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Lack of Robustness of Lasso and Group Lasso with Categorical Predictors: Impact of Coding

Strategy on Variable Selection and Prediction

Introduction

Machine learning is becoming increasingly popular in social and behavioral sciences, and is

frequently used by researchers in different scientific fields to solve practical problems with

complex data (e.g., Leach, O’Connor, Simpson, Rifai, & Mama, 2016; Ma, Chang, & Cui, 2012;

Steele, Denaxas, Shah, Hemingway, & Luscombe, 2018a). Specifically, psychologists have begun

to utilize these algorithms to analyze underlying factors in psychological phenomenon (e.g., Sauer

et al., 2018), guide improvements of current treatments, and use previous patients records to

make data-driven decisions for incoming patients (e.g., Zilcha-Mano, Errázuriz, Yaffe-Herbst,

German, & DeRubeis, 2019). For example, Leach et al. (2016) used a decision tree to determine

environment characteristics contributing to the classification of African American women as at

risk for cardiovascular disease and to predict future cardiovascular disease risk in African

American women based on age. Bainter, McCauley, Wager, and Losin (2019) utilized a stochastic

search variable selection to characterize the contributions of different psychological, sociocultural,

and neurobiological factors of pain experiences, with which can then be used to predict pain.

The least absolute shrinkage and selection operator (Lasso; Tibshirani, 1996), a very

popular machine learning algorithm, is useful when the data set involves many predictors and the

outcome variable is continuous. Lasso is gaining popularity in psychology and one of the reasons

is that it has many shared properties with linear regression, an already common statistical

approach in the field. Models built by both linear and lasso regression can be expressed as follows:

Yi = β0 +
N∑
j=1

βjXij + εi. (1)

The above equation calculates the ith entry of the outcome vector Y , where β0 is the

intercept term; βj is the jth entry of the coefficient vector β; Xij is the entry in the jth column

and ith row of the design matrix X; εi is the ith entry of the error vector ε.

Linear and lasso regression differ in the way they estimate β. Linear regression aims to

minimize the sum of squared of errors generated between predicted and observed values. The
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coefficient vector is calculated as follows,

β̂linear = argmin
β

(|Y −Xβ|22), (2)

where |·|2 is the notation for the L2 norm, which is also known as the Euclidean norm. Lasso

adds a penalty term, a new parameter λ, to regulate the size of the coefficients which can affect

the number of predictors included in the model. The coefficient vector is calculated as follows,

β̂lasso = argmin
β

(|Y −Xβ|22 + λ
∑
j

|βj |) (3)

Linear regression is a special case of lasso regression. Equation 2 is equal to Equation 3

where λ is set to zero. This means that linear regression models are built to maximally predict

each outcome variable without taking into account the size of the coefficients. While, in lasso

regression with the added penalty parameter, non-zero values of β result in increases in λ
∑
j |βj |

that need to be minimized simultaneously with the sum of squared errors in Equation 3.

Therefore, |Y −Xβ|22 + λ
∑
j |βj | reaches its minimum when both the prediction and the size of β

are taken into consideration. The magnitude of λ determines the shrinkage of the elements of β.

When the penalty parameter is large, the coefficients are shrunk toward zero and fewer predictors

are selected in the model; while when the penalty parameter is small, the shrinkage is less

extreme so more predictors can be selected in the model. Another alternative to lasso is ridge

regression which is expressed by Equation 3 except with an L2 norm instead of an L1 norm for

the regularization term. In Equation 3, L1 norm λ
∑
j |βj | penalizes the absolute value of the

coefficients, used by lasso; while ridge regression uses L2 norm λ
∑
j |βj |

2 in which the

regularization term is the sum of squares of all coefficients. Therefore, ridge regression is not as

good at penalizing parameters to zero as lasso regression.

Lasso can be used much more effectively than linear regression for the process of variable

selection (Tibshirani, 1996). In linear regression, a model is built with all variables and statistical

inference is typically used to determine which variable contributes significantly to the model.

While in lasso, only predictors that make big enough contributions to explaining the outcome

variable are selected in the model. Lasso’s variable selection results in two particular advantages:

reducing dimension of the design matrix and improving prediction accuracy (Tibshirani, 1996).
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Lasso can be used as a dimension reduction method to select strong variables, which is

particularly useful for data of high dimension because models with too many variables can be

hard to interpret. After performing variable selection, lasso can help researchers make clearer

interpretations of the results (Hastie, Robert, & Wainwright, 2015). In psychology, lasso is often

used to select important features that can explain one specific behavior. For example,

Ammerman, Jacobucci, Kleiman, and McCloskey (2018) used lasso to identify that number of

non-suicidal self-injury (NSSI) methods was the most important correlate of NSSI frequency.

After removing this variable, Ammerman et al. (2018) reran lasso regression and further

determined that suicide plan and depressive symptomology were also strong correlates across

methods. Therefore, the study not only confirms the relationship between NSSI frequency and

NSSI methods but also identified the importance of suicide plans, an often-overlooked factor, and

depression in NSSI severity.

Besides increasing the interpretability of models, lasso’s dimension reduction can be used as

an initial data preprocessing step. Most statistical models can not be applied to data of high

dimension, especially if the number of variables exceed the number of total observations. The

reduced dataset processed by lasso allows the application of many different statistical models.

Burningham, Leng, Peters, and Huynh (2018) provided a good illustration of this method in

psychology, where his primary goal was to identify aging Veterans with psychiatric disease in

attempt to prevent psychiatric crises. Prior to logistic regression, Burningham et al. (2018) used

lasso to filter out variables that are not closely related to geriatric psychiatric hospitalization.

Then individual predicted probabilities were estimated using logistic regression.

Lasso regression can also be used to gain better prediction accuracy because the

penalization term decreases the model’s over-fitting (McNeish, 2015). Linear regression may fit a

model which is better able to predict the sample data by including all variables. However, if the

model fit by linear regression is used to predict out-of-sample observations, the prediction

accuracy tends to be low because of over-fitting (large variance and unbiased estimates). This

issue can be solved by lasso regression because only strong predictors will be selected into models,

and the model will not be heavily influenced by some extreme data points (Steele, Denaxas, Shah,

Hemingway, & Luscombe, 2018b). In other words, a small additional bias in the estimates is
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introduced which decreases the variance of the predictions, and the prediction accuracy increases.

Lasso regression was developed with two advantages over the linear regression: clear

variable selection and better prediction accuracy. These advantages have made lasso an attractive

alternative to linear regression, particularly when fitting models with many variables. This

method has been attractive to psychology researchers, because of the similarity between lasso and

linear regression, allowing them to easily generalize their previous knowledge to a novel method.

Researchers in psychology are now able to use lasso regression for variable selection in exploratory

research and to create models with improved predictive power.

Categorical Predictors in Linear Regression

Given the advantages of lasso over linear regression, it is important to explore how lasso

should be applied in common cases within psychological data analysis. Categorical variables are

frequently used in psychological models, including variables like ethnicity, gender, experimental

conditions, or religion. Unlike numerical predictors which typically have a natural scale,

categorical variables require researchers to select a method for coding the variables (i.e.,

representing the categories using a numeric system). Categorical variables with more than two

categories need to be encoded into a set of indicators in order to be considered in regression

models. Different coding strategies can be chosen, such as dummy coding, contrast coding, or

Helmert coding. Dummy coding uses only 0’s and 1’s to indicate the category membership. One

category is selected as the reference category and is assigned a score of 0 on all indicators. For all

other categories in dummy coding, only the corresponding indicator is coded as 1 and 0 for the

rest of indicators (e.g., Table 1). Contrast coding is similar to Dummy coding, but the category

which is coded as all 0 is now coded with all -1 instead, changing the interpretation of the

intercept (e.g., Table 2). Helmert coding examines more complex comparisons where each

category is compared to the average of all subsequent categories (e.g., Table 3).

