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Abstract 

 

Infant mortality is an important population health statistic that is often used to make health policy decisions. 

For a small population, an infant mortality rate is subject to high levels of uncertainty and may not indicate 

the “underlying” mortality regime affecting the population.  This situation leads some agencies to either 

not report infant mortality for these populations or report infant mortality aggregated over space, time or 

both.  A method is presented for estimating “underlying” infant mortality rates that reflect the intrinsic 

mortality regimes of small populations. The method is described and illustrated in a case study by estimating 

IMRs for the 15 counties in California where zero infant deaths are reported at the county level for the 

period 2009-2011. We know that among these 15 counties there are 50 infant deaths reported at the state 

level but not for the counties in which they occurred. The method’s validity is tested using a synthetic 

population in the form of a simulated data set generated from a model life table infant mortality rate, 

representing Level 23 of the West Family Model Life Table for both sexes. The test indicates that the 

method is capable of producing estimates that represent underlying rates. In this regard, the method 

described here may assist in the generation of information about the health status of small populations. 
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Introduction   

 

The infant mortality rate (IMR) is widely used. It is an indicator that can measure the risk of infant death 

and the availability/quality of health care services, poverty levels, and socio-economic status differentials 

(Hummer, 2005; Kitagawa and Hauser, 1973; Link and Phelan, 1995; Stockwell, Goza and Balisteri, 2005; 

Stockwell et al., 1987).1 

 

Because statistical data are often used to guide health policy decisions, it is not surprising that the IMR also 

is used in this regard (Chen, Oster, and Williams, 2016; Kleinman, 1996; Misra et al., 2004; Stockwell et 

al., 1987).  Moreover, as observed by VanEenwyk and Macdonald (2012), questions concerning health 

outcomes and related health behaviors and environmental factors often are studied within small subgroups 

of a population because many activities to improve health affect relatively small populations. Fortunately, 

the advent of geographic information systems and high volume, fast computer-based information systems 

– often involving the matching of records from different sources – means that this type of information is 

technically feasible. However, the demand for this information along with the technical feasibility of 

obtaining it is not always compatible with the need to preserve data confidentiality. This means that even 

when it is possible to provide data for a small population, it is not always the case that they are, in fact, 

provided, something not often encountered when dealing with large populations (Office for National 

Statistics, 2015).  The Centers for Disease Control, for example, does not present or publish death or birth 

counts of nine or fewer or rates based on counts of nine or fewer (in figures, graphs, maps, table, etc.) at 

the subnational level (US National Center for Health Statistics, no date).   

 

Data representing small populations are not only subject to limitations posed by confidentiality concerns, 

they are also subject to higher levels of uncertainty than those typically found in larger populations (Reeske 

and Razum, 2011; Swanson and Tayman, 2012: 216).2 Along with confidentiality concerns, awareness of 

the effect of uncertainty on infant mortality and other rates associated with small populations leads to 

strategies aimed at limiting this source of variability. A typical strategy for dealing with the combination of 

these two issues is to aggregate data for small populations and generate what amounts to an arithmetic 

average from them.3 Another strategy is to gain permission to access individual level records, match them 

and then construct statistics (Kinge and Kornstad, 2014). However, unlike the strategy of aggregation, this 

approach inevitably requires administrative approval and requires both a substantial amount of time and 

personnel costs to implement.   

 

As a means of directly examining the issue of uncertainty (and indirectly the issue of confidentiality 

limitations) associated with data representing small populations, two empirical examples are used, one for 

an area with a large population and the other for an area with a small population. The large population 

example is based on the reported 2015 IMR for the State of Washington and the small population example 

is based on the 2015 IMR for Asotin County, which is one of the smallest counties in the State of 

Washington that reported at least one infant death in 2015. The estimated 2015 population for the State as 

a whole is 7,061,410 (Washington State Office of Financial Management, 2017: Table 3), with 89,000 live 

resident births (Washington Department of Health, 2016a) and 431 resident infant deaths reported, 

respectively, for 2015 (Washington Department of Health, 2016b).  For Asotin County, the estimated 2015 

population is 22,010 (Washington State Office of Financial Management, 2017: Table 3), with 228 live 

resident births (Washington Department of Health, 2016a) and three resident infant deaths reported, 
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respectively, for 2015 (Washington Department of Health, 2016b).  Given these data, the 2015 IMR for the 

State as a whole is 4.8427 per 1,000 live resident births, while for Asotin County, it is 13.1579 per 1,000 

live resident births. Note the striking difference, which leads to the question: Is the IMR for Asotin County 

really almost three times higher than that for the State as a whole or is it the result of uncertainty acting on 

a small population?  

 

To answer this question, we start with work by Voss et al. (1995) and Swanson and Tayman (2012: 189-

190) who viewed the crude death rate of a given area i at a given time t as the marginal probability of death 

for the area’s inhabitants. Using this framework with infant deaths, we find the distribution of infant deaths 

in a given area i at a given time t is (approximately) binomial, with parameter d, where  

 

di,t = Di,t/Bi,t                [1] 

where 

i = area (i = 1 to n) 

t = time 

D = infant deaths 

B = births 

 

As this example progresses it will show the effect of the uncertainty in d (IMR) by using it in conjunction 

with the reported number of infant deaths in order to (hypothetically) estimate the number of births for the 

population in question. It is not the actual intent that we are proposing that IMR be used for this purpose; 

rather, the example is used to show the effect of uncertainty on small populations. To do this, we start by 

using statistical concepts discussed by Swanson and Tayman (2012: 29-42) to show that Equation [1] can 

be re-written so that the expected number of births at a given time t in area i is: 

 

E[Bi,t] = Di,t / di,t         [2] 

 

The preceding equation leads to defining the variance of Bi,t: 

    

 V[Bi,t] = [Di,t (1– di,t) / di,t]2        [3] 

 

Finally, the coefficient of variation (CV) for Bit is defined as 

 

 CV[Bi,t] = [(1– di,t) / Di,t]0.5                    [4] 

 

Keep in mind that: (1) we view B as subject to uncertainty while D is not; and (2) because d = D/B it also 

is subject to the uncertainty associated with B.  

