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Abstract
Qualitative and quantitative approaches to reasoning about
uncertainty can lead to different logical systems for formal-
izing such reasoning, even when the language for express-
ing uncertainty is the same. In the case of reasoning about
relative likelihood, with statements of the form ϕ % ψ ex-
pressing that ϕ is at least as likely as ψ, a standard qualita-
tive approach using preordered preferential structures yields
a dramatically different logical system than a quantitative ap-
proach using probability measures. In fact, the standard pref-
erential approach validates principles of reasoning that are
incorrect from a probabilistic point of view. However, in this
paper we show that a natural modification of the preferential
approach yields exactly the same logical system as a proba-
bilistic approach—not using single probability measures, but
rather sets of probability measures. Thus, the same preferen-
tial structures used in the study of non-monotonic logics and
belief revision may be used in the study of comparative prob-
abilistic reasoning based on imprecise probabilities.

Introduction
Central to being an intelligent agent is the ability to rea-
son adequately under, and even about, uncertainty. Such
reasoning requires representing this uncertainty in some
way. In this paper, we study qualitative forms of reasoning
about likelihood, a subject that can be traced back to the
foundations of mathematical probability theory (de Finetti
1937). Such reasoning may concern absolute or relative
likelihood, both of which have been studied in some de-
tail within AI. The former involves statements of the form
Lϕ expressing that ϕ is likely (Halpern and Rabin 1987;
Halpern and McAllester 1989). The latter—our topic in this
paper—involves statements of the form ϕ % ψ expressing
thatϕ is at least as likely asψ.1 This representation language
has been considered under several different interpretations:

• Probabilistic interpretation (Segerberg 1971; Gärdenfors
1975; van der Hoek 1996; Alon and Heifetz 2014; Del-
grande and Renne 2015), building on the theory of quali-
tative probability (de Finetti 1937; Narens 2007);

*Postprint of AAAI 2017 paper, corrected to include a distin-
guished subset W� in Definitions 2-3 and 5 (resp. W+ before
Theorem 3) to match the semantics of Holliday and Icard 2013
(resp. van der Hoek 1996) when R(w) = R(v) for all w, v ∈ W .

1A different reading of ϕ % ψ as belief in ϕ is at least as strong
as belief in ψ has been used to motivate another mathematical in-
terpretation (Ghosh and de Jongh 2013).

• Possibilistic interpretation (del Cerro and Herzig 1991;
Dubois, Fargier, and Prade 1998; Dubois, Fargier, and
Perny 2003; Touazi, Cayrol, and Dubois 2015);

• Preferential interpretation (Halpern 1996; Halpern
1997).

Each of these interpretations captures a distinct intuition
about relative likelihood reasoning, and they may be appro-
priate for different settings (Halpern 2003). A natural ques-
tion is: to what extent are these interpretations compatible
with one another? Our focus is on the relationship between
the probabilistic and preferential interpretations. Existing
approaches based on the preferential interpretation (Halpern
1997) depart rather dramatically from those based on proba-
bilistic interpretations—in fact, relating closely to the possi-
bilistic interpretation. We demonstrate how a natural modi-
fication of the approach—based on qualitative preferential
structures—yields a calculus for reasoning about relative
likelihood that is, from a logical point view, indistinguish-
able from standard forms of probabilistic reasoning.

Specifically, we prove soundness and completeness for
the comparative logic of imprecise probabilities (Alon and
Heifetz 2014) with respect to a class of preferential mod-
els that can be independently motivated. This shows how
the two approaches can be seen as fundamentally compati-
ble. The methods we use to prove these results further lead
to a complexity result: the logic itself we prove to be NP-
complete. This justifies the intuitive claim that this style of
comparative probabilistic reasoning is relatively elementary,
being no more complex than ordinary Boolean reasoning.

Preferential Structures

Preferential structures have been applied widely across the
field of representation and reasoning, including in the study
of non-monotonic logics (Shoham 1987; Kraus, Lehmann,
and Magidor 1990), belief revision (Katsuno and Mendelzon
1991; Friedman and Halpern 1994a), and conditional belief
in games (Board 2004; Baltag and Smets 2008). Restricted
classes of preferential structures are also used for condi-
tional logics (Lewis 1973; Friedman and Halpern 1994b).
Here we are interested in the application of these structures
to the study of likelihood comparisons, whereby an ordering
on a set of states is “lifted” to an ordering on the set of events
over those states, i.e., on the powerset.

http://arxiv.org/abs/2104.02287v1


Language
The language L of relative likelihood, generated from a set
Prop of propositional variables, is given by the grammar

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | (ϕ % ϕ),

where p ∈ Prop. We define ∨, →, ↔, ⊥, and ⊤ as usual.
The modal depth of a formula of L is defined by:

1. md(p) = 0 for p ∈ Prop;

2. md(¬ϕ) = md(ϕ);

3. md(ϕ ∧ ψ) = max{md(ϕ),md(ψ)};

4. md(ϕ % ψ) = max{md(ϕ),md(ψ)} + 1.

