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Thermal Energy Transport and Conversion in Disordered Materials 
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Jianlin Zheng 

 

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering) 
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Professor Renkun Chen, Chair 

 

Thermal properties (thermal conductivity and specific heat) of the disordered 

materials, such as amorphous silicon (a-Si), polymer, and nano-crystalline 

semiconductors, are of significant interests for fundamental understanding of thermal 

transport process and for technical applications in thermal energy management and 

conversion. Due to the random distribution of atoms or molecules in disordered materials, 

the study of thermal transport is more challenging than that in crystalline materials. 

Understanding of the heat carrier transport behavior can be utilized to engineer the 

thermal properties in disordered materials, which can be applied for better devices 

thermal design and improving thermal energy conversion efficiency. 
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We have studied the size dependent thermal conductivity of a-Si thin films and 

nanotubes, and observed unusually high and anisotropic thermal conductivity in the 

isotropic a-Si nanostructure. This manifests surprisingly broad mean free path 

distribution of the propagating modes (propagons), which is found to range from 10 nm 

to 10 μm, in the disordered and isotropic structure. Constraining the long MFP propagons 

by boundary scattering in thin film and nanotubes explains the appreciable size effect in 

a-Si. Additionally, we developed a novel platform to measure the specific heat of low-

dimensional disordered materials. By measuring the frequency dependent temperature 

rise data along the Nylon nanofibers (NFs), we are able to extract the specific heat and 

thermal conductivity simultaneously. While the thermal conductivity is increased by 50% 

over the bulk value in the 600 nm NFs, the specific heat exhibits bulk-like behavior. 

Finally we engineered the thermal conductivity in nano-crystalline bismuth-antimony-

telluride (BST) by embedding SiO2 or diamond nanoparticles (NPs) at temperature below 

300K, which has important application in thermoelectric cooling. We have shown that the 

embedded NPs work as additional scattering centers for lattice vibration (or called 

phonons), and can efficiently scatter the long MFP phonons in BST. We have observed 

23% reduction of thermal conductivity, and 15% improvement of thermoelectric figure of 

merit (ZT) in the 0.5 vol. % Diamond NPs mixing sample, compared to the non-NPs 

nano-crystalline BST. 
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Chapter 1: Introduction 

 

1.1 Introduction to Disordered Materials  

Disordered materials, including nano-crystalline and amorphous types, are 

ubiquitous and critical for modern and emerging semiconductor devices, such as 

amorphous Si (a-Si) photovoltaic (PV) solar cells, gate dielectrics, thermoelectric (TE) 

devices, solid state non-volatile phase change memory (PCM), memristors, and displays. 

Performance, reliability, and functionality of these devices are often closely related to 

operating temperature, which in turn is dictated by the thermal properties of the 

constituent materials, including disordered ones. Therefore, an in-depth understanding of 

thermal transport in disordered materials is very important for optimizing the thermal 

design of these devices. Moreover, from a fundamental perspective, understanding of 

thermal transport mechanisms in many disordered materials is still elusive, and much less 

advanced compared to that of crystalline materials.  

Among disordered materials, a-Si is one of the most widely used in 

semiconductor devices due to its excellent electronic and optical properties and low cost 

potential 
1, 2

. For instance, a-Si is an excellent material for PV solar cells (Fig. 1.1(a)) due 

to its direct band gap with a high optical absorption coefficient
3
, lower cost, and 

compatibility with flexible substrates. With a lower density of localized states, 

hydrogenated a-Si is of more technological importance than non-passivated a-Si
3
. 

Hydrogenated a-Si thin film multi-junction solar cells have achieved efficiency around 

13%
4
. In these multi-junction modules, a-Si thin film thickness can be as small as 10nm

5, 

6
. The thermal properties of a-Si thin films could strongly influence the temperature 



 

 

2 
 

profile within the PV modules, which directly affects the output current, voltage, and 

power
1
. Chow

7
 showed that typically there is a 0.4% drop in cell efficiency for every 1 K 

above room temperature, and the associated thermal stress may cause structural damage 

to the PV module. 

 

 
Figure 1.1: (a) Schematic view of typical a-Si:H solar cell (reproduced from ref. 

8
). (b) 

Comparison between transistors based on SiO2 and high-k amorphous materials. High-k 

amorphous HfO2 with metal gate helps to shrink the chips further. (c) Distribution of 

material phase (left) and temperature (right) within a PCM device
9
. (b) Reprinted with 

permission from ref. 
10

, copyright 2011 American Chemical Society. (c) Reprinted with 

permission from ref. 
9
, copyright 2006 IEEE. 

 

Disordered materials also have a wide-range of applications in other 

microelectronic devices. Thin film transistors (TFTs) based on amorphous materials are 

widely used as switching devices in liquid crystal displays (LCD) and image sensors. 

Yang et al.
11

 showed that a-Si TFTs can be formed at low temperatures on transparent 

plastic substrates. More recently, much effort has been made in the field of amorphous 

oxide TFTs, which have the advantage of room temperature fabrication and excellent 

(a) (b)

(c)

Glass

SnO2

p-type a-SiC:H

Intrinsic 
a-Si:H

n-type a-Si:H

ZnO or ITO

Al or Ag

+-
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uniformity over a large area
12

. A-Si thin films have also been used in microbolometer 

technology for infrared imaging
13, 14

, owing to their high temperature coefficient of 

resistance (TCR) (e.g., up to 3%/K
15

) and low thermal conductivity. Understanding the 

thermal transport characteristics of disordered thin films is important for the thermal 

design and management of these novel electronic devices. 

Furthermore, disordered dielectric materials, such as SiO2, HfO2, and SiNx, are 

widely used as inter-conductor gate dielectric layers in microelectronics
16

. The thermal 

properties of these thin dielectric layers, including their interfaces with the semiconductor 

devices, is important for heat dissipation from the active device junction to the heat sinks 

of various transistors 
16, 17

. Oxide based dielectrics are also commonly used in magneto-

optic recording devices
18

, cavity emitting lasers
19

, and as optical coatings
20

. The thermal 

conductivity of SiNx
16

 and SiO2
21

 thin films have been extensively studied. The 

semiconductor industry has been seeking alternatives to SiO2 as the gate dielectric in 

CMOS technology with higher dielectric constant (k) since the SiO2 gate-dielectric 

thickness is expected to shrink below 1 nm in the near future
22

, which may cause current 

leakage and reliability to become an important issue
23

. High-k amorphous zirconia (ZrO2) 

and hafnia (HfO2) have been proposed as promising alternatives for SiO2 to provide 

required capacitance with relatively large film thickness
24

. For the first time in 2007, Intel 

reported that high-k materials were adopted in its 45-nm technology chips, shown in Fig. 

1.1(b) and, more recently in 2014, for its 14 nm 3D tri-gate technology chips. The 

thermal properties of ZrO2 and HfO2 have not been as intensively studied as their 

electrical and chemical properties. However, increased research will provide meaningful 

information for thermal management of the electronics incorporating these thin film 
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materials. For example, Lee and Cahill
25

 showed that sputtered microcrystalline HfO2 

with an average grain size of 15 nm displays glasslike thermal conductivity (1.2 W m
-1 

K
-

1
 at room temperature). However, Panzer et al.

26
 observed film-thickness-dependent 

thermal conductivity of ultra-thin HfO2 films after post-deposition thermal processing. 

Disordered materials are also attractive for thermoelectric applications. Poudel et 

al.27 showed a peak ZT of 1.4 at 373K in a nano-crystalline Bi-Sb-Te alloys. The 

significant ZT improvement originated from the reduction of lattice thermal 

conductivity, which is due to stronger boundary by the numerous grain boundaries 

created during high-energy ball milling process. Besides the nano-crystalline 

materials, it was proposed by Nolas and Goldsmid
28

 in 2002 that if phonons have a 

longer mean free path than electrons in a crystalline material, its corresponding 

amorphous structure could possess a higher thermoelectric figure-of-merit (ZT) since the 

atomic disorder may more strongly reduce phonon thermal conductivity as opposed to 

electrical conductivity. This has been demonstrated in a number of amorphous oxides, 

such as ZnO thin films
29

, NbO2
30

, and TiO2-PbO-V2O5
31

. More recently, Music et al.
32

 

showed that a novel Nb-Ru-O-N amorphous thin film exhibits an order of magnitude 

improvement in power factor compared to other Nb based oxides or oxy-nitrides. 

However, thermoelectric applications with amorphous materials have not been broadly 

exploited. A deep understanding of thermal transport in amorphous thermoelectric 

materials would be beneficial for the development of this field.  

Another promising application for disordered materials lies in phase change 

memory (PCM), which exploits the large difference between the electrical resistance 

between the crystalline and amorphous states of a material, such as Ge2Sb2Te5 (GST), to 
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store information. This crystalline-amorphous phase transition is typically induced via 

Joule heating, which often requires a high programming current (0.1-0.5mA) 
33

. In order 

to improve the efficiency of a PCM cell, a complete understanding and modeling of the 

temperature profile is essential. Chen et al.
9
 showed the great potential of phase-change 

random access memory (PCRAM), and modeled the 3D phase and temperature 

distribution in a PCM cell, shown in Fig. 1.1(c). Reifenberg et al.
34

 investigated the 

impact of thermal boundary resistance in PCM cells and showed that programming 

current can be substantially decreased by engineering thermal anisotropy between the 

constituent PCM materials. Additionally, low thermal conductivity (<1 W m
-1

 K
-1

) 

amorphous materials can be used to protect phase change memory devices from thermal 

disturbances
35

 and reduce power consumption
36

. 

 

1.2 Thermal Transport in Crystalline Materials 

Crystals are made of atoms in an ordered and periodic array over a length scale 

much larger than the lattice constant. Vibration on one or a group of atoms will be 

transmitted as waves through the whole crystal. These lattice vibration waves carry 

energy and are responsible for thermal energy transport in crystalline solids. The 

quantization of the collective lattice vibration energy is called a phonon. This is the 

microscopic origin of thermal transport in many crystalline dielectrics, including 

semiconductors. Because of the atomic periodicity, phonon modes can spatially extend 

up to the entire crystal. Phonon wave-packets, which are ensembles of phonon modes 

with similar frequency, can travel over long distances, often much longer than the lattice 

constant, before they are scattered by impurities, grain boundaries, or other phonons. The 



 

 

6 
 

thermal conductivity (κ) contributed by phonons is determined by the energy 

carried by each phonon (wave packet), the group velocity of the phonons (vg), and 

the average distance (Λ) that phonons travel between two successive scattering 

event, known as the phonon mean free path (MFP). Based on kinetic theory
37

, 𝜅 in a 

bulk solid can be expressed as: 

𝜅 =
1

3
∑ ∫ 𝑐(𝜔)𝑣𝑔(𝜔)Λ(𝜔) 𝑑𝜔𝑝      (1.1) 

where c is the specific heat per unit volume of the material, ‘p’ is polarization, 

including two transverse modes and one longitudinal mode. Note that each of the 

parameters is frequency dependent, owing to the broadband nature of the phonon 

spectra.  

Next we would look at the quantum mechanics description of these three 

parameters: volumetric specific heat ‘c’, group velocity ‘vg’, and MFP. The energy 

of a phonon at frequency ω is ℏω, where ℏ is Planck’s constant divided by  2π. 

Phonon is Bosons, and follows Bose-Einstein distribution. At a given temperature 

T, the equilibrium number of phonons with given energy ℏωj is given as, 

〈nj〉 =
1

𝑒
ℏ𝜔𝑗/𝑘𝐵𝑇

−1
       (1.2) 

The total energy of a given vibration mode j can be expressed as 

Ej = (〈nj〉 +
1

2
) ℏωj      (1.3) 

From thermodynamics, we know that the volumetric heat capacity can be defined 

as 

C =
𝜕𝐸

𝜕𝑇
        (1.4) 

Thus, the contribution to heat capacity from a given lattice vibration mode j is 
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Cj =
𝜕𝐸𝑗

𝜕𝑇
= 𝑘𝐵 (

ℏωj

𝑘𝐵𝑇
)

2 𝑒
ℏ𝜔𝑗/𝑘𝐵𝑇

(𝑒
ℏ𝜔𝑗/𝑘𝐵𝑇

−1)
2     (1.5) 

For a system consisting N atoms, there are total 3N lattice vibration modes, thus 

the total lattice heat capacity can be written as 

C = ∑ 𝐶𝑗
3𝑁
𝑗=1 = ∑ 𝑘𝐵 (

ℏωj

𝑘𝐵𝑇
)

2 𝑒
ℏ𝜔𝑗/𝑘𝐵𝑇

(𝑒
ℏ𝜔𝑗/𝑘𝐵𝑇

−1)
2

3𝑁
𝑗=1      (1.6) 

In order to convert the summation of Eq. (1.6) into integration, we will introduce 

the concept of density of states D(ω) , which density of modes between ω  to 

ω + dω, therefore, 

∫ D(ω)
∞

0
𝑑𝜔 = 3𝑁      (1.7) 

And Eq. (1.6) can be written as 

C = ∫ 𝑘𝐵 (
ℏω

𝑘𝐵𝑇
)

2 𝑒ℏω/𝑘𝐵𝑇

(𝑒ℏω/𝑘𝐵𝑇−1)
2

∞

0
D(ω)dω     (1.8) 

In order to obtain D(ω), we will look at the number of allowable phonon modes in 

a crystal space with side length L, which can be written as 

N =
4

3
πq3

(
2𝜋

𝐿
)

3 =
V

6𝜋2 𝑞3       (1.9) 

where q =
2π

𝜆
 is the wave vector, λ is the phonon wavelength, V=L

3
 is the volume 

of the crystal. Thus, density of state D(ω) can be derived as 

D(ω) =
1

V

𝑑𝑁

𝑑𝜔
=

q2

2𝜋2

𝑑𝑞

𝑑𝜔
      (1.10) 

The relation between ω and q is called phonon dispersion, and 
𝑑𝑞

𝑑𝜔
 is group velocity 

vg, as we have seen in Eq. (1.1). Actual dispersion relationship of a crystal can be 

very complicated. One most common used simplified model is Debye model, 

which assumes linear phonon dispersion, i.e., ω = vgq. Thus, 
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D(ω) =
ω2

2𝜋2𝑣𝑔
3       (1.11) 

Note that Debye model only considers low frequency phonons, and neglect the 

contribution to thermal conductivity and heat capacity from high frequency 

phonons. Therefore, there is a cut-off frequency (Debye frequency), which can be 

derived by combining Eq. (1.7), Eq. (1.10), and Debye dispersion relationship, and 

given as 

ωD = vg (
6𝜋2𝑁

𝑉
)

1/3

     (1.12) 

Under Debye approximation, the heat capacity in Eq. (1.8) can be simplified as 

C =
3V

2𝜋2𝑣𝑔
3 ∫ 𝑘𝐵 (

ℏω

𝑘𝐵𝑇
)

2 𝑒ℏω/𝑘𝐵𝑇

(𝑒ℏω/𝑘𝐵𝑇−1)
2 𝜔2𝑑𝜔

𝜔𝐷

0
    (1.13) 

Next, we will look at the mean free path distribution. The MFP in Eq. (1.1) 

is effective phonon MFP, which considers scattering rates by impurity, boundaries, 

and other phonons, and is given by Matthiessen’s rule as 

Λ𝑒𝑓𝑓
−1 = Λ𝑖

−1 + Λ𝑏𝑑
−1 + Λ𝑢

−1     (1.14) 

where Λi , Λbd , and Λu  are for impurity scattering, boundary scattering, and 

Umklapp phonon-phonon scattering.  

Phonons with different MFP have different capacity to carry heat. This can 

be quantitatively described using the so-called MFP distribution function. As an 

example, Fig. 1.2 shows the MFP distribution of crystalline Si (c-Si) by molecular 

dynamics simulation
38

. The right plot shows that the range of MFP in c-Si spans 

from sub-10nm up to 100 um at 277K. The MFP larger than 100um or smaller than 

1nm makes negligible contribution to thermal conductivity.  
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Figure 1.2: Cumulative contributions of phonons to the thermal conductivity at 277 

K as a function of the wavelengths (left plot) and MFPs (right plot)
38

. The red line 

shows the cumulative thermal conductivities. 

 

The MFP distribution function is very useful tool to engineer phonon 

transport. For example, from Fig. 1.2, if we can constrain the maximum phonon 

MFP up to 1 um by manipulating the scattering mechanism (e.g., increasing 

boundary scattering), we can reduce the total thermal conductivity down to 90 

W/m-K, 40% lower than the bulk value. 

Progress in modern microfabrication technology has led to the creation of 

numerous nanostructures, such as semiconductor thin films and nanowires. These 

nanostructures often exhibit distinct thermal properties compared to their bulk 

counterparts. Over the past decades, intensive work has been focused on understanding 

the effect of nanostructuring on thermal properties and its technological application. 

Unlike bulk materials, semiconductor nanostructures provide more opportunities for 

thermal property engineering. It has been well acknowledged that the phonon properties 

of semiconductor nanostructures can be modified, such as phonon mean-free-path 

(MFP)
39

, group velocity
40

 and density of states
41

, to manipulate the thermal properties for 
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different device applications. For example, Li et al.
42

 observed that the thermal 

conductivity of crystalline Si nanowires can be reduced by two orders of magnitude 

compared to the corresponding bulk value. This is attributed to strong phonon-boundary 

scattering, which limits phonon MFPs to approximately the diameter of the nanowire, a 

regime called the ‘Casimir limit’ 
43

. Hochbaum et al.
44

 and Carrete et al.
45

 further showed 

that surface roughness also plays an important role in reducing the thermal conductivity 

below the Casimir limit. Generally speaking, phonon transport mechanisms in crystalline 

materials are relatively well understood, and the size effect on thermal conductivity can 

often be understood through molecular simulations and semi-classical formalism (e.g., 

BTE). 