 

As can be seen in Equation [4], the CV is defined as the ratio of the standard deviation to the mean. It is 

most useful for variables that are always positive, which is the case in the discussion here.  In the case of 

IMR, as the number of births decreases, the size of the CV increases and a large CV indicates that 

uncertainty is large.  
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Using equation [4], we find for Washington as a whole that the coefficient of variation for the estimated 

number of births (using infant deaths and the infant death rate as estimators of the number of births, as 

shown in the following equation) is 0.04806 = [(1-0.00484)/(431)]0.5; for Asotin County, the coefficient of 

variation using its infant deaths and infant death rate as estimators is  0.57354 = [(1-0.01316)/(3)]0.5.  The 

CV for Asotin County is nearly 12 times the size of the CV for the State as a whole, 11.93 = 

0.57354/0.04806.  Thus, we expect that over time, the relationship between the number of infant deaths and 

the number of births for the state of Washington as a whole is far more stable than the case for Asotin 

County. Put another way, the IMR for the State of Washington will be much more stable over time than the 

IMR for Asotin County, providing a much clearer view of the “underlying” IMR for the State than can be 

expected for Asotin County. 

 

The difference in the CVs for the State of Washington and Asotin County illustrates the potential 

‘instability’ inherent in small populations, which implies that reported IMRs for small populations can vary 

dramatically over time even though there is no substantive change in their respective “underlying” infant 

mortality rates.  Awareness of this situation has led to two general approaches for dealing with the effect of 

uncertainty on IMRs for small populations. One approach is “non-reporting,” which is to simply not report 

IMRs for small populations, as is the case with the Centers for Disease Control (US National Center for 

Health Statistics, no date). Unfortunately, this approach discards related information (e.g., reported births) 

that may be of use in estimating IMRs for small populations – a point to which we return later. Another 

general approach is to provide an estimate by embedding small population information within a “larger 

context,” which takes us back to the “aggregation strategy” discussed earlier. This approach is used by, 

among other agencies, the US National Center for Health Statistics (2018), for which the “larger context” 

is defined both in terms of time and space. In terms of time, the NCHS data on infant mortality rates by 

county are aggregated for the period 2007-2015 and in terms of space, counties with small populations are 

aggregated.  

 

One drawback to both approaches is that they typically yield simple arithmetic averages and neither is 

specific to the time and county of interest.  Related to this issue is the fact that these averages are biased 

unless appropriate weights or other procedures are used to reduce bias (Voss et al., 1995), steps that may 

not be feasible in a given situation.  Another “contextual” approach that we refer to as the “representational 

approach,” is taken in this paper. It uses a beta-binomial model, which, unlike the “non-reporting” approach, 

has the potential to provide estimates of the IMRs underlying small populations, while also avoiding the 

drawbacks found in the aggregated approach.4  Another benefit of this approach is that it is a statistical 

estimator and, as such, is not in conflict with confidentiality issues. To this end, a publication by Link and 

Hahn (1996) was used as a guide in generating the approach described, tested, and applied here.  

 

California is used as a case study because infant mortality rates reported as zero were found in 15 of its 58 

counties for 2009-11, a period over which the California Health & Human Services Agency (no date) 

aggregated infant deaths and births in order to develop IMRs.5 
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Exhibit 1.  Map of California by County 

 
Source: Geology.com (no date): https://geology.com/county-map/california.shtml  

 

 

 

 

 

https://geology.com/county-map/california.shtml
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Method and data    

 

Method 

The method employed here is aimed at generating an estimate of the underlying IMR specific to a given 

small population for which the reported number of infant deaths is zero (or where the number is not reported 

due to confidentiality issues).  As noted earlier, the method employs a distribution of IMRs taken from a 

“representational context” from which the two parameters of a “beta model” fitted to a binomial distribution 

made up IMRs (where the IMR is divided by 1,000) are used to develop an IMR estimate for a small 

population in conjunction with its reported births.6 Even where it is the case that the population is so small 

that neither infant deaths nor births are reported, the two parameters may be used to develop an estimate of 

the underlying IMR. However, in such a case, the underlying estimated IMR is an “average” based on the 

parameters generated by fitting a beta model to a distribution of IMRs selected as representative of the 

small population(s) of interest.  We now turn to a more formal definition. 

 

Infant mortality rates measure the proportion of births that result in deaths during the first year of life.  As 

such, they measure the relationship between events (deaths) and trials (births) with the distribution of infant 

deaths in a given area i at a given time t is (approximately) binomial, with parameter d, where, as shown in 

Equation [1] and is typically described as a beta-binomial random process with a probability mass function 

defined by two parameters:  α and β. The first parameter, α, can be interpreted as the count of the event of 

interest, which in our case is the number of infant deaths, the number of births in which the infant dies 

before achieving the first year of life. The second parameter, β, can be interpreted as the count of “non-

events,” which in this paper is the number of children born who survive to reach one year of age.  Note that 

“rate” = α/(α + β), which in this paper is equivalent to” infant mortality rate” = infant deaths/(infant deaths 

+ survivors to age 1), which reduces to infant deaths/births. Thus, parameter α is the numerator in the 

expression defining a rate, and when added together, the parameters α and β represent the denominator. 

