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This paper presents ideas for a new generation of agricultural system models that could meet the needs of a
growing community of end-users exemplified by a set of Use Cases. We envision new data, models and knowl-
edge products that could accelerate the innovation process that is needed to achieve the goal of achieving sus-
tainable local, regional and global food security. We identify desirable features for models, and describe some
of the potential advances that we envisage for model components and their integration. We propose an imple-
mentation strategy that would link a “pre-competitive” space for model development to a “competitive space”
for knowledge product development and throughprivate-public partnerships for newdata infrastructure. Specif-
ic model improvements would be based on further testing and evaluation of existing models, the development
and testing of modular model components and integration, and linkages of model integration platforms to
new data management and visualization tools.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The idea of creating a new generation of agricultural system data,
models and knowledge products (NextGen) is motived by the conver-
gence of several powerful forces. First, there is an emerging consensus
that a sustainable and more productive agriculture is needed that can
meet the local, regional and global food security challenges of the 21st
century. This consensus implies there would be value in new and im-
proved tools that can be used to assess the sustainability of current
and prospective systems, designmore sustainable systems, andmanage
systems sustainably. These distinct but inter-related challenges in turn
create a demand for advances in analytical capabilities and data. Second,
there is a large and growing foundation of knowledge about the pro-
cesses driving agricultural systems on which to build a new generation
of models (Jones et al., 2017-in this issue B). Third, rapid advances in
e).

. This is an open access article under
data acquisition and management, modeling, computation power, and
information technology provide the opportunity to harness this knowl-
edge in new and powerful ways to achieve more productive and sus-
tainable agricultural systems (Janssen et al., this issue).

Our vision for the new generation of agricultural systems models is
to accelerate progress towards the goal of meeting global food security
challenges sustainably. But to be a useful part of this process of agricul-
tural innovation, our assessment is that the community of agricultural
system modelers cannot continue with business as usual. In this paper
and the companion paper on information technology and data systems
by Janssen et al. (this issue), we employ the Use Cases presented in
Antle et al. (this issue A), and our collective experienceswith agricultur-
al systems, data, and modeling, to describe the features that we think
the new generation of models, data and knowledge products need to
fulfill this vision. A key innovation of the new generation of models
that we foresee is their linkage to a suite of knowledge products –
which could take the formof new, user-friendly analytical tools andmo-
bile technology “apps” – that would enable the use of the models and
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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their outputs by a much more diverse set of stakeholders than is now
possible. Because this new generation of agriculturalmodelswould rep-
resent amajor departure from the current generation of models, we call
these new models and knowledge products “second generation” or
NextGen.

We organize this paper as follows. First, we discuss new approaches
that could be used to advance model development that go beyond the
ways that first generation models were developed, and in particular,
the idea of creating a more collaborative “pre-competitive space” for
model development and improvement, as well as a “competitive
space” for knowledge product development. Then we describe some
of the potential advances that we envisage for the components of
NextGen models and their integration. We also discuss possible ad-
vances in model evaluation and strategies for model improvement, an
important part of the approach. Finally, we discuss how these ideas
can be moved from concept to implementation.

2. Designing next generation models

2.1. A demand-driven, forward-looking approach

A first step towards realizing the potential for agricultural systems
models is to recognize that most work has been carried out by scientists
in research or academic institutions, and thus motivated by research
and academic considerations more than user needs. A major challenge
for the development of a new generation of models that is designed to
address user needs, therefore, is to turn themodel development process
“on its head” by starting with user needs and working back to the
models and data needed to quantify relevant model outputs.

The NextGen Use Cases presented in Antle et al. (this issue A) show
that most users need whole-farm models, and particularly for small-
holder farms in the developing world, models are needed that take
into account interactions among multiple crops and often livestock.
Yet, many agricultural systems models represent only single crops and
have limited capability to simulate inter-cropping or crop-livestock in-
teractions. Why? One explanation is that manymodels were developed
in the more industrialized parts of the world where major commodity
crops are produced. Another explanation is that models of single crops
are easier to create, require less computational resources, and are driven
by a smaller set of data than models of crop rotations, inter-crops or
crop-livestock systems. Additionally, researchers are responding to the
incentives of scientific institutions that reward advances in science,
and funding sources that aremore likely to support disciplinary science.
Component processeswithin single crops, or single economic outcomes,
are more easily studied in a laboratory or institutional setting, and may
result in more publishable findings. Producing useful decision tools for
farmers or policy decision-makers is at best a secondary consideration
in many academic settings.