The length |ϕ| of ϕ is the number of symbols in ϕ.

Preferential Semantics
All of the models for L that we will consider will add some
extra structure to the following common base models.

Definition 1. A state space model is a tuple M = 〈W,V 〉
where W is a nonempty set and V : Prop → ℘(W ).

Preferential models then add a preorder on the space W .

Definition 2. A preferential model is an M = 〈W,�, V 〉
where 〈W,V 〉 is a state space model and � is a preorder (re-
flexive and transitive binary relation) on a nonempty subset
W� of W .

In a multi-agent setting, one could consider a family
{�w,a}w∈W,a∈Agents of preorders on W , but in this paper
we can make our essential points with a single preorder.

The idea of the preferential semantics for L is to lift the
order � onW to an order �↑ on ℘(W ). A natural way to do
so was studied by (Halpern 1996; Halpern 1997), following
an earlier proposal by (Lewis 1973) in a different setting: let
A �l B iff for all b ∈ B there is a ∈ A such that a � b.
This is equivalent to there being a function f : B → A that is
inflationary with respect to �, i.e., f(x) � x for all x ∈ B.

Definition 3 (Inflationary function semantics). Given a pref-
erential model M = 〈W,�, V 〉, state w ∈ W , and formula
ϕ ∈ L, we define the satisfaction relation M, w �l ϕ by:

1. M, w �l p iff w ∈ V (p);

2. M, w �l ¬ϕ iff M, w 2l ϕ;

3. M, w �l ϕ ∧ ψ iff M, w �l ϕ and M, w �l ψ;

4. M, w �l ϕ % ψ iff JϕKM �l JψKM,

where JαKM = {w ∈W� | M, w �l α}.

For this semantics and all those to follow, a formula is
valid over a class of models according to the semantics iff it
is satisfied by every state in every model in the class.

The motivation for studying the logic of the particular lift-
ing operation above was in part to establish connections with
default reasoning and with possibilistic models. In particu-
lar, the axiom (L4) below is the central principle in the ax-
iomatization of this class of models.

Definition 4. The set of theorems of IL (the logic of infla-
tionary lifting) is the smallest set of formulas that contains
all tautologies of propositional logic, is closed under modus
ponens (if ϕ ∈ IL and ϕ → ψ ∈ IL, then ψ ∈ IL) and ne-
cessitation (if ϕ ∈ IL, then ϕ % ⊤ ∈ IL), and contains all
instances of the following axiom schemas:

(L1) ϕ % ϕ

(L2)
(
⊥ % (ψ ∧ ¬ϕ)

)
→ (ϕ % ψ)

(L3)
(
(ϕ % ψ) ∧ (ψ % χ)

)
→ (ϕ % χ)

(L4)
(
(ϕ % ψ) ∧ (ϕ % χ)

)
→

(
ϕ % (ψ ∨ χ)

)

(I1) (ϕ % ψ) → ((ϕ % ψ) % ⊤)

(I2) ¬(ϕ % ψ) → (¬(ϕ % ψ) % ⊤).

Theorem 1 (Halpern 2003). The logic IL is sound and com-
plete with respect to preferential models according to the
inflationary lifting semantics.

While the principle (L4) may be sensible in some con-
texts, it is patently incompatible with probabilistic reason-
ing, where taking the union of many improbable events can
lead to probable events. A natural question is whether there
is an alternative lifting operation that might accord better
with probabilistic reasoning. Such a lifting was proposed in
(Holliday and Icard 2013): instead of requiring an inflation-
ary function B to A, let us say that A �i B iff there is an
inflationary injection from B to A. Call this the inflationary
injection semantics for the language L.

Definition 5 (Inflationary injection semantics). Given a
preferential model M = 〈W,�, V 〉, state w ∈ W , and
formula ϕ ∈ L, we define M, w � ϕ in the same way as
Definition 3, except with clause 4 replaced by:

4. M, w � ϕ % ψ iff JϕKM �i JψKM,

where JαKM = {w ∈ W� | M, w � α}.