 

1.3 Thermal Transport in Disordered Materials 

Unlike crystals, disordered materials lack the translational symmetry and 

periodicity over a long distance. Therefore, the concept of extended phonon waves is not 

well defined, nor is the phonon wave vector, group velocity, or MFP. This imposes a 

tremendous challenge for modeling thermal transport in disordered solids. For numeric 

simulations, the lack of periodicity means that one has to be cautious when applying 

commonly-used periodic boundary conditions, especially when the super-cell size is 

small, because it imposes an artificial periodic structure on the material. 

An earlier theoretical framework on heat conduction in amorphous materials was 

first proposed by Einstein
46

 and later refined by Slack
47

. This theory is based on the 

assumption of independent or non-correlated vibrations among neighboring atoms or 

lattices, which is in contrast to that of extended waves in crystals. Heat conduction is 
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described by a ‘random walk’ of these independent oscillators, each at a characteristic 

frequency, the Einstein frequency. Slack 
47

 formulated this problem by equating the 

minimum MFP to be the same as the wavelength of the phonon, namely Λ = 𝜆. The 

thermal conductivity obtained from this model is known as the ‘minimum thermal 

conductivity’, 𝜅𝑚𝑖𝑛. In 1992, Cahill et al.
48

 further extended this model by dividing the 

sample into regions of size 𝜆/2, with velocity being the low-frequency speed of sound 

(i.e., Debye model). The MFP of each oscillator is assumed to be 𝜆/2. The thermal 

conductivity can be formulated as the sum of three Debye integrals
48

: 

𝜅𝑚𝑖𝑛 = (
𝜋

6
)

1

3
𝑘𝐵𝑛

2

3 ∑ 𝑣𝑔𝑖 (
𝑇

𝛩𝐷
)

2

∫
𝑥3𝑒𝑥

(𝑒𝑥−1)2 𝑑𝑥
𝛩𝐷/𝑇

0
                                (1.15) 

which considers three acoustic modes with speed of sound,𝑣𝑖 , and the Debye 

temperature, 
D

48
. This model works very well for a large number of disordered 

materials, as shown in Figure 1.3. 

 

 

Figure 1.3: Calculated (based on Eq. (1.15)) vs. measured minimum conductivity at room 

temperature. Reprinted with permission from ref. 
48

, copyright 1992 American Physical 

Society. 
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While showing excellent agreement with many experimental data, one of the 

conceptual difficulties of the minimum thermal conductivity model is that the MFP is 

comparable to wavelength, so the mode wave-vector, velocity, and mean free path cannot 

be well defined to justify the use of Eq. (1.1), which is based on the BTE. Subsequently, 

Allen and Feldman studied thermal transport mechanism in amorphous materials 

theoretically and numerically
49, 50

 and proposed to use an alternative formula, 𝜅 =

1

𝑉
∑ 𝐶𝑖(𝑇)/𝐷𝑖𝑖 , where 𝐶𝑖(𝑇) is the specific heat of the i

th
 mode  and 𝐷𝑖  is the “mode 

diffusivity”.  They found that the modes described by this equation are neither localized 

(which would have 𝐷 = 0) nor propagating, but rather carry the heat through intrinsic 

harmonic diffusion with the aforementioned diffusivity. Hence, these modes are known 

as ‘diffusons’. Their numerical calculation on a-Si with a 1000-atom supercell further 

showed that the majority of the modes are diffusons. If one would relate the diffusivity as 

‘diffusons’. Their numerical calculation on a-Si with a 1000-atom supercell further 

showed that the majority of the modes are diffusons. If one would relate the diffusivity 

and MFP through 𝐷𝑘 =
1

3
𝑣Λ, they found that Λ would be very small (only a few Å), 

which is consistent with the assumption used in the minimum thermal conductivity theory. 

However, unlike the treatment used in the Boltzmann theory, the wave vectors, and hence 

the modal velocity and MFP, of the diffusons are not well defined. Subsequently, Allen, 

Feldman and others 
51

 further extended the model and classified the vibrational modes 

into three different categories: propagons, diffusons, and locons (localized modes). 

Propagons are phonon-like modes which occupy the bottom of the frequency spectrum, 

have well defined wave vectors, travel at the sound velocity over distances greater than 
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2𝑎, and contribute to about 4% of the total number of modes, while diffusons and locons 

contribute to about 93% and 3%, respectively, as shown in Fig. 1.4 (a).  

 

 

Figure 1.4: (a) Vibrational density of states in amorphous silicon (a-Si). (b) Calculated 

lifetime (𝜏) of propagons in a-Si, using equilibrium molecular dynamics (EMD), which 

follow a 𝜏~𝜔−2scaling for 𝜔 < 1013 rad/s, larger than the Ioffe-Regel limit (𝜏 = 2𝜋/𝜔). 

(a) Reprinted with permission from ref. 
51

, copyright 1999 Taylor & Francis Ltd. (b) 

Reprinted with permission from ref. 
52

, copyright 2014 American Physical Society. 

 

One of the remaining issues in the studies by Feldman et al.
49

 was the 

contribution of the progagons to the total 𝜅 of a-Si. Since the propagons are expected to 

have long MFPs, the small cell size (1000 atoms in ref. 
49

 and 4096 atoms in ref. 
51

, or 

super-cell side length of 28 Å and 44 Å, respectively) could have limited the calculated 

MFP of propagons and consequently their contribution to the total 𝜅 . The computed 

thermal conductivity (~1 W m
-1 

K
-1

 at 300 K), albeit being close to the experimental data 

available at the time
53

, was found to be smaller than several more recent experimental 

results, which could be as high as 4 W m
-1

 K
-1

, as we shall discuss later in Section 3. 

Recent MD and theoretical studies by He et al.
54

 and Larkin and McGaughey
52

 found that 

propagons could contribute significantly, up to 40% 
52

 to half
54

, of the total 𝜅 of a-Si. 
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They found that the MFP of propagons can range from ~10 nm up to ~1 µm. Additionally, 

Larkin and McGaughey
52

 also calculated the lifetime ( 𝜏 ) of the propagons using 

equilibrium MD (EMD), and showed that the simulated results follow the 𝜏~𝜔−2scaling 

for 𝜔 < 1013 rad/s (Fig. 1.4b). This indicates that the lifetimes are larger than the Ioffe-

Regel limit, namely, 𝜏 = 2𝜋/𝜔. The agreement between the simulation results and the 

structure factor time scale ( 𝜏~𝜔−2 ) indicates that these low frequency modes are 

propagating
52

. In addition, Larkin and McGaughey
52

 found that the contribution of 

propagons to 𝜅 of a-SiO2 is very small (~0.1 W m
-1 

K
-1

). More recently, Lv and Henry
55

 

computed the thermal conductivity of a-Si using Green-Kubo modal analysis, in which 

they combined lattice dynamics formalism with the Green-Kubo formula. The advantage 

of this method is that one can directly obtain modal contributions to thermal conductivity 

(using the Green-Kubo formula) without needing to define phonon velocity. 

 

1.4 Thermoelectric Cooling 

The study of thermoelectrics (TE) is of fundamental interest for the development 

of various techniques including refrigeration and waste heat recycling. However, most of 

the recent research work are focused on the application of waste heat recycling, which 

requires high TE efficiency at high temperature (>300K). The research in the low 

temperature range (<300K), which is very important for thermoelectric cooling 

application, are much less. The TE cooling is an appealing technique due to many 

advantages, such as quietness, compactness, fast response, and local cooling. TE cooling 

is firstly discovered by Peltier back to early 1800s. He found that the bismuth-antimony 

thermocouple junction will be cooled down by passing current from one direction, 
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whereas when the current is passed from the other direction, the junction is heated up. 

This phenomenon is called Peltier effect, and it’s the base of TE cooling devices, as 

shown in Fig. 1.5
56

. When current is passing through the p-type and n-type TE materials, 

the majority carriers absorb the heat from the cold side, and reject the heat to the hot side 

(heat sink), thus providing refrigeration capability. 

The TE performance of a material is determined by the material’s figure of merit,  

ZT =
S2σT

𝜅
      (1.16) 

where S is Seebeck coefficient, σ is electric conductivity, S2σ is called power factor, T 

is temperature, κ is thermal conductivity, which includes electronic (𝜅𝑒 ) and lattice 

thermal conductivity (𝜅𝑙𝑎𝑡). 

 

 

Figure 1.5: Schematic of Peltier effect for the active refrigeration. By passing current 

through the two TE legs, the carriers (electrons in the n-type leg and holes in the p-type 

leg) will absorb heat from the upper junction and release heat at the lower junction
56

. 

 

Based on Eq. (1.16), a good TE material candidate should have high Seebeck 

coefficient, which is defined as thermo voltage generated at certain temperature gradient 

across the sample, high electrical conductivity to reduce the parasitic joule heating, and 
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low thermal conductivity to maintain the temperature gradient. ZT is closely related to 

the TE cooling efficiency. The higher the ZT number is, the better the TE performance 

will be. The relation between the TE cooling efficiency, the hot side temperature Th, cold 

side temperature Tc, and ZT can be expressed as 

ηc =
𝑇ℎ

𝑇ℎ−𝑇𝑐
(

√1+𝑍𝑇𝑎𝑣𝑔−𝑇ℎ/𝑇𝑐

√1+𝑍𝑇𝑎𝑣𝑔+1
)       (1.17) 

where ZTavg is the average ZT value for both p-type and n-type legs shown in Fig. 4., and 

for each leg, it is averaged over the ZT temperature dependent curve between Th and Tc, 

and is shown as 

ZTavg =
1

𝑇ℎ−𝑇𝑐
∫ 𝑍𝑇𝑑𝑇

𝑇ℎ

𝑇𝑐
     (1.18) 

 

 

Figure 1.6: TE Cooling efficiency as a function of ZTavg at different temperature 

difference
56

. 

  

Figure 1.6 shows the TE cooling efficiency ηc as a function of ZTavg at different 

temperature difference (ΔT = 20K, 30K, and 40K) assuming Th=300K. The higher the 

ZTavg is, the higher the ηc will be. And at the same ZTavg, smaller temperature difference 
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gives higher TE cooling efficiency. This is because of the reduction of the conduction 

heat loss through the legs at smaller temperature difference. 

As discussed above, we can improve the ZT by maximizing the S2σ  while 

reducing the κ (κ = κe + 𝜅𝑙𝑎𝑡). However, the interdependency between the S, σ, and κe 

limits the improvement of ZT. Figure 1.7 shows the carrier concentration dependency of 

S, σ, κe, and ZT. With increasing carrier concentration (ne), the σ is increasing but the 

Seebeck coefficient is decreasing. The maximum power factor S2σ  locates at ne =

1020 𝑐𝑚−3. Since κe and σ follow the Wiedemann–Franz law (𝜅𝑒 = 𝐿𝜎𝑇), where ‘L’ is 

Lorenz number, κe  is increasing as the carrier concentration increases. The only 

independent parameter is lattice thermal conductivity 𝜅𝑙𝑎𝑡 . Therefore, one of the most 

common way to improve ZT is to reduce the 𝜅𝑙𝑎𝑡. 

According to Eq. (1.1), 𝜅𝑙𝑎𝑡  can be reduced by limiting the MFP of phonons, 

which depends on the scattering mechanisms in the materials. Enhance the impurity 

scattering and boundary scattering can reduced the corresponding MFP Λi and Λbd, 

respectively, as shown in Eq. (1.14). Intensive research effort has been focused on 

reducing the 𝜅𝑙𝑎𝑡 by introducing more impurity and boundary scattering in nanostructure 

materials. For example, Poudel et al.
27

 found that the ZT of Bi-Sb-Te, which is one of the 

most commonly used TE materials at low temperature, can be improved up to 1.2 at room 

temperature by high energy ball milling. The ball milling process created high density of 

grain boundaries that strongly enhances the scattering of phonon, leading to reduction of  

𝜅𝑙𝑎𝑡 while the power factor remains similar value. Additionally, Kim et al.
57

 showed the 

efficiency in Bi0.5Sb1.5Te3 can be further improved by quickly squeezing out excess liquid 

during compaction. This method introduces dislocation arrays at grain boundaries, which 
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can effectively scatter the mid-frequency phonons, and leads to further reduction of 

lattice thermal conductivity. The ZT can be further enhanced up to 1.86 at 320 K. Biswas 

et al.
58

 showed that the nanostructure can be optimized to include various scattering 

sources, such as atomic scale doping, nano-precipitates, and mesocale grain boundaries. 

This optimal nanostrucutre has been shown to be able to scattering different MFP 

phonons, and the figure of merit ZT is up 2.2 at 915 K.  

 

 

Figure 1.7: ZT as a function of carrier concentration
59

. The carrier concentration 

dependency of Seebeck coefficient (α), electrical (σ), thermal conductivity (κ), and 

power factor (α2𝜎) are also shown schematically on the same plot. 

 

1.5 Thesis Objectives 

Thermal properties of disordered materials are of great importance in both 

fundamental theoretical understanding of thermal transport and the broad practical 

applications. In this thesis, we are mainly focused on two questions: (1) understand the 

transport behavior of propagating lattice vibration modes (propagons) in amorphous 
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solids; (2) Phonon engineering in nano-crystalline materials by embedding nanoparticles 

(NPs). We have done following work to answer the questions.  

We have fabricated amorphous silicon (a-Si) films with thickness from 26nm to 

1.6 um and nanotubes (NTs) with shell thickness from 5nm to 100 nm. By studying the 

temperature dependent and size dependent thermal conductivity of the a-Si films and NTs, 

we observed unusually high and anisotropic thermal conductivity in the isotropic a-Si 

nanostructure. This manifests surprisingly broad mean free path distribution of the 

propagating modes (propagons), which is found to range from 10 nm to 10 μm. And we 

unambiguously showed that the thermal conductivity of ‘bulk’ a-Si can be up to 5.5 

W/m-K in experiment, which is important information for the future research and 

development on a-Si based devices. 

Since some NTs and films have thermal conductance as low as hundreds of pW/K, 

in order to improve the measurement resolution, we developed a platform based on 

modulated heating. By selecting appropriate measurement frequency, the measurement 

platform can not only measure the thermal conductivity, but also measure the specific 

heat. The platform has been calibrated with SiO2 NT and NWs for thermal conductivity 

measurement, and specific heat measurement on Nylon-11 nanofibers (NFs).  

Finally, we engineered the phonon transport in nano-grained BST at low 

temperature. Theoretical modeling shows that the transmission of long MFP phonons 

through the grain boundaries can be up to 1 at low temperature. If we can scatter these 

long MFP phonons, the thermal conductivity can be further reduced at low temperature. 

The strategy that we proposed is to embed NPs into the nano-grained BST matrix. We 

observed significant reduction of thermal conductivity in the NPs/BST samples. The 



 

 

20 
 

scattering strength of two types of NPs (SiO2 and diamond) has been compared, and we 

found the diamond NPs has stronger scattering due to the larger thermal boundary 

resistance in diamond/BST interface. With the further reduction of thermal conductivity, 

we successfully achieved improved thermoelectric figure of merit in the diamond/BST, 

compared with the non-NPs BST. 

 

1.6 Organization of the Thesis 

 Chapter 1 compares the thermal transport theory in crystalline and disordered 

materials, and gives an overview of thermoelectric principle and application in cooling. 

 Chapter 2 describes the temperature dependent and thickness dependent thermal 

conductivity of a-Si films and NTs, showing that the size effect occurs at thickness down 

to 5 nm, and that the reconstructed MFP spans from 10 nm to 10 m. 

 Chapter 3 details the measurement platform that can measure the thermal 

conductivity and specific heat simultaneously, and demonstrates this technique by 

measuring the thermal conductivity of Nylon-11 NFs. 

 Chapter 4 discusses the enhanced phonon scattering by embedded NPs in nano-

grained BST. Significant reduction of thermal conductivity has been achieved in the 

diamond NPs mixing samples, thus improving the thermoelectric figure of merit. 

 Chapter 5 summarizes the thesis and discusses the potential future work. 
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Chapter 2: Thermal Conductivity of Amorphous Silicon Films and 

Nanotubes 

 

2.1 Introduction 

Amorphous Si (a-Si) nanostructures are being broadly used numerous electronic 

and optoelectronic devices, such as solar cells
1
, infrared thermal sensors

2, 3
, transistors

4, 5
, 

and displays
6
. Thermal management of these devices is often critical for their 

performance, reliability, and lifetime
7
. Thermal transport in a-Si, and more generally in 

amorphous materials, has been traditionally described by the ‘amorphous limit’ model  

that can be traced back to Einstein in 1911
8
, who attributed heat conduction in disordered 

solids to random walk of independent oscillators with a characteristic frequency, known 

as the Einstein frequency. Subsequently, Slack
9
, and Cahill and Pohl

10
 refined Einstein’s 

concept and proposed the widely-used minimum thermal conductivity (𝜅min) model in 

disordered solids, referred to as the ‘amorphous limit’. This model has worked effectively 

in explaining 𝜅 of a large number of amorphous materials, such as oxides
11-13

.   

However, thermal conductivity of a-Si garnered tremendous renewed interests in 

recent years as measurements
14-23

 showed that thermal conductivity of a-Si can be 

considerably higher than the amorphous limit for a-Si, which is around ~1 W.m
-1

K
-1

. A 

summary of prior 𝜅  measurement results of a-Si is shown in Figure 2.1. While the 

measured 𝜅 values scatter, the general trend was that 𝜅 is close to the 𝜅min (~1 W.m
-1

K
-1

) 

for a-Si, when the film thickness (t) is  ≤ 100 nm. This thermal conductivity is believed 

to be dominated by non-propagating higher-frequency modes, known as ‘diffusons’, as 
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originally studied by Allen and Feldman
24-26

. However, for films greater than 1m thick, 

 𝜅  measurement can be higher than 3 W.m
-1

K
-1

. This extra thermal conductivity is 

believed to be contributed by phonon-like propagating modes, referred to as 

‘propagons’
24-26

.  