The need for more integrated, farming-systemmodels has been rec-
ognized by many researchers for several decades, for example, to carry
out analysis of the tradeoffs encountered in attempts to improve the
sustainability of agricultural systems (Kanter et al., 2016). For example,
Antle and Capalbo (2001) and Stoorvogel et al. (2004) proposed
methods for linking econometrically estimated economic simulation
models with biophysical crop simulation and environmental process
models. Giller et al. (2011) describe a complex bio-physical farming sys-
tem modeling approach, and van Wijk et al. (2014) review the large
number of studies that have coupled bio-physical and economicmodels
of various types for farm-level or landscape-scale analysis. More recent
work by AgMIP has developed software tools to enable landscape-scale
implementation of crop and livestock simulation models so that they
can be linked to farm survey data and economic models (Porter et al.,
2015). While these examples show that progress has been made in
more comprehensive, integrative approaches to agricultural system
modeling, these modeling approaches are more complex and have
high data demands, thus raising further challenges to both model
developers and potential users. As we discuss below, methods such as
modularization may make it possible to increase model complexity
while having models that are relatively easy to understand and use.
Other methods, such as matching the degree of model complexity to
temporal and spatial scales, also can be used. Section 3.8 further dis-
cusses issues of model complexity and scale.

While it is clear thatmodel development needs to be better linked to
user needs, it is also important to recognize that science informs stake-
holders aboutwhatmay be important and possible.Who imagined even
a few years ago that agricultural decision support tools would use data
collected by unmanned aerial vehicles linked to agricultural systems
simulation models? So while model and data development need to be
driven by user-defined needs, they must also be forward-looking,
using the best science and the imaginations of creative scientists.

2.2. An open pre-competitive space for model development linked to a com-
petitive space for knowledge product development

As Jones et al. (2017-this issue A) describe in their paper on the his-
torical development of agricultural systems models, existing models
evolved from academic agronomic research. While there was a sense
that “decision support”was important, themodel developments never-
theless beganwith research tools that were motivated primarily to bet-
ter understand basic processes and effects on system performance. As
long as model development is motivated primarily by academic and re-
search outcomes, it will remain only loosely connected to user needs.
Therefore, to re-orient model development towards user needs, a new
set of institutional arrangements and incentives is needed. Fig. 1 pre-
sents a diagram of how these new arrangements might be organized.
The figure shows the linkages between a “pre-competitive space” of
basic science and model development, and the “competitive space” of
knowledge product development. The concept of “pre-competitive
space” grew out of the efforts of the pharmaceutical industry to collab-
orate on basic research while competing in product development. The
arrows between these two “spaces” point bothways to represent the in-
evitable and important give-and-take.

Themodel development approach that now exists is largely missing
the competitive space component shown in Fig. 1. To the extent that
such a competitive space does exist, it is in the private sectorwhere pro-
prietary management support is being provided, and linkages in Fig. 1
from competitive knowledge product development back to data and
model development are largely missing. In Fig. 2 we show how this
link from private decision makers to models and public data could be
made by connecting on-farm decision support tools to databases that
could be used for model development and analysis (see the paper by
Capalbo et al., 2017-in this issue, for elaboration of these ideas).

Facilitating a pre-competitive environment is likely to require inno-
vations in the way research organizations operate, and may need to in-
volve public-private partnerships (PPPs) that clearly delineate
boundaries and roles in creating specific NextGen products. PPPs are
one way that science and industry can collaborate to generate new ap-
plied knowledge that can feed into the creation of newbusiness and ser-
vices. In PPPs it is common that both private and public partners provide
funding and jointly formulate the research questions that can subse-
quently be tackled by research institutes and universities. There are a
number of challenges in structuring PPPs. For example, in the European
Union PPPs have been regulated to avoid unfair competition. The EU
regulations stipulate that there always has to be more than one private
partner involved and intellectual property rights of the knowledge de-
veloped (e.g., tools, models, articles, methods) belong to the research
partner, which can then license the use to private partners for commer-
cial purposes.