The intuition behind this alternative is clear. If we are try-
ing to determine whether eventA is at least as likely as event
B, we might try to find, for each possible B state, anA state
that is as least as likely as it. However, we cannot match mul-
tiple B states with the same A state, since together these B
states may become more likely than the A state. The infla-
tionary injection semantics generalizes this intuition to re-
quire eachB state to correspond with its own uniqueA state
that weakly dominates it in likelihood.

We would now like to verify that this intuition does indeed
lead to a system for reasoning about relative likelihood that
validates intuitive principles. In particular, we would like a
completeness theorem along the lines of Theorem 1. In that
direction we first introduce a previously studied logic for
reasoning about probabilistic semantics for language L.

Probabilistic Semantics

Probabilistic models replace the preorder � by a set P of
probability measures. A singleton set P represents sharp
probabilities, while multiple disagreeing measures in P can
be used to represent imprecise probabilities.

Definition 6. A multi-measure model is a tuple M =
〈W,P , V 〉 where 〈W,V 〉 is a state space model and P is
a set of finitely additive measures µ : ℘(W ) → [0, 1].

A single-measure model is a multi-measure model in
which |P| = 1. If P = {µ}, we write M = 〈W,µ, V 〉.

Likelihood comparisons ϕ % ψ are now decided by a
unanimity rule over P as follows.



Definition 7 (Multi-measure semantics). Given a multi-
measure model M = 〈W,P , V 〉, state w ∈ W , and for-
mula ϕ ∈ L, we define M, w � ϕ with the usual clauses for
propositional variables and Boolean connectives, plus:

M, w � ϕ % ψ iff ∀µ ∈ P : µ(JϕKM) ≥ µ(JψKM)

where JϕKM = {w ∈ W | M, w � ϕ}.

The next two lemmas will be useful for our later results.
The first reduces formulas to a convenient form.

Lemma 1. In each of the semantics (multi-measure, in-
flationary function, inflationary injection) above, every for-
mula ϕ ∈ L is equivalent to a formula ψ of modal depth
≤ 1. Moreover, we may take ψ to be a disjunction in which
the length of each disjunct is O(|ϕ|).

Proof. Suppose md(ϕ) > 1, which implies there is an in-
equality α % β inside the scope of another inequality, where
md(α) = md(β) = 0. Define ϕ′ := ϕ′

1 ∨ ϕ
′
2 by

ϕ′ := (ϕ[⊤/α % β]∧α % β)∨ (ϕ[⊥/α % β]∧¬(α % β)).

For any model M with domain W , either Jα % βKM = W
or Jα % βKM = ∅, which implies that JϕKM = Jϕ′KM. The
number of inequalities in the scope of other inequalities in
ϕ′
i is less than that in ϕ, and the length of ϕ′

i is greater than
that of ϕ by a constant amount. Thus, repeating this process
on ϕ′

1 and ϕ′
2, we eventually obtain the desired ψ.

The next lemma bounds the number of measures we need.

Lemma 2. If there is a multi-measure model 〈W,P , V 〉 and
w ∈ W that satisfies ϕ, then there is a P0 ⊆ P whose size
is O(|ϕ|) such that w satisfies ϕ in 〈W,P0, V 〉.

Proof. By Lemma 1 and propositional logic, ϕ is equivalent
to a disjunction of conjunctions of the form

¬(ϕ1 % ψ1) ∧ · · · ∧ ¬(ϕn % ψn) ∧ ξ

where ξ is a conjunction of modal depth 0 formulas and
inequalities ϕ % ψ between such formulas. It suffices to
satisfy one of the disjuncts, and for this it suffices to have
one measure µi for each of the n negated inequalities. Let
P0 = {µ1, . . . , µn}. Since the satisfaction of the positive in-
equalities in ξ is preserved under discarding measures from
P , we have that ϕ is still satisfied by w in 〈W,P0, V 〉.

Logical Systems SP and IP

For logics of probability models, we first define the logic of
single-measure models. To do so, it will be helpful to intro-
duce some abbreviations from (Segerberg 1971; Gärdenfors
1975). Given formulasϕ1, . . . , ϕn, ψ1, . . . , ψn and 0 ≤ k ≤
n, define Ck to be the disjunction of all conjunctions

f1ϕ1 ∧ · · · ∧ fnϕn ∧ g1ψ1 ∧ · · · ∧ gnψn

where exactly k of the f ’s and k of the g’s are the empty
string, and the rest are ¬. Thus, Ck is true at a state w iff
exactly k of the ϕ’s and k of the ψ’s are true at w. Then let

(ϕ1, . . . , ϕn) ≡ (ψ1, . . . , ψn) := C0 ∨ · · · ∨ Cn,

which is true at a state w iff the number of ϕ’s true at w is
exactly the same as the number of ψ’s true at w.