Together, the IMR may be re-expressed the IMR as the compound distribution of α and β captured in the 

beta-binomial probability model:   

 

IMR = α/(α + β) = infant deaths/(infant deaths + infant survivors)               [5] 

  

Since the IMR may be conceptualized directly using the beta-binomial model, IMRs may be thought of as 

stochastic processes that occur within each county while also contributing to higher-level meta-populations 

within which they are nested (Karlin and Taylor, 1993;  Graham and Talay, 2013).   

 

A potential number of strategies exist for dealing with small sample size dynamics or confidentiality 

suppression in making estimates of infant mortality rates. First, one might simply use the national IMR in 

place of highly uncertain localized estimates of IMR.   This would stabilize estimates for IMR on the local 

level, but at the expense of potentially masking heterogeneity in IMRs across geographic units.   For 

purposes of capturing spatial patterns in IMR, a main priority in smaller-level analyses, this solution is less 

acceptable.  A second alternative might be to make local adjustments based on judgment.  While this may 

improve estimates overall, especially when judgments are made by applied demographers with significant 

experience, this approach is subject to the criticism that non-standard methods are applied across different 

geographies and/or population groupings. With resource allocation decisions often tied to demographic 

estimates, this solution may not be satisfactory either.  An ideal approach would be to utilize a principled 
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method for adjusting local estimates of IMR. Simple model averaging, based on the beta-binomial model 

represents a viable approach for achieving this goal.  

 

Because it has been established that the IMR constitutes a beta-binomial probability process, think of two 

estimates of this process as constituting samples of the mean and variance of the underlying process.  

Therefore, these can be considered as samples obtained from the same underlying mortality process and in 

averaging them it can be anticipated that a superior estimate of the mean proportion is obtained (Gardiner, 

1983; Graham and Talay, 2013; Karlin and Taylor, 1993).  As such, the averages of two estimates based 

on the model may also be averaged as:  

  

   IMRaveraged = (α1 + α2)/ ((α1 + β1) + (α2 + β2))       [6]  

 

where the subscripts (1,2) now represent estimates of death and survivorship counts for two groups.  This 

method can, of course, be extended to k groups as desired. Such model averaging yields an estimate where 

a larger-scale and representationally-appropriate model IMR is leveraged to make smaller-scale estimates 

more precise in a manner similar to that observed in the literature on indirect estimation in demography 

(Brass, 1968; Moultrie et al., 2013; Siegel and Swanson 2004; UN, 1967).  Recent attempts to extend 

indirect estimation based on stochastic process theory have been introduced (Baker et al., 2011), and here 

this idea is leveraged further in developing indirect estimates of IMR based on model averaging.  

 

Before turning to a discussion of the data, it is appropriate here to discuss in some detail the averaging 

process just described.  Because an IMR is typically expressed per 1,000 births, it can be turned into a 

binomial variable by dividing it by 1,000 (or more generally if IMR is expressed as infant deaths per k 

births, it would be divided by k). In this form, IMR is strictly bound in that it cannot be less than zero nor 

greater than (0 ≤ IMR ≤ 1).  In practice, it is substantially less than one. Once in this form, a beta model 

(binomial) can be fitted to a distribution of IMRs, which when fitted, produces two estimated parameters, 

α and β. The first parameter, α, can be interpreted as the number of births in which the infant dies before 

achieving the first year of life. The second parameter, β, can be interpreted as the number of children born 

who survive to reach one year of age.  Note that “rate” = α/(α + β), which in our case is equivalent to” infant 

mortality rate” = infant deaths/(infant deaths + survivors to age 1), which reduces to infant deaths/births. 

Thus, parameter α is the numerator in the expression defining a rate, and when added together, the 

parameters α and β represent the denominator. 

 

The two parameters estimated by fitting the beta model to a distribution of IMRs are then used to adjust the 

reported infant deaths (a) and survivors (b) for the population in question, even when either one or both is 

equal to zero. The adjustment is straightforward:  adjusted IMR = (a + α)/ ((a + b) + (α + β)). Note, as stated 

earlier that if a = zero then the adjusted IMR = α/( b + α + β) and that if both a and b are zero, then the 

adjusted IMR = α/(α + β). 

 

Once in this form, we can fit a beta-binomial model to a distribution of IMRs, which when fitted, produces 

two estimated parameters, α and β, as discussed earlier. Note that “rate” = α/(α + β), which in our case is 

equivalent to” infant mortality rate” = infant deaths/(infant deaths + survivors to age 1), which reduces to 

infant deaths/births. Thus, parameter α is the numerator in the expression defining a rate, and when added 

together, the parameters α and β represent the denominator.  
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As an example of this process, consider again our earlier examples of the State of Washington and Asotin 

County, where IMR = 0.00484 and 0.01316, respectively. A beta-binomial model was fitted to IMRs 

representing the 31 of 39 counties of the State of Washington for which an IMR > 0.00 was reported in 

2015. Although we discuss the data and the beta-binomial process for the California counties in the Results 

section, we discuss neither in terms of the estimates for our Washington example. Here, we simply note 

that for Washington, the beta-binomial process yielded the following values for the model’s two parameters: 

α = 3.5897, and β = 523.105. Applying these parameters to the infant deaths and births reported in 2015 for 

Washington as a whole yields an adjusted IMR = .00483 = (431 + 3.5897)/((431 + 89,000) + (3.5897 + 

523.105)); applying them to Asotin County yields an adjusted IMR =  0.00870   =   (3 + 3.5897)/((3 + 228) 

+ (3.5897 + 523.105)). Note that the adjusted IMR (0.00483) for the State as a whole is virtually the same 

as the reported IMR (0.00484). This is consistent with the argument that this large population is not 

substantially affected by uncertainty and, as such, its reported IMR represents the state’s underlying IMR. 