While each coding scheme represents the categories using a different numerical system,

ultimately they only differ in the interpretation of their coefficients. Each coding scheme always

recreates the category mean for each category. In linear regression, coding strategies only vary in

the way they convey the categorical data and they always generate the same predicted scores for

individual cases. Therefore, researchers can choose coding strategies among all these options
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according to their needs. Dummy coding or contrast strategies can be used for nominal

categorical variables, while Helmert coding strategy is particularly helpful when groups within the

categorical variables can be ordered relative to each other. For example, when a study has

multiple experimental conditions and a single control condition, dummy coding can be used so

that each regression coefficient provides an estimate of the difference between one experimental

condition and the control. Alternatively, in cases when categories are ordered, for example level of

education, a researcher may want to use Helmert coding. When Helmert coding is used, the

researcher can learn about the difference between individuals with some high school education

and no high school education. Then individuals who completed high school could be compared to

the average of some and no high school. Individuals with some college experience could be

compared to the average of those who completed and did not complete high school, and so on.

Tables 1 - 3 show different ways to encode a categorical predictor, Marital Status, which includes

5 categories (single, married, widowed, divorced, and separated).

Regression coefficients produced by these coding strategies have different meanings. To

explore the relationship between the the categorical variable marital status and the outcome

variable wage (in thousands of dollars), the five categories within the variable Marital Status are

encoded by 4 indicators. Linear regression fits the following model:

Yi = b0 + b1Xi1 + b2Xi2 + b3Xi3 + b4Xi4 + εi, (4)

where Xij is the jth indicator to convey category membership information from the category

predictor for the ith person, and Yi is the outcome value for the ith person. The intercept b0 and

coefficients for different indicators, b1 – b4, have different meanings if different coding strategies

are used. For example, suppose our linear regression model is

Yi = 12 + 3Xi1 + 4Xi2 + 2Xi3 + 1Xi4 + εi. (5)

If dummy coding was used with single as the reference group (as in Table 1), we would

interpret the coefficient for X2, 4 means that the difference between the salary of single and

married people is $4000. However, if contrast coding was used (as in Table 2), 4 would indicate

the difference between the salary of the married people and the average salary of all people is

$4000. If Helmert coding is used (as in Table 3), 4 means that the married people earn $4000
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more than the average salary of the widowed, divorced, and separated people. In other words,

coefficients of dummy coding represent the differences between each category and the reference

category; those of contrast coding quantify the differences between one category and the average

of all categories; while those of Helmert coding quantify the differences between one category and

the average of all subsequent categories. Apart from the differences in coefficients caused by

choices of coding strategies, choices of reference categories in dummy coding can also produce

different coefficients. For example, if single is the reference category, b0 represents the average

wage for the single people and b1 through b4 will represent the difference between single and the

coded category. While if married is the reference category, b0 represents the average wage for the

married people and b1 through b4 will represent the difference between married and the coded

category.

Different ways to code categorical variables do not affect the prediction accuracy of models

fit by linear regression. Regardless of which coding strategy the model uses, linear regression

always recreates category means from the data. We show this consistency using a data set with

wages in 3,000 US MidAtlantic Men (James, Witten, Hastie, & Tibshirani, 2014). This wage data

includes six categorical variables (Race, Job Class, Health, Health Insurance, Marital Status, and

Education), and three continuous variables (Year, Age, and Wage). The overall goal is to predict

Wage using the available predictors. To show the exact recreation of category means in linear

regression, we used only one categorical predictor Marital Status to predict Wage. We used linear

regression to predict wage by coding the variable Marital Status with three coding strategies from

Tables 1 - 3 and three linear regression models were fit. Table 4 contains the coefficients of the

three models.

For the dummy coding, using the values of X1 – X4 from Table 1 and the coefficient

estimates from Table 4, the predicted mean for the Single category is

92.735 + 26.126× 0 + 6.804× 0 + 10.435× 0 + 8.481× 0 = 92.735.

For the contrast coding, using the values of X1 – X4 from Table 2 and the coefficient

estimates from Table 4, the predicted mean for the Single category is

103.102− 10.367× 1 + 15.759× 0 +−3.563× 0 + 0.058× 0 = 92.735.
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Using the values of X1 – X4 from Table 3 and the coefficient estimates from Table 4, the

predicted value is

103.102 + 12.959× (−4
5) + (−17.556)× 0 + 2.649× 0 + (−4

5)× 0 = 92.735.

The mean for the Single category recreated by the dummy coding is the same as that by

the contrast and Helmert coding. It can be shown that all category means for each coding

strategy and show that category means are the same throughout these three coding strategies.

From this example, we can conclude that linear regression models with different coding strategies

recreate same category means, though they produce different coefficients.

Motivation

With increasing use of lasso techniques across scientific fields, many researchers rely on the

similarities between lasso and linear regression in order to understand, use, and interpret the

results of lasso analysis. Researchers often use lasso in the same way as linear regression, including

models with categorical variables. Heckman, Handorf, Darlow, Ritterband, and Manne (2017)

used lasso to investigate intervention effects of UV4.me, an internet intervention that decreased

ultraviolet radiation exposure and increased skin protection behaviors among young adults. The

study used Helmert coding for the two categories of treatment (control and experiment).

Heckman et al. (2017) found two specific modules that were most strongly associated with

behavioral improvements were for UV exposure and four modules which best predicted

improvements in skin protection. Though the researchers used Helmert coding, it is unclear if the

findings would be the same if a different coding strategy had been used instead. Would the same

predictors be identified as most associated with intervention effects? Ultimately, if coding

strategy impacts the models fit using lasso regression, then two questions arise: First, is there a

method for fitting lasso regressions which is not impacted by coding strategy choice, and second

which coding strategy would allow the researchers to most accurately predict their outcome?

No research has yet explored the interplay between the way that categorical variables are

typically used in linear models and how this practice impacts the results of lasso regression. Lasso

regression models are frequently used for variable selection. The model selects variables based on

the penalty parameter and the size of coefficient vector β. However, using different coding
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strategies fits models with different coefficient vectors. Therefore, it is reasonable to expect that

choice of coding strategies may result in a different selection of variables in lasso regression

models. In other words, because of the impact that coding strategies can have, it is unclear if the

same conclusions would be made based on models with the same variables which are coded in

different ways. If indeed coding strategy does impact the results of a model (e.g., variable

selection and/or prediction accuracy), the question remains: which coding strategy should

researchers use when building models involving categorical predictors in their studies?

Ultimately, the issue of coding strategies is related to the issue of variable scaling with

continuous predictors. The scaling of continuous predictors also influences variable selection and

prediction accuracy in lasso regression models. For example, changing a variable from height in

feet to height in inches would impact the coefficient for height and thus impact the variable

selection approach. By changing the interpretation of a one unit change in the variable,

researchers could change how large the impact of the variable will seem to be. Inconsistency in

scaling practices can result in a lack of replicability of lasso models and potential

misrepresentation of the relative contributions of the predictors in the model. One common

solution is to standardize the values of all predictors before applying lasso regression (Marquardt,

1980). In this way, the effect of scaling is excluded from the variable selection of lasso regression.

Dichotomous variables can always be standardized such that any other scaling would result in the

same standardized variables. However this is not so with categorical variables with more than 2

categories: standardizing a dummy coded set of variables would still result in a different set of

variables from standardizing a Helmert coded set of the same variables.