Definition 8. The set of theorems of SP (the logic of sharp
probability) is the smallest set of formulas that contains all
tautologies of propositional logic, is closed under modus po-
nens and necessitation as in Definition 4, and contains all
instances of (I1), (I2), and the following for all n ∈ N:2

(A0) (ϕ % ψ) ∨ (ψ % ϕ)

(A1) ϕ % ⊥ (A2) ϕ % ϕ (A3) ¬(⊥ % ⊤)

(A4)
[
(ϕ1 % ψ1) ∧ · · · ∧ (ϕn % ψn) ∧

(ϕ1, . . . , ϕn, ϕ
′) ≡ (ψ1, . . . , ψn, ψ

′) % ⊤
]
→ (ψ′ % ϕ′).

It is easy to see that each axiom of SP is valid over single-
measure models. In the case of (A4), if the set of states in
M that make exactly the same number of formulas from
(ϕ1, . . . , ϕn, ϕ

′) true as from (ψ1, . . . , ψn, ψ
′) has measure

1, and µ(JϕiK
M) ≥ µ(JψiK

M) for 1 ≤ i ≤ n, then it is
impossible to have µ(Jϕ′KM) > µ(Jψ′KM). The soundness
of SP is thus straightforward, but the completeness of SP
is far less so. The completeness proof in (Segerberg 1971;
Gärdenfors 1975) uses a famous representation theorem of
(Kraft, Pratt, and Seidenberg 1959; Scott 1964).

Theorem 2 (Segerberg 1971, Gärdenfors 1975). SP is
sound and complete with respect to the class of single-
measure models.

As shown by van der Hoek (van der Hoek 1996), SP can
be given a simple semantics using what we will call distin-
guished state models M = (W,W+, V ) where (W,V ) is a
state space model and ∅ 6=W+ ⊆W . Then we define

M,w � ϕ % ψ iff |JϕKM | ≥ |JψKM |,

where JϕKM = {w ∈W+ |M,w � ϕ} and |·| is cardinality.

Theorem 3 (van der Hoek 1996). SP is sound and complete
with respect to the class of finite distinguished state models
with the cardinality semantics above.

The logic SP is not sound, however, with respect to
all multi-measure models, as axiom (A0) is clearly in-
valid; for one measure µ ∈ P we may have µ(JϕKM) >
µ(JψKM) while for another measure µ′ ∈ P we may have
µ′(JψKM) > µ′(JϕKM), in which case neither ϕ % ψ nor
ψ % ϕ is true in M according to Definition 7. Thus, for
multi-measure models we must drop the axiom (A0); but if
we only drop (A0) from SP, then the resulting logic will be
sound but not complete with respect to multi-measure mod-
els (Harrison-Trainor, Holliday, and Icard 2016b). We must
not only drop (A0) but also strengthen (A4) as follows.

Definition 9. The set of theorems of IP (the logic of impre-
cise probability) is defined in the same way as SP except
without axiom (A0) and with (A4) replaced by:

(A4’)
[
(ϕ1 % ψ1) ∧ · · · ∧ (ϕn % ψn) ∧

(ϕ1, . . . , ϕn, ϕ
′, . . . , ϕ′

︸ ︷︷ ︸

k times

) ≡ (ψ1, . . . , ψn, ψ
′, . . . , ψ′

︸ ︷︷ ︸

k times

) % ⊤
]

→ (ψ′ % ϕ′).

Again soundness is not difficult, while completeness re-
lies on a representation theorem in (Alon and Lehrer 2014).

Theorem 4 (Alon and Heifetz 2014). IP is sound and com-
plete with respect to the class of all multi-measure models.

2We use the labeling of axioms in (Alon and Heifetz 2014).



Main Result

Our main result is to prove that the logic one obtains from
finite preferential models with the inflationary injection se-
mantics is exactly the logic IP of imprecise probability that
one obtains from multi-measure models.

Theorem 5. IP is sound and complete with respect to the
class of finite preferential models with the inflationary in-
jection semantics. Moreover, it is complete with respect to
the class of finite preferential models in which � is a total
preorder on W� (i.e., for all w, v ∈W�, w � v or v � w).

We will first prove soundness in the next section and then
completeness in the following section.

Soundness of IP

In proving the soundness of IP, the main task is show that the
axiom (A4’) is valid according to the inflationary injection
semantics. To do so, we will use a result about inflation-
ary injections from (Harrison-Trainor, Holliday, and Icard
2016a). This result involves the following relation between
sequences of sets, which matches the relation expressed by
the second line in the display of axiom (A4’) above.