An important aspect for a NextGen community of practice is open-
ness. Open here means: first, inviting and engaging others to join and
become involved; second, being ready to set priorities jointly with a
broader stakeholder community (i.e. research programming, private



Fig. 1. Linkages between the pre-competitive space of model and data development and the competitive space of knowledge product development.
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partners, policy partners, non-governmental organizations); and third,
being transparent for scientific and public scrutiny of methods, tools
and results through not-solely scientific venues. Only a few of the agri-
cultural systemsmodels and economicmodels now in use can be said to
be “open” in the sense that both themodel equations and programming
code are fully documented and freely available to the community of sci-
ence. Establishing an open approach consistent with the principles of
good science, including sufficient documentation and sharing of code
to allow replication of resultswith reasonable effort, should be a priority
of the practitioner community. Such an approachwould facilitatemodel
improvement through peer review, model inter-comparison and more
extensive testing, newmodes of model improvement and development
such as crowd sourcing, and education of the next generation of model
developers and users.

Creating this open approach will also raise challenges related to in-
centives and intellectual property that would need to be addressed.
The recent experience with the Agricultural Model Inter-comparison
and Improvement Project (AgMIP; Rosenzweig et al., 2013), a new com-
munity of science dedicated to an open approach, suggests that re-
searchers are now more willing to participate, but also has identified
Fig. 2. Linkages between data and decisio
(source: Antle et al., 2014a)
some of the challenges to an open collaborative approach. For example,
obtaining funding for collaborative activities creates coordination issues
among research institutions and funding agencies that need to be
addressed.

Another advantage of an open approach is that it will encourage the
emergence of competingmodels andmodeling approaches, rather than
a single “super-model.” One dominant “super-model” could eventually
emerge, but the only way to know that such a model is desirable is to
allow a multi-model environment to flourish. We also expect to see al-
ternative approaches emerge as modelers tackle challenging features
such as representation of heterogeneity and dynamics and linkages
across scales. For models to be tractable, tradeoffs have to be made,
and an open approach is needed to facilitate the testing of alternative
solutions.

There are important examples of recent efforts at creating a more
open approach to agricultural model development. The bio-economic
farm model FSSIM (Janssen et al., 2010) was made available as open
source in 2010 after completion of itsmain project-related development
and publishedwith a license that allowed further use and extension. It is
notable that the open sourcing of the model was combined with
n tools at farm and landscape scales.
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training sessions, but this did not lead to spontaneous community up-
take and large-scale development of this relatively complex and data-
demanding model. The DSSAT crop modeling community is undertak-
ing an effort to make its code open-source with the participation of
more than 20 developers. The Global Trade and Analysis Project
(GTAP) has provided extensive documentation of its model and data
and allows user-modification of its standard model (Global Trade
Analysis Project, 2014), and there is a large number of users of the
model globally. The IMPACT model developed by the International
Food Policy Research Center is publicly documented and available to
other researchers (Rosegrant and IMPACT Development Team, 2012).
The TOA-MD model for technology adoption and sustainability assess-
ment of agricultural systems was developed based on experience
which showed that potential users needed a user-friendly, transparent
tool for impact assessment. The TOA-MD model is available to users
with documentation and a self-guided learning course and there is a
growing community of users (Antle et al., 2014b; Tradeoff Analysis
Project, 2015).

To achieve the goal of demand-driven model development, it will be
necessary to strengthen the linkages between the pre-competitive space
of model development and the competitive space of knowledge product
development. The current state of affairs appears to be that, on the one
hand, the modeling community is strong on analytical capability but
weak on linkage to user demand; while on the other hand, the devel-
opers of user-related farm-level products (e.g., providing data frommo-
bile devices) are weak on analytics. Thus, there appears to be the
opportunity for “gains from trade” by facilitating more interaction be-
tween the two communities. An important part of this interaction has
to be to identify the key research that could enable better service delivery
to knowledge-product users. Additionally, as emphasized in theNextGen
Use Cases, there is a public good value to enhancing a broader communi-
ty that can provide both data and analytics for public investment and
policy decision-making. These ideas are further explored in the paper
by Janssen et al. (this issue) and by Capalbo et al. (2017-in this issue).

2.3. New approaches to data acquisition, management and use

The explosion in the availability of many kinds of data and the capa-
bility tomanage and use it create new opportunities for systemsmodel-
ing at farm and regional or landscape scales. Fig. 2 presents an example
of the possible types of private and public data that could be generated
and used for both farm-level management Use Cases and for landscape-
scale investment and policy analysis Use Cases. Some of these data
would be generated and used at the farm-level, others would be gener-
ated and used for landscape-scale analysis to support investment deci-
sion-making and science-based policy-making. While farm-level
decision making and landscape-scale analysis have different purposes,
they both depend on two kinds of data: private data, including site-
and farm-specific characteristics of the land and the farm operation,
and the site- and farm-specific management decisions that are made;
and public data, i.e. weather, climate, soils, and other physical data de-
scribing a specific location, as well as prices and other publicly available
economic data.