In order to explore the potential impacts of coding strategy on important characteristics of

lasso regression we undertake a variety of steps using both real data analysis and simulation.

First, using the wage dataset described above, we explore the use of lasso regression with

categorical variables, where different coding strategies of categorical variables impact two aspects

of lasso models: the variable selection and prediction accuracy. An alternative method of lasso,

group lasso, is introduced in the next section. Group lasso is also applied to the wage dataset and

both the variable selection and prediction accuracy of group lasso models are examined. We

describe an over-fitting issue of group lasso using Monte Carlo Simulation in the next section. In



LASSO WITH CATEGORICAL PREDICTORS 10

the last section, potential solutions, important future directions, and a summary are provided.

Lasso with Categorical variables

We used the wage data to explore how coding strategies affect the models estimated by

lasso. We used six categorical variables (Race, Job Class, Health, Health Insurance, Marital

Status, and Education) and one continuous variable (age) to predict the outcome variable wage.

Different from the continuous variable, which can be represented by one variable, each categorical

variable is represented by k − 1 indicators where k is the number of categories. Different coding

strategies represent the categorical variables in different ways. In the wage data, the variable

Marital Status includes 5 categories (single, married, widowed, divorced, separated); Education

includes 5 categories (less than high school education, high school education, some college, college

education, advanced degree); Race includes 4 categories (White, Black, Asian, other); Job Class

includes 2 categories (industrial and information); Health includes 2 categories (good or lower and

very good or higher); and Health Insurance includes 2 categories (yes and no). Therefore, after

coding all categorical variables and including Age, we estimated the wage with

4 + 4 + 3 + 1 + 1 + 1 + 1 = 15 predictors. After data preprocessing, we examined the impact of

coding strategy on the two primary purposes of lasso: variable selection and prediction accuracy.

Different types of coding strategies

We explored how variable selection and prediction accuracy are affected by different types

of coding strategies used to estimate lasso regression models. In order to measure the prediction

accuracy, we randomly split data into training and testing parts with ratio 6:4. The training data

includes information from 1800 males, while the testing data includes information from 1200

males. We trained three different lasso models using three coding strategies (dummy, contrast,

and Helmert) on the same training data. We used cross validation on the training data set to

select the penalty parameter from the model with the best prediction accuracy. It is worth to

mention that the penalty parameter is different for models with different coding strategies, which

means that each model is penalized differently. By examining the performance of these three lasso

models we examined if variable selection and prediction accuracy of lasso models are affected by

the choices of coding strategies. Note that because this is based on a single dataset, it is not valid

to compare the prediction accuracy between models in order to determine which coding strategy
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is "best". We leave this issue for future simulation research.

Variable Selection. We examined differences in the variable selection between three

models. Results are show in Table 5. Take the variable Marital Status for example. The

dummy-coded model includes all variables except the one representing the difference between

Single and Widowed. It means that the dummy-coded model treats the mean of the Single

category as the same as that of the Widowed category. The contrast-coded model include all

variables. The Helmert-coded model excludes the variable representing the difference between the

Widowed and the average of Divorced and Separated categories. It also excludes the variable

representing the difference between the Divorced and Separated. Therefore, the Helmert coding

model treats the Divorced the same as the Separated category, and the Widowed the same as the

average of Divorced and Separated. In other words, the Widowed, Divorced, and Separated are

treated equally in the Helmert-coded model. If the results of the dummy-coded model were to

align with those of Helmert, the difference between Divorced and Single, Separated and Single,

and Widowed and Single should all be the same. However, in dummy-coded model, the Widowed

is the only group treated the same as the Single. After carefully examining the models shown in

Figure 5, we can conclude that different coding strategies select different variables in the model.

The result is problematic because models with different variable selection can produce different

interpretations of the models. Which category within the variable marital status will be selected

into the model depends on the chosen coding strategy. Researchers who use dummy coding will

probably conclude that the Widowed people on average have the same wage as the Single people,

while those using Helmert coding will probably interpret that the Widowed have the same wage

as the Divorced and Separated. Recall that in the linear regression, all variables are selected into

the model, but this example demonstrates that lasso models with different coding strategies select

different variables in the model.

Prediction Accuracy. We calculated the predicted wage of each category within the

variable Marital Status for each lasso model. In linear regression, the predicted value for each

category is unaffected by coding strategy. Here we examined whether every category has the same

value of predicted wage across models with different coding strategies using lasso. The three lasso

regression models were further used to predict the wages of people in the testing data. Prediction
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accuracy was calculated to determine the differences between the predicted wage and the actual

wage for people in the testing data. We used Mean Squared Errors (MSE) as a measurement of

the prediction accuracy. Mathematically, MSE is calculated as following:

MSE = 1
n

n∑
i=1

(Yi − Ŷi)2. (6)

The results of category means and MSEs for three models are shown in Table 6. Using the

same method for recreating category means for the linear regression model, we recreated the

category means for the variable Marital Status. The Helmert-coded model recreated same

category mean (88.227) for the Widowed, Divorced, and Separated categories. While in other

models, these three category means are different. Dummy-coded model recreated 69.988 for

Widowed, 73.665 for Divorced, and 76.195 for Separated; and Contrast-coded model recreated

83.773 for Widowed, 85.772 for Divorced, and 89.907 for Separated. This validates our

interpretation in previous sections. Besides differences in category means, MSEs are also different.

It means that models with different coding strategies have different prediction accuracy. Recall

that linear regression always recreates the same category mean regardless of the choices of coding

strategies and the prediction accuracy stays the same. Therefore, researchers can choose the

coding strategy only according to its interpretation. Nevertheless, from Table 6, we can see that

different coding strategies estimate category means differently and result in different MSEs when

lasso regression is applied. This exposes uncertainty regarding which coding strategy should be

used when lasso regression is applied.

Next, we explored one reason why different coding strategies recreate category means

differently and result in different prediction accuracy. As mentioned in the previous section where

we first introduced three coding strategies, coefficients in models built with different coding

strategies have different meanings. In the dummy coding strategy, the coefficient represents the

difference between a category mean with the reference category mean (typically the first category,

the Single in our case). For the contrast coding, the coefficient represents the difference between a

category mean with the average of all category means, which is the same for Helmert coding.

Shrinking coefficients to zero means that models aim to shrink category means to the

corresponding model intercepts. Each coding strategy has different model intercept. Therefore,
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the shrinkage effect is different across coding strategies. To visualize the shrinkage effect of each

coding strategy, we plotted the category means recreated by lasso models with different coding

strategies and the intercept for each coding strategy in Figure 1 (left column of each coding

strategy). We can see that for each coding strategy, category means are shrunk towards the

intercept. Take the Widowed category for instance. Three models recreated different category

means for the Widowed people. The Widowed category mean in dummy-coded model is closer to

the dummy-coded model’s intercept than that in contrast and Helmert models. Models built with

different coding strategies shrink category means toward their respective model intercepts, and

because different coding strategies have different reference values, category means will be recreated

differently and lead to different prediction accuracy. It is worth to note that the reference for

contrast and Helmert coding strategies are the same (the average of all category means).

However, category means are still created differently for these models, indicating that the choice

of intercept is only one of the reasons leading to the difference in recreation of category means.