Definition 10. Let S be a finite set. For any two sequences
〈E1, . . . , Ek〉 and 〈F1, . . . , Fk〉 of events from P(S),

〈E1, . . . , Ek〉 =0 〈F1, . . . , Fk〉

if and only if for all s ∈ S, the cardinality of {i | s ∈ Ei} is
equal to the cardinality of {i | s ∈ Fi}.

If 〈E1, . . . , Ek〉 =0 〈F1, . . . , Fk〉, then we say that the
two sequences are balanced; every state appears the same
number of times on the left side as on the right side.

The following lemma is easily seen to follow from
Lemma 3.6 and the proof of Lemma 3.7 in (Harrison–
Trainor, Holliday, and Icard 2016a).

Lemma 3 (Harrison-Trainor, Holliday, and Icard 2016). Let
〈W,�〉 be a finite preorder. If

〈E1, . . . , En, A, . . . , A
︸ ︷︷ ︸

r times

〉 =0 〈F1, . . . , Fn, B, . . . , B
︸ ︷︷ ︸

r times

〉

are balanced sequences of subsets of W , and there is an in-
flationary injection fi : Fi → Ei for all i, then there is an
inflationary injection g : A→ B.

We will now prove our soundness theorem, using Lemma
3 to verify axiom (A4’).3

Theorem 6. IP is sound with respect to finite preferential
models according to the inflationary injection semantics.

Proof. Obviously all tautologies are valid, and the rules of
modus ponens and necessitation preserve validity. It only re-
mains to show that (A1)–(A3), (A4’), and (I1)–(I2) hold at
every state w in each preferential model M = 〈W,�, V 〉.

(A1) holds via the trivial injection ∅ → JϕKM. (A2)
holds via the identity injection JϕKM → JϕKM. (A3) holds
because there is no injection W → ∅.

3Lemma 3 and Theorem 6 hold more generally for models in
which there is no infinite sequence x0, x1, x2, . . . of distinct states
with xn+1 � xn (Harrison-Trainor, Holliday, and Icard 2016a).

For (A4’), given

M, w � (ϕ1 % ψ1) ∧ · · · ∧ (ϕn % ψn) ∧

(ϕ1, . . . , ϕn, ϕ
′, . . . , ϕ′

︸ ︷︷ ︸

k times

) ≡ (ψ1, . . . , ψn, ψ
′, . . . , ψ′

︸ ︷︷ ︸

k times

) % ⊤,

we have to show that M, w � ψ′ % ϕ′.
We have inflationary injections fi : JψiK

M → JϕiK
M.

There is also an inflationary injection

W →

J(ϕ1, . . . , ϕn, ϕ
′, . . . , ϕ′

︸ ︷︷ ︸

k times

) ≡ (ψ1, . . . , ψn, ψ
′, . . . , ψ′

︸ ︷︷ ︸

k times

)KM.

Since W is finite, it follows that

W =

J(ϕ1, . . . , ϕn, ϕ
′, . . . , ϕ′

︸ ︷︷ ︸

k times

) ≡ (ψ1, . . . , ψn, ψ
′, . . . , ψ′

︸ ︷︷ ︸

k times

)KM,

which implies

〈Jϕ1K
M, . . . , JϕnKM, Jϕ′KM, . . . , Jϕ′KM

︸ ︷︷ ︸

k times

〉

=0〈Jψ1K
M, . . . , JψnKM, Jψ′KM, . . . , Jψ′KM

︸ ︷︷ ︸

k times

〉.

Then by Lemma 3, there is an inflationary injection
Jϕ′KM → Jψ′KM, and so M, w � ψ′ % ϕ′.

For (I1), suppose that M, w′ � ϕ % ψ, say via an infla-
tionary injection f : JψKM → JϕKM. Then in fact, for all
w, M, w � ϕ % ψ via f . Hence Jϕ % ψKM = W , and so
M, w � (ϕ % ψ) % ⊤. For (I2), by a similar argument, if
M, w � ¬(ϕ % ψ), then for all w′, M, w′ � ¬(ϕ % ψ), so
that J¬(ϕ % ψ)KM =W , andM, w � ¬(ϕ % ψ) % ⊤.

Completeness of IP
Our method of proving completeness is to show that any fi-
nite multi-measure model can be transformed into a finite
preferential model that satisfies the same formulas according
to the inflationary injection semantics. We will then invoke
the completeness of IP with respect to finite multi-measure
models, as proved by (Alon and Heifetz 2014), to estab-
lish the completeness of IP with respect to finite preferential
models with the inflationary injection semantics.