The observed size dependent thermal conductivity provided insights into the mean 

free path (MFP) distribution of propagon in a-Si. As the 𝜅 only starts increasing with the 

thickness when t is ≥100 nm, these prior results suggested that the lower bound of 

propagon MFP must be considerably larger than 100 nm, otherwise propagon 

contribution would have been observed in films with t < 100 nm. This would mean a 

large discontinuity in the MFP in the transition from diffusons (interatomic distance) to 

propagons (> 100 nm). However, recent molecular dynamics (MD) and theoretical 

studies
27, 28

 showed a smooth transition in the diffusivity, which is proportional to the 

MFP, from diffusons to propagons. These studies further showed that propagon MFP can 

range from ~10 nm to ~1 m, but the bulk 𝜅 value is considerably lower than 4 W.m
-1

K
-1

. 

Clearly, there is still no consensus on the MFP distribution of propagons and the bulk ‘𝜅’ 

value of a-Si. Therefore, quantifying the MFP distribution of propagon in a-Si has 

fundamental significance in understanding thermal management of a large number 

devices based on a-Si nanostructures.  Furthermore, it will shed light on the century-old 

problem of thermal transport in disordered solids , which is important to the general field 

of nano-phononics
29-31

.  

This discrepancy motivated us to re-examine the thermal conductivity of a-Si 

nanostructures and subsequently quantify its propagon MFP distribution. We realized that 

all but one
32

 of the prior a-Si film 𝜅  measurements were done along the cross-plane 
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direction. These measurements, most commonly using the 3ω 15, 17
 or time-domain 

thermal reflectance (TDTR) method
16, 18

, normally yield total cross-plane thermal 

resistance, which also includes the contact resistance (𝑅𝑐 ) between the film and the 

substrate as well as the metal transducers. For films with very small thickness, e.g., t=50 

nm, the intrinsic thermal resistance of the films is 𝑅𝑎−𝑆𝑖 = t/κ ≤ 5 × 10−8 m2. K. W−1 

(assuming 𝜅 ≥ 1  W.m
-1

K
-1

), which is on the same order of magnitude as solid-solid 

interfacial thermal resistance
33

. Thus it is difficult to separate film resistance and 𝑅𝑐 , 

resulting in a relative large uncertainty for  the measured 𝜅, especially for thin films (t < 

100 nm), as shown in our plot of reported 𝜅 values (Figure 2.1)  and in Braun et al.’s 

work
14

. This issue is further complicated due to the quasi-ballistic transport nature of 

propagons across the film thickness
34

. 

 

Figure 2.1: Prior κ⊥ measurement results
14-22, 35

 of a-Si films at 300 K. Our cross-plane 

data are shown as grey square boxes. Thermal conductivity of the diffusons (κd) (dash-

dot-dot line) based on Allen-Feldman (AF) theory
25

 is also shown as a reference. 

 

In this work, in order to obtain intrinsic thermal conductivity value of a-Si 

nanostructures without the influence of contact resistance, we utilized novel structures 
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and devices of a-Si nanotubes (NTs) and films that enabled precise in-plane thermal 

conductivity (𝜅∥) measurements over a wide size range of 5 nm to 1.7 m. The measured 

𝜅∥ showed considerably higher values compared to 𝜅⊥: 𝜅∥ are ~1.5, ~3.0, and ~5.3 W.m
-

1
K

-1
 for t=  ~5 nm, ~ 100 nm, and 1.7 m, respectively. The size dependent 𝜅∥ data also 

suggests that propagons contribute significantly to 𝜅 of a-Si films even with thickness 

down to 5 nm, unlike the previously suggested lower bound of 100 nm. We also 

measured cross-plane thermal conductivity (𝜅⊥) of films, and yielded results that were 

consistent with prior studies, but considerably lower than 𝜅∥. The anisotropic 𝜅 observed 

in the films further manifests the broad MFP spectra of propagon. With the measured size 

dependent 𝜅 along both directions, we extracted the MFP distribution of propagon using 

an algorithm developed by Minnich
36

. It is found that propagon MFP ranges from 10 nm 

to over 10 m and those with MFP greater than 1 m contributes to ~30 % of 𝜅𝑝 in ‘bulk’ 

a-Si at 300 K, which has a bulk value approaching ~5.5 W.m
-1

K
-1

 for t > 2 m.   

 

2.2 Preparation and Structural Analysis of a-Si Nanotubes and 

Films 

The a-Si NTs were fabricated by depositing a-Si shells on Ge nanowires at 490 
o
C 

with four different nominal shell thicknesses of 5, 20, 40, and 100 nm, and then 

selectively etching the Ge cores
37

. Detailed geometry information of NTs can be found in 

Table 2.1.  
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Table 2.1: Geometry information of the NTs 

Sample # Shell thickness (nm) Outer diameter (nm) Length (m) 

1 96 219 9.72 

2 36.6 137 6.06 

3 38.7 125 13.3 

4 39.5 136 10.3 

5 20.9 150 9.29 

6 19.3 109 10 

7 21.2 101 9.88 

8 5.6 81 10.5 

9 5.1 88 5.67 

10 5.2 46 6.23 

 
 

 

Figure 2.2: Thermal conductivity measurement schemes for in-plane and cross-plane 

configurations. (a) Schematic and (b) SEM image of in-plane a-Si NT device. (c) 

Schematics of either in-plane (main panel) or cross-plane 3𝜔 (inset) a-Si film devices. (d) 

SEM image of suspended a-Si film supported by two Pt/Cr electrode bridges (marked as 

heating and sensing). Scale bars for (b) and (d) are 5 μm. 

 

We prepared a-Si film samples of 26 nm to 1.7 m for both 𝜅∥  and 𝜅⊥ 

measurements. First, we grew a-Si films on either Si or SiO2/Si substrates using identical 

growth conditions as the a-Si NTs. After the film growth, devices were fabricated for 
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suspended-beam in-plane (Figure 2.2c,d) and 3ω cross-plane κ measurements (inset in 

Figure 2.2c). To fabricate suspended a-Si film device for the in-plane thermal 

conductivity measurement, a-Si films with varying thickness were deposited using 

chemical vapor deposition (CVD) on p+ Si substrates covered with 100 nm thick thermal 

oxide. Using the same growth condition from a-Si NTs
37

, only growth time was varied to 

change the target a-Si film thickness. On top of a-Si layer, metal electrodes and 

heating/sensing lines (10 nm Cr/70 nm Pt), as shown in Figure 2.2c,d, were fabricated via 

e-beam lithography (EBL), metal sputtering and lift off. Dimension of the sensing and 

heating lines are 60 μm in length and 3 μm in width. Across the heating and sensing 

electrodes, a-Si bridges of 3 μm wide and 10 μm long were patterned using EBL 

followed by dry etching (Oxford Plasmalab P100 RIE/ICP) of remaining a-Si and SiO2 

layers using SF6 gas. After defining the a-Si bridges across the heating and sensing 

ribbons, the bridges were released by removing the underneath Si substrate using XeF2 

isotropic etching (Xactix XeF2 Etcher). The devices were further treated by buffer oxide 

etchant (BOE) and acetone to remove the SiO2 and e-beam resist layers attached on the 

suspended a-Si channel. Finally, the devices were dried using critical point dryer 

(Tousimis AutoSamdri 815A) to avoid possible damage effect by surface tension. 

Table 2.2: Geometry information of the films 

Sample # Thickness (nm) Width (m) Length (m) 

1 26 2.6 9.2 

2 170 2.5 9.45 

3 525 2.8 9.8 

4 1700 2.66 9.67 
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In case of cross-plane 𝜅  measurement using the  3𝜔  method, a-Si films were 

grown by identical CVD conditions on moderately p-doped Si substrate with resistivity of 

1~10 Ω·cm. Also, reference devices without a-Si layer were prepared at the same time for 

all the following fabrication steps. On either a-Si layers or reference Si substrates, 60 nm 

thick Al2O3 layers were deposited using atomic layer deposition (Beneq TFS200) for 

electrical insulation. Finally, on top of Al2O3 layer, Cr/Au of 15/125 nm were patterned, 

as shown in Figure 2.7, by photolithography, sputtering, and lift off. Detailed geometry 

information is shown in Table 2.2. 

 

Figure 2.3: TEM images of (a) 5 nm thick a-Si NT, (b) 20 nm thick a-Si NT, (c) 100 nm 

thick a-Si NT, (d) 100 nm thick a-Si film, and (e) Radial distribution function (RDF) of 

the a-Si NTs and the 100 nm-thick a-Si film. The RDF of a reference a-Si film is from 

previous work by Laaziri et al.
38

 The scale bars are 10 nm for (a) and (b), 50 nm for (c), 

and 5 μm for (d). 
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Radial distribution function (RDF) analysis (Figure 2.3e) from the SAED images 

further confirmed that our a-Si NTs and films have the same degree of atomic disorder as 

reference a-Si films which were fabricated through ion bombardment on crystalline Si
38

. 

2.3 Measurement Principles 

We measured 𝜅∥ of the NTs using the suspended micro-device method
39, 40

. To 

calibrate our measurement, we measured an amorphous SiO2 NT of similar geometry 

(shell thickness of 7.7 nm) and large amorphous SiO2 nanowires (diameters of ~250 nm), 

and obtained results that match well with the established values of a-SiO2 (Figure 2.4). 

 

 

Figure 2.4: (a) SEM of an a-SiO2 NT on a suspended device. (b) thermal conductivity vs. 

temperature of a-SiO2 NT and nanowires (NWs). The SiO2 NT (black square) and SiO2 

NWs (red triangle and pink diamond) were measured on the suspended devices shown in 

(a), using the same AC heating scheme as for the a-Si films. The measurement results 

agree well with the reference 𝜅 values of a-SiO2 reported by Cahill
41

. 

 

(a)

(b)
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The in-plane thermal conductivity of a-Si films was measured with the suspended 

device platform with modulated heating scheme developed by us (Zheng et al.
42

). Briefly, 

an AC current modulated at frequency 𝑓h is applied on the heating beams. The Joule heat 

is dissipated partially through the heating beams to the substrate and partially through the 

a-Si thin-film bridge to the sensing beams, as shown in Figure 2.5a. It has been shown 

that the convection and radiation heat transfer effects are negligible compared to heat 

conduction along the beams and film sample. The heating and sensing beam temperature 

rises were detected using a high resolution resistive thermometry using the differential 

method
42

.  

 

 

Figure 2.5: (a) Schematic diagram of the a-Si film device. (b) Corresponding thermal 

resistance circuit diagram. 

 

 

Note that in the data analysis from our previous work
42

, we assume that the heat 

transferred from the heating beam to the sensing beam is negligible compared to that 

through the heating beams. This assumption is only valid for samples with much smaller 
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thermal conductance than the beams, such as nanowires and nanotubes. However, for the 

a-Si thin-film bridges studied here, thermal conductance of the samples is expected to be 

on the same order of magnitude as the beams. Therefore, a new analytical model has been 

developed to explicitly account for the heat conduction through the a-Si films. Figure 

2.5b shows the thermal resistance circuit for the suspended device with a-Si film (see 

Figure 2.2c,d). 

The heating side (𝑥 = −𝐿𝑏 to 𝑥 = 0 in Figure 2.5b) is heated up by Joule heating 

of metal films along the beams, and the steady state heat conduction equation can be 

written as, 

−κb
𝜕2Δ𝑇

𝜕𝑥2 = 𝑞ℎ,     (2.1) 

where κb is the thermal conductivity of the beams, qh =
𝐼ℎ

2𝑅ℎ

2𝐿𝑏𝑆𝑏
, Ih is root-mean-squared 

(RMS) value of the applied modulated current, Rh is the heating beam resistance, Lb is 

the half beam length, Sb is the beam cross-section area. 

The boundary conditions are: 

∆T(−Lb) = 𝑇0 − 𝑇0 = 0,    (2.2) 

−2Sb𝜅𝑏
𝜕∆𝑇

𝜕𝑥
|

𝑥=0
= 𝑄𝑠,    (2.3) 

where Qs is the heat conducted through the a-Si film and sensing beams. 

Equation 2.1 can be solved and the heating beam temperature can be expressed as 

∆Th(𝑥) = −
𝑞ℎ

2𝜅𝑏
𝑥2 −

𝑄𝑠

2𝑆𝑏𝜅𝑏
𝑥 +

𝑞ℎ

2𝜅𝑏
𝐿𝑏

2 −
𝑄𝑠

2𝑆𝑏𝜅𝑏
𝐿𝑏.  (2.4) 
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Then we can get the average temperature along the heating beam, 

∆𝑇ℎ
̅̅ ̅̅ ̅ =

𝑞ℎ

3𝜅𝑏
𝐿𝑏

2 −
𝑄𝑠

4𝑆𝑏𝜅𝑏
𝐿𝑏 .    (2.5) 

Similarly, solving the steady state heat conduction equation (without internal 

heating) for the sensing beam, we can get 

Qs = 2∆𝑇𝑠
̅̅ ̅̅̅𝜅𝑏

2𝑆

𝐿𝑏
=

4∆𝑇𝑠̅̅ ̅̅ ̅𝑆𝑏𝜅𝑏

𝐿𝑏
,    (2.6) 

where ∆𝑇𝑠
̅̅ ̅̅̅ is the measured average temperature along the sensing beam.  

The maximum temperature of the sensing beams is given as 

∆𝑇𝑠,𝑚𝑎𝑥 = 2∆𝑇𝑠
̅̅ ̅̅̅ .    (2.7) 

Combining Eq. 2.5 and 2.6, we can obtain 

Qs =
4∆𝑇𝑠̅̅ ̅̅ ̅𝑞ℎ𝑆𝑏𝐿𝑏

3(∆𝑇ℎ̅̅ ̅̅ ̅̅ +∆𝑇𝑠̅̅ ̅̅ ̅)
,    (2.8) 

and 

κb =
𝑞ℎ𝐿𝑏

2

3(∆𝑇ℎ
̅̅ ̅̅ ̅̅ +∆𝑇𝑠̅̅ ̅̅ ̅)

 ,      (2.9) 

where ∆𝑇ℎ
̅̅ ̅̅ ̅ and ∆𝑇𝑠

̅̅ ̅̅̅ are measured in the experiment. 

From Eq. 2.4, at x=0, we can get  

∆Th,x=0 =
𝑞ℎ

2𝜅𝑏
𝐿𝑏

2 −
𝑄𝑠

2𝑆𝑏𝜅𝑏
𝐿𝑏.    (2.10) 

Then the a-Si film thermal conductance and thermal conductivity can be 

expressed as 
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Ga−Si =
𝑄𝑠

∆Th,x=0−∆Ts,max
=

4∆𝑇𝑠̅̅ ̅̅ ̅qh𝑆𝑏𝐿𝑏

3(∆𝑇ℎ̅̅ ̅̅ ̅̅ +∆𝑇𝑠̅̅ ̅̅ ̅ )(∆Th,x=0−∆Ts,max) 
 .  (2.11) 

κa−Si = Ga−Si
𝐿𝑎−𝑆𝑖

Sa−Si
=

4∆𝑇𝑠̅̅ ̅̅ ̅qh𝑆𝑏𝐿𝑏

3(∆𝑇ℎ̅̅ ̅̅ ̅̅ +∆𝑇𝑠̅̅ ̅̅ ̅ )(∆Th,x=0−∆Ts,max) 

𝐿𝑎−𝑆𝑖

Sa−Si
.  (2.12) 

where 𝐿𝑎−𝑆𝑖 and Sa−Si are length and cross-section area of the a-Si film, respectively. 

Figure 2.6 shows the measured ∆𝑇ℎ
̅̅ ̅̅ ̅ and ∆𝑇𝑠

̅̅ ̅̅̅ as a function of input heating power 

for film with thickness of 525 nm at 300 K. After measuring ∆𝑇ℎ
̅̅ ̅̅ ̅  and ∆𝑇𝑠

̅̅ ̅̅̅ , we can 

calculate the thermal conductivity of the a-Si film from Eq. 2.12.  

 

Figure 2.6: The measured ∆𝑇ℎ
̅̅ ̅̅ ̅ and ∆𝑇𝑠

̅̅ ̅̅̅ vs. input heating power for t=525nm a-Si film at 

300 K. 

 

The 3ω method
41

 has been employed here to measure the cross-plane thermal 

conductivity of a-Si films. A metal strip was deposited by sputtering, functioning as both 

a heater for applying a periodic heat flux and a thermometer for measuring the surface 

temperature. A 60 nm thick Al2O3 thin film was deposited by atomic layer deposition 

(ALD) as an insulation layer, as shown in Figure 2.7a.  
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By applying an AC current I(ω) with angular modulation frequency ω through 

the metal line, the periodic heating will give rise to a heat flux oscillating at frequency 

2ω, accompanying with the generated thermal wave diffusing into the specimen. The 

penetration depth is determined by the thermal diffusivity of the specimen and the 

frequency of the AC current. Because the resistance of the heater depends linearly on the 

temperature, the resistance will also oscillate at frequency 2ω. The voltage drop across 

the heater thus contains a third harmonic component (V3ω ) that depends on the AC 

temperature rise (ΔT2ω) of the heater, expressed as
41

,  

V3ω =
𝐼0

2

𝑑𝑅

𝑑𝑇
Δ𝑇2𝜔sin (3𝜔𝑡 + 𝜙).   (2.13) 

In our experiments, the 3𝜔 measurement setup has been calibrated with standard 

samples, namely Si substrate covered with Al2O3, which also works as the reference here 

to extract the thermal conductivity of amorphous Si. The reference sample was firstly 

measured to obtain the thermal conductivity of the Si substrate (120 W.m
-1

.K
-1

) by the 

slope method, 

κSi,sub = −
𝑃

2𝜋𝐿
(

𝑑(Δ𝑇𝑟𝑒𝑓)

𝑑(ln(2𝜔))
)

−1

,     (2.14) 

where 
𝑑(Δ𝑇𝑟𝑒𝑓)

𝑑(ln(2𝜔))
 is the slope of the reference sample temperature rise (Δ𝑇𝑟𝑒𝑓 ) versus 

frequency  (red triangle in Figure 2.7c). Then the thermal conductivity of Al2O3 

insulation layer (1.02 W.m
-1

.K
-1

) was obtained by fitting the Δ𝑇𝑟𝑒𝑓 to that calculated in 

the 2D heat conduction model (red solid line) in Figure 2.7c. This calibrated thermal 

conductivity of Al2O3 layer agrees well with the value reported in reference, which varies 

from 0.95 W.m
-1

.K
-1

 to 1.4 W.m
-1

.K
-1 

at room temperature. 
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Then we measured the temperature rise of the a-Si sample (Si substrate with a-Si 

layer, also covered with an Al2O3 coating, see Figure 2.7b), Δ𝑇𝑎𝑆𝑖, as shown in Figure 

2.7c (blue square), based on which the ‘apparent’ thermal conductivity can be determined 

as: 

   𝜅𝑎 = 𝑞′′𝑡/(Δ𝑇𝑎𝑆𝑖 − Δ𝑇𝑟𝑒𝑓) ,            (2.15) 

where 𝑞′′ is the heat flux applied onto the 3𝜔 heater (in [W/m
2
]), and 𝑡 is the thickness of 

the a-Si film. For the a-Si sample shown in Figure 2.7b (thickness = 110 nm), the 

measured apparent cross-plane thermal conductivity 𝜅𝑎 is 1.48±0.13 W.m
-1

.K
-1

. Note that 

this apparent thermal conductivity includes the effect of the contact resistance (Rc) 

between the a-Si layer and the Si substrate, and needs to be corrected, especially for thin 

films (see the next section). 