Many farm-level data and decision tools from private and public
sources are currently in use, and are evolving rapidly (Capalbo et al.,
2017-in this issue). The left-hand side of Fig. 2 presents the generic
structure of these tools, the data they use as inputs, and the outputs
that are generated. The right hand side of Fig. 2 shows the general struc-
ture of the data and models needed to carry out landscape-scale re-
search and policy analysis. A key feature of landscape-scale models is
that they use public data for prices, weather forecast, and policy infor-
mation, private site and farm-specific input use data, and outcome-
based data that are useful for both farm-level management decisions
and landscape-scale policy decisions.

There are three broad categories of landscape-scale data: publicly
available bio-physical data, including down-scaled climate and soils
data; publicly available economic data, includingprices and policy infor-
mation; and the confidential site- and farm-specific data obtained from
producer- and industry-generated databases. Landscape management
and policy analysis models require spatially and temporally explicit
data that are statistically representative of the farms and landscapes in
a geographic region in order to provide reliable information about eco-
nomic and environmental impacts and tradeoffs. Such data are not typ-
ically available inmost parts of theworld. As a result, implementation of
these models relies on the publically available information on farm
management collected periodically through special-purpose surveys.

Currently available data are inadequate for various reasons. Many of
these data are collected with samples that are not statistically represen-
tative of relevant regions or populations for landscape-scale analysis;
manydata are not spatially or temporally explicit, are only available (re-
leased) after substantial aggregation, thus limiting their usefulness, and
are often available with long time lags betweenwhen the landmanage-
ment decisions aremade, the data are collected, andwhen they become
available for research or policy purposes. Longitudinal data that provide
observations of the same farms over time are particularly important for
policy research, but there are few such data available.

A key implication of the framework presented in Fig. 2 is the comple-
mentarity between knowledge product design, agricultural system
models, and farm-level data collection. We return to this issue in
Section 4.

2.4. A systems approach

The NextGen Use Cases show clearly the need for whole-farm sys-
tem approaches. Agricultural systems are managed ecosystems (or
agro-ecosystems) comprised of biological, physical and human compo-
nents operating at various scales (e.g., cell, organism, field, farm). Farms
are embeddedwithin larger ecological and human systems operating at
regional scales (e.g.,watershed, population), aswell as larger (continen-
tal, national, global) scales.

The need for a system-level understanding, however, should not be
construed asmeaning that there is not a need for component-level tools
as well. Indeed, particularly in the more specialized, industrial systems,
there will be a growing demand for tools to improve management of
soil fertility, pests and diseases, and other elements of on-farmmanage-
ment. Nevertheless, until these components are integrated into a wider
systems approach, it theywill not be able to achieve goals of sustainable
management. For example, nutrient and pesticide use cannot be man-
aged effectively to account for potential off-farm impacts onwater qual-
ity without a systems approach.

The systems approach has several important implications for second
generation models. Within each system level, a set of interacting sub-
systems is involved. This suggests the possibility of constructingmodels
of large, complex systems by combining models of modular sub-sys-
tems. The level atwhichmodularizationmay be possible remains an im-
portant question, and this in turn has implications for software
engineering. For example, as discussed in Jones et al. (2017-in this
issue B), many crops are now modeled individually and separate from
livestock. Systems with multiple interacting crops (e.g., through rota-
tions or inter-crops), livestock, and crop-livestock interactions, are
needed for various Use Cases, showing the need for these interacting
components to be incorporated in a modular “plug and play” system.
Also, these biophysical production system components interact with
economic-behavioral components and environmental components.
These interactions among sub-systems show the need for standard
ways to link inputs and outputs among sub-systems. As we noted
above, several more complex systems models have been developed
(Stoorvogel et al., 2004; Giller et al., 2011), but as yet eachmodeling sys-
tem uses its own approach to model linking and model components
from different developers cannot easily communicate with each other.

Another important issue raised by the systems approach is the ap-
propriate level of complexity for Use Cases, an issue discussed further
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in Section 3.8. Research in environmental modeling indicates there are
often diminishing returns to complexity. Similarly, experiencewith eco-
nomic modeling has shown the value to “minimum data” or “parsimo-
nious” approaches (Antle et al., 2014b). The need for both modularity
and parsimony also relate to the need for generic approaches, particu-
larly for complex agricultural systems models and economic models,
so that model developers can move away frommodels that are applica-
tion-specific.

