Thus, we had 5000 

simulated subjects (with the same set of parameters) for 

each condition. Note that the fundamental mechanism 

encoded in our model is to randomly select and store 

hypothesized pairs. Therefore, quite different results could 

be obtained on each run depending on what pairs were 

selected from trial to trial. We used 5000 simulated subjects 

to ensure the statistical power of this simulation study and  

the results are shown in Figure 1. We observed that in 

general the results in simulation are quite in line with those 

of human subjects, suggesting that if subjects apply a simple 

statistical learning machinery like the one in our model, then 

this could explain their superior performance in learning 
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from individually ambiguous learning trials. The similarities 

of the results between human subjects and simulated 

subjects are consistent not only in one condition but among 

five conditions of two experiments, indicating that the 

learning principles encoded in our model are plausibly 

similar to those that guide the learning of human subjects.  

Figure 1: Simulated learners and human learners achieve similar 

results in all conditions.  

Dumb Associative Model (DAM) 
The hypothesis testing model fits behavioral data 

qualitatively well. One major assumption in the HTM is that 

it applies the constraints, such as Mutual Exclusivity, in 

real-time learning, and ignores other information. In 

contrast to this type of explicit learning, an alternative 

mechanism would be to associate one word with one 

referent at a time and to accumulate this evidence across 

multiple trials. During testing, this associative model picks 

out the object most strongly associated with the test word. 

Along this line, an associative learner who kept track and 

stored all co-occurrences on all trials and at test chose the 

most strongly associated referent would be an ideal learner, 

internally representing the matrix of input, as in the 9 

words/12 repetitions condition shown in Figure 2 (a).  

Human subjects may well be able to approximate this, 

storing many, if not all, of the associations on a trial and 

accruing them across trials. Such an associative learning 

mechanism would, in fact, do quite well in our experimental 

tasks. However, it is also possible that human learners are 

more selective associative learners, that due to processes of 

competition, inhibition, and attention shifting (e.g., 

Kruschke, 2001), they may build a few one-word-one-object 

associations exhibiting a form of mutual exclusivity. 

Thus far, three simple associative methods have been 
developed. These only pursue models based on the general 
principle that the system randomly selects and accumulates 
word-referent pairs without applying any constraints in real-
time learning. Hence, dumb associative model can be 
viewed as based on Hebbian learning principles – the 
connection between a word and an object is increased if the 
pair co-occurs in a trial. One associative model simply 
accumulates one single word-referent pair from a trial. 
Thus, the total number of pairs selected is equal to the 
number of trials. Figure 2 (b) shows one instance of this 
model. The second and the third models select two and three 
pairs from a trial. Similar to the hypothesis-testing model, 
these three methods are also based on random selection of 
pairs. Therefore, the simulation was run for 5000 times to 

obtain the results from 5000 simulated associative learners 
for each method. Figure 2 (b) and (c) shows examples of 
association matrices built by one-pair and two-pairs learners 
respectively. Clearly, these two matrices are quite different 
and far from perfect compared with the matrix shown in 
Figure 2 (a). Nonetheless, when the simulated learners were 
asked to do the same forced-choice tests, they still 
demonstrated learning based on partial and incomplete 
matrices, as shown in Figure 3. 

  

Figure 3: A comparison between human learners and three different 

associative learners.   
 

Associative Translation Model (ATM) 
In contrast to a dumb association model that accrues co-

occurrence frequencies trial by trial and updates the strength 
of the connections between a word and an object, we also 
developed a more advanced associative model based on 
machine translation techniques. Briefly, machines “learn” to 
automatically translate one language into another through 
statistical regularities across large parallel corpora (e.g., 
statistical regularities across Anna Karenina in English and 
Russian). The basic assumption behind this approach is that 
there are latent meanings that both languages point to, and 
the machine learning techniques attempt to discover these 
latent structures through the statistical regularities. Here, we 
use this same computational approach but conceptualize the 
object stream as one language and the audio stream as the 
other, attempting to find the latent word-referent pairings 
between these two streams. More specifically, we used the 
translation model in (Brown, Pietra, Pietra, & Mercer, 1994) 
and applied an Expectation-Maximization (EM) based 
learning algorithm. Our algorithm assumes that word-
referent pairs are hidden factors underneath the 
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Figure 2: the learning results in 9 words/18 repetitions condition. The row is a 