 

 
Figure 2.7. (a) Schematic diagram of the reference sample: Si substrate covered with 60 

nm thick Al2O3, for the 3ω measurement calibration. (b) Schematic diagram of a device 

with a-Si film on top of Si substrate for the 3ω measurement. (b) Measured temperature 

rises on the reference sample (Si substrates without a-Si film) and the sample with the 

110 nm thick a-Si film. The solid lines are the fitting results with a two-dimensional heat 

conduction model following Borca-Tasciuc et al.’s work
43

. Inset is the top view of the 

3ω device. 
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2.4 Size Dependent Thermal Conductivity 

Figure 2.8 shows the measured room temperature 𝜅∥ of a-Si NTs and films as a 

function of shell or film thickness (t). For NTs, we showed that no correlation between 𝜅∥ 

and sample length or outer diameter was observed (Figure S2), suggesting negligible 

thermal contact resistance between the NTs and the suspended devices and the similarity 

between the NTs and films with t being the characteristic size. It can be seen that 𝜅∥ 

shows strong size dependence, and increases with t from 5 nm to 1.7 m. As discussed 

before, size dependence was not observed in sub-100 nm a-Si films in prior cross-plane 

measurements
14, 21

. However, our results showed that 𝜅∥  start increasing for 𝑡 ≥5 nm, 

revealing the important role that propagon plays in thermal transport in a-Si even down to 

5 nm thickness. From the size dependent data at 300 K, we can also see that 𝜅 will 

saturate to ~5.5 W.m
-1

K
-1

 when the thickness is larger than 2 m (inset of Figure 2.8). 

This ‘bulk’ value is much larger than what was expected for amorphous solids (~1 W.m
-

1
K

-1
). Note that there is no true “bulk” a-Si with quasi-infinite three-dimensional size, 

because crystallization is very difficult to avoid for very large sample size. The “bulk” 𝜅 

here is the saturation value extrapolated from our thickness dependent measurements, as 

well as from the phenomenological model. This ‘bulk’ value is consistent with previous 

studies on thicker a-Si films (> 1.6 m). 
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Figure 2.8: Thermal conductivity (𝜅) of the a-Si NTs (blue triangle up) and a-Si films for 

in-plane (red triangle down) and cross-plane (black square). The cross-plane data have 

been corrected after subtracting the contact resistance. The cross-plane 26 nm film shows 

large error bar mainly due the uncertainty of the contact resistance. Model based on 

Landauer approach
44

 is used to calculate the thickness dependent thermal conductivity 

behavior of thin films. The model with specularity parameter p=0 (blue dash-dot line) 

gives poor fitting with our in-plane thin film and NTs data, while the model with 

frequency dependent ‘p’ by Ziman’s formula (roughness 𝜂=0.60 nm) (red solid line) 

shows excellent agreement with the in-plane data. We also plot the model based on 

effective constant ‘p=0.35’ (blue solid line) for comparison. The inset shows the same 

data with linear scale on the x-axis. κ is saturating to ~5.5 W/m-K when thickness is 

larger than 2 m. Thermal conductivity of the diffusons (κd) (dash-dot-dot line) based on 

Allen-Feldman (AF) theory
25, 28

 is also shown in the inset as a reference. 

 

Figure 2.8 also shows the thickness dependence of 𝜅⊥ at 300 K, which has been 

corrected after subtracting the contact resistance 𝑅𝑐. Lee and Cahill
45

 showed that the 

measured apparent thermal resistance (𝑅𝑎 = 𝑡/𝜅𝑎) by the 3ω method can be considered 

as the sum of intrinsic film resistance (𝑅𝑓 = 𝑡/𝜅𝑓) and contact resistance (𝑅𝑑), i.e., 

t

κa
=

𝑡

𝜅f
+ 𝑅𝑐,      (2.16) 

where t is the film thickness. Therefore, the intrinsic film thermal conductivity is given as 

κf =
𝜅a

1−
𝑅𝑐𝜅a

𝑡

 .      (2.17) 
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Table 2.3: 3ω measurement results before and after subtracting Rc  

(Rc,lower=0.5 × 10−8 K. m2/W, Rc,upper=2 × 10−8 K. m2/W). 

Thickness (nm) 1700 525 170 110 26 

Apparent κa (W.m
-1

.K
-1

) 3.92 2.88 1.84 1.48 0.93 

Intrinsic κf after subtracting Rc,lower 

(W.m
-1

.K
-1

) 
3.97 2.96 1.95 1.59 1.13 

Intrinsic κf after subtracting Rc,upper 

(W.m
-1

.K
-1

)  
4.11 3.23 2.35 2.02 3.26 

Average intrinsic κf (W.m
-1

.K
-1

) 4.03 3.08 2.12 1.77 1.95 

 

We employed 𝑅𝑐 in the range of  0.5 − 2.0 × 10−8 𝐾. 𝑚2/𝑊 to our 3ω samples, 

which is within the typical range of Rc for solid-solid interface
45

, and calculated the κf for 

samples with different thicknesses based on Eq. (2.17) (see Table 2.3). Figure 2.8 shows 

the average intrinsic κf after subtracting Rc, and the error bars include the uncertainties 

both from the 𝛥𝑇2𝜔 measurement and of the contact resistance. Note that the normalized 

cross-plane data in Figure 2.12a is after subtracting Rc = 2 × 10−8 K. m2/W. In the MFP 

distribution reconstruction procedure, we tried different values for the specularity 

parameter p for the in-plane data and various ‘Rc’ values for the cross-plane data, and 

found that the in-plane and cross-plane reconstructed MFP distribution shows excellent 

agreement with p=0.35 and Rc = 2 × 10−8 K. m2/W. 

As mentioned earlier, the 3ω method used here can only measure the sum of the 

intrinsic thermal resistance of the films and 𝑅𝑐, which is difficult to separate due to the 

quasi-ballistic nature of propagon transport across the films and the uncertainty involving 

in determining 𝑅𝑐 . Therefore, the 𝜅⊥  reported here should only be considered as an 
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effective value and has a larger uncertainty compared to the 𝜅∥  data, especially for 

smaller t. The measured  𝜅⊥ of the Si films are similar to prior 𝜅⊥data (Table 2.3 and 

Figure 2.1), namely, only increase for 𝑡 ≥ 100 nm, but lower than 𝜅∥ measured from the 

films fabricated from the same batches. The observed anisotropy of thermal transport in 

a-Si films further suggests that the propagon MFP is comparable to film thickness 

investigated here, similar to the case of crystalline Si films
46, 47

. 

 

2.5 Temperature Dependent 𝜿∥ of a-Si Nanotubes and Films 

 

Figure 2.9: Temperature dependent 𝜅∥ for a-Si film and NT samples. Films with thickness 

of 1.7 m (gray diamond), 525 nm (black triangle down), 170 nm (blue triangle up) and 

26 nm (dark cyan square) show similar trend of temperature dependence as the NTs with 

thickness of 96 nm (red circle), ~40 nm (dark yellow symbols), ~20 nm (pink symbols) 

and ~5 nm (dark green symbols). Our model shows excellent agreement with the 

experimental data for all the samples down to 150 K. At T<150 K, the fitting slightly 

deviates from the experiment, suggesting the scattering strength for propagons may be 

underestimated at low temperature. A SiO2 NT with shell thickness of 7.7 nm (cyan 

diamond) was measured for calibration. 
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Figure 2.9 shows the temperature dependent  𝜅∥ of a-Si films and NTs from 40K 

to 300K, along with the 7.7 nm SiO2 NT. The films (t=1.7 m, 525 nm, 170 nm, and 26 

nm) and NTs (t = ~100, ~40, ~20 and ~5 nm) show similar trend in the temperature 

dependence. Notably, the ~5 nm a-Si NTs show similar 𝜅 as that of the SiO2, which is 

known to possess negligible propagon contribution
28

, indicating a similar behavior in a-Si 

when the size is approaching 5 nm.  

 

Figure 2.10: Ratio of propagon thermal conductivity ( 𝜅𝑝 ) to diffuson thermal 

conductivity (𝜅𝑑) as a function of temperature for samples with thickness from 1.7 m  to 

5.6 nm. 

 

Furthermore, 𝜅∥  decreases with lower temperature, and by subtracting the 

diffuson contribution obtained from previous numerical model by Allen et al.
25

, we can 

show that propagon contribution is relatively more pronounced at lower temperature 

(Figure 2.10). For example, for t=1.7 m film, the ratio of  κp/κd increases from 4.9 at 

300 K to 10.8 at 70 K. At 300 K, the ratio for t=1.7 m, 525 nm, 170 nm, 96 nm, 36.6 nm, 
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and 20.9 nm samples are larger than ‘1’, but t=5.6 nm NT sample is about 0.8, which is 

due to the stronger boundary scattering for propagons at this length scale. 

 

2.6 Mean Free Path Distribution of Propagon in a-Si 

The size and temperature dependence of 𝜅 in a-Si NTs and films can be utilized to 

quantify the cumulative MFP distribution of propagons, 𝐹(Λp), at different temperatures. 

The cumulative MFP distribution for both directions (𝐹∥(Λp) and 𝐹⊥(Λp)), as shown in 

Figure 2.12a, are reconstructed based on the normalized size dependent κp  (i.e., κp/

κp,bulk) for both in-plane and cross-plane at 300 K.  

We followed the method proposed by Minnich
36

 to reconstruct mean free path 

distribution from the measured size dependent 𝜅∥ and  𝜅⊥.  For both 𝜅∥  and 𝜅⊥ , the 

propagon contribution κp is obtained by subtracting the diffuson contribution 𝜅𝑑
25

 from 

the measured total 𝜅, i.e., κp = κ − 𝜅𝑑 . Then κp is related to the propagon MFP (Λp)
36, 48

 

via, 

κp = κp,bulk ∫ 𝑆 (
Λp

𝑡
) 𝑓(Λp)𝑑Λp

∞

0
,   (2.18) 

where 𝑡  is the film thickness, κp,bulk  is 𝜅𝑝  of bulk a-Si, 𝑓(Λp)  is differential MFP 

distribution, and is related to 𝐹(Λp) through 𝐹(Λp) = ∫ 𝑓(𝑥)𝑑𝑥
Λp

0
; S (

Λp

𝑡
) is the heat flux 

suppression function, representing the suppression effect on propagon MFP in thin films 

relative to bulk a-Si. Using integration by parts on Eq. (2.18), we can obtain
36, 49

 

κp = κp,bulk ∫ 𝑡−1𝐻 (
Λp

𝑡
) 𝐹(Λp)𝑑Λp

∞

0
,    (2.19) 
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where the kernel 𝐻 (
Λp

𝑡
) is defined as  𝐻 (

Λp

𝑡
) = −dS/d (

Λp

𝑡
). With the measured κp for 

a-Si NTs and films with different thickness 𝑡 we can reconstruct the smooth cumulative 

MFP distribution 𝐹(Λp) from Eq. (2.19) using an algorithm proposed by Minnich
36

 based 

on convex optimization. The suppression function S (
Λp

𝑡
) of films along the in-plane

48
 

and cross-plane
50

 directions are given as  

S∥ (
Λp

𝑡
) = 1 −

3(1−p)

2

Λp

𝑡
∫ (𝑢 − 𝑢3)

1−exp (−
𝑡

𝑢Λp
)

1−𝑝⋅exp (−
𝑡

𝑢Λp
)

d𝑢
1

0
,  (2.20) 

S⊥ (
Λp

𝑡
) = 1 −

Λp

𝑡
(1 − exp (−

𝑡

𝛬𝑝
)),    (2.21) 

where p in Eq. (2.20) is the specularity parameter for boundary scattering, which can 

range from 0 (fully diffusive) to 1 (fully specular). While p depends on frequency and 

hence MFP, here we employed a single p value in order to reconstruct 𝐹∥(Λp). As we 

shall see later in the thermal conductivity model, this p value represents an effective one 

for all the propagon modes when frequency dependent p is taken into account. 

Since there should be only one MFP distribution function for bulk a-Si, we varied 

p and Rc values, and found that 𝐹∥(Λp)  and 𝐹⊥(Λp)  shows excellent agreement with 

p=0.35 and 𝑅c = 2 × 10−8 m2. K. W−1 . Note that the normalized cross-plane data we 

used to reconstruct 𝐹⊥(Λp) is after subtracting Rc = 2 × 10−8 m2. K. W−1, and we do not 

include the 26 nm film due to the large uncertainty (Table S1). The value of Rc = 2 ×

10−8 m2. K. W−1  is consistent with previous study for Si-SiO2 interface by Lee and 

Cahill
33

. The best fitting with p=0.35, instead of p=0, indicates that propagon scattering is 

partially specular at surface of our a-Si NT and thin film samples. This is not surprising 
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given the fact that the typical wavelength of propagons in a-Si (>2 nm
28

) is much larger 

than the surface roughness of the a-Si NT (root mean square (rms)=0.815±0.04 nm), as 

determined from TEM imaging (Figure 2.11). 

 

 

Figure 2.11:  Surface roughness analysis on a-Si NTs with 100 nm shell thickness, by 

stitching a series of zoomed-in TEM images together. The RMS of the roughness is 

determined to be 0.815±0.04 nm. Scale bar, 200 nm for low magnification image (bottom) 

and 20 nm for the zoomed-in images. Bottom panel shows roughness profile along the 

NT surface inside the zoom-in region with exaggerated scale of y-axis to better visualize 

the roughness. 

 

The extracted MFP spectra show that propagons with MFP down to 10 nm start 

contributing to κ at 300 K, which is much lower than the lower bound of MFP spectra 

(>100 nm) suggested by previous experimental studies
14, 21

, but is consistent with the 

recent MD and theoretical predictions
27, 28

. In addition, instead of being saturated at 1 
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m
21

, we found that propagons with MFP greater than 1 m contribute to ~30% of 

κp,bulk . The role of these long MFP propagons might have been underestimated 

previously in both experiments
21

 (due to the interfacial effect in 𝑘⊥ measurements) and 

simulations
26, 28

 (caused by the limited supercell size). The MFP distribution is 

surprisingly similar to that of phonon in crystalline Si 
21, 51, 52

. This underscores the long 

range correlation in the amorphous structure 
28

.  

  

Figure 2.12: (a) Reconstructed propagon MFP distribution at 300K. With specularity 

parameter p=0.35 (red solid line), instead of p=0 (blue solid line), the MFP distribution 

reconstructed from 𝜅∥ agrees well with that from 𝑘⊥ (black dash line), suggesting partial 

specular scattering. The MFP spectra range from 10 nm to 10 m at 300 K. (b) 

Reconstructed propagon MFP distributions based on 𝜅∥  from 300 K to 70 K. The 

contribution to κp from propagons with MFP greater than 1 m increases from 30% at 

300 K to 50% at 70 K. 
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From the temperature dependent 𝜅∥ shown in Figure 2.9, we also reconstructed 

the 𝐹∥(Λp) at different temperatures, as shown in Figure 2.12b. The 𝐹∥(Λp) is shifting 

slightly towards longer MFP with decreasing temperature. The propagon MFP range at 

70 K is from 40 nm to 20 m, longer than that of 10 nm to 10 m at 300 K. The 

contribution to κp,bulk from propagons with MFP greater than 1 m increases from ~30% 

at 300 K to ~50% at 70 K. It should be noted that here we assumed p=0.35 from 300 K to 

70 K. However, at lower temperature, propagons with longer wavelength, which are more 

likely to exhibit specular boundary scattering, are more dominant. Accordingly, the 

overall p would be higher at lower temperature. Therefore, the extracted propagon MFP 

shown in Figure 2.12b could represent the lower bound for T < 300 K. 

 

2.7 Scattering Mechanisms of Propagons in a-Si 

We used a phenomological model based on the Landauer formalism to 

understand the scattering mechanism of propagon and its MFP distribution.  