However, the adjusted IMR (0.00870) for Asotin County is substantially less than the reported IMR 

(0.01316), which also is consistent with the argument that this small population is affected by uncertainty. 

As such, the adjusted IMR for Asotin County is likely to be closer to the county’s “underlying” IMR than 

is the reported IRM because it is the result of a process that smoothed out some of the uncertainty. 

 

Data 

As noted earlier, the IMR data for California’s counties representing the period 2009-2011 are taken from 

the open data portal provided by the California Health and Human Services Agency (no date, see endnote 

3 for details).  For the “representative” set of IMRs, the IMRs for the 43 counties reporting IMRs are used. 

Table 1 shows the IMRs, births, and deaths, for all of the 58 counties, including the 15 where neither infant 

deaths nor IMRs are reported. Note that the mean IMR across all 58 counties is 0.00376, the standard 

deviation, 0.00247, and the CV (coefficient of variation), 0.66. The highest IMR is 0.008023 (Tehama 

County) and the lowest non-zero IMR is 0.00285 (San Mateo County). This range and the CV strongly 

suggest that the IMR is not constant across counties.  As such, we use the beta-binomial model, which, as 

discussed earlier, is designed to deal with binomial variables that exhibit variation across cases.  

 

Here, it also is important to note that the sum of number of infant deaths is 7,448 across the 58 counties 

shown in Table 1 is 50 less than that reported for the State as a whole. These represent the cases where the 

state reported zero deaths instead of the recorded number in order to preserve confidentiality at the county 

level. When these 50 infant deaths are included, the state’s IMR increases from 0.00484 to 0.00487. 
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    Table 1. Infant Deaths, Births & IMRs by County, California, 2009-11 

 
                   Source: California Department of Public Health (see endnote 5) 

 

Results  

 

The beta binomial model procedure found within the “survival/reliability” module of the NCSS statistical 

analysis package (release 8) was used to obtain the two beta model parameters using the infant mortality 

rates for the 43 counties for which IMRs were reported (see Table 1).  The major results of interest found 

COUNTY INFANT DEATHS BIRTHS IMR

Alameda 263 58,637 0.00449

Alpine 0 14 0.00000

Amador 0 837 0.00000

Butte 36 7,286 0.00494

Calaveras 0 1,010 0.00000

Colusa 0 1,001 0.00000

Contra Costa 185 37,095 0.00499

Del Norte 0 1,042 0.00000

El Dorado 17 4,969 0.00342

Fresno 339 48,714 0.00696

Glenn 0 1,250 0.00000

Humboldt 26 4,552 0.00571

Imperial 42 9,294 0.00452

Inyo 0 644 0.00000

Kern 268 43,537 0.00616

Kings 46 7,716 0.00596

Lake 16 2,166 0.00739

Lassen 0 947 0.00000

Los Angeles 1,969 403,343 0.00488

Madera 44 7,227 0.00609

Marin 22 7,253 0.00303

Mariposa 0 432 0.00000

Mendocino 22 3,227 0.00682

Merced 68 12,937 0.00526

Modoc 0 291 0.00000

Mono 0 446 0.00000

Monterey 95 20,649 0.00460

Napa 24 4,750 0.00505

Nevada 13 2,314 0.00562

Orange 469 116,786 0.00402

Placer 49 11,463 0.00427

Plumas 0 489 0.00000

Riverside 469 92,899 0.00505

Sacramento 329 60,493 0.00544

San Benito 13 2,259 0.00575

San Bernardino 609 93,937 0.00648

San Diego 586 133,462 0.00439

San Francisco 82 26,422 0.00310

San Joaquin 192 31,793 0.00604

San Luis Obispo 42 7,983 0.00526

San Mateo 79 27,696 0.00285

Santa Barbara 80 17,666 0.00453

Santa Clara 242 72,795 0.00332

Santa Cruz 29 9,723 0.00298

Shasta 39 6,229 0.00626

Sierra 0 67 0.00000

Siskiyou 10 1,383 0.00723

Solano 86 15,598 0.00551

Sonoma 77 16,231 0.00474

Stanislaus 125 23,486 0.00532

Sutter 19 4,119 0.00461

Tehama 19 2,310 0.00823

Trinity 0 348 0.00000

Tulare 123 24,488 0.00502

Tuolumne 0 1,342 0.00000

Ventura 148 33,160 0.00446

Yolo 22 7,252 0.00303

Yuba 15 3,751 0.00400
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in running this procedure with the data are found as Exhibit 2.  Note that there two different estimates of 

the parameters, α and β, presented in the exhibit, one accomplished by the method of moments and the other 

by Maximum Likelihood Estimation. The parameters of the latter are used here, namely:  α = 15.48574, 

and β = 3042.145. 