We begin with a restatement of Lemma 3.2.2 in (van der
Hoek 1996).

Lemma 4. For any finite single-measure model M =
〈W,µ, V 〉, there is a distinguished state model M# =

〈W#,W#
+ , V

#〉 with W ⊆ W# such that for all w ∈ W
and ϕ ∈ L:

M, w � ϕ iff M#, w � ϕ.

The transformation first rationalizes the probability mea-
sure, then normalizes the measure so that it takes on only
integer values (but does not necessarily assign measure one
to the whole state space), and finally duplicates each point
in the state space that has nonzero measure with a number of

points equal to its measure, which become the points inW#
+ .

Using Lemma 4, we can transform multi-measure models
into preferential models as follows.



Lemma 5. For any multi-measure model M = 〈W,P , V 〉
withW and P finite andw ∈W , there is a finite preferential
model M and state v such that for all ϕ ∈ L:

M, w � ϕ iff M, v � ϕ.

Moreover, we may take � in M to be total on its field W�.

Proof. Where P = {µi}i∈I , define for each i ∈ I a single-
measure model Mi = 〈Wi, µi, Vi〉 where Wi = W × {i}
and Vi(p) = V (p) × {i}. By Lemma 4, for each Mi there

is a distinguished state modelM#
i = 〈W#

i ,W
#
i+, V

#
i 〉 with

Wi ⊆W#
i such that for all v ∈Wi and ϕ ∈ L:

Mi, v �µ ϕ iff M#
i , v � ϕ. (1)

Without loss of generality, assume that the domainsW#
i are

pairwise disjoint. Now define the preferential model M =
〈W ′,�, V ′〉 as follows:

(a) W ′ =
⋃

i∈I

W#
i ;

(b) V ′(p) =
⋃

i∈I

V #
i (p);

(c) w � v iff for some i ∈ I , we have w, v ∈ W#
i+.

First, note that for any formula ϕ of modal depth 0:

JϕKM =
⋃

i∈I

JϕKM
#

i . (2)

Next, we claim that for any i ∈ I and formula ϕ:

M, w � ϕ iff M, 〈w, i〉 � ϕ. (3)

By Lemma 1, it suffices to consider formulas of modal depth
≤ 1. The proof of (3) is by induction with obvious atomic
and Boolean cases. For the modal case, consider ϕ % ψ
where ϕ and ψ are of modal depth 0. If M, w � ϕ % ψ, then

for all i ∈ I , Mi, 〈w, i〉 � ϕ % ψ and hence M#
i , 〈w, i〉 �

ϕ % ψ by (1). Since M#
i , 〈w, i〉 � ϕ % ψ, there is an injec-

tion fi : JψKM
#

i → JϕKM
#

i . Then g =
⋃

i∈I

fi is an injection;

g is inflationary by (c) above; and g : JψKM → JϕKM by
(2). Thus, M, 〈w, i〉 � ϕ % ψ.

Conversely, if M, w 2 ϕ % ψ, then there is an i ∈ I

with Mi, 〈w, i〉 2 ϕ % ψ and hence M#
i , 〈w, i〉 2 ϕ % ψ

by (1). Thus, there is no injection fi : JψKM
#

i → JϕKM
#

i .
Now suppose for reductio that there is an inflationary injec-
tion g : JψKM → JϕKM. Given (c), that g is an inflationary

injection implies that g ↾ W#
i+ is an injection from JψKM

#

i

to JϕKM
#

i , contradicting the above. Thus, there is no such
inflationary injection g, so M, 〈w, i〉 2 ϕ % ψ.

Finally, we will show how to transform M into a model
Mt where �t is total onW t

�. Just as the domain of M is the

union of disjoint domains W#
i for i ∈ I , the domain of Mt

will be the union of disjoint domainsW t
i . Suppose the index

set I with which we began is I = {0, . . . ,m}. We define the
domains W t

i inductively as follows, for some d 6∈ W ′:

(d1) W t
0 =W#

0 × {d};

(d2) W t
n+1 =W#

n+1 × (
⋃

i≤n

W t
i ∪ {d});

(d3) W t =
⋃

i∈I

W t
i .

We multiply W#
0 by {d} so that every state in W t will be a

pair, the first coordinate of which is a state from W ′. Then
W t

1 is the result of making |W t
0 | + 1-many copies of each

state in W#
1 ; W t

2 is the result of making |W t
0 ∪ W t

1 | + 1-

many copies of each state in W#
2 ; and so on.