list of words and the column is a list of referents. Each cell 

represents the co-occurrence frequency of a word-referent pair. The 

diagonal items count relevant co-occurrences.  
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observations, which consist of spoken words and 
extralinguistic contexts. Thus, association probabilities are 
not directly observable, but they somehow determine the 
observations because spoken language is produced based on 
the caregiver’s lexical knowledge. Therefore, the objective 
of language learners or computational models is to figure 
out the values of these underlying association probabilities 
so that they can interpret the observations better. Correct 
word-meaning pairs are those which can maximize the 
likelihood of the observations. Technical detailed can be 
found in Yu, Ballard & Aslin (2005). 
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Figure 4: A comparision between human learners and assciative translation 

model in the 4 conditions.  

Similar to the dumb associative model, we compare three 

variants of ATM with empirical results. As shown in Figure 

4, this sort of associative mechanism can easily extract the 

proper mappings of words to referents – the most effective 

learning mechanism compared with HTM and DAM.  

A Unified View  
So far, we have considered three computational models, 
Hypothesis Testing Model (HTM), Dumb Associative 
Model (DAM) and Associative Translation Model (ATM).  
As radically different as associations versus hypotheses may 
seem to be, all these models can be viewed as variants of the 
same kinds of processes. Critically, from both an associative 
and a hypothesis testing perspectives, the relevant 
mechanisms for the cross-situational learning of words and 
referents are almost the same: (1) what information is stored 
on any individual learning trial, (2) how past knowledge 
constrains future learning, and (3) how accrued information 
is evaluated.  In the following, we will compare associative 
versus hypothesis testing mechanisms in terms of these 
three aspects.  

Representations and Learning Results 

The representations and learning results based on 

associative learning and hypothesis testing appear to be 

radically different. As shown in Figure 5, one builds a big 

two-dimensional matrix to count all possible co-occurrences 

between words and objects while the other just keeps track 

of a short list of word-referent pairings. There are two ways 

to quantify these differences in representations: (1) the 

number of word-object pairs and (2) as probabilistic versus 

all-or-none representations.  

First, the hypothesis testing model maintains a clean and 

short list while the associative models store many co-

occurring pairs. If the number of pairs really matters, one 

would expect that there should, quantitatively,  be a clear 

boundary (threshold) that can be drawn to differentiate these 

two approaches. For example, if the threshold is 19, then a 

set of 19 pairs should be treated as hypothesis testing and a 

set of 20 should be based on associative learning. 

Nonetheless, it is not clear that this kind of threshold exists 

at all.  

Second, the hypothesis testing model stores the accrued 

information in a winner-take-all way – the pairs in the list 

are equally treated as correct while the pairs not in the list 

are excluded from consideration. In contrast, the associative 

learning method accumulates and stores the information in a 

probabilistic and graded way. Every co-occurring word-

referent pair is assigned to an association probability based 

on co-occurrence frequency while some pairs have high 

probabilities and others are assigned with low probabilities. 

The dumb associative model purely relies on co-occurrence 

frequencies while associative translation model computes 

association probabilities by considering various correlations 

between words and objects to find an overall optimal 

solution.  

Conceptualizing the differences in this way makes clear 

that associative models can be converted into hypothesis 

testing models and that hypothesis testing models can be 

converted into associative models. More specifically, a set 

of hypotheses can be considered as a special type of 

associative representation with the probabilities equal to 

either 1 or 0 but nothing in between. As such, the hypothesis 

set can be treated as a special case of associative 

representations and converted into a sparse and binary 

association matrix as shown in Figure 5. Similarly, even if 

lexical knowledge is stored in a probabilistic mode in an 

association matrix, the associative learner will need to make 

decisions at testing, which may force the learner to retrieve 

the strongest relevant associations. For example, in our 

word-learning task (or any other task of the same sort, for 

example, naming the object), the learner needs to pick out 

an object after hearing a word. To do that, the learner finds 

the most relevant referent and ignores others. Thus, one can 

also extract a hypothesis set from an association matrix by 

picking out strongest associations (converting probabilistic 

associations into explicit hypotheses). In doing so, different 

thresholds used in the conversion may determine the 

number of pairs in the hypothesis set. But again there is no 

clear threshold of the number of pairs that can be applied to 

separate two mechanisms.  