Different reference categories

It is clear from the previous results that coding strategies affect the variable selection and

prediction accuracy of lasso regression models. Next, we examined how coefficients in lasso

models change when different choices are made within a specific coding strategy. These include

choices of reference categories (e.g., dummy and contrast coding) and the order of comparisons

(e.g., Helmert coding). Specifically, we examined the impact of which categories within a

categorical variable is chosen as the reference category in dummy coding strategy. We used

dummy coding for the categorical variables (Race, Job Class, Health, Health Insurance, Marital

Status, and Education) in wage data. We built lasso models with all these categorical variables

and one continuous variable (Age). In order to explore how choices of reference categories affect

model’s coefficients, we built five models with differences only in their choices of reference

categories in the variable Marital Status. The reference categories were chosen for all other

categorical variables except the variable Marital Status. Therefore, the differences between these

models should be caused by the different choices of the reference category of the variable Marital

Status. Table 7 shows the coefficients of categories within the categorical variable Marital Status,

which all differ due to choices of reference categories in our models. This is a problem for lasso
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regression because coefficients and the penalty parameter decide whether the variable will be

selected into the model, according to Equation 3. When coefficients vary from model to model,

the variable selection also varies. When the Widowed is the reference category, the Divorced

category is not selected into the model (i.e., the Widowed and Divorced are assumed to be equal).

While, when the Divorced category is chosen as the reference category, all categories are selected

into the model (i.e., no groups are assumed to be equal). Similarly, when the Single is the

reference category, the Widowed category is excluded from the model, but when the Widowed is

the reference category, the Single is still included in the model. There exists an inconsistency of

variable selection from model to model. Moreover, after calculation we can see that group means

are also recreated differently from Table 8. We take the widowed people for example. If single

category is chosen as the reference one, widowed is treated the same as the single and the

estimated wage is 69.988(k). If married category is chosen as the reference one, the widowed

estimated wage is 87.344− 15.133 = 72.211(k). Similarly, the estimated wage for the widowed

from the other three models are 69.988, 72.227, and 71.985. Besides, from Table 7 and 8, we can

conclude that with different choices of reference categories, coefficients and category means vary

from model to model. Therefore, different reference categories within a categorical variable also

influence the variable selection and prediction accuracy of lasso models.

Singular Design Matrices

In this section, we are going to explore an alternative method for creating the design

matrices for categorical variables. When we introduced lasso with categorical variables, we noted

that for a categorical variable with k categories, k − 1 indicators are created for this variable.

Different coding strategies use different matrices to represent the k − 1 indicators and model

coefficients represent comparisons between categories and the reference value, as this is common

practice for linear regression. In this case, the researcher must choose the reference group for the

analysis. For example, we choose the category mean for the Single as the reference in the dummy

coding strategy. However, there is another way to create the design matrix for categorical

predictors where the researcher does not need to explicitly choose the reference value. Instead of

using only the k − 1 indicators for a categorical variable with k categories, we use k indicators.

This design matrix allows lasso to essentially select the reference values. Mathematically, this
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type of design matrix is defined as singular, because it is not invertible. Singular design matrices

cannot be used for linear regression, because solving the ordinary least squares solution requires

taking the inverse of the design matrix. However, lasso regression can accommodate singular

design matrices, making this a unique potential solution to the variable selection and prediction

accuracy issue related to categorical variables in lasso. In fact, using a singular design matrix

with dummy variables, is the default method for fitting factors in lasso regression in the popular

statistical packages STATA (StataCorp, 2019).

We explore whether singular design matrices solve the inconsistency in the variable

selection and prediction accuracy across coding strategies. We appended a linearly independent

column with only 1 in the last row to the matrices in Table 1 - 3 to create the singular design

matrices. If using singular design matrices solves the issues of variable selection and prediction

accuracy, then these two properties should be equivalent across these three design matrices. To

test this, we used the same data set and applied the same process as before to build lasso models.

We recreated the category means for the lasso models in Table 9. For lasso, different coding

strategies have different variable selection, which can be seen from the Table 9. The

helmert-coded model treats the Widowed and Divorced categories as the same, while the

dummy-coded model treats the Widowed, Divorced, and Separated categories as the same. In

addition, lasso models using different coding strategies lead to different prediction accuracy. This

means that using singular design matrices does not solve the inconsistency for lasso in variable

selection or prediction accuracy.

Lasso Summary

When conducting a lasso regression with categorical predictors, the analyst must choose

two important characteristics for each categorical variable: the coding strategy (e.g., dummy vs.

contrast vs. Helmert) and also the ordering of the categories, which involves which group is the

reference (dummy and contrast) and the order of comparisons (Helmert). In the above sections,

we examined how these choices affect variable selection and prediction accuracy in lasso regression

models. For each choice of coding strategy, we obtained the model’s variable selection, category

means for the variable Marital Status, and the prediction accuracy. It is clear to see that lasso

regression models select different sets of variables when different choices of coding strategies are
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made. From the singular matrix design, we can also conclude that without choices of the ordering

of the categories or the reference categories, lasso models still perform different variable selection

and model fits.

Different variable selection can not only cause completely different interpretations, but also

result in estimating different category means. Suppose when a coefficient is shrunk to zero by

lasso regression, the corresponding variable is not selected in the model. For example, with

dummy coding, the model would regard the category coded by that variable as no different from

the reference category within same categorical variable on the outcome variable. Therefore,

models will generate the same predicted outcome values for cases in the category coded by the

excluded variable and the reference category. In this way, different variable selection can result in

different category means. Additionally, even when the same variables are selected into the model,

the degree of shrinkage will depend on the initial coefficient size, meaning that even when all

variables are included in the model, the predicted values for specific categories may depend on

which coding strategy gets used.

Consequently, differences in category means lead to different prediction accuracy. The mean

for each category is estimated differently in each coding strategy. Therefore, different models will

arrive at different estimations of the outcome variable with same variables’ values. Ideally, there

would be a method which would provide the same predicted scores regardless of coding strategy;

however, if the method is not possible prediction accuracy could be used by researchers as a factor

to determine which coding strategy to use to build the lasso regression model.

We can conclude that lasso models heavily depend on the choices of coding strategies (types

of coding strategies and choices of reference categories) for categorical variables. With different

coding strategies, lasso performs different variable selection and model fit. This raises a problem

when lasso regression is applied to a real-world data set, like in psychology. Lasso is frequently

used to explore the relationships among psychological phenomenon. As different coding strategies

build lasso models with different variable selection, inferences may differ if coding strategies

change. Based on this, lasso is clearly inappropriate to use when categorical variables are present

in the model. This leads to the questions: Is there an adjustment to the lasso method that would

always performs the same variable selection and prediction accuracy regardless of coding
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strategy? In the next section, we will introduce a lesser known variant of lasso regression which

may solve some of the issues with coding strategy.

Group Lasso

Group lasso is a generalization of lasso for doing group-wise variable selection (Yuan & Lin,

2006). The group lasso algorithm was first introduced to allow predefined groups of predictors

selected in or out of a model together. Similar to linear and lasso regression, models estimated by

group lasso can be expressed using Equation 1. The mathematical formulae for calculating

coefficients β is the following:

β̂group = argmin
β

(|Y −Xβ|22 + λ
G∑
g=1

∣∣βIg

∣∣
2) (7)

where G represents the number of groups within the dataset, and βIg represents the coefficient

vector of that corresponding group. Other notations are the same as previous equations. From

the Formulae 7 we can see that lasso and group lasso differ in what type of norm is used for the

sum and how the penalty parameter is weighted. Lasso regression uses L1 norm to sum all

coefficients before multiplying the penalty parameter. Instead, group lasso first uses L2 norm to

sum the coefficients within each group and then sums across the groups, which is equivalent to

taking the L1 norm of the L2 norms of the groups. Using the L2 norm within a group makes it

more likely to either select all variables within the group or not. Moreover, multiplying the

penalty parameter after summing the coefficients within groups penalizes each group instead of

each variable. Therefore, the number of variables within a group can affect the evaluation of

coefficients. These differences with regard to the regularization term (second term in equation 7)

provide group lasso with distinct properties.