We define the valuation V t by

(e) V t(p) = {〈w, v〉 ∈W t | w ∈ V ′(p)},

so each copy of a state in Mt has the same propositional
valuation that the original state had in M.

Where W t
n+ = {〈w, v〉 ∈W t

n | w ∈W#
n+}, define

(f) x �t y iff for some k ≤ ℓ, x ∈W t
k+ and y ∈W t

ℓ+.

Then clearly �t is a total preorder on its field.
We claim that for any 〈w, v〉 ∈W t and ϕ ∈ L:

Mt, 〈w, v〉 � ϕ iff M, w � ϕ. (4)

The proof is by induction on ϕ with the atomic case given
by the definition of V t. The Boolean cases are also routine.

For the modal case, as before we may consider ϕ % ψ
whereϕ and ψ are of modal depth 0. If M, w � ϕ % ψ, then
in M there is a �-inflationary injection f : JψKM → JϕKM.
By the inductive hypothesis, we have

JψKM
t

= {〈x, z〉 ∈ W t | x ∈ JψKM} (5)

JϕKM
t

= {〈y, z〉 ∈ W t | y ∈ JϕKM}. (6)

Since f is �-inflationary, f(x) = y implies that x and y

belong to the same W#
i+ by (c) above. Thus, by (d1)-(d3),

we have that x and y get copied by the same elements in
W t: 〈x, z〉 ∈ W t iff 〈y, z〉 ∈ W t. Then given (5)-(6), it

follows that the function f t sending each 〈x, z〉 ∈ JψKM
t

to

〈f(x), z〉 ∈ JϕKM
t

is a �t-inflationary injection.
Now suppose M, w 2 ϕ % ψ, so there is no �-

inflationary injection from JψKM to JϕKM. By construction
of M, it follows that for some i ∈ I , there is no injection

from JψKM ∩W#
i to JϕKM ∩W#

i . Thus,

|JψKM ∩W#
i | > |JϕKM ∩W#

i |.

It follows by (d1)-(d3) and (5)-(6) that

|JψKM
t

∩W t
i | > |JϕKM

t

∩W t
i |+ |

⋃

j<i

W t
j |. (7)

Now by the definition of �t in (f), any �t-inflationary injec-

tion from JψKM
t

∩W t
i to JϕKM

t

must be an injection from

JψKM
t

∩W t
i to JϕKM

t

∩
⋃

j≤i

W t
j , but such an injection can-

not exist by (7). Thus, there is no �t-inflationary injection

from JψKM
t

to JϕKM
t

, so Mt, 〈w, v〉 2 ϕ % ψ.

Using Lemma 5, we now exploit the known completeness
result for multi-measure models to obtain the following.



Theorem 7. IP is complete with respect to finite preferential
models (with � total on W�) according to the inflationary
injection semantics.

Proof. If ϕ is not a theorem of IP, then by Theorem 2 of
(Alon and Heifetz 2014), there is a finite multi-measure
model that satisfies ¬ϕ. We may assume it has only finitely
many measures by Lemma 2. Thus, by Lemma 5, there is a
finite preferential model (with � total onW�) satisfying ¬ϕ
according to the inflationary injection semantics.

Complexity of IP

We now consider the problem of deciding whether a formula
is consistent in IP (a formula ϕ being consistent if ¬ϕ 6∈
IP). We will show that this problem is NP-complete. Our
strategy will be to show that if a formulaϕ is satisfiable, then
it is satisfiable in a multi-measure model of polynomially
bounded size, in which the measure of each state is a rational
number of polynomially bounded size. A similar argument
can be given using preferential models, but for the sake of
space we will use a known result for measure models.

In particular, we will use a result from (Fagin, Halpern,
and Megiddo 1990), where it was shown that the satisfiabil-
ity problem, for single-measure models, of a logic allowing
for rational comparisons of probability is NP-complete. The
language they considered is essentially an extension of the
formulas of our language of modal depth ≤ 1 to allow for
rational comparisons. Thus, the following is immediate from
Theorem 2.6 of (Fagin, Halpern, and Megiddo 1990).

Theorem 8. Suppose ϕ is a formula of modal depth ≤ 1
that is satisfied in some finite single-measure model. Then
ϕ is satisfied in a single-measure model 〈W,µ, V 〉 with
|W | ≤ |ϕ| and where the probability assigned to each state
is a rational number with size O(|ϕ| log |ϕ|).

By the size of a rational number, we mean a bound on the
binary representations of its numerator and denominator.

From Theorem 8, we obtain an analogous result for multi-
measure models using the strategy of Lemma 5.