 

 

Exhibit 2. Report of the Fit of the Beta Model to 43 California Counties Reporting                              

1 or More Infant Deaths 

  

 

Dataset ...\CA IMR MORE THAN ZERO BY COUNTY 200911.NCSS 
Variable IMR 
 
Parameter Estimation Section 
 Method of Maximum MLE MLE MLE 
 Moments Likelihood Standard 95% Lower 95% Upper 
Parameter Estimate Estimate Error Conf. Limit Conf. Limit 
Minimum (A) 0 0 
Maximum (B) 1 1 
α 15.70821 15.48574 3.304395 9.009242 21.96223 
β 3085.83 3042.145 659.7058 1749.145 4335.145 
 
 

 

 

Table 2 shows both the IMRs shown in Table 1 for the 43 counties reporting them and the estimated 2015 

underlying IMRs for the 15 counties (identified by the yellow background). Note that if estimates are 

calculated by hand they may not exactly match those shown in Table 2 because of precision levels and 

rounding algorithms.  The estimated underlying IMRs are found by using the two beta parameters in 

conjunction with reported 2015 infant deaths (zero in each case) and reported births by county using the 

formulas described earlier in the examples for the State of Washington and Asotin County.  We note that  
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Table 2. Estimates of Underlying IMR by County  

   

COUNTY

2009-11                          

IMR

Alameda 0.00449

Alpine 0.00500

Amador 0.00400

Butte 0.00494

Calaveras 0.00380

Colusa 0.00380

Contra Costa 0.00499

Del Norte 0.00380

El Dorado 0.00342

Fresno 0.00696

Glenn 0.00360

Humboldt 0.00571

Imperial 0.00452

Inyo 0.00420

Kern 0.00616

Kings 0.00596

Lake 0.00739

Lassen 0.00390

Los Angeles 0.00488

Madera 0.00609

Marin 0.00303

Mariposa 0.00440

Mendocino 0.00682

Merced 0.00526

Modoc 0.00460

Mono 0.00440

Monterey 0.00460

Napa 0.00505

Nevada 0.00562

Orange 0.00402

Placer 0.00427

Plumas 0.00460

Riverside 0.00505

Sacramento 0.00544

San Benito 0.00575

San Bernardino 0.00648

San Diego 0.00439

San Francisco 0.00310

San Joaquin 0.00604

San Luis Obispo 0.00526

San Mateo 0.00285

Santa Barbara 0.00453

Santa Clara 0.00332

Santa Cruz 0.00298

Shasta 0.00626

Sierra 0.00500

Siskiyou 0.00723

Solano 0.00551

Sonoma 0.00474

Stanislaus 0.00532

Sutter 0.00461

Tehama 0.00823

Trinity 0.00450

Tulare 0.00502

Tuolumne 0.00350

Ventura 0.00446

Yolo 0.00303

Yuba 0.00400
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by multiplying the IMR by the number of births, an estimate of the number of infant deaths by county is 

found.  These estimated infant deaths sum to 7,489, which is one less than that reported for the state as a 

whole. This shows that the beta-binomial process is not only dealing with uncertainty but also with the 50 

infant deaths that are not reported by county (Table 1).  As such, the IMR for the State as a whole as 

estimated by the beta-binomial process is 0.00487, which is virtually identical to that reported for the 

State as whole (California Health and Human Services Agency, no date). 

 

Discussion of results  

 

The estimated IMRs for the 15 counties reporting zero infant deaths range from a low of 0.00350  

(Tuolomne)  to a high of 0.00500 (Sierra)  which is less than the range found for the 43 counties reporting 

one or more infant deaths, which is from a low IMR of 0.00285 (San Mateo)  to a high of 0.00823 (Tehama 

County). This suggests that the process used to create the estimated IMRs may, in fact, represent the IMRs 

underlying these counties in that the estimates do not display a high level of variation, which would reflect 

a high level of uncertainty. The results also suggest that the process also deals with the 50 infant deaths that 

are suppressed at the county level. These results represent what the method is intended to do.7  

 

As discussed in Endnote 2, we use the “superpopulation” concept as a means of interpreting what the 

method does. Thus, we view the 15 “small population” counties for which no infant deaths are reported as 

being subject to the high levels of uncertainty associated with small samples.  The actual “sample” IMRs 

for these counties are suppressed by the fact that the State of California reports zero infant deaths for each 

of them because of confidentiality and related concerns. However, we know from the state total that there 

are 50 infant deaths spread among these 15 counties.  In using the beta-binomial process to estimate IMRs 

for these 15 counties, we are attempting to estimate the “underlying” IMRs associated with the 15 county 

“superpopulations” from which, respectively, 15 “samples” were taken (and for which the sample IMRs 

are known by the State of California), but for which zero infant deaths were reported, even for those for 

which the sample IMRs were not zero. Our estimation attempt may not provide the exact IMR underlying 

each of these 15 counties, but we do know that it generates 50 infant deaths among them, reproducing the 

number that was suppressed by the State of California.  

 

  

Validity test  

 

Because we argue that the method is producing a revised IMR that is likely to be close to the underlying 

IMR for a small population and therefore reflective of its intrinsic mortality regime, one would expect the 

method to do this where one could observe the intrinsic mortality regime. Model stable populations afford 

this opportunity because they have known intrinsic mortality regimes, the model life tables associated with 

a given set of model stable populations. To examine how the method works in this environment, we 

employed the IMR associated with a model stable population found in Manual IV, Methods of Estimating 

Basic Demographic Measures from Incomplete Data (United Nations, 1967). For this purpose, we selected 

the infant mortality rate associated with West Level 23 for both sexes (United Nations, 1967: Table 1.2, 

p.93), which shows that of 100,000 births, 98,166 are expected to reach the first birthday. This yields an 

IMR of 0.0184 = 1 -.98166.  
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Using the IMR of 0.0184 and a seed population of 100,000, we generated a random sample of 5,000 IMRs 

using the beta model simulation provided by the NCSS statistical system (release 8). The sample is 

sufficiently large to allow the simulation program the opportunity to generate outliers, which it did. As can 

be seen in Exhibit 3, the mean is 0.01838 with a standard deviation of 0.000423 and a coefficient of variation 

equal to 0.02305. The minimum IMR is 0.016849 and the maximum is 0.020147.   