For both in-plane and cross-plane directions, the overall 𝜅 includes the contribution from 

propagon and diffuson, i.e., κ = κp + 𝜅𝑑. 𝜅𝑑  is obtained from previous work by Allen et 

al.
25

 κp can be modeled based on the Landauer approach, namely
44

 

κp = (
kB

2 Tπ2

3h
) ∫ (

𝑀𝑝

𝐴
) (𝑇𝑝𝐿)𝑊𝑝𝑑(ℏ𝜔)

𝜔𝑐,𝑗

0
,    (2.22) 

where 𝑘B , h, T, A, L are Boltzmann constant, Planck's constant, temperature, sample 

cross-section area, and length, respectively; ω𝑐,𝑗  is the cut-off frequency between 

propagons and diffusons for the 𝑗𝑡ℎ  mode (transverse acoustic (TA) and longitudinal 
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acoustic (LA) modes); 𝑀p  is the number of conducting channels at ℏ𝜔 ; 𝑊𝑝  is the 

“window” function defined as 𝑊p =
3

𝜋2
(

ℏ𝜔

𝑘𝐵𝑇
)

2

(−
𝜕𝑛0

𝜕(ℏ𝜔)
), where n0(𝜔) is Bose-Einstein 

distribution; and 𝑇p  is the transmission function at ℏ𝜔 . It has been shown that the 

Landauer approach is equivalent to that based on the Boltzmann Transport Equations, but 

provides a convenient approach to model both diffusive and ballistic transport and along 

different directions
44

. 

For propagons with a linear dispersion, ω = 𝑣𝑝𝑞, number of conducting channels 

(Mpr) and transmission (Tp) are given as
44, 53

 

Mp(ℏ𝜔)

𝐴
=

(ℏ𝜔)2

4𝜋(ℏ𝑣𝑝)
2  (for single mode in 3D case),   (2.23) 

𝑇𝑝 =
𝜆𝑝(𝜔)

𝜆𝑝(𝜔)+𝑙
 ,    (2.24) 

where, 𝑣𝑝 is the propagon group velocity, 𝑙 being the sample length (L for in-plane and 

thickness 𝑡  for cross-plane), 𝜆𝑝  is backscattering MPF, which can be related to 

conventional MFP Λ
p

(𝜔)  as λp(𝜔) =
4

3
Λ

𝑝
(𝜔) , and expressed in terms of group 

velocity 𝑣𝑝 and frequency-dependent mode lifetime τp, i.e.  

λp(𝜔) =
4

3
𝑣𝑝(𝜔)𝜏𝑝(𝜔) .    (2.25) 

In Eq. (2.22), the only unknown parameter is the propagons MFP 𝜆𝑝 . Linear 

dispersion is applied for low frequency propagating modes
54

, including TA and LA 

modes. The group velocity 𝑣𝑝  of TA and LA modes are estimated using the elastic 

moduli for a-Si, i.e., 𝑣𝑝,𝑇𝐴 = 3670 𝑚/𝑠  and  𝑣𝑝,𝐿𝐴 = 7640 𝑚/𝑠 . The diffusivity of 
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propagons is modeled by considering harmonic Rayleigh-type scattering (DR
−1 =

3𝐴𝜔4/𝑣𝑝
2)18, 26, 54

, anharmonic Umklapp scattering (DU
−1 = 3𝐵𝑇𝜔2exp (−𝐶/𝑇)/𝑣𝑝

2)14, 25, 

54
, and anharmonic “two level system” (TLS) scattering ( DT

−1 =
 𝐷ℏ𝜔

𝑘𝐵
tanh (

ℏ𝜔

2𝑘𝐵𝑇
) +

𝐷

2

𝐸𝑇3

1+𝐸𝑘𝐵𝑇3/ℏ𝜔
)
26, 55, 56

, where ‘A’, ‘B’, ‘C’, ‘D’, and ‘E’ are adjustable parameters. 

Therefore, the propagon diffusivity and lifetime can be expressed as 

Dp
−1 = DR

−1 + DU
−1 + DT

−1,    (2.26) 

τp =
3𝐷𝑝

𝑣𝑝
2 =

3

𝑣𝑝
2 (DR

−1 + DU
−1 + DT

−1)−1.   (2.27) 

Substituting Eq. (2.23)-(2.27) in to Eq. (2.22), the thermal conductivity of the bulk a-Si 

can be obtained.  

For a-Si thin films and nanotubes, boundary scattering significantly influences the 

MFP of propagons. For the cross-plane thermal conductivity, Eq. (2.24) is expressed as 

𝑇𝑝 =
𝜆𝑝(𝜔)

𝜆𝑝(𝜔)+𝑡
, where 𝑡 is the film thickness. For the in-plane thermal conductivity, 𝑇𝑝𝐿 

can be reduced as 𝑇𝑝𝐿 =
𝜆𝑝(𝜔)𝐿

𝜆𝑝(𝜔)+𝐿
≈ 𝜆𝑝(𝜔), because the sample length (L) parallel to the 

film direction is much larger than 𝜆𝑝 in our case. Additionally, for partially diffuse and 

partially specular boundaries, the in-plane backscattering MFP for films can be calculated 

from
57, 58

 

λp,thin(𝜔) = λp,bulk(𝜔) [1 −
3(1−𝑝)

2𝛿
∫ (𝑢 − 𝑢3) ×

1−exp (−𝛿/𝑢)

1−𝑝𝑒𝑥𝑝(−𝛿/𝑢)
𝑑𝑢 

1

0
],  (2.28) 
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where δ =
4

3

𝑡

𝜆𝑝,𝑏𝑢𝑙𝑘
, 𝜆𝑝,𝑏𝑢𝑙𝑘(𝜔)  is the bulk backscattering MFP, 𝑡  is the a-Si film 

thickness, and p is the specularity parameter, given by Ziman formula
59, 60

 

𝑝 = exp (−
16𝜋2𝜂2

𝑙𝑝
2 ),      (2.29) 

where 𝜂 is the characteristic dimension of the surface roughness, and 𝑙p is the wavelength 

of the propagons.  

The modeled in-plan and cross-plane results were fit to the room-temperature 

size-dependent data along both directions, as well as the temperature dependent in-plane 

data, by adjusting the fitting parameters: A, B, C, D, E, and 𝜂. The cross-plane data (𝜅⊥) 

from the 26-nm thick film were not used for the fitting due to the large uncertainty. The 

corresponding cut-off frequency ωc,TA for TA and ωc,LA for LA modes were determined 

by examining the smooth cross-over of diffusivity for propagon (Dp in Eq. (2.26)) to 

diffuson, which is approximately 1-5 mm
2
/s

28
. The modeling results, along with the 

experimental data, are shown in Figure 2.8 for room temperature in-plane and cross-plane 

data, and in Figure 2.9 for temperature dependent in-plane data. The best fitting 

parameters are found to be: A = 9.1 × 10−42 s3. rads−4 , B = 4.2 × 10−20 s. rads−2. K−1, 

C = 175 K, D = 16.67 s. m−2K−1, E = 4.4 × 10−3 K−2, and 𝜂 = 0.60 nm. The modeling 

results show good fitting with all the experimental data (again, 𝜅⊥from the 26-nm thick 

film was not used for the fitting due to the large uncertainty). Below 150 K, the model 

shows slightly higher values compared to the experiment. This indicates that the model 

for κp may underestimate the scattering strength for propagons at low temperature, or 𝜔𝑐 

could be different at lower temperature.  
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The cut-off frequency (transitioning from propagon to diffuson) of the TA and LA 

modes, which are not fitting parameters, are determined to be 1.76 × 1013 rads.s
-1

 and 

3.20 × 1013  rads.s
-1

, respectively. The corresponding diffusivity at ωc  are 5.1 mm
2
.s

-1
 

and 2.0 mm
2
. s

-1
, as shown in Figure 2.13, which are consistent with the average diffuson 

diffusivity at ωc by Larkin and McGaughey, 8.9 mm
2
.s

-1
 for ω−2 scaling and 1.7 mm

2
.s

-1
 

for ω−4  scaling
28

. The propagon diffusivity in our model, however, is larger than the 

results obtained from the MD simulation
28

, which is reasonable because the limited 

supercell size in MD could have imposed an additional constraint on propagon MFP.  

 

 

Figure 2.13: Propagon diffusivity as a function of frequency for TA (blue solid line) and 

LA (red solid line) modes at 300 K. The cut-off frequency for TA and LA modes are 

1.76 × 1013 rads/s  and 3.20 × 1013 rads/s , respectively. It shows smooth transition 

from propagon to diffuson diffusivity (cyan square)
28

. Our propagon diffusivity is 

remarkably higher than molecular-dynamics-based simulation (NMD) by Larkin et al.
28

 

(yellow circle). This may be because the NMD method is limited by the simulation cell 

size and cannot accurately predict the contribution from the long MFP propagons. 

 

It is also necessary to comment on the role of the TLS scattering. If the model 

neglects the TLS scattering term, and only considers Rayleigh-type scattering and 
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Umklapp scattering, the integral of Eq. (2.22) will give increasing thermal conductivity at 

low temperature, as shown in Figure 2.14. This is because the Umklapp scattering will be 

exceedingly weak with decreasing temperature, resulting in higher κ. This implies the 

importance to introduce additional anharmonic scattering terms. TLS scattering, which is 

demonstrated by Liu et al.
61, 62

 to exist and play an important role in a-Si, was then 

included in the scattering mechanisms in our model, in addition to the Rayleigh-type 

scattering and Umklapp scattering. 

 

 

Figure 2.14: Temperature dependent thermal conductivity calculated from the model with 

only Rayleigh-type scattering and Umklapp scattering for film with thickness of 525 nm, 

i.e., without the TLS scattering. 

 

The size dependent modeling results are shown in Figure 2.8, along with the 

experimental data. The modeled in-plane and cross-plane results were fit to the room-

temperature size-dependent data along both directions, by using the same set of the fitting 

parameters: A, B, C, D, E, and 𝜂, which are adjustable parameters in the scattering terms. 

The cross-plane data (𝜅⊥) from the 26-nm thick film were not used for the fitting due to 
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the large uncertainty. The corresponding cut-off frequency ω𝑐,𝑇𝐴 for TA and ω𝑐,𝐿𝐴 for 

LA modes were determined by examining the smooth cross-over of diffusivity for 

propagon to diffuson (Figure 2.13). The best fitting parameters were found to be: 

A = 9.1 × 10−42 s3. rads−4  , B = 4.2 × 10−20 s. rads−2. K−1 , C = 175 K , D =

16.67 s. m−2K−1 , E = 4.4 × 10−3 K−2 , and 𝜂 = 0.60 nm. The modeling results show 

good fitting with all the experimental data (again, 𝜅⊥from the 26-nm thick film was not 

used for the fitting due to the large uncertainty). 

For in-plane film modeling result shown in Figure 2.8, we found that 𝑝 = 0 (fully 

diffusive boundary scattering) would not fit the 𝜅∥  data, which is consistent with the 

conclusion from the MFP reconstruction process (i.e., p = 0.35). Instead, using the ‘p’ 

calculated by the Ziman formula with 𝜂=0.60 nm shows excellent agreement with the 𝜅∥ 

data. The best fitted sample surface roughness 𝜂  is only slightly smaller than the 

experimental measured rms of a-Si NTs (0.815±0.04 nm, see Figure 2.11). This small 

discrepancy is likely due to the fact that Ziman model tends to under-estimate ‘p’
60

. 

Furthermore, instead of using Ziman’s formula, we found that using a constant p of 0.35 

also fits well the in-plane data. This is consistent with the p value obtained from the MFP 

reconstruction processes from the 𝜅∥ and 𝑘⊥ data at 300 K.  

With exactly the same parameters, we also modeled the temperature dependent 

behavior for NTs and films, as shown in Figure 2.9. The fitting agrees well with the 

experimental data for all the films and NTs down to 150 K, while below 150 K, the 

model shows slightly higher values compared to the experimental results. This indicates 

that our model for κp may underestimate the scattering strength for propagons at low 
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temperature, or 𝜔𝑐  could be different at lower temperature. After fitting with all the 

temperature data for films and NTs, we also calculated bulk propagon thermal 

conductivity (i.e., κp,bulk in Eq. 2.18 and 2.19), which are 4.9, 4.88, 4.73, 4.48 W.m
-1

.K
-1

 

at 300, 200, 100, and 70 K, respectively.  

 

2.8 Conclusion 

We utilized novel structures of a-Si nanotubes and suspended a-Si films to 

systematically studied size dependent thermal conductivity of a-Si nanostructures. The 𝜅∥ 

measurements eliminated the influence of the thermal contact resistance and enabled 

precise measurement over a wide size range of ~5 nm to 1.7 m. The 𝜅∥ data showed 

unexpectedly high in-plane thermal conductivity (𝜅∥ >3 W.m
-1

K
-1

) in a-Si nanotubes and 

films of ~100 nm thickness, which is further increased to ~5.3 W.m-1K-

thick film. The measured 𝜅∥ is significantly higher than that of  𝜅⊥ for films of  of ~26 

pectra ranging from 10 nm 

propagons with MFP greater than 1 m increase from ~30 % at 300K to ~50 % at 70 K. 

We also carried out phenomenological modeling to correlate the propagon scattering 

mechanisms to the observed MFP distribution, and showed that partially specular 

scattering boundary scattering and the broad MFP spectra account for the large 𝜅 

anisotropy in the a-Si NTs and films.  
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Chapter 3: Thermal Conductivity and Specific Heat of Nylon 

Nano-fibers 

 

3.1 Introduction 

Nanostructured materials often exhibit distinct thermophysical properties 

compared to their bulk counterparts due to size effects, and have therefore attracted 

extensive research interest over the past decades. One of the widely studied parameters is 

the thermal conductivity ( ) of individual nanostructures
1
. These measurements have 

shed lights on phonon transport mechanisms in nanowires
2, 3

, nanotubes
4, 5

, and more 

recently two dimensional (2D) materials
6-10

. On the other hand, specific heat (
pC ) is also 

an important property that reflects the thermodynamics of solids, and in the case of 

dielectric materials, the phonon spectra 
11, 12

. However, due to the small volume and mass, 

specific heat measurements of individual rod-like and 2D nanostructures have been very 

challenging and less explored. The most common method is based on the measurement of 

ensembles of nanostructures using commercial calorimeters, usually with masses on the 

order of nano- to micro-grams. For instance, Hone et al.
11

 investigated the pC  of single-

wall carbon nanotube (CNT) bundles and showed quantized phonon spectra in the 

reduced dimensionality within the temperature range of 2 to 8 K. Dames et al.
12

 found 

that the pC  of anatase TiO2 nanotube ensembles exhibits a significant increase over the 

bulk value below 50 K, presumably also due to the confined phonon spectra. Using a 

miniaturized AC calorimeter 
13

, J. Kurtz et al.
14

 measured pC  of superconducting Zn 

nanowires with 0.1 mg mass, and revealed that the thermodynamic properties of 
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superconducting Zn NWs are still three-dimensional, even when the nanowire diameter is 

below the superconducting coherence length. Lu et al.
15

 presented a 3𝜔  self-heating 

method to measure the 
pC of bundles of multiwall CNTs with nano-gram scale mass.  

However, these previous measurements on the specific heat of NWs
14

 and NTs
11, 

12
 were carried out on ensembles or bundles of nanostructures. It requires great effort to 

identify the coupling effect between the NWs/NTs in these measurements, especially at 

low temperature. In addition, nanostructures inherently exhibit inhomogeneity among 

samples and the average properties of ensembles might not truly represent the individual 

ones. Also, it would be difficult in many cases to collect nanostructures with sufficiently 

large quantity and uniformity. Lu’s 3𝜔  method 
15

 can in principle be extended to 

individual nanostructures, but the self-heating technique would only work for metallic 

structures. Therefore, it is attractive to be ale to measure the specific heat of individual 

free-standing nanostructures, especially those made from semiconductors which may not 

be compatible with the self-heating 3𝜔 technique. Such measurements will shed lights on 

the phonon spectra of individual nanostructures without the influence of inter-structure 

coupling. While the thermal conductivity of single nanostructures has been measured 

extensively
1, 2, 16, 17

, to our best knowledge, the specific heat of individual nanostructures, 

such as nanowires and 2D structures which often possess mass below 10
-11

g, has not yet 

been measured. 

In this work, we show for the first time the simultaneous measurements of thermal 

conductivity and specific heat of individual 1D nanostructures, demonstrated on Nylon-

11 nanofibers (NFs) with approximate masses of 
142 10 g. Our results show the   of 

these approximately 600-700 nm diameter (D) NFs are enhanced by about ~50% 
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compared to bulk values while 
pC  remains bulk-like. Temperature dependent 

measurements indicate that the thermal diffusivity   ( / pC   ) , which reflects 

phonon mean free path 𝑙 , is decreasing with temperature, indicating that anharmonic 

phonon-phonon scattering plays a role in the NFs. Therefore, combined   and 
pC  

measurements provide new insights regarding phonon spectrum and transport physics. 

Our technique can be readily extended to other nanostructures, provided that the 

conditions on the sample geometries are satisfied.  

  

3.2 Devices and Samples Preparation 

 

Figure 3.1: Scanning electron microscopy (SEM) image of the micro-fabricated 

suspended device for simultaneous κ  and Cp measurements of individual nanofibers 

(NFs). The heating side (left side) temperature, ΔTh, oscillates at 2fh with a modulated 

current, Ih(𝑓ℎ). A portion of the heat current, QNF , is conducted along the NF to the 

sensing side (right side), raising its temperature to ΔTs, which is measured using a full 

Wheatstone bridge
18

 with a DC driving current. The half-beam length of the device (L1) 

is 50 m, and the length of the NF (L2) is about 50 m.  

 

We have designed and fabricated micro-devices for simultaneous κ  and Cp 

measurements of rod-like structures such as NFs, as shown in Fig. 3.1. The device 

( )h hI f

L2

(2 )s hT f

,s DCI

(2 )h hT f
(2 )NF hQ f

L1
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consists of two suspended SiNx beams with integrated deposited Pt thin films. The beams 

are approximately 2 m wide and 100 m long. The thickness of the SiNx and Pt are 100 

nm and 60 nm, respectively.  

Devices were fabricated on a <100> Si wafer using micro-fabrication techniques. 