Theorem 9. Suppose θ is a formula of any modal depth that
is satisfied in some finite multi-measure model. Then θ is
satisfied in a multi-measure model 〈W,P , V 〉 with |W | ≤
O(|θ|2), |P| ≤ O(|θ|), and where the probabilities assigned
to each state are rational numbers with size O(|θ| log |θ|).

Proof. Given a formula θ, applying Lemma 1 and putting
each disjunct in disjunctive normal form, as in Lemma 2 we
can rewrite θ as a disjunction of formulas

¬(ϕ1 % ψ1) ∧ · · · ∧ ¬(ϕn % ψn) ∧ ξ

of modal depth≤ 1, where ξ is a conjunction of modal depth
0 formulas and inequalities ϕ % ψ between modal depth 0
formulas. By Lemma 1, the length of each disjunct isO(|θ|).
Since θ is satisfiable iff one of the disjuncts is, it suffices to
show that if a disjunct ϕ is satisfiable then it is satisfiable in
a model of bounded size as in the statement of the theorem.

If the disjunct

ϕ := ¬(ϕ1 % ψ1) ∧ · · · ∧ ¬(ϕn % ψn) ∧ ξ

is satisfiable in a finite multi-measure model M =
〈W,P , V 〉 at a state w, then for each i ≤ n, there is
a measure µi such that µi(JϕiK

M) < µi(JψiK
M). Then

〈W,µi, V 〉, w � ¬(ϕi % ψi) ∧ ξ. So each formula ¬(ϕi %
ψi) ∧ ξ is satisfiable in a finite single-measure model. Thus,
by Theorem 8, each ¬(ϕi % ψi) ∧ ξ is satisfiable at wi

in a finite single-measure model M∗
i = 〈W ∗

i , µ
∗
i , V

∗
i 〉 with

at most O(|ϕ|) states and where the probability assigned to
each state is a rational number with size O(|ϕ| log |ϕ|).

Let W ∗ be the disjoint union of the W ∗
i . We can extend

each µ∗
i to all of W ∗ by having µ∗

i assign measure zero to
W ∗ −W ∗

i . Let P∗ be the set of the µ∗
i , and let V ∗ be the

valuation onW ∗ such that V ∗(p) is the union of the V ∗
i (p)’s.

Let M∗ = (W ∗,P∗, V ∗). Then for any w = wi,

M
∗, w � ¬(ϕ1 % ψ1) ∧ · · · ∧ ¬(ϕn % ψn) ∧ ξ.

As |W ∗| ≤ O(|ϕ|2) and |P∗| ≤ O(|ϕ|), we are done.

From Theorem 9, the complexity result easily follows.

Theorem 10. The problem of deciding whether a formula
is consistent in the logic IP is NP-complete.

Proof. The problem is clearly NP-hard, as it generalizes the
satisfiability problem for propositional logic. It is not hard
to see that it is in NP; a certificate which witnesses that a
formula θ is satisfiable is the small model from Theorem 9,
which is of polynomially bounded size in |θ|; and we can
check in polynomial time that θ is true in this model.

Discussion

As we have shown, the preferential approach to reasoning
about relative likelihood is quite compatible with a proba-
bilistic approach. Beginning with a preorder on states, we
can reason about event comparisons in a way that coheres
perfectly with quantitative probabilistic reasoning.

These results are of interest not only for the field of rep-
resentation and reasoning within AI, but also in other do-
mains such as theoretical linguistics. In the area of natural
language semantics, for example, what we have called the
inflationary function semantics was independently proposed
as a model of epistemic comparatives, e.g., “at least as likely
as” in English (Kratzer 1991). While this is evidently the
dominant approach in the field, several authors have argued
that the validity of principle (L4) disqualifies it as a model of
ordinary speakers’ intuitions about relative likelihood. The
specific question has been raised as to whether there is an
alternative lifting operation—that is, a different preferential
approach—whose logic fits better with ordinary intuitions
(Yalcin 2010). Insofar as IP, the logic of sets of measures,
matches intuitions, our results answer this question.

More generally, the present work can be seen as part
of a broader project to explore possible ways of unify-
ing logical and probabilistic approaches to AI (Russell
2015). In addition to combining logical and probabilis-
tic tools, another important strand of this project is to
clarify when well-understood qualitative tools—such as
preferential structures—and familiar forms of probabilistic
reasoning—such as reasoning about sets of measures—can
already be seen as two sides of the same logical coin.
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de Finetti, B. 1937. La prévision: ses lois logiques, ses
sources subjectives. Annales de l’Institut Henri Poincaré
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