The group lasso has special properties with respect to variable selection. Within a group,

group lasso typically either includes all or excludes all variables. Given this unique process of

variable selection, we propose that group lasso may be useful as an alternative to lasso regression

when dealing with models with categorical variables. One previous study has recommended the

use of group lasso for accounting for categorical variables (Detmer & Slawski, 2018); however, the

paper demonstrated that group lasso can be used to select categorical variables, but did not

explore the role of different coding strategies in the actual fitting of the model. Additionally, we
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were not able to find any applications within psychology which used this method, suggesting that

additional dissemination may be required to improve adoption. As mentioned above, categorical

variables need to be coded using different coding strategies when regression methods are applied.

Specifically, we can define all indicators for a categorical variable as a group. In this way, the

algorithm can either include all indicators associated with one categorical predictor or completely

exclude these indicators. When all the variables are in one group, group lasso performs as ridge

regression; while, when all the variables are their own group, group lasso performs as lasso. The

advantage of group lasso is when there are multiple groups of more than one variable, the result is

a combination of within-group ridge regression and across-group lasso regression.

In our wage data, using our proposed application of group lasso, the algorithm either

includes all indicators within a categorical variable (single, married, widowed, divorced, separated

in the case of variable Marital Status) or excludes the set of indicators. This property of group

lasso increases the ability to make omnibus claims about the predicting ability of the categorical

variable (e.g., marital status predicts wage). Lasso does not take category membership

information into consideration when doing variables selection. As was seen in previous sections,

some categories within the categorical variable are selected, while others are left out. Take the

variable Marital Status in our lasso model with dummy coding strategy for example. The lasso

model regarded widowed participants to have same salary as single if other predictors are also

same. The result is hard to interpret because nothing can be concluded about the omnibus

predictive value of the variable Marital Status. However, in group lasso Marital Status is an

important variable of the outcome variable wage if the group is selected into the model, or

different marital status does not lead to important differences in the outcome variable if the group

is excluded from the model. Based on these properties, group lasso seems like a promising

alternative to lasso when dealing with categorical predictors. Because group lasso treats the

variables in a group as a whole set, it seems less likely to be impacted by the coding strategy.

Similar to lasso regression, we used the wage data to explore whether group lasso estimates

different models with different types of coding strategies. Specifically, we explored the impact of

coding strategy on the same outcomes we investigated with lasso: variable selection and

out-of-sample prediction.
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We estimated group lasso models in the same procedure that we estimated lasso models.

We used six categorical variables (Race, Job Class, Health, Health Insurance, Marital Status, and

Education) and one continuous variable (Age) to predict the outcome variable Wage. We trained

three different group lasso models with three coding strategies (dummy, contrast, and Helmert).

We encoded the categorical variables in the same way as we did in lasso regression. Each

categorical variable is represented by k − 1 predictors where k is the number of categories.

Therefore, we estimated the outcome wage variable using the same 15 predictors as lasso. The

training and testing datasets that we used to estimate the models are the same as those we used

for lasso. Not only do we examine the performance of group lasso in it’s own right, but we also

compare the variable selection and prediction accuracy between the lasso and group lasso models.

Variable Selection. Group lasso models perform the same variable selection even with

different coding strategies. In our case, all variables were selected in all three models. Take the

categorical variable Marital Status for instance. No two categories are treated the same in either

of the three models in lasso models, while all variables are selected in the three group lasso

models. The group lasso’s property of variable selection is different from lasso’s. Lasso’s variable

selection is affected by the coding strategies. However, the performance of variable selection for

group lasso seems stable across different coding strategies.

Prediction Accuracy. We examined whether group lasso recreates the same means for

each category within the categorical variable. We calculated the predicted wage of each category

with the variable Marital Status for each of three group lasso models. The results are shown in

Table 11. Similar to lasso, group lasso estimates each category mean within a categorical variable

differently. So though variable selection is not impacted by coding strategy for group lasso,

recreation of means is impacted by coding strategy in group lasso. Similarly, MSEs differ across

the three models.

Similar to lasso, we plotted the category means recreated by group lasso models with

different coding strategies and the reference values in Figure 1 (the right column of each coding

strategy). Reference values remain the same as they are in lasso regression and are different

across different coding strategies. Group lasso models using different coding strategies shrink all

category means to their corresponding intercept. Therefore, category means are recreated



LASSO WITH CATEGORICAL PREDICTORS 20

differently when different coding strategies are chosen, leading to different model fits and

prediction accuracy. Comparing between lasso and group lasso, we can see that category means

recreated by group lasso in general are closer to intercepts than those recreated by lasso.

However, sometimes in lasso, a particular category mean is much closer to the model intercept

than that in group lasso. Take the dummy-coded model for instance. The Widowed category

mean in lasso model is closer to the true Single category mean than the Widowed category mean

in the group lasso model. However, the category means for the Married, Separated, and Divorced

are closer to the true Single category mean in the group lasso model than those in the lasso

model. The differences in the shrinkage effect between lasso and group lasso can be explained by

the differences in their penalty parameters (Equation 3 and 7), especially on categorical variables.

Lasso adds the penalty parameter to the sum of the L1 norms of the category coefficients, while

group lasso first uses L2 norm to sum the category coefficients within each variable and then adds

penalty parameter to the sums across variables. In other words, each category coefficient is

penalized in lasso model, but in group lasso model it is the sum of all category coefficients that

gets penalized. Therefore, if one coefficient is shrunk to zero in the lasso model and the

corresponding coefficient in group lasso is greater than zero, then the associated category mean is

closer to the reference value in lasso model. However, if the group lasso model chooses to include

one categorical variable, even none of the category coefficients are zero most of them will be close

to zero due to the shrinkage effect. In our case, the coefficient of the Widowed category is shrank

to zero in dummy-coded lasso model while the corresponding coefficient in dummy-coded group

lasso model is greater than zero. Thus, the Widowed is treated the same as the Single category

and the Widowed category mean is closer to the true Single category mean. In group lasso, as all

categories within the variable Marital Status are included in group lasso models, coefficients are

penalized on a group level and therefore most are smaller than the corresponding coefficients in

lasso models.

Group Lasso Summary. For each coding strategy, we examined the group lasso’s

variable selection, calculated means for categories within the variable Marital Status, and the

overall prediction accuracy. From Tables 11, we can conclude that group lasso partly solves the

issues caused by choices of different coding strategies in lasso regression. Group lasso’s variable
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selection is not affected by the coding strategy. In other words, even when different coding

strategies are used, group lasso models still perform the same variable selection. Therefore, if

researchers use group lasso to select which variables contribute to the outcome variable, they do

not need to worry that different coding strategies may result in different conclusions. However,

coding strategies still affect the prediction accuracy of group lasso models. Therefore, if

researchers aim to predict the outcome variable by using group lasso regression, they need to be

aware that different coding strategies can result in different prediction accuracy. In addition,

because group lasso is selecting more variables into the model it seems possible that the

robustness of group lasso across coding strategies may come at a cost of prediction accuracy.

This trade off between prediction accuracy and robustness leads to some additional

concerns about the group lasso. In particular, we are interested in when the set of indicators for a

categorical variable will be selected into the model. Will the set of indicators for the categorical

variables be selected or not if there are only a few categories with category means different from

other categories within that variable? If that is the case, will group lasso’s variable selection

property lead to over-fitting issues because group lasso models may include several categories that

are not good predictors of the outcome in order to include one category which is a good predictor

of the outcome?