A 300-nm thick film of silicon nitride (SiNx) was deposited on Si using plasma-enhanced 

chemical vapor deposition (PECVD) (Fig. 3.2(a)). The uniformity and low stress 

characteristics of the deposited SiNx film were obtained using mixed frequency PECVD 

to control film stress and density. A PMMA (poly-(methyl-methacrylate)) layer was spin-

coated and patterned using electron beam lithography (EBL). After electron beam pattern 

exposure, the sample was developed using MIBK:IPA (1:3) and underwent further 

descum using O2 plasma to eliminate possible organic/photoresist residuals. 10 nm thick 

Cr and 40 nm thick Pt films were then sputtered, where Cr was used as an adhesion layer 

between SiNx and Pt. PMMA lift-off was then carried out using acetone. EBL patterning 

after lift-off is shown in Fig. 3.2(b). 

EBL was also used to pattern a window in the SiNx film in order to release the 

suspended beam structure (Fig. 3.2(c)). The SiNx window was selectively etched by 

reactive ion etching (RIE) with CHF3 and O2. PMMA was then removed using acetone, 

leaving a window for selective silicon etching, shown in Fig. 3.2(d). The suspended 

structure was released by wet etching of Si under the SiNx beams in a KOH solution at 80 

o
C for approximately 1 hr (etching rate approximately ~ 1 μm/min).  The sample was 

cleaned after KOH etching by dipping in DI water and methanol.  Methanol was used due 

to its low surface tension to ensure that the device would not collapse during air-drying.  
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No critical point drying was used in the fabrication process. Fig. 3.2(e) shows the final 

fabricated device. 

 

 
Figure 3.2: Device fabrication flow: (a) Coating of the Si wafer by low-stressed SiNx 

using PECVD. (b) Patterning and lift-off to define the beams and pads made of Pt. (c) 

Opening of the window for subsequent SiNx etching. (d) Etching of SiNx. (e) Release of 

the suspended structures by etching the Si substrate using KOH. 

 

The Nylon-11 NFs were fabricated using the electrospinning method
19

 by Dr. Z. 

Jiang (Argonne National Laboratory), and were transferred to suspended devices using a 

custom-built optical micro-manipulator
20

, as shown in Fig. 3.1. The diameters of the NFs 

were determined using scanning electron microscopy (SEM).  

 

3.3 Measurement Principles 

We used an AC heating scheme for the κ and Cp measurements. As shown in Fig. 

3.1, in this scheme, the left beam, referred to as the ‘heating’ beam, is used for joule 

heating by applying an alternating current (AC), Ih(𝑓ℎ), modulated at frequency 𝑓ℎ. The 

NF sample bridging the centers of the two beams conducts a portion of the heat current to 

the other beam, referred to as the ‘sensing’ beam. In our experiments, the temperature 



 

 

65 

 

rise of the heating beam,  2h hT f , was measured from the root mean square (RMS) of 

the 3
rd

 harmonic voltage (
,3 hh fV ) using a lock-in amplifier (Stanford Research SR830). 

Such a modulated self-heating method, widely known as the ‘3𝜔 method’, has been used 

for measuring   and 
pC
 
of suspended rod-like structures

15, 21
. On the sensing beam, we 

used a differential bridge scheme 
18

, which has been shown by us 
22

 and Sadat et al.
23

 to 

achieve sub-100 𝜇𝐾  resolution. The temperature rise of the sensing beam,  2s hT f , 

also oscillating at frequency 2 hf , was measured from the RMS of the 2
nd

 harmonic 

voltage (
,2 hs fV ) using another lock-in amplifier with a DC driving current (

,2 s DCI ) applied 

to the bridge circuit
24

. The complete circuit setup is shown in Fig. 3.3. 

 

 

Figure 3.3: Circuit diagram of the experimental setup. 

 

In the low-frequency regime, the temperature on the heating and sensing sides are 

related to the measured voltage by: 
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(3 )h hV f

To

To

,2 s DCI

(2 )s hV f

140k

potR

1R
2R

( )sI DC

Keithley 220 
DC current source

AD524 
Amplifier

AD524 
Amplifier

A

B

Device with NF sample

2nd Lock-in

Pair device

( )h hI f ( )sI DC

(2 )NF hQ f

2L

hR

(2 )h hT f (2 )s hT f

1L

sR
,s pR



 

 

66 

 

1

,3
3 h

h

h f h
h

f

V dR
T

I dT



 
   

 
     (3.1) 

  1

,2 , 1 2

, 2

2 hs f s s p s
s

s DC

V R R R R dR
T

I R dT

    
   

 
   (3.2) 

where 
hf

I  and 
,s DCI  are the RMS of the AC heating current and amplitude of the applied 

DC sensing current, respectively. /hdR dT  and /sdR dT  are the temperature coefficients 

of resistance (TCR) for the heating and sensing beams, respectively. sR , 
,s pR , 1R , and 2R  

are the four resistors in the bridge circuit. Note that sR  and 
,s pR  are located inside the 

vacuum chamber and will change when the sample temperature changes. 

 

3.4 Analytical and Numerical Model for Cp Extraction 

The experimental system can be simplified as a one-dimensional system as shown 

schematically in Fig. 3.4.  

For the nanofiber (NF) and sensing beams, the one-dimensional (1D) steady-state 

heat conduction equation in the frequency domain can be written as
25

: 

 
 

2

2

2

,
,

d T x
a T x

dx





        (3.3) 

For the sensing beam: 

 , 1 1 2 1, cosh( ) cosh( )s beamT x C a x C a x         (3.4) 
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Figure 3.4: Equivalent circuit diagram of the 1D analytical model. ΔTh(𝜔)  can be 

calculated from Lu et al.'s analytical model
15

. The 1D steady-state heat conduction 

equation in the frequency domain is solved to get ΔTs(𝜔). The temperature profile of NF 

is ΔTNF(𝑥, 𝜔), and that of sensing beams is ΔTs,beam(𝑥, 𝜔). 

 

For the NF: 

  3 2 4 2, cosh( ) cosh( )NFT x C a x C a x        (3.5) 

where 1C , 2C , 3C  and 4C  are unknown constants; 
j c

a



 , j  is the 

imaginary unit;  , c  and   represent density, specific heat, and thermal conductivity, 

respectively; and   is the thermal angular frequency. Note that the thermal angular 

frequency is twice the electrical angular frequency in our measurement. Subscript '1' is 

for the beams and subscript '2' is for the NF. 

The boundary conditions are:  

   2 ,NF hT L T         (3.6) 

   ,0, 0,NF s beamT T        (3.7) 
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To
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( , )NFT x 
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,

1 1 0 2 2 0

s beam NF
x x

T T
A A

x x
  

 


 
   (3.8) 

 , 1, 0s beamT L        (3.9) 

where 1L  is half the beam length, 2L  is the length of the NF; and 1A  and 2A  are 

the cross-sectional area of the beam and NF, respectively. 

Equations (S2) and (S3) can be solved and the sensing side temperature can be 

expressed as 

 
 

1 1 1 2 2
2 2

2 2 2 1 1

sinh( )
cosh( )

tanh( )

h

s

T
T

A a a L
a L

A a a L









 



    (3.10) 

Here  hT   can be calculated as
15

 

 
 

0 31 2

1 1 exp( )
sin

2 2 1 cot

n

n
h n

n

jn
T

n










  
 

  


   (3.11) 

Where  2 3

0 1 1 14 /
fh

hI R L A   , and 
2

1 1 1

2 2

1

8
cot n

L c

n

 


 
 ; 

hf
I  is the root-mean-

squared (RMS) value of the applied modulated current, and hR  is the resistance of the 

whole heating beam. 

In order to evaluate the applicable range of the analytical model, a one-

dimensional numerical model for this device is developed. In this model, we solve the 

heat conduction equation for the heating and sensing beams, as well as the NW specimen, 

which can be written as: 

 
2

2i ii

T T
C q

t x
 

 
 

 
    (3.12) 
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where  , C  and   represent density, specific heat, and thermal conductivity, 

respectively; i=1 for the heating beam, i=2 for the NW sample, and i=3 for the sensing 

beam. In this case,  2

1 / 2h h b bq I R A L , where Rh  and bA  are the electrical resistance and 

cross sectional area of the heating beam, and 2 3 0q q  .  

Figure 3.5 shows the analytical and numerical model results for NFs with 

diameters of 150 nm and 600 nm. For D=150 nm, the results from these two models are 

identical. However, for D=600 nm, there is a discrepancy between these two models. 

This discrepancy is due to the heat capacity of the NF, i.e.,  
NF

cV . In the model, 

  6

3
1.717 10

NF

J
c

m K
   ,

2 2

50
4 4

NF
NF

L D D
V m

 
   , and   6

3
3.187 10

b

J
c

m K
   , 

17 3100 2 168 1.68 10b b b bV L w t m m nm m        for NF and beams, respectively. 

The ratio of the heat capacity of the NF (  
NF

cV ) to that of the beam (  
b

cV ) 

is 

 

 

 

 
0.54NF NF NF NF

b bb b

cV c V V

cV c V V

 

 
     (3.13) 

In the analytical model, the calculation of  hT   is based on the assumption 

that the heat conduction to the NF is negligible, as was done by Lu et al
15

. This 

assumption stands for NFs with D=150 nm, because the heat capacity of the NF is much 

less than that of the beams, i.e., 
 

 
0.014 1NF

b

cV

cV




 . When the diameter of the NF is 

large (e.g., D=600 nm), 
 

 
0.227NF

b

cV

cV




 . In this case, the heat capacity of the NF is on 
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the same order of that of the beams and should be taken into account in the calculation of 

 hT  . 

 

 

Figure 3.5: Comparison between the analytical and numerical model for (a) heating side; 

(b) sensing side. The analytical model calculated ΔTh(𝜔)  independently, without 

considering the NF. In contrast, the numerical model regards the heating beam, NF, and 

the sensing beam as a whole system. For the D=150 nm NF, the heat capacity of the NF 

is negligible compared to that of the beams, and the results from analytical and numerical 

model are identical. However, for the D=600 nm NF, the heat capacity of the NF is on the 

same order of magnitude as that of the beams, discrepancy exists due to the breakdown of 

the assumption of the analytical model. This discrepancy will be further transferred to 

ΔT𝑠(𝜔) according to equation (3.10). 

 

In contrast, the numerical model takes into account the influence of the NF on the 

 hT   calculation. Therefore, the numerical model is an accurate model for NFs with 

both small and large diameters. Since our NF samples are ~600-700 nm in diameter, we 

employed the numerical model to extract the specific heat in this work. 

In the numerical model, we are able to add contact resistance (Rc) between the 

sample and the beams, and investigate the effect of Rc on the specific heat fitting process. 

In Fig 3.6(a), the black line is the frequency dependent curve of ,s padT  without Rc, 

assuming the sample thermal resistance is 1 GK/W, with a sample length of 50 µm and a 
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diameter of 600 nm. Equivalently, the sample thermal conductivity is 0.1768 W/m-K. 

Then we keep the total thermal resistance the same, but attribute 10% of the total thermal 

resistance to Rc. This means the intrinsic thermal resistance of the sample is 900 MK/W, 

i.e., intrinsic thermal conductivity is 0.1963 W/m-K, and the contact resistance is 100 

MK/W. The difference between 
,s padT  with and without Rc becomes larger with 

increasing frequency. Fig. 3.6(b) shows the ratio of 
,s padT  change with Rc to 

,s padT  

without Rc, where 
, , , , ,s pad s pad withoutRc s pad withRcT T T    . At a frequency of around 100 

Hz, 10% Rc will lead to 13% changes in 
,s padT , which has the same order of magnitude 

effect on the 
,s padT  as the effect from specific heat, as shown in Fig. 3.7(b). Therefore, 

we should take into account Rc if it is large. As pointed out by Zhong et al.
26

, the Rc 

between Nylon-11 NFs with diameter larger than 400 nm is very small. Therefore, for the 

samples we measured with diameter of ~600-700 nm, the effect of Rc is negligible. 

 

 

Figure 3.6: (a) Frequency dependent curve for sensing side temperature without and with 

10% contact resistance. (b) The ratio of change of ,s padT  with 10% Rc to ,s padT  without 

Rc. 

 

3.5 Cp Measurement Sensitivity 
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Figure 3.7: Modeled ΔTs/ΔTh as a function of frequency (fh) based on Eq. (5). In the low 

frequency regime, ΔTs/ΔTh is frequency-independent; when the frequency increases, the 

thermal penetration depth is comparable with or shorter than the length of the NF and 

beams, causing attenuation of the thermal wave. (b) Cp 
measurement sensitivity vs. 

L2/𝜆𝑝,𝑁𝐹. The sensitivity is defined as the ratio of the change of ΔTs to change in Cp 
of 

the NF. The thermal penetration depth of the NF, λp,NF , is defined as 𝜆𝑝,𝑁𝐹 =

2√
𝛼𝑁𝐹

𝜋𝑓ℎ
.When 𝐿2 = 1.1𝜆𝑝,𝑁𝐹, the sensitivity is 1.0, meaningΔTs is changed by 10% if Cp 

is changed by 10%.  

 

Figure 3.7(a) plots /s hT T   as a function of the frequency ( hf ) of the applied 

electrical current based on Eq. 3.10. As one would expect, at the low frequency ( 1 1a L  and

2 2 1a L ), /s hT T   is a constant and is only related to the ratio between the thermal 

conductance of the NF and the beams: 
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This is the same as the case of the DC heating scheme previously used for 𝜅 

measurements of 1D nanostructures
1
. 

At the higher frequency, however, 1 1a L  and 2 2a L  are increasing and as a result, 

/s hT T   is decreasing with frequency. This occurs when the thermal penetration depth is 

comparable to the length of the NF ( 2L ) and the sensing beam ( 1L ), causing attenuation 

of the thermal wave.  However, the attenuation of sT  could originate from both the NF 

and the beams. To properly determine the experimental conditions under which the 

measurement is sensitive to the NF specific heat, we define and calculate the sensitivity 

of the 
pC  measurement, which measures the relative change in sT  for a given change in 

pC  of the NF, namely, 
/

/

s s

NF NF

T T

c c





 
. As one would expect, the sensitivity depends on the 

length,  , and pC  of the NF ( NFc ), as well as hf . It turns out that the sensitivity only 

depends on one lumped dimensionless parameter, which is the ratio between the NF 

length and the thermal penetration depth in the NF, namely, 2

,p NF

L


, where the penetration 

depth of the rod-like structure is defined as
27

: 

, 2 NF
p NF

hf





      (3.15) 

where NF  is the thermal diffusivity of the NF. 

Figure 3.7(b) shows the relationship between the sensitivity and the ratio 2

,p NF

L


. 

At low frequency, i.e., 2

,

1
p NF

L


, sT  only dependents on NF  and is insensitive to NFc . 



 

 

74 

 

As hf  increases, 
,p NF  decreases and when it is comparable to 2L , sT  is also sensitive to 

NFc .  At 2

,

1.1
p NF

L


 , the sensitivity is about 1, which means a 10% change in NFc

 
would 

result in a 10% change in sT . Therefore, NF  and NFc  can be extracted in the low and 

high frequency regimes, respectively. To ensure a measurement sensitivity of at least 1, it 

is necessary to choose experimental conditions such that 2

,p NF

L


 is greater than 1.1. Note 

that both hT  and sT  will attenuate as hf  increases, so the highest operating frequency 

is limited by the temperature resolution of the measurements, which is about 50- K 

in our experimental setup 
22

. 

Before running the frequency-dependent measurement of Vs,2fh
, we can estimate 

the heating frequency range that yields sufficiently high sensitivity in the specific heat 

measurement of the NFs. Adopting the measured thermal conductivity of the Nylon-11 

NF at 615 nm (κNW = 0.3868 𝑊 𝑚−1𝐾−1), and bulk specific heat of the Nylon-11 NF, 

the cut-off frequency could be estimated at RL−λ =
𝐿

𝜆𝑝
≈ 1.1 . In other words, the 

estimated cut-off frequency can be written as 

2

4.84 4.84 0.3868
111.7

1040 1903.89 (0.0000519)

NF
h

NF NF NF

f Hz
C L



 


  

  
 (3.16) 

Therefore, to get good fitting sensitivity for the frequency-dependent curve of 

∆Ts,pad, the heating frequency should be higher than 111.7 Hz. In the actual experiment, 

the heating frequency can usually go up to 300 Hz. 
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As indicated in Fig. 3.7(a), we first obtain the thermal conductance of the beams 

and the NFs using measurements in the low-frequency regime, in this case, at 

8.185hf Hz 22
. The conductance of the NF ( NFG ) is given by

1
: 

s
NF b

h s

T
G G

T T



 

     (3.17) 

We then proceeded to increase the modulation frequency hf  while keeping the 

heating current amplitude constant to obtain the frequency-dependent data for 
,3 hh fV  and 

,2 hs fV , which are fitted to the one-dimensional numerical model of the heating and 

sensing sides to yield the specific heat of the beam and the NF, respectively. 

 

 

 

Figure 3.8: Measured frequency-dependent  ,3 hh fV , ,2 hs fV , and fitting results for the (a) 

heating side and (b) sensing side, respectively, with hf  ranging from 100 to 300 Hz. Inset: 

fitting curves from 10 to 400 Hz. The data is for the NF with D=615 nm at 300 K. The 

blue and pink curves represent the fitting results with the largest uncertainty 5% and 8%, 

respectively, for the heating and sensing sides. 

 

Fig. 3.3(a) and (b) show the best fitting results to the experimentally measured ,3 hh fV  and 

,2 hs fV , respectively, on a 615 nm diameter NF. Also shown are curves representing a ±5% 
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change in the 
pC
 
of the beams and a ±8% change in NFc , which indicates the uncertainty 

of the data fitting procedure in the specific heat measurements. 

 

3.6 Results and Discussions 

 

 

Figure 3.9: Measured temperature dependent (a) thermal conductivity and (b) specific 

heat for the 615 nm (blue circle) and 693 nm (red triangle) diameter Nylon-11 NFs. The 

increased   of the NF compared with the bulk value, 0.24 W/m-K at 300 K, is attributed 

to the enhanced crystallite orientation and better aligned molecular chains. The pC  of the 

NFs with diameters of ~600-700 nm is similar to that of bulk Nylon-11
28

 (pink diamond), 

which is further verified with the theoretical model
24, 28

 (Green solid line).  