Figure 5: we can select the strong associations in an association matrix 

to form a hypothesis set. Similarly, we can represent a hypothesis set as a 

sparse association matrix. The numbers in the lists are indexes of words 

and referents.  
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Learning Mechanisms 

In general, all three mechanisms use cross-situational 

information accumulatively and all three mechanisms need 

to include some constraints in learning. One may attempt to 

differentiate the three mechanisms based on real-time versus 

batch processing -- at what moments are the constraints 

added to reduce the degree of ambiguity in the data? Does 

this happen in trial-by-trial learning or only at the retrieval 

of accumulated information during testing? HTM is a real-

time learning process wherein the simulated learner 

continuously builds and justifies hypothesized pairs trial by 

trial. The decisions are made in real time on whether a 

selected pair is included in or excluded from the hypothesis 

list. When the training phase ends, the learner acquires a list 

of hypothesized pairs. In contrast, DAM functions in a batch 

mode because it accumulates data during training to form an 

association matrix including all the possible pairs that the 

model can select and store. The decisions are made in 

testing when the model needs to retrieve an object given a 

spoken word and several options. Different from the above 

two, ATM’s learning mechanism is in between batch and 

real-time processing – similar to hypothesis testing, it 

estimates association probabilities in real time and similar to 

DAM, the association probabilities in the association matrix 

jointly determine the referent of a word during testing. 

Recent advances in machine learning suggest that many 

learning algorithms can be converted between batch mode 

and real-time mode. Thus, even if real-time and batch 

processings are fundamentally different, associative learning 

and hypothesis testing mechanisms are at least compatible 

(and convertible) and can be grouped under a more general 

learning system.  
 

Retrieving accrued information at Testing  
The hypothesis testing model uses the accrued knowledge in 

a straightforward way. After hearing a word at each trial, it 

checks the hypothesis list to match the word with those in 

the hypothesized pairs. For associative models, lexical 

knowledge is represented as latent information and as a 

system of associations, which can be activated in response 

to a specific input. In fact, there are several different ways to 

extract and utilize latent knowledge from an association 

matrix. For example, a hypothesis set can be extracted by 

picking out the strongest associations from the association 

matrix.  Similar to the hypothesis testing model, the mutual 

exclusivity constraint can be added to ensure the word-

object pairs in the list are consistent.  Another method is to 

decompose the association matrix into several hypothesis 

sets, each of which forms a consistent set of word-object 

pairs. At test, the overall decision is based on hypothesis test 

averaging. Thus, this is the main conclusion -- there is no 

fundamental difference in these two learning principles.  
 

Conclusion 
This idea that hypothesis testing and associative learning 

may be special cases of a unified set of learning 

mechanisms is theoretically significant on various grounds. 

First, the theoretical and empirical exploration of learning 

mechanisms within such a unified view may reveal new 

insights about learning processes that fall between these two 

classic extremes.  Second, the learning literature is replete 

with cases in which one or the other approach appears 

better.  Conceptualizing the two approaches as special cases 

of the same principles may be a first step to understanding 

how certain tasks, contexts, and past history select for 

specific learning solutions. Third, there are reasons to 

suspect that young learners (in some domain) are more 

likely to appear to be associative learners whereas older (or 

more expert) learners appear to be hypothesis testers.  The 

present conceptualization offers a framework within which 

to theoretically understand the developments. Finally, this 

conceptualization suggests that many of the heated debates 

about associations versus hypotheses may be fundamentally 

–and mechanistically –misguided. 
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