Monte Carlo Simulation

In this section, we used Monte Carlo simulation to explore one of the potential weaknesses

of the group lasso, over-fitting. The group lasso models may select more variables than necessary

into the model, leading to large variance and low prediction accuracy. Monte Carlo simulation

allows us to randomly generate and analyze data through repeated random sampling from a

population with pre-specified characteristics. Using this method we can systematically fit group

lasso models in order to find patterns across these models. The purpose of using Monte Carlo

simulation is to investigate in what situations group lasso models have over-fitting issues and low

prediction accuracy. We explore a particularly extreme case, where across all categories within

one categorical variable, only one category differs from the rest. We call this category a dominant

category and the others are referred to as non-predictive. The non-predictive category is always

used as the reference category.
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Method. In the simulation, we created a categorical variable with one dominant category

and several non-predictive categories. The data set is designed in a way such that the dominant

category has a different category mean than all other categories; while non-predictive categories

have means which are all the same, equal to 0. Categorical variables are encoded by dummy

coding strategy. Besides the categorical variable, we also included a continuous variable following

a normal distribution with mean equal to 0 and variance equal to 1. The outcome variable is

created by adding corresponding category means from the categorical variable, value of the

continuous variable, and a random error following standard normal distribution. For optimal

prediction, only the variable which estimates the difference between the dominant category and

other non-predictive categories should be included in models built on the dataset. Those variables

associated with non-predictive categories should have no effect on the outcome variable and not

be selected in the model. In Equation 3, we see that the number of categories within categorical

predictors may also effect how the β coefficients are estimated and how the model selects

predictors. The property is embedded in λ
∑G
g=1

∣∣∣βIj

∣∣∣
2
within the formulae, which takes both the

number of categories within the categorical variable and size of category coefficients into

consideration. To explore the effect of the number of categories within the categorical variable, we

made simulations with different numbers of non-predictive categories (1,2,3,4). Moreover, to

figure out how the difference between the dominant category mean and non-predictive category

means affects group lasso’s prediction accuracy and predictor selection, we simulated different

dominant category means (0.1, 0.2, 0.3). For each combination of number of categories and mean

difference between dominant and non-predictive categories, we randomly generated 500

simulations of size 1200.

With each simulation, we applied lasso and group lasso regression. Specifically, we split

each dataset into training and testing parts randomly according to the 8:2 ratio. Then we applied

lasso and group lasso on the same training data. We selected the penalty parameter in the same

way as we built lasso and group lasso models. For each data set and each method (group lasso

and lasso) we calculated the MSE (mean squared error), which indicates the model’s prediction

accuracy and we recorded whether the model included the dominant category and whether the

model included non-predictive categories. We calculated the average prediction accuracy of each
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method by taking average of the 500 MSEs produced by the models in the same condition

(number of categories and mean difference). For each condition we also calculated the proportion

of models which included the dominant category and the proportion of models which included

non-predictive categories. For group lasso, the two proportions are the same because group lasso

either includes or excludes all categories within the categorical predictor.

Results. We first find that in all cases lasso has a higher prediction accuracy than group

lasso, indicated by lower MSEs (Table 12). Though the differences in MSE of lasso and group

lasso are small, they are consistent across different conditions. Secondly, for both group lasso and

lasso regression, when the number of non-predictive categories increases, the probability for

models to include the dominant category decreases, but this probability drops faster for group

lasso models across effect sizes (Figure 3). For group lasso, when the difference between dominant

category mean and non-predictive categories means is small, this probability drops faster than

when the difference size is large. Specifically, when the effect size is small (dominant category

mean = 0.1), the probability for group lasso to include the dominant category drops from 0.998 to

0.37 with the increase of number of categories, while the probability for lasso is relatively stable.

When the effect size is big (dominant category mean = 0.3), the probability for group lasso to

include the dominant category only drops from 1 to 0.67. Additionally from Figure 2, we can tell

that when the number of non-predictive categories stays the same, the probability for group lasso

to include non-predictive categories increases when the difference between the dominant category

mean and non-predictive categories increases, while the probability for lasso is approximately the

same. For example, when the difference between dominant category and non-predictive means is

0.1 and the number of categories equal to 5, the probability to include non-predictive categories

for lasso is 0.332, and that for group lasso is 0.16. When the difference increases to 0.3, the

probability for lasso is 0.645, and that for group lasso is 0.864. For both models, the probability

to include non-predictive categories decreases when the difference between dominant category and

non-predictive means stays the same, and the number of non-predictive categories increases.

To more closely examine potential over-fitting issues in group lasso, we focus on the case

when the difference between dominant category and non-predictive categories is large. Figure 2

shows that when the difference is 0.3, group lasso always has higher probability than lasso to
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include non-predictive categories. Recall that group lasso either includes the dominant category

and non-predictive categories or excludes all categories. Large dominant category mean leads to

group lasso’s high possibility to include the dominant category and non-predictive predictors. In

comparison with lasso, group lasso is more likely to include non-predictive categories when the

dominant category mean is large. In this case, group lasso can over-fit the data because group

lasso is more likely to include categories that are not supposed to be in the model. This also

explains group lasso’s lower prediction accuracy than lasso in Table 12. For example, when the

difference between the dominant category and non-predictive categories is 0.3, the difference

between group lasso’s and lasso’s MSE is bigger than those when the dominant category mean is

smaller (see Table 12).

Simulation Summary. Using Monte Carlo simulation, we concluded that group lasso

may over-fit data under certain conditions. Specifically, when few categories differ greatly from

the other categories and the other categories contribute little to predicting the outcome variable,

group lasso is likely to include the categorical variable, including all non-predictive categories.

Therefore, if researchers use group lasso to build predictive models, they may want to examine if

one or two categories have relatively dominant means within categorical variables through

exploratory analysis in advance. Otherwise, they may need to use other regression methods

because group lasso may over-fit issues. Looking for these effects may be particularly difficult in

cases with many predictors and limited theoretical knowledge are driving the modeling, which is

often when lasso is used. The differences must be conditional on all other variables in the data,

not just examining the group means. If there are many categorical predictors in the model,

exploratory analyses could be undertaken for each categorical variable which could be very

tedious.

Discussion

Lasso has recently been adopted as a promising analytic method in psychological science

due to its two major advantages over linear regression: variable selection and prediction accuracy.

However, we have demonstrated that when there are categorical variables in the model, both of

these qualities are sensitive to the coding strategy selected for the categorical variables. Group

lasso presents a partial solution, by having consistent variable selection across coding strategies.
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However, this consistency may come at a cost of reduced prediction accuracy. Ultimately, this

leaves open the question of which method should be used? In the wage data example, lasso

overall predicts better than group lasso, which predicts better than linear regression. However,

there is no guarantee that these qualities will hold across other datasets. Researchers may want to

balance the pros and cons of these methods above and beyond prediction accuracy. Which

method should we choose when dealing with data with categorical predictors: linear regression,

lasso, group lasso, or something else entirely? We explore potential solutions to this issue with

categorical predictors in lasso based models.

Exploring Potential Solutions

Regardless of which of the following solutions researchers choose, one thing is required:

transparency. Researchers using categorical variables in lasso or group lasso regression need to

report how they coded the variables (both coding strategy and variable order/reference group) as

this would be imperative for reproducing or replicating the research. The following are a few

proposed solutions, none of which seem satisfactory for all cases. As such we weigh the pros and

cons of each and consider cases when each approach might be most acceptable. Each of the

recommended approaches relies on the priorities of the researcher, in particular weighting the

priorities of interpretability, best prediction, accurate variable selection, and robustness to coding

decisions.