 

Figure 3.9(a) shows NF  for the NFs with diameter of 615 nm (100-300 K) and of 

693 nm (300-400 K). At room temperature, the measured thermal conductivities are 0.39 

W/m-K and 0.36 W/m-K, respectively, which are consistent with our prior work
29

 with 

the traditional DC heating scheme and thereby validate our AC measurements. At 300 K, 

the measured NF  values are approximately 50% larger than the bulk value (~0.24 W/m-

K
29

), due to the better alignment of the crystallite domains in the electrospun NFs
29

. 

Figure 3.9(b) shows the measured specific heat of the Nylon-11 NFs. At 300 K, 

the measured specific heats are 1900 245  J/kg-K and 1890 187  J/kg-K for NFs with 



 

 

77 

 

D=615nm and 693 nm, respectively. The error bars of the measured pC  shown in Fig. 

3.9(b) are the combination of the NF diameter measurement (using SEM) and the 

uncertainty in the data fitting (Fig. 3.8). The results are in good agreement with the bulk 

value 1751 J/kg-K for Nylon-11 with a similar crystallinity of 40%
28

, within the 

uncertainty of the measurement. The specific heat of the NFs decreases with temperature, 

which also follows the trend of bulk Nylon-11
28

. The measurement uncertainty, about 13% 

and 10% for NFs with D=615nm and 693 nm, mainly comes from the geometry of the 

NFs (length and diameter) and the TCR of the devices. Note that the thermal contact 

resistance between the NFs and beams can also affect the fitting result (see Fig. 3.6). But 

for NFs with diameter larger than 400 nm, the thermal contact resistance is shown to be 

very small
29

, which results in insignificant influence on the specific heat result.  

It is well known that specific heat is related to a material’s Debye temperature 

( D ), which is related to the Young’s modulus (E). It has been reported that moduli of a 

variety of polymer NFs increase with decreasing diameter
30

. For instance, E of Nylon-6.6 

is increased by 6 times over the bulk values when the diameter is 400 nm 
30

. While there 

is no Young’s modulus data on Nylon-11 NFs in the literature, we would expect an 

increase in E as well. To understand why the specific heat does not change in NFs of 

~600-700 nm diameter, we carried out a theoretical model to examine the effect of D  on 

the specific heat of Nylon-11 following Xenopoulos et al.
28

. The model shows that even 

with a 300% increase in D , which corresponds to a 900% increase in E, the specific heat 

of Nylon-11 still follows bulk-like behavior within the temperature range of 200-300 K, 

which is consistent with our experimental observation.  
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The vibrational modes of linear macromolecules, e.g., polyethylene and Nylon, 

can be separated into two groups
31

: skeletal vibrations and group vibrations. Both of 

these sources contribute to the specific heat of linear macromolecules at constant volume 

(CV), i.e. 

, ,V V sk V grC C C      (3.18) 

where ,V skC  is the specific heat from skeletal vibrations, and ,V grC  the specific from the 

group vibrations.  

Based on an elastic rod approximation model and considering anisotropic effects 

of the molecular chains, Tarasov
32

 derived an expression for the specific heat of skeletal 

vibration modes: 

, 3 3 31
1 1 3

1

V sk

sk

C
D D D

N R T T T

  



       
         

       
   (3.19) 

where skN  is the number of the skeletal modes, R is the gas constant 8.3143
J

mol K
, 1  

is the one-dimensional (1D) Debye temperature, 3  the three-dimensional (3D) Debye 

temperature, 1
1D

T

 
 
 

 is the 1D Debye function, and 3
3D

T

 
 
 

 is the 3D Debye function, 

which are given as 
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Note that the 1D Debye function describes the intramolecular vibrations, and the 

3D Debye function describes intermolecular vibrations
33

. The recommended parameters 

for Nylon-11 in the range of 230-300K are listed in Table 3.1
34

. 

 

Table 3.1: Recommended parameters for skeletal specific heat (230-300K)of Nylon-11
34

. 

Polymer Number of skeletal modes 1 [K] 3 [K] 

Nylon-11 24 419.8 67.4 

 

Wunderlich
35

 found that apart from the skeletal modes, group vibrations, i.e., 

independent rotation and vibration due to the side atoms disturbing the linearity of the 

linear macromolecular structure, are necessary in the calculation of specific heat of 

polymers. The frequency spectra of group vibrations are obtained from the interpretation 

of infrared and Raman spectrum of polymers, and can be further divided into two terms: 

box terms and Einstein terms. 

, , ,V gr V box V EC C C       (3.22) 
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where Nbox  and NE are the number of modes for box terms and Einstein terms, 

respectively; ΘE,i =
ℎ𝜐𝑖

𝑘
 represents the Einstein frequencies in kelvin, and h and k are 

Planck's and Boltzmann's constants, respectively. ΘL  and ΘU  are the lower and upper 

limit of the frequency interval within which the vibration distribution is uniform. Table 

3.2 lists the approximate group vibration frequency spectra of Nylon-11
34

. 

 

Table 3.2: The approximate group vibration frequency spectra of Nylon-11
34

 

Einstein terms Box terms 

EN  E  boxN  L  U  

1 1009 1 2370 2428 

1 886 1 2181 2193 

1 4764 1 1862 1875 

10 4148 0.32 863 885 

10 4098 0.68 885 1061 

10 2075 6.5 1698 1977 

3.5 1977 4.8 1690 1874 

5.2 1874 5.9 1038 1494 

0.4 1494 3.06 1378 1638 

3.7 1079 3.15 1378 1525 

2.79 1525 0.37 1392 1417 

  0.63 1258 1392 

  0.28 1583 1600 

  0.46 1482 1583 

  0.26 1459 1482 

 

Employing the parameters in Table 3.1 and 3.2, we can calculate VC  for Nylon-

11 from equation (3.18). Then the specific heat at constant pressure ( pC ) can be 

calculated as
34
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       (3.25) 

where R is the gas constant, 0A  is a experiment-fitted constant (
0 0.00801

K mol
A

J


 
for 

Nylon-11
34

), T is the temperature, and mT  is the equilibrium temperature (493 K for 

Nylon-11
34

). 

The calculated pC , VC , and respective contributions from skeletal and group 

modes are shown in Fig. 3.10(a). Note that the parameters in Table 3.1 and Table 3.2 are 

only applicable for temperatures ranging between 230 and 300 K. The calculated specific 

heat below 230 K has not yet been demonstrated by bulk experimental data. 

While previous work shows that the thermal conductivity
36

 and Young's 

modulus
30

 are significantly enhanced for Nylon NFs with diameters below 500 nm, no 

change of the specific heat relative to bulk value is observed for as-spun Nylon-11 NFs 

with diameter of around 615 nm in our measurement. Debye temperature of the materials 

is proportional to the square root of Young's modulus
37

, i.e., D E . With the 

increasing Young's modulus, the Debye temperature of as-spun Nylon-11 NFs will 

increase. Based on Arinstein et al.'s work, the Young's modulus of the NFs can be 10 

times as large as bulk when the diameter decreases to less than 400 nm. Then 𝜃𝐷 would 

be 10 3.16  times as large as bulk. Note that for NFs with diameter of ~600 nm, the 

increase of Young's modulus and Debye temperature will probably be much smaller. 

Meanwhile, the Debye temperature of the materials is related to the 1D ( 1 ) and 

3D ( 3 ) Debye temperatures in the theoretical model as
34
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 
1/3

2

1 3D        (3.26) 

Cheban et al. showed that macroconformation of the polymer materials probably 

will not change the intramolecular frequency distribution. This means that 1  will not 

change when the NFs are drawn to small diameters. Therefore, the change of D  is 

mainly from the change of 3 . If D  is 3.16 times as large as bulk, equivalently 3  will 

be 5.62 times as large as bulk based on Eq. 3.26. Fig. 3.10(b) shows the calculated 

specific heat with bulk D  and 3.16 D  in the temperature range of 230-300 K. The 

maximum deviation is 4.5% at 230 K. The results imply that no significant change in 

specific heat of the NFs can be observed even though the Young's modulus is increased 

10-fold, in good agreement with our experiment. 

 

 

Figure 3.10: (a) Theoretical model for calculated pC , VC , skeletal vibration contribution, 

and group vibration contribution. (b) Theoretical result with D  and 3.16 D . The 3.16 D  

case corresponds to NFs with a 10-fold increase in Young's modulus. The results imply 

that no significant change of the specific heat of NFs can be observed even though the 

Young's modulus is increased 10 times, in good agreement with our experiment. 
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Finally, our measurements also yield the temperature-dependent thermal 

diffusivity, as shown in Fig. 3.11. Based on the kinetic theory for thermal conductivity, 

lv , where l  is the phonon MFP and v  is the phonon velocity. Assuming v  is 

independent of temperature, Fig. 3.11 suggests that l  decreases with increasing 

temperature between 100 and 400 K, which indicates that intrinsic anharmonic phonon 

scattering plays a role in the phonon transport process in the measured electrospun 

Nylon-11 NFs. However, the slope of l  vs T is smaller than 1/T, suggesting that 

scattering due to structural defects is also important in the semicrystalline NFs studied 

here. This is different from the case for crystalline polyethylene fibers
38

 where   scales 

as 1/T above room temperature, presumably because the PE fibers are more structurally 

aligned and have higher crystallinity. 

 

 

Figure 3.11: Diffusivity for the 615 nm (blue circle) and 693 nm (red triangle) diameter 

Nylon-11 NFs.   decreases with temperature, indicating that intrinsic phonon-phonon 

scattering starts playing a role in the NF. 

 

3.7 Conclusion 
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In conclusion, we report the first simultaneous thermal conductivity and specific 

heat measurements on individual nanostructures, demonstrated on electrospun Nylon-11 

NFs. The results show that the specific heat of the ~600-700 nm diameter NFs exhibit 

bulk-like behavior while the thermal conductivity is increased by 50% due to better 

alignment of crystalline domains in the electrospun NFs. The measured thermal 

diffusivity of the NFs decreases with temperature from 100 to 400 K, suggesting that 

anharmonic phonon scattering starts playing a role in phonon transport in the NFs. The 

platform here is also applicable for semiconductor nanostructures (1-D nanowires or 2-D 

thin films). The combined thermal conductivity and specific heat measurements thus 

provide a new platform for probing the phonon spectra and transport physics, and could 

find broad applications in studying semiconductor nanostructures. 
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Chapter 4: Phonon Engineering in Nano-crystalline Bi-Sb-Te (BST) 

with Dielectric Nanoparticles at Low Temperature 

 

4.1 Introduction 

Intensive research is undergoing to improve thermoelectric (TE) properties. One 

of the most important applications is thermoelectric cooling, with particular interest at 

temperature of around 300K or below. Thermoelectric cooling has many advantages, 

such as small size, portable, fast response, and with no moving parts. These make it a 

very attractive option for cooling sensors in aerospace and high power density electronics. 

However, the broad application of TE cooling is limited by the low energy conversion 

efficiency, especially at low temperature. The thermoelectric figure of merit is defined as 

ZT = S2σT/κ, where S is Seebeck coefficient, σ is electric conductivity, T is temperature, 

κ  is thermal conductivity. The representative ZT results
1-8

 at low temperature are 

summarized in Fig. 4.1. In order to enhance the thermoelectric cooling efficiency, one 

need to improve the TE power factor (PF = S2σ) and/or reduce the thermal conductivity. 

One common method to improve ZT is to introduce nano-grained structure. The 

high density of grain boundaries enhance the scattering of phonon (quantum of lattice 

vibration), thus can effectively reduce the lattice thermal conductivity without much 

degradation in PF
9
. However, Wang et al.

10
 found that the phonon transmission through 

the grain boundary depends on their frequency. The low frequency phonons, which tend 

to dominate the thermal transport at low temperature
10

, have higher probability to 

transmit through the grain boundaries than the high frequency ones
11

. Therefore, the 

nano-grained structure may not effectively scatter the low frequency phonons. 
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Figure 4.1: Summary of the ZT at low temperature
1-8

. 

 

One way to further suppress thermal conductivity is to embed nanoparticles (NPs) 

in nano-grained materials. There is plenty of previous work on embedding NPs into nano-

grained materials
4, 12-16

. However, most of these work were focused on high temperature 

(>300K) for energy harvesting application. For example, Dou et al.
12

 mixed 40 nm SiO2 

NPs with BST powders, and found ~20% improvement of ZT at 363 K, which is owing 

to both enhancing PF and reducing thermal conductivity. However, Dou et al.’s work 

didn’t study the SiO2 NPs effect at temperature below 300K. Furthermore, it will be 

interesting to use SiO2 NPs with size smaller than 40nm, because previous numerical 

study by Katcho et al.
17

 showed that the NPs with diameter down to 10 nm can have 

stronger scattering effect on the lattice thermal conductivity.  

In this paper, we investigated the NPs effect on lattice thermal conductivity in the 

NG materials at low temperature (<300K). We have mixed 10 nm SiO2 NPs and 15 nm 

diamond NPs with BST nanopowders, and observed strong reduction of thermal 

conductivity in the NPs mixing samples. Furthermore, we found that the diamond/BST 
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sample showed stronger scattering than the SiO2/BST sample. This is due to the larger 

acoustic mismatch of the diamond/BST than that of the SiO2/BST. The thermal boundary 

resistance of diamond/BSTwas found to be 10 times as large as the SiO2/BST. 

 

4.2 Samples Preparation and Characterization 

 

Figure 4.2: (a) Schematic of phonon scattering by NPs (red filled circles) on the grain 

boundaries (blue lines); SEM images of nano-powders after BM with scale bar of (b) 

500nm and (c) 50nm; TEM images of (d) 10 nm SiO2 NPs and (e) 15 nm diamond NPs. 

 

The BST nanopowders were obtained by high energy ball milling (BM) (SPEX 

8000M mixer/mill) for 10 hrs in Argon atmosphere. Then the BST nanopowders were 

mixed with target nanoparticles (SiO2 or diamond) at certain volumetric concentration, 

and ball milled for additional 4hrs in Ethanol solution and Argon atmosphere. The wet 

NPs
scattering

(a)

(b) (c)

(d) (e)
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mixing method is to avoid possible agglomeration of nanoparticles before mixing with 

BST nanopowders. After that, the milling jar will be moved into glovebox with O2 level 

less than 0.5ppm. The mixed powders were dried up and pre-pressed into the graphite die 

in the glovebox. Then we conducted hot press in glovebox (400C, 60MPa, 3mins), and 

obtained a dense disk-like sample. The sample will be polished into regular cuboid shape 

(2mm*2mm*10mm). The material properties of the samples, including thermal 

conductivity, electrical conductivity, and Seebeck coefficient, are measured with PPMS 

system (Quantum Design). 

Figure 4.2a shows the schematic of the NPs embedded in the BST matrix. The 

embedded NPs are uniformly distributed around the nano-grained boundaries. The long 

MFP phonons that pass through the grain boundary will be scattered by the NPs. This can 

effectively restrict the long MFP phonon transport, and reduce the lattice thermal 

conductivity in nano-grained materials. 

Figure 4.2b and 4.2c show the SEM images of the nano-powders after ball milling 

(BM). The powder size is dominantly less than 100 nm. Fig. 4.2d and 4.2e show the TEM 

images of SiO2 NPs and diamond NPs, with diameter of 10 nm and 15 nm, respectively.  

The sample after hot-pressing is in disk-like shape with 1.27cm diameter and 

2mm thickness, as shown in the Fig. 4.3a. Fig. 4.3b shows the XRD data for the BST 

samples mixing with NPs at different volumetric ratio. The average grain size can be 

estimated from the XRD data to be 27 nm using the Scherrer equation
18

: 

Davg =
𝐾𝜆

𝛽𝑐𝑜𝑠(𝜃)
,     (4.1) 

where λ is the wavelength (λ = 0.154nm), K is shape factor, β is line broadening 

at half the maximum intensity, θ is Bragg angle. 
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Figure 4.3: (a) Sample after hot pressing; (b) XRD characterization for BST with SiO2 

and diamond NPs. 

 

4.3 Thermal Conductivity Measurement and Modeling 

 
Figure 4.4: Temperature dependence of (a) measured total thermal conductivity; (b) 

lattice thermal conductivity. The theoretical model results with the nominal NPs diameter 

(10nm for SiO2 NPs, and 15nm for diamond NPs) have been shown as dash line. 

 

(a) (b)

(a)

(b)
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Figure 4.4a shows the temperature dependent measured thermal conductivity for 

BST mixing with SiO2 and diamond NPs at different volumetric ratio. Comparing with 

the non-NPs mixing BST sample, i.e., 0 vol. % NPs, the samples mixing with SiO2 or 

diamond NPs show significant reduction of thermal conductivity.  

The measured thermal conductivity κtotal = 𝜅𝑒 + 𝜅𝑏𝑝 + 𝜅𝑙𝑎𝑡, where κe, κbp, and 

κlat are majority carrier electronic, bipolar electronic, and lattice thermal conductivity, 

respectively. For (Bi,Sb)2Te3 materials, Kim et al.
19

 showed that the bipolar thermal 

conductivity is negligible for T<300K. Therefore, the total thermal conductivity can be 

approximated as κtotal = 𝜅𝑒 + 𝜅𝑙𝑎𝑡 . The 𝜅𝑙𝑎𝑡  can be obtained by subtracting 𝜅𝑒  from 

κtotal, as shown in Fig. 4.4b. Here the 𝜅𝑒 is calculated based on Wiedemann–Franz law, 

i.e., 𝜅𝑒 = 𝐿𝜎𝑇, , where σ is electrical conductivity, T is temperature, and L is Lorentz 

number. Fig. 4.4b shows that the 𝜅𝑙𝑎𝑡 have been significantly reduced by embedding NPs 

in the BST matrix. 