Small-holder farm Use Cases illustrate the need for a systems ap-
proach at the farm level. In order to assess the well-being of the farm
family in terms of income and nutrition, all relevant economic activities
of the farm household need to be accounted for, including the income
generated by the farming activities as well as other non-agricultural ac-
tivities of the household members (e.g., off-farm work) and money
transfers. Additionally, because the farm often involves multiple pro-
duction activities, including crops and livestock, all of these activities
and their key interactions need to be represented, as illustrated by the
circular flow of nutrients from crops to livestock in the form of crops,
crop residues and household waste fed to livestock, and then back to
crops in the form of manure and composted materials.

The commercial-crop Use Cases 4 and 5 described in Antle et al. (this
issue A) also illustrate the need for a systems approach. Crop rotations
are important to the management of soil fertility and soil pests, and
thus play a key role in achieving more sustainable management of
input-intensive systems. It is also likely that to improve the sustainabil-
ity of large-scale systems, it will be necessary tomove towardsmore di-
versified systems that use crop rotations and integrate crops with
livestock. The commercial-crop Use Cases also illustrate the need for as-
sessments of landscape-scale impacts, includingwater quality (through
soil and chemical runoff and chemical leaching), biodiversity (through
impacts of fish and other wildlife), and greenhouse gas emissions (e.g.,
through soil management and fertilizer use). Similar types of assess-
ment are needed to design and evaluate systems that meet the goals
of “sustainable intensification” and “climate-smart agriculture.”

2.5. Credibility, uncertainty and model improvement

A clear message from actual and potential model users is that model
credibility is a key issue limiting the use of models for decision making.
This is an area where improved knowledge products could play an im-
portant role, by making it easier for potential users to understand the
various uses of models and model outputs if they are going to interact
directly with models and model output. Alternatively, as noted by
Antle et al. (this issue A), many end-users of model outputs have no de-
sire to interact directly with models, but rather want the information
that models can provide. For example, many potential users think of
them as predictive tools, and do not understand their use as exploratory
tools in conjunction with future scenarios. Appropriate knowledge
products can help users make appropriate interpretations and avoid
mis-using models.

Transparent documentation and communications of model perfor-
mance also has an important role to play in establishingmodel credibil-
ity, and could be facilitated by improved knowledge products linking
data and models to users as in Fig. 1. There are potentially many differ-
ent uses of models, from research to on-farmmanagement to policy de-
cision-making, and the criteria for a “useful”model differ among these.
For some scientific purposes, a high level of precision may be needed,
whereas for policy analysis, the timeliness of the information produced
may be much more important than its precision or accuracy. Thus
model evaluation calls for appropriate performance criteria, including
overall model performance in providing outputs desired by end-users,
as well as criteria for modular component improvement.

Several types of formal model evaluation techniques have been de-
veloped to assess complex systems model performance under current
as well as future conditions. Evaluation under current conditions can
be based on comparison with observed data through numerical,
graphical, and qualitative methods, whereas assessment out of sample
also involves theuse of future scenarioswhich introduces additional un-
certainties (Valdivia et al., 2015). A constructive recent example using
an agent-based model that integrates bio-physical and economic
models is provided by Troost and Berger (2014).

Another dimension of credibility is communication and interpreta-
tion of model uncertainty. Surveys of uncertainty methods are present-
ed in Bennett et al. (2013) and Wallach et al. (2015). The more
systematic use of methods such as global sensitivity and uncertainty
analysis of future projections could provide a better understanding of
the factors and underlying processes driving the numerical model out-
put variance under particular scenarios that can be compared with con-
ceptualmodels of the system (Saltelli et al., 2004). Statistical techniques
also offer the opportunity to identify surprises in the future system be-
havior, aswell as important feedbacks and non-linearities, and carry out
a number of other evaluations of model behavior, model simplification,
model inputs, and model uncertainty (Saltelli et al., 2005).