Prioritize Interpretability. In cases when a certain coding strategy provides increased

interpretability of the coefficients in the model, the most interpretable coding strategy could be

used. This comes at the risk of having a worse predictive model. This idea of interpretability is

still very much rooting in the origins of linear regression, rather than machine learning. In

particular, because the coefficient estimates in lasso regression are biased, they should not be

interpreted directly. Rather, after variables selection is completed, common recommendations are

to fit a linear regression model which only includes the selected variables (e.g., Hastie et al.,

2015). However, it would seem odd to include a different coding strategy in the follow-up linear

regression, as compared to the lasso regression. Thus it makes sense to use a coding strategy for

each categorical variable which would be most interpretable, if the variables are selected in. With

respect to the use of lasso, this would typically involve using coding strategies like dummy coding
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or contrast coding where when individual predictors are dropped the interpretation of the

remaining coefficients are unchanged. However, coding schemes like Helmert coding require the

presence of all predictors in order to have the intended interpretation, and should perhaps only be

used in concert with group lasso (ensuring all predictors are selected in or out of the model).

A particular difficulty of this method is that oftentimes machine learning approaches are

used in cases when there are many variables included in the analysis, and relatively little theory

regarding which variables should be predicting the outcome. This could make it difficult for the

researcher (or analyst) to decide which coding scheme would be "most interpretable" especially

considering the many possible combinations of coding schemes and variable order or reference

groups. Additionally, by prioritizing interpretability the researcher may be losing prediction

accuracy, which is often one of the reasons that machine learning approaches are used.

Prioritize Prediction. One option in estimating lasso or group lasso models would be to

try many different coding strategies in order to select the one with the most promise with regard

to prediction accuracy. This process should likely be completed using the training data, so as not

to influence the final estimates of prediction accuracy using an independent sample of the data.

One issue with this method is that it may be very computationally intensive. There are

technically an infinite number of coding strategies that one could use for any given variable. With

multiple categorical variables in the dataset, one would want to try different combinations of

coding strategies, as there is no reason to expect that using the same coding strategy for each

variable would result in maximized prediction accuracy. Additionally, it is unclear the types of

gains which could occur in prediction accuracy using this method, and for some researchers the

benefits in prediction accuracy may not be worth the additional computational time. Indeed, with

the wage data, the largest differences in MSE corresponded to an average difference in prediction

of $763.54. Depending on the research aims, this may be a useful gain in prediction accuracy, and

for other research aims this may seem menial.

Another alternative, if prediction accuracy is of highest priority, is to use alternative

machine learning approaches which are robust to coding strategy. Alternative approaches like

classification and regression trees (CART) are unaffected by coding strategy, because categorical

predictors are treated as a single variable (Finch & Schneider, 2007). One downside to these types
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of models is that they are often less interpretable, and they do not provide the "regression like"

estimates which many researchers in psychology rely on for interpreting their results.

Prioritize Robust Variable Selection. Based on the simulation results, the group

lasso is robust to coding strategy choices with respect to variable selection. In addition, the

prediction accuracy seems to vary less when using group lasso compared to lasso; however, this

does not necessarily mean that prediction is optimized for the group lasso. However, when the

goal is to select variables, and especially when it is conceptually useful to keep or drop all groups

within each categorical variable, group lasso seems to be an optimal choice. Nevertheless, this

may come at a cost in prediction accuracy, particularly if categorical variables follow the

dominant group pattern explored in the Monte Carlo simulation above (where one group is

distinct from all other groups).

Field Norms. Just as standardizing continuous variables has become a field norm, it may

be possible for researchers within a field to agree on a single coding strategy throughout the field.

However, additional research would be needed in order to proceed with a single recommended

coding method. This may also be restricting to researchers who have clear reason to use a

different coding strategy other than the field recommended norm. This may not ultimately be too

problematic if researchers can be transparent about which method is being used for a given

analysis, to ensure reproducibility. However, to a large extent the field norm seems to be dummy

coding, as this is often a default in software, though it is not immediately clear whether dummy

coding is optimal in most or any cases.

Future Directions

This research opens many paths for future exploration of the intersection of lasso and group

lasso regression with categorical predictors, and beyond. There are a few particular directions

which we believe would be most beneficial for improving the state of research in this area.

First, while exploring the role of coding strategy in lasso and group lasso models, it became

immediately clear that the intercept plays an important role in the interpretation of these models.

The typical practice within lasso is not to penalize the intercept (Wu & Lange, 2008). However,

the interpretation of the intercept varies greatly depending on which coding scheme is used. For

example, when dummy coding is used the intercept is the average of the reference group.
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Alternatively, when contrast coding is used the intercept is the average of all groups. Ultimately

this means that different group means have differential penalization depending on the coding

strategy used (as reflected in Figures 1). This brings about the question of whether it would be

appropriate to penalize the intercept in certain cases, and whether this would improve prediction

accuracy (just as penalizing all other regression coefficients improves prediction accuracy in

lasso). This question remains largely unexplored, and would be informative to researchers who

are interested in improving prediction accuracy.

This issue of penalization of the intercept brings up an important characteristic of contrast

coding which suggests itself as an appealing default for researchers unsure about which coding

strategy to use. Because the interpretation of the intercept for contrast coding is the average

across all groups, the penalization of the groups is symmetric about this average. This means that

when coefficients are dropped from the model, the group that is indicated by this predictor is

assumed to be equal to the group mean, rather than pulling the group directly toward another

group. This means that the selection of the "reference" group is likely to have less of an impact on

parameter estimates in comparison to dummy coding, because by selecting a reference group in

dummy coding, that group’s mean is then unpenalized (if the intercept is not penalized). The

interpretation of the intercept from contrast coding also aligns with how intercepts would be

interpreted if there were not categorical variables in the model and all continuous predictors were

standardized (i.e., sample average). This presents an opportunity for contrast coding to be a

reasonable default if researchers are unsure how to proceed with selecting an alternative coding

strategy; however, the use of contrast coding should be studied in a variety of contexts more

in-depth in order to assess it’s appropriateness as a potential default.

Another observation our team made during this investigation was that group size mattered

quite a lot with respect to how much predicted group means varied across different coding

strategies. In particular, in the wage data, the widowed group was particularly small (N = 19 out

of 3000 observations). This resulted in two problems which merit further investigation: how group

size can impact estimates and interact with selection of coding strategy and reference group and

how training and testing data should be split in the presence of small groups. Each of these is

discussed in turn.
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First, the observed behavior of the widowed group in the wage data made it clear that the

estimates for this group were very unstable and of any of the groups, most affected by coding

strategy. Figure 1 show how much the widowed group predicted mean varies across different

coding strategies, and that this variance is much larger than any of the other groups. This can

also be seen in Table 6 where most of the predicted group means show a range of about 2.0 across

the different coding strategies but the widowed group ranges by about 5.0. Similarly in Table 8

we can see that the estimates of all of the group means have the greatest bias when the widowed

group is used as the reference category, and the lasso model with dummy coding and widowed as

the reference group has the highest MSE. This suggests that there may be a particularly

important interaction of group size and choice of coding strategy, where selecting a small group to

be a reference group causes additional instability in the estimates, and should be avoided.

However, future research should examine the role of group size in the fitting of lasso and group

lasso models; in particular, it would be interesting to know if group lasso models are less sensitive

to these issues.