 

Exhibit 3.  Descriptive Statistics for the 5,000 Simulated IMR observations 

  
 Descriptive Statistics of Simulated Data 
 
Statistic Value Statistic Value 
Mean 0.01838248 Minimum 0.01684878 
Standard Deviation 0.0004237251 1st Percentile 0.01744547 
Skewness 0.07195781 5th Percentile 0.01769227 
Kurtosis 2.934381 10th Percentile 0.0178332 
Coefficient of Variation 0.02305049 25th Percentile 0.01808544 
Count 5000 Median 0.01838394 
  75th Percentile 0.01866444 
  90th Percentile 0.0189272 
  95th Percentile 0.01908542 
  99th Percentile 0.01937772 
  Maximum 0.02014658 

 

 
 

From the 5,000 randomly generated observations, we extracted two sets of data.  For the first set, we 

extracted the initial 43 IMR randomly generated observations from the simulation. For the second, we rank-

ordered the 5,000 observations: from high to low and then from low to high, and extracted the eight highest 

IMR and seven lowest IMRs, respectively from them. The idea is that the entire set represents a synthetic 

population with 58 observations while the set of 43 simulated IMRs represents the subset of “large 

populations” in the synthetic population for which IMRs are reported, and the set of 15 simulated IMRs 

represents a subset of “small populations” in the synthetic population, which is subject to a high level of 

uncertainty. The 43 observations are expected to be closer, on average, to the “underlying” IMR of 0.01838 

and have variation, respectively, than that found in the 15 observations.   

 

For the set of 43 observations, the mean IMR is 0.01834 and the coefficient of variation is .02305. For the 

set of 15 observations, the mean IMR is .01855 and the coefficient of variation is .07692. Thus, the set of 
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43 “large population” observations has a mean and a coefficient of variation closer to the mean and 

coefficient of variation found in the full set of 5,000 observations than does the set of 15 observations.  

 

To the set of 43 observations, a beta model was fit and its parameters were used to revise the IMRs in the 

set of 15 observations. The expectation is that the revised IMRs will yield a mean IMR closer to that found 

for the full 5,000 set of simulated observations and that the variation among these revised means will 

decline, yielding a smaller coefficient of observation.  

 

The results show that the beta model moved the initial IMR estimates for the 15 observations closer to the 

underlying IMR. As such, they are more reflective of the West Level 23 mortality regime that is intrinsic 

to them: the mean of the original IMRs for the 88 observations is 0.01855 while the mean for the revised 

IMRs is 0.01839, which is closer to the underlying IMR of 0.01838.  In terms of variation, the coefficient 

of variation for the initial set of 14 IMRs is 0.07692, while that for the revised set is 0.00338. These results 

support our argument that the method we describe in this paper is capable of moving IMRs subject to 

uncertainty closer to the underlying IMRs.8  

 

Concluding remarks  

 

Because of the “representational context” selection, the estimates are subject to judgment. However, even 

still the entire process is transparent, which means that the results are not subject to arbitrary and capricious 

judgments that render them difficult to replication.  Keep in mind that with a different “representational 

context,” one will have a different model and different IMR estimates. However, as the validity test 

indicates, a different model, can be expected to move, on average, the IMRs for the California counties 

closer to their underlying IMRs, better reflecting their “underlying IMRs.” This argument can be 

generalized to other potential data sets that could be used to build different beta-binomial models. This 

feature of the beta-binomial approach suggests that while a model built from a given “representational” 

data set may move the estimated IMRs closer, on average, to their underlying values, than a model built 

from a different “representational” data set, even a less than optimal model should provide reasonable 

estimates. This and the evidential support provided by the validity test that, in fact, our method is capable 

of producing estimates of underlying IMRs, suggests that the method is not only capable of generating 

reasonable IMR estimates in the absence of reported infant deaths, but that these are valid in terms of the 

“underlying” mortality regimes affecting small populations and also as a means of compensating for the 

situation of suppression, namely that infant deaths may be reported as  zero to preserve confidentiality for 

a given county when in fact infant deaths have occurred. Because these estimates can be efficiently 

generated by the process described here also suggests that they have the potential to support policy decisions 

while keeping time and resource requirements low, characteristics that Swanson and Tayman (2012: 304) 

suggest are important components in deciding what methods to use in developing estimates.   