The lattice thermal conductivity can be modelled as
10, 20, 21

 

𝜅𝑙𝑎𝑡 =
1

3
∑ ∫ 𝐶𝜈𝑖Λ𝑒𝑓𝑓,𝑖𝑑𝜔 =

𝑘𝐵

6𝜋2 (
𝑘𝐵𝑇

ℏ
)

3
∑ ∫

𝑥4𝑒𝑥Λ𝑒𝑓𝑓,𝑖

𝜈𝑖
2(𝑒𝑥−1)2 𝑑𝑥

∞

0𝑖𝑖 ,  (4.2) 

where C is specific heat, i=1,2,3 represents two transverse one longitudinal phonon mode, 

respectively, v is speed of sound, kB is the Boltzmann constant,  is the reduced Planck’s 

constant, and x =
ℏω

𝑘𝐵𝑇
. Λeff is the effective mean free path of phonon

10
 

Λ𝑒𝑓𝑓
−1 = Λ𝑑

−1 + Λ𝑢
−1 + Λ𝑏

−1 + Λ𝑛𝑝
−1 ,     (4.3) 

where Λ𝑑
−1 = 𝐴𝜔4/𝜈𝑠  is for defect scattering, Λ𝑢

−1 = 𝐵𝜔2𝑇/𝜈𝑠  for Umklapp scattering, 

Λ𝑏
−1 = 0.7𝐷𝑎𝑣𝑔(𝜔0/𝜔)  for frequency-dependent boundary scattering

10
, and Λ𝑛𝑝

−1 =

𝑁𝑛𝑝𝜎𝑛𝑝 for nanoparticle scattering
22, 23

. Davg=27nm is the average grain size from XRD, 
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0  is the cut-off frequency, ‘A’, ‘B’, and ‘C’ are adjustable parameters, Nnp =

𝑓/(
1

6
𝜋𝐷𝑛𝑝

3 )  is volume concentration of NPs, 𝑓  is volume concentration ratio, σ𝑛𝑝
−1 =

σ𝑠
−1 + σ𝑙

−1 is the effective scattering cross section, σs and σl are scattering cross section 

for short and long wavelength phonons, given as
22, 24

 

σs = 𝜋𝐷𝑛𝑝
2 /2,      (4.4) 

σl

𝜋𝐷𝑛𝑝
2 =

1

144
𝐸(𝑞𝐷𝑛𝑝)

4
𝛿2,     (4.5) 

where δ = √(Δ𝜌/𝜌)2 + 3(2Δ𝜈/𝜈)2 , Δ𝜌/𝜌 and Δ𝜈/𝜈 are difference of density and speed 

of sound, respectively, q = ω/ν  is the phonon wave vector, and E is an adjustable 

parameter. 

To fit the model with experimental κlat in Fig. 3b, we firstly adjust the ‘A’, ‘B’, 

and ‘C’ with 𝑓 = 0  for the non-NPs mixing sample. The model fits well with the 

experimental data for the non-NPs mixing sample, and the optimal parameters are 

A = 2.76 × 10−41 𝑠−1𝑟𝑎𝑑𝑠−4, B = 1.10 × 10−17 𝑠−1𝐾−1𝑟𝑎𝑑𝑠−2. Kim et al.
25

 measured 

and fitted the κlat  of bulk (Bi,Sb)2Te3, and found that A = 3.73 × 10−41 𝑠−1𝑟𝑎𝑑𝑠−4 , 

B = 1.39 × 10−17 𝑠−1𝐾−1𝑟𝑎𝑑𝑠−2. The Umklapp scattering terms were fairly close, but 

the impurity scattering of Kim et al.’s samples was stronger than our samples, which may 

due to different impurity and defect concentration. 

Next we consider the NP scattering effect for different mixing concentration. The 

diameter of SiO2 and diamond NPs are 10 nm and 15 nm, respectively, and the 

volumetric concentration 𝑓 varies from 0.5 %, 1 %, to 5%. By fixing the ‘A’, ‘B’, and ‘C’, 

we adjusted the parameter ‘E’, and found the optimal fitting results with E=7 and E=28 

for the SiO2 and diamond mixing samples, respectively. Note that we used the same ‘E’ 
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for the same type of NPs at different volumetric concentration. The model fits well for 

both types of NPs at different volumetric concentration, as shown in Fig. 4.4b.  

 

4.4 Mean Free Path Distribution 

 

Figure 4.5: Comparison of MFP distribution for (a) different mixing NPs ratio at 300K; 

(b) different temperature. 

 

Since we have seen significant reduction of lattice thermal conductivity in the 

NPs mixing samples in Fig. 4.4b, it will be interesting to investigate the MFP distribution 

of phonon in these materials. After fitting the temperature dependent κlat, we used the 

same fitting parameters, and calculated the corresponding MFP distribution of κlat. The 

MFP distribution can be modelled by transforming the integration in Eq. (2) from phonon 
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frequency ω to phonon MFP. Fig. 4.5a shows the MFP distribution for BST samples with 

and without NPs at 300K. The MFP distribution of the NPs mixing samples are shift 

toward shorter MFP ranger than that of the non-NPs mixing sample. This clearly 

demonstrates that the embedded NPs can effectively scatter the long MFP phonons, thus 

reduced the lattice thermal conductivity. Furthermore, the MFP reduction of the 0.5 vol. % 

diamond sample is stronger than that of the SiO2 sample with the same mixing 

volumetric concentration.  

The different scattering strength of SiO2 and diamond NPs can be understood 

from their acoustic properties. Table 4.1 shows the mass density and speeds of sound of 

BST, SiO2, and diamond. The thermal boundary resistance of medium 1 and medium 2 

(e.g., SiO2 and BST) can be calculated as
26, 27

, 

Rbd = [
𝜋2

15

𝑘𝐵
4

ℏ
(∑ 𝑣1,𝑗

−2Γ1,𝑗𝑗 )]
−1

𝑇−3 = [2.04 × 1010(∑ 𝑣1,𝑗
−2Γ1,𝑗𝑗 )]

−1
𝑇−3,   (4.6) 

where ‘j’ is phonon mode number, v is the speed of sound, Γ is heat transfer coefficient 

between medium 1 and medium 2, which can be calculated depending on the density 

ratio and speed of sound ratio of the two mediums
27

. The calculated thermal boundary 

resistance of SiO2/BST and diamond/BST are listed in Table 4.2. The Rbd of 

diamond/BST is 75.06/T
3
, 10 times larger than that of SiO2/BST (7.58/T

3
), where ‘T’ is 

temperature. The large difference of Rbd explains the stronger scattering of the embedded 

diamond NPs in BST. In our theoretical model above, we have a fitting parameter ‘E’, 

which represents the effective scattering strength of the NPs to the phonons. The ‘E’ of 

the diamond/BST is ~4 times as large as that of the SiO2/BST. The larger scattering 

strength in diamond/BST samples is consistent with the fact that diamond/BST interface 

has higher Rbd. 
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Table 4.1: Mass density and speeds of sound of BST, SiO2 and Diamond 

 Density (kg/m
3
) vt (m/s) vl (m/s) 

BST 6887 1780 2884 

SiO2 2660 4100 6090 

Diamond 3512 17500 12800 

 

 

Table 4.2: Calculated thermal boundary resistance for SiO2/BST and Diamond/BST 

 
ρBST

ρnp
 

vt,BST

vt,np
 

vl,BST

vl,np
 Γ Rbd (K-cm

2
/W) E 

SiO2/BST 2.59 0.43 0.47 2.4 7.58/T
3
 7 

Diamond/BST 1.96 0.14 0.16 2 75.06/T
3
 28 

 

 

We also investigated the low temperature effect on phonon MFP distribution, as 

shown in Fig. 4.5b. We compared the MFP distribution for non-NPs mixing sample, 0.5 

vol. % SiO2 and diamond NPs mixing samples at 300K and 50K, and found that at 50K, 

the MFP distribution is significantly moved to long MFP range. For example, phonons 

with MFP larger than 50 nm contribute 20% of lattice thermal conductivity at 300K for 

the non-NPs mixing sample. When temperature decreases to be 50K, this ratio increases 

to 40%. Since the embedded NPs will dominantly scatter the long MFP phonons, it will 

be more significant to enhance phonon scattering with NPs at low temperature than at 

high temperature. 

 

4.5 Electrical Properties and ZT Measurement 
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Figure 4.6: (a) Electrical conductivity, (b) Seebeck coefficient, and (c) Calculated Lorenz 

number for BST mixing with SiO2 and Diamond NPs. 

 

The 𝜅𝑒 that we used to subtract from 𝜅𝑡𝑜𝑡𝑎𝑙 was modeled with Wiedemann–Franz 

law (𝜅𝑒 = 𝐿𝜎𝑇), which requires measured the electrical conductivity (σ) and calculated 

the Lorenz number. Fig. 4.6a shows the measured σ as a function of temperature for 

different samples. The Lorenz number can be calculated with single parabolic band 

model
28-30

, which is obtained by solving Boltzmann transport equation, 

𝐿 = (
𝑘𝐵

𝑒
)

2

[
(𝑟+7/2)𝐹𝑟+5/2(𝜂)

(𝑟+3/2)𝐹𝑟+1/2(𝜂)
− (

(𝑟+5/2)𝐹𝑟+3/2(𝜂)

(𝑟+3/2)𝐹𝑟+1/2(𝜂)
)

2

],  (4.7) 

(a)

(b)

(c)
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where 𝜆 is scattering parameter (𝜆=-1/2 for acoustic phonon scattering). 𝜂 is the reduced 

Fermi energy, which can be solved with inputting measured Seebeck coefficient (Fig. 

4.6b): 

𝑆 =
𝑘𝐵

𝑒
(

(𝑟+5/2)𝐹𝑟+3/2(𝜂)

(𝑟+3/2)𝐹𝑟+1/2(𝜂)
− 𝜂),    (4.8) 

where 𝐹𝑗(𝜂) = ∫
𝜖𝑗

1+exp (𝜖−𝜂)
𝑑𝜖

∞

0
 is the Fermi integral. 

The calculated temperature dependent Lorenz numbers were shown in Fig. 4.6c. 

The Lorenz number shows strong temperature dependence, ranging from 1.6 ×

10−8 𝑉2/𝐾2 at 300K to 2.3 × 10−8 𝑉2/𝐾2 at 50K. 

From Fig. 4.6a, we have seen that the embedded dielectric NPs will have negative 

effect on the σ. This may be because of the large potential difference between the NPs 

and BST matrix, thus the electron transport has been partially impeded by the embedded 

NPs. Previous study
31

 has shown that mixing NPs can potentially lower electrical 

conductivity. On the other hand, the Seebeck coefficient in the NPs mixing samples has 

been slightly improved compared with the non-NPs mixing sample, as shown in Fig. 4.6b. 

The significant reduction of κlat  can potentially improve the thermoelectric 

performance of the nano-grained materials
9
. Fig. 4.7 shows the ZT numbers for different 

samples at 50-300K. We have observed 15% and 10 % improvement of ZT in the 0.5 

vol. % and 1 vol. % diamond NPs mixing samples at 300K. However, ZT is decreasing 

with further increasing diamond mixing ratio, which is mainly because of the reduction of 

electrical conductivity for samples with higher volumetric concentration, as shown in Fig. 

4a. The κlat reduction is not as strong in SiO2 mixing samples, thus we couldn’t see 

significant improvement in ZT for the SiO2 mixing samples. For samples with higher 
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mixing concentration, the reduction of power factor (PF=S2𝜎) will be similar or larger 

than the reduction of thermal conductivity, thus the ZT remains the same or decreased 

compared with the non-NPs mixing samples. Future focus will be on maintaining the PF 

while reducing the thermal conductivity by embedding NPs. 

 
Figure 4.7: ZT for BST mixing with SiO2 and Diamond NPs. 

 

4.6 Conclusion 

In summary, we have demonstrated the strong reduction of thermal conductivity 

in nano-grained BST with embedded SiO2 or diamond NPs. The diamond NPs at 5 vol. % 

can effectively reduce κlat up to 41% at 300K, and 60% at 55K. The reduction is mainly 

due to the strong NPs scattering for the long MFP phonons. The MFP distribution of 

NPs/BST samples are shifting significantly toward shorter range. The phonons with 

MFP>10nm contribute 42% to κlat in the non-NPs BST at 300 K, but this ratio decreases 

to 35% and 25% in 0.5 vol. % SiO2/BST and diamond/BST, respectively. SiO2 and 

diamond NPs showed different scattering strength for the long MFP phonons, which is 

due to the different acoustic mismatch with the BST. The thermal boundary resistance of 
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diamond/BST is found to be 10 times as large as SiO2/BST. We have observed 15% and 

10 % improvement of ZT in the 0.5 vol. % and 1 vol. % diamond NPs mixing samples at 

300K. 
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Chapter 5: Summary and Future Work 

5.1 Summary 

Thermal transport in disordered materials is very important but yet is relatively 

less studied compared with that in the crystalline materials. Understanding the thermal 

transport in disordered materials is practically useful for engineering the thermal 

properties, including thermal conductivity and specific heat, which are important to 

optimize the thermal design of modern electronics devices, and improve the energy 

conversion efficiency in thermoelectric application. 

We firstly systematically studied in-plane 𝜅 (𝜅∥) of a-Si nanotubes and films of 5 

nm to 1.7 m thickness and showed strong size dependence: 𝜅∥ at 300 K increased from 

~1.5 W.m
-1

K
-1

 in 5 nm NT to over ~5.5 W.m
-1

K
-1 

in 1.7 m film. In addition, our cross-

plane (𝜅⊥) data on the same films, which are consistent with the prior 𝜅⊥ results, revealed 

significant anisotropy in the films.  We have developed theoretical thermal model to 

study the underlying scattering mechanisms, including Umklapp scattering, impurity 

scattering, and two-level system scattering. The model fits very well with the temperature 

dependent experimental data. We also developed an MFP reconstruction model, and 

reconstructed the MFP distribution of the a-Si based on the size dependent 𝜅∥ and 𝜅⊥. 

The propagon MFP distribution at 300K ranges from 10 nm to 10 m, and those with 

MFP greater than 1 m contribute to ~30% of propagon 𝜅 in a-Si. Our model shows that 

the large anisotropy in thermal conductivity of the films is caused by the broad propagon 

MFP spectra and partial specular boundary scattering. 

We also developed a platform to study for specific heat and thermal conductivity 

measurements of individual rod-like nanostructures such as nanowires and nanofibers. 
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This technique was demonstrated by measuring the specific heat and thermal 

conductivity of single ~600-700 nm diameter Nylon-11 NFs. The results showed that the 

thermal conductivity of the NF is increased by 50% over the bulk value, while the 

specific heat of the NFs exhibits bulk-like behavior. We found that the thermal diffusivity 

obtained from the measurement, which is related to phonon MFP, decreases with 

temperature, indicating that the intrinsic phonon Umklapp scattering plays a role in the 

NFs. This platform can also be applied to one- and two- dimensional semiconductor 

nanostructures to probe size effects on the phonon spectra and other transport physics.  

Furthermore, we engineered the thermal conductivity in nano-crystalline bismuth-

antimony-telluride (BST) by embedding SiO2 or diamond nanoparticles (NPs) at 

temperature below 300K, which has important application in thermoelectric cooling. We 

have shown that the embedded NPs work as additional scattering centers for phonons, 

and can effectively scatter the long MFP phonons in BST. We calculated the thermal 

boundary resistance of SiO2/BST and diamond/BST, and found that the diamond/BST 

have 10 times as large thermal boundary resistance as the SiO2/BST. Due to the larger 

acoustic mismatch of diamond/BST than that of SiO2/BST, diamond/BST samples shows 

stronger reduction of κlat. This reduction is mainly due to the stronger scattering on the 

long MFP phonons in the diamond/BST. The MFP distribution shows that the average 

MFP of the NPs mixing samples shift to shorter range with embedded NPs. We have 

observed 23% reduction of thermal conductivity, and 15% improvement of 

thermoelectric figure of merit (ZT) in the 0.5 vol. % Diamond NPs mixing sample, 

compared to the non-NPs nano-crystalline BST. 
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5.2 Future Work 

For the thermal transport study in amorphous solid, we have studied the MFP 

distribution in a-Si at different temperature, but the underlying scattering mechanisms are 

not fully understood, especially at low temperature. We considered the anharmonic two-

level-system (TLS) scattering in our a-Si in order to explain the temperature dependent 

data. Some previous study showed that the TLS in a-Si highly depend on the material 

growth conditions. It will be interesting to study the a-Si grown at different conditions 

with varying TLS scattering strength. Additionally, it will be interesting to study MFP 

distribution of other amorphous materials, such as a-Ge and a-SiGe with the platform we 

developed.  

For the specific heat measurement, it will be useful and interesting to apply this 

technique on other low-dimensional structures, such as carbon nanotubes and graphenes, 

and observe the quantum size effect on the phonon spectrum of these nanostructures. 

Furthermore, since specific heat will have an abrupt change at the glass transition 

temperature (Tg), we can also use specific heat measurement to find the glass transition 

temperature in nanostructures. Tg is an important material property that indicates the 

transition between glassy state and rubbery state in amorphous or semi-crystalline 

materials. Previous research suggests that one should observe Tg deviates from bulk value 

as the material structure shrinks down, but further experimental work will be needed. Our 

specific heat measurement technique provides the possibility to study the size effect on 

the Tg. 

For the thermoelectric cooling, future effort should be focused on minimizing the 

reduction of power factor when embedding NPs. Although we observed significant 
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reduction of thermal conductivity with embedded NPs in the nano-grained BST, the 

improvement of ZT is not as strong. This is mainly because the power factor has 

degraded with the existence of NPs. Other types of NPs with varying size should be 

investigated to minimize the impact on power factor from the NPs. On the other hand, the 

BST samples we have measured showed the ZT peak around room temperature. It will be 

interesting to look for materials that have ZT peak at lower temperature (<200K). This 

will have important applications in electronics cooling in space and hydrogen storage at 

cryogenic temperature.  

 

 