A second issue brought up by having small groups is the difficulty of splitting testing and

training data sets when groups are particularly small. This may become particularly problematic

when there are many categorical variables which include many groups. Previous researchers have

resolved to collapse groups that are particularly small (e.g., racial/ethnic minorities). It is unclear

how this practice impacts estimates for these groups, and in general is not recommended in other

analytic practices (e.g., Tarantola & Dellaportas, 2005). Throughout this project, there were

certain cases, where the training-testing split of the data resulted in no cases from certain groups

being selected into the training dataset. This made it impossible to fit a model in the testing set

which provided a unique estimate for the missing group. Methods for splitting the data such as

block randomization may provide more accurate estimates of means for small groups, if the

groups can be evenly split across training and testing sets of data. However, this issue is

compacted by methods which repeatedly split data, or split the data into smaller parts (e.g.,

K-fold cross-validation for selecting the tuning parameter), and it is important that future

research explores alternative ways to estimate unique group means for small groups, rather than a

priori collapsing them with other groups.
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Conclusion

Overall, our findings suggest that researchers should be aware that their coding strategies

will likely impact both variable selection and prediction accuracy when using lasso regression and

their prediction accuracy when using group lasso. We demonstrate cases when group lasso may

have lower prediction accuracy than lasso, in particular when there is a dominant group (one

group that differs from all other groups). The choice of what method to use (lasso or group lasso),

what coding strategy to use, and which group order to use or reference category to choose, may

all depend on the priorities of the researcher with respect to maximizing interpretability,

prediction accuracy, variable selection, and robustness. It is important that the choices of the

researcher or analyst in how categorical variables are included in lasso and group lasso models are

transparently reported to improve the reproducibility and replicability of research in this area.

Future research needs to explore specific practices in this area (e.g., penalization of the intercept,

use of contrast coding) and how small groups should be accounted for in order to optimize

prediction accuracy for these groups and avoid collapsing across groups.

Psychologists are quickly adopting the new and incredibly useful tools being developed in

statistics and computer science which fit under the broad area of machine learning and artificial

intelligence. The use of these tools will likely improve the ability of psychology researchers to

predict out of sample data, which may be particularly important in clinical settings. However, it

is important to acknowledge that these new tools do not necessarily perform in the same ways

that many researchers expect based on their training, which is primarily in linear regression,

ANOVA, and structural equation modeling frameworks. Ensuring that the differences between

these more traditional statistical frameworks and the newly developed machine learning

frameworks are clearly defined, will improve the implementation of these new methods

throughout the field of psychology.
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Marital Status D1 D2 D3 D4

1. Single 0 0 0 0

2. Married 1 0 0 0

3. Widowed 0 1 0 0

4. Divorced 0 0 1 0

5. Separated 0 0 0 1
Table 1

Dummy Coding
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Marital Status X1 X2 X3 X4

1. Single 1 0 0 0

2. Married 0 1 0 0

3. Widowed 0 0 1 0

4. Divorced 0 0 0 1

5. Separated -1 -1 -1 -1
Table 2

Contrast Coding
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Marital Status X1 X2 X3 X4

1. Single -4/5 0 0 0

2. Married 1/5 -3/4 0 0

3. Widowed 1/5 1/4 -2/3 0

4. Divorced 1/5 1/4 1/3 -1/2

5. Separated 1/5 1/4 1/3 1/2
Table 3

Helmert Coding
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Marital Status Dummy Contrast Helmert

1. Intercept 92.735 103.10172 103.1017

2. X1 26.126 -10.36707 12.959

3. X2 6.804 15.75854 -17.556

4. X3 10.425 -3.56307 2.649

5. X4 8.481 0.05754 -1.943
Table 4

LR example for coding

Each column of the table represents one coding strategy and row2 - row5 represent the coefficients

of the indicator Xi for each coding strategy.
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Table 6

Prediction Accuracy for Different Coding Strategies by Lasso.

Rows represent the categories within the variable, and the middle three columns represent models

with different coding strategies. Last column is the actual category mean from the training data.

Coding strategies Dummy Contrast Helmert Actual Category Mean

1.Single 69.988 68.983 70.074 68.096

2.Married 87.115 86.251 87.089 85.593

3.Widowed 69.988 71.604 74.565 69.409

4.Divorced 73.665 73.594 74.565 72.392

5.Separated 76.195 75.719 74.565 75.655

MSE 1200.803 1201.114 1201.386 /
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Variables 1.Single 2.Married 3.Widowed 4.Divorced 5.Separated

Intercept 69.988 87.344 74.410 74.447 76.062

1.Single . -17.322 -4.225 -4.404 -6.214

2.Married 17.127 . 13.161 12.978 11.200

3.Widowed 0 -15.133 . -2.220 -4.077

4.Divorced 3.678 -12.733 0 . -1.623

5.Separated 6.207 -9.616 2.140 2.036 .

MSE 1200.803 1200.401 1201.084 1200.950 1201.069
Table 7

Model Coefficients of Categorical Variable Marital Status for Different Reference categories.

Each column represents one model, and each row represents coefficients of the predictor produced

by five models. "." is the reference category for this model, and 0 means that the model does not

select this category into the model.
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Table 8

Prediction Accuracy for Different Reference Categories by Lasso.

Rows represent the categories within the variable, and the middle five columns represent models

with different reference categories. Last column is the actual category mean from the training data.

Coding strategies 1.Single 2.Married 3.Widowed 4.Divorced 5.Separated Actual Category Mean

1.Single 69.988 70.022 74.410 70.043 76.062 68.096

2.Married 87.115 87.344 87.571 87.425 87.262 85.593

3.Widowed 69.988 72.211 74.410 72.227 71.985 69.409

4.Divorced 73.665 74.611 74.410 74.447 74.437 72.392

5.Separated 76.195 77.728 76.550 76.483 76.602 75.655

MSE 1200.803 1200.401 1201.084 1200.950 1201.069 /
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Table 9

Prediction Accuracy for Different Coding Strategies using Singular Design Matrices by Lasso

Rows represent the categories within the variable, and middle three columns represent models

with different coding strategies. Last column is the actual category mean from the training data.

Coding strategies Dummy Contrast Helmert Actual Category Mean

1.Single 70.702 69.653 69.817 68.096

2.Married 87.737 86.885 87.020 85.593

3.Widowed 75.135 73.393 74.247 69.409

4.Divorced 75.135 74.538 74.247 72.392

5.Separated 75.135 75.792 75.081 75.655

MSE 1204.915 1204.072 1203.446 /
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Table 10

Prediction Accuracy for Different Coding Strategies using Singular Design Matrices by Group

Lasso

Rows represent the categories within the variable, and middle three columns represent models

with different coding strategies. Last column is the actual category mean from the training data.

Coding strategies Dummy Contrast Helmert Actual Category Mean

1.Single 68.957 69.225 69.038 68.096

2.Married 85.677 85.977 85.710 85.593

3.Widowed 73.311 73.651 73.675 69.409

4.Divorced 73.171 73.488 73.414 72.392

5.Separated 75.468 75.868 75.463 75.655

MSE 1198.235 1199.726 1198.547 /
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Table 11

Prediction Accuracy for Different Coding Strategies by Group Lasso

Rows represent the categories within the variable, and middle three columns represent models

with different coding strategies. Last column is the actual category mean from the training data.

Coding strategies Dummy Contrast Helmert Actual Category Mean

1.Single 70.827 69.084 68.731 68.096

2.Married 86.852 85.913 85.506 85.593

3.Widowed 70.374 73.376 73.207 69.409

4.Divorced 73.395 74.343 73.081 72.392

5.Separated 74.273 75.817 75.090 75.655

MSE 1199.496 1199.474 1197.668 /
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Table 12

Differences in MSE of Lasso of Group Lasso models for Monte Carlo Simulation. "Difference"

means subtracting MSEs for lasso from MSEs for group lasso.

Dominant Category Number of Categories

mean 2 3 4 5

0.1 0.0024 0.0028 0.0029 0.0003

0.2 0.0016 0.0020 0.004 0.0008

0.3 0.0045 0.0029 0.0029 0.0030
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Figure 2 . Comparison between probability of to include non-predictive categories. Simulations in

the same plots have the same number of groups.
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