 

While the beta-binomial model has been used in medical research (Kim and Lee, 2013; Arostegui, Nuṅez-

Antón, and Quintana, 2007; and Young-Xu and Chan, 2006), consumer studies (Chatfield and Goodhardt, 

1970), bioinfomatics (Pham et al., 2010) and public health research (Alanko and Lemmons, 1996; Gakidou 

and King, 2002), it has not found much traction in demographic research.  This is surprising on two counts: 

(1) the components of demographic change, births, deaths, and migration, can all be constructed as rates 

that are inherently binomial variables; and (2) the method is simple to use, explain, and understand. 9 This 
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paper illustrates one such use with a subset of the mortality component, the infant mortality rate. Although 

the paper focuses on a specific application, namely infant mortality rates for counties with small populations 

in California, the method can be applied to many other situations where small numbers are present and 

affected by uncertainty.  As such, it could be used in conjunction not only with other mortality measures 

such as neo-natality rates, crude death rates, age-specific death rates and cause-specific death rates, but with 

fertility measures such as crude birth rates and age-specific birth rates. Even more broadly, it could be used 

with any binomial variable of interest affecting small populations, such as a housing occupancy (or 

vacancy) rate, employment (or unemployment) rate, and cigarette smoking (or non-smoking) rate. 
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Endnotes  

 

1. Murray (1996) has argued that the infant mortality rate is flawed when it is used as an index of 

overall mortality (i.e., the mortality regime affecting a given population) and that Disability Adjusted life 

Expectancy (DALE) should be used in its place. However, it has been pointed out by Reidpath and Allotey 

(2003) that the infant mortality rate and the DALE are so highly correlated that it merely goes to reinforce 

the intuition that the causes of infant mortality are strongly related to those structural factors like economic 

development, general living conditions, social well-being, and environmental factors, and, and such, the 

infant mortality rate remains a useful and comparatively inexpensive indicator of population health. Guillot 

et al. (2013) also note that infant mortality is very useful because it involves a short lag between the timing 

of mortality exposures and the timing of corresponding births. 

 

2. Uncertainty can be described in different ways. In our paper, it can be viewed similarly to that 

found in sampling theory. That is, one has a variable of interest (the infant mortality rate) and its value in 

the population of interest becomes more uncertain as sample size decreases. When one is looking a finite 

population (such as the population of either the State of Washington as a whole or Asotin county, 

Washington), it can itself be viewed as the realization of a “sample” from an infinite set of possibilities.  

Because Washington has a very large population, there is less uncertainty in its reported infant mortality 

rate (IMR) than that reported for Asotin County, which has a very small population.  This view is based on 

the idea of a “superpopulation” (Swanson and Tayman, 2012, 172; Williams, Frederick, and Nichols, 2011), 

which dates back to a paper by Deming and Stephan (1941).  In this view, there is a “Washington State 

superpopulation” underlying the Washington State IMR “sample” and an “Asotin County superpopulation” 

underlying the Asotin County IMR sample. The method we employ is aimed at estimating the IMRs in 

these superpopulations.  The superpopulation view is not dissimilar to the stochastic perspective, which 

sees a variable as being subject to a random process that can result in changes in the variable over time 

(Doob, 1952; Graham and Talay, 2013; Karlin and Taylor, 1993).  We also make use of this perspective in 

the paper. For an interpretation using the stochastic perspective consider the following hypothetical case. 

Suppose there was a 2017 car accident in our small population example of Asotin County in which six teens 

aged 15-19 all died, but there was no such accident in either 2016 or 2018. With only about 1,100 teens 



 

16 
 

aged 15-19, there would be a huge spike in the 2017 death rate for those 15-19 in Asotin County compared 

to 2016 and 2018. It is due to the random occurrence of an accident – the fickle finger of fate. However, 

for the State of Washington, our example of a large population, the six deaths in Asotin County would not 

create a huge spike in the 2017 death rate for those aged 15-19 compared to 2016 and 2018 because there 

were approximately 457,000 teens aged 15-19 in the state as a whole, about 415 times more than found in 

Asotin County. 

 

3. Another strategy is to gain permission to access individual level records, match them and then 

construct statistics (Kinge and Kornstad, 2014). This strategy is used by the California Department of Public 

Health (see endnote 4). However, unlike the strategy of aggregation, this approach inevitably requires both 

a substantial amount of time and personnel costs to implement and it also may be subject to limitations due 

to confidentiality and the uncertainty associated with small populations.  

 

4. In addition to ideas taken from the approach described by Link and Hahn (1996), we use ideas from 

both the “superpopulation” and the “stochastic” traditions found in demographic analysis in this paper (See 

endnote 2). For examples of these traditions in demography, see, on the one hand, Deming and Stephan 

(1941) and Swanson and Tayman (2011), and on the other, Baker, Alcantara and Ruan (2011).  

 

5. The data for California are taken from the Open Portal service provided by the California Health 

and Human Services Agency (no date) via a download of a CVS data set assembled by the California 

Department of Public Health. This data set can be accessed by going to  

https://data.chhs.ca.gov/dataset/infant-mortality-deaths-per-1000-live-births-lghc-indicator-

01/resource/ae78da8f-1661-45f6-b2d0-1014857d16e3  

and then clicking on the “download” tab, which downloads the file, “Infant Mortality, Deaths Per 1,000 

Live Births (LGHC Indicator 01) (CSV)”  in CVS form. Once downloaded, it can be saved as an excel file.  

The data in this file include the infant mortality rates (identified as “rate” in the file) and the infant deaths 

(identified as “numerator” in the file) and live births (identified as “denominator” in the file) used to 

calculate the IMRs for all counties and other administrative areas, including the State as a whole. The data 

represent the period 2009-2011. A description of the methods, caveats, and so forth associated with this 

data set found on the ULR shown above is reproduced below. 

 

This is a source dataset for a “Let's Get Healthy California” indicator, which can be found online 

(https://letsgethealthy.ca.gov/).  Infant Mortality is defined as the number of deaths in infants under one 

year of age per 1,000 live births. Infant mortality is often used as an indicator to measure the health and 

well-being of a community, because factors affecting the health of entire populations can also impact the 

mortality rate of infants. Although California’s infant mortality rate is better than the national average, there 

are significant disparities, with African American babies dying at more than twice the rate of other groups. 

Data are from the Birth Cohort Files. The infant mortality indicator computed from the birth cohort file 

comprises birth certificate information on all births that occur in a calendar year (denominator) plus death 

certificate information linked to the birth certificate for those infants who were born in that year but 

subsequently died within 12 months of birth (numerator). Studies of infant mortality that are based on 

information from death certificates alone have been found to underestimate infant death rates for infants of 

all race/ethnic groups and especially for certain race/ethnic groups, due to problems such as confusion about 

event registration requirements, incomplete data, and transfers of newborns from one facility to another for 

https://data.chhs.ca.gov/dataset/infant-mortality-deaths-per-1000-live-births-lghc-indicator-01/resource/ae78da8f-1661-45f6-b2d0-1014857d16e3
https://data.chhs.ca.gov/dataset/infant-mortality-deaths-per-1000-live-births-lghc-indicator-01/resource/ae78da8f-1661-45f6-b2d0-1014857d16e3
https://letsgethealthy.ca.gov/
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medical care. Note there is a separate data table "Infant Mortality by Race/Ethnicity" which is based on 

death records only, which is more timely but less accurate than the Birth Cohort File. Single year shown to 

provide state-level data and county totals for the most recent year. Numerator: Infants deaths (under age 1 

year). Denominator: Live births occurring to State of California residents. Multiple years aggregated to 

allow for stratification at the county level. For this indicator, race/ethnicity is based on the birth certificate 

information, which records the race/ethnicity of the mother. The mother can “decline to state”; this is 

considered to be a valid response. These responses are not displayed on the indicator visualization. 

 

6. If IMR variation across the counties was either constant or very small, a binomial model could be 

applied (see, e. g., the discussion in Chatfield and Goodhardt 1970: 400). However, the variation in county 

IMR levels found and discussed in Table 1 (even discounting the 15 counties for which zero is reported) is 

noticeable and as such we used the beta-binominal model, which is designed to handle binomial variables 

with variation across cases.  

 

7. Keep in mind that small populations, however defined, with approximately the same total 

populations may have different age compositions. For example, one may have a relatively large aged 

population and another a relatively large young population. This simple example is meant to illustrate the 

effect of demographic heterogeneity, which can affect measures of mortality (Vaupel and Missov, 2014). 

In situations where substantial heterogeneity may be present, a model with additional covariates may prove 

useful because the latter can potentially take into account the effects of demographic heterogeneity.   In a 

related vein, we note that if one applied the IMR for California as a whole (0.00487) to the reported births 

of the 15 counties reporting zero infant deaths to estimate infant deaths for each of them, the sum would 

come to 49, nearly capturing the 50 infant deaths not reported at the county level for data confidentiality 

reasons. However, the estimated IMRs for each of these counties using this ultra-simple approach vary from 

the IMRs estimated by the beta-binomial model because the underlying assumption is that the IMR 

underlying IMR is constant across all of them; the beta-binomial model allows for the possibility that the 

underlying IMRs themselves vary.  

 

8. In the validity test, different populations are simulated from a common beta distribution, and the 

result is that the two sets of populations, large and small, are normally distributed around the underlying 

mean IMR of the “superpopulation.” The simulation shows that the adjusted IMRs of the small populations 

move closer to the superpopulation’s underlying IMR, which indicates that the method works when both 

the small and large populations represent samples taken from the same underlying superpopulation. If the 

small populations represent a sample from a different superpopulation than the sample of large population, 

then the adjustment may yield a “biased” estimate of the former’s underlying IMR. This shows the 

importance of having a reference set that conceptually represents a sample from the same underlying 

population as the small population sample. One way to visualize the unbiased and biased outcomes is to 

picture the case where the method yields: (1) an “unbiased” estimate, which is when the mean IMR of the 

large populations is between the underlying superpopulation IMR and the mean IMR of the small 

populations; and (2) a “biased” estimate when the method does not move the mean IMR for the small 

population closer to its underlying IMR, which occurs where the mean IMR of the small population is 

between the underlying IMR and the mean IMR of the large populations.  
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9. The beta-binomial process shares similarities with “Empirical Bayesian” methods (Link and Hahn 

1996), which also are known as “shrinkage estimates” (Assunção et al., 2005).  These methods have been 

used by demographers to estimate a range of population characteristics, including mortality (Atkin Liu and 

Chadwick 2009; Assunção et al., 2005; and Marshall 1991). However, we believe the beta-binomial 

approach is likely to be more understandable to a wider range of demographers than the Empirical Bayesian 

approach. The starting point for our argument is found in Green and Armstrong (2015). Although they 

discuss simple vs. complex methods in terms of forecasting, their discussion applies here in that the beta-

binomial approach falls into the simple methodological category rather than the complex category, where 

Empirical Bayesian methods fall. Adapting their discussion to methods in general, the work of Green and 

Armstrong (2015) suggests that while there is no evidence that shows complexity improves accuracy, 

complexity remains popular among: (1) researchers, because they are rewarded for publishing in highly 

ranked journals, which favor complexity; (2) methodologists, because complex methods can be used to 

provide information that support decision makers’ plans; and (3) clients, who may be reassured by 

incomprehensibility.  We believe that the argument by Green and Armstrong (2015) can be applied to 

Bayesian methods, which represents the “complex” alternative to the “simple” beta-binomial approach. We 

prefer the beta-binomial approach, however, not only because of the argument presented by Green and 

Armstrong, but also because the application of a Bayesian approach can be difficult, effortful, opaque and 

even counter-intuitive (Goodwin, 2015). 
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