Model inter-comparison is another approach tomodel improvement
that has been utilized in a number of scientificfields, including in the cli-
mate modeling field, through the establishment of the Coupled Model
Inter-comparison Project (Taylor et al., 2012). By establishing protocols
for the use of “reference scenarios” it is possible to inter-comparemodel
results, identify important differences in model outputs, and through
this process ultimately improve themodels and their performance rela-
tive to the criteria described above. The use ofmodel “ensembles” is also
considered by some researchers as a way to characterize model uncer-
tainty, although this interpretation is controversial. Model ensembles
have been shown to perform better in some respects than individual
models, suggesting the use of ensembles as a way to improve perfor-
mance of agricultural systemsmodels (Martre et al., 2014). A limitation
of the ensemble approach is that it requires a relatively large number of
alternative, independently developed models. In many cases, for exam-
ple in economic modeling, there are not enough distinct models to
make model inter-comparison or ensemble approaches useful. Also in
economic models, different methods of quantifying model inputs and
outputs makes inter-comparison problematic (von Lampe et al.,
2014). Again, well-designed knowledge products could facilitate the
use and interpretation of model ensembles to improve the appropriate
use and credibility of agricultural systems models.

3. Potential advances in model components

The development of NextGen systems models will require numer-
ous component improvements to address important Use Cases, as de-
scribed in the companion paper by Jones et al. (2017-in this issue B).
Here we discuss related cross-cutting issues aswell as specific disciplin-
ary component improvements that will be needed by NextGen agricul-
tural systemsmodels for the various major applications such as the five
Use Cases as well as others.

3.1. Cross-cutting issues

A general cross-cutting theme addressed in Jones et al. (2017-in this
issue B) and in Janssen et al. (this issue) is data generation and access.
Lack of suitable data, or access to existing data, is a substantial impedi-
ment to model improvement and use. Here we focus on cross-cutting
themes in model development.

3.1.1. Representing and incorporating human behavior into agricultural
systems models

Agricultural systems are managed by people for people. The objec-
tives of the people using the information generated by models, and
the behavior of decision makers whose behavior is represented in
models, must influence model design. Most existingmodels have a lim-
ited capability to represent economic or other behavioral motivations of
decision makers. This is a cross-cutting theme in modeling because the



260 J.M. Antle et al. / Agricultural Systems 155 (2017) 255–268
management decisions made by farmers are related to crop and live-
stock productivity, economic costs and returns, as well as environmen-
tal and social outcomes. There are several ways that behavior needs to
be incorporated into NextGen models.

First, a better understanding of decision maker objectives is needed
if we are to develop models that provide information on credibility for
particular Use Cases, or that provide information to farm managers to
improve decision making. For example, if production risk management
is an important objective of decision makers, then they will need differ-
ent kinds of information than if production risk is not a major issue.
Note, however, that if the goal is to inform decision making, and not
to predict behavior, then the behavior of the decision makers does not
need to be modeled.

Second, for models that are designed to predict or project plausible
outcomes or impacts of decisions made by farmers, the behavior of
the decision makers must be modeled. This need adds a substantial
complexity above and beyond the capability of modeling bio-physical
production processes. Knowingwhat behavioralmodels aremost useful
for the Use Cases (e.g., profitmaximization, riskmanagement, achieving
social status, other social or environmental objectives) is a key issue that
needs to be addressed in NextGen model development.

Third, the social dimension of farmer decision making needs to be
better understood and represented in models, including how social in-
teractions and norms influence decision making. For example, technol-
ogy adoptionmay be influenced by learning through social interactions.
Modeling social interactions is an active area of economic research, but
data demands are high and as yet empirical generalizations that could
be used to structure models are not available. Other social scientists
also study social interactions, but typically use qualitative methods
that are difficult to translate into quantitative models.

3.1.2. Representing heterogeneity
A key fact that has emerged from the increasing availability of field-

and farm-level data is the high degree of biological, physical, economic
and social heterogeneity of agricultural systems, in both space and time.
The farms represented by the Use Cases demonstrate this point: among
smallholder maize-based farms in Kenya, for example, coefficients of
variation of key characteristics like farm size are on the order of 100%
or more; for commercial crop farms in the United States, they are also
large, ranging from 50 to 150%.

Heterogeneity has important implications for howwe represent ag-
ricultural systems inmodels.Manymodeling studies have utilized “rep-
resentative farms” for typologies such as small and large farms in a
geographic region (e.g., see van Wijk et al., 2014; Giller et al., 2011).
These typologies can provide adequate approximations of heterogene-
ity for somepurposes. However, accurate representation of bio-physical
processes (e.g., crop growth, chemical leaching, erosion, chemical run-
off) may require data showing the variation in site-specific conditions
across the landscape in the form of a probability distribution. As an ex-
treme example, Stoorvogel et al. (2004) showed the importance of var-
iation within fields for analysis of erosion and chemical leaching in
steeply sloped hillside agriculture. This is also true for analysis of eco-
nomic distributional issues such as changes in poverty rates that re-
quires a model capable of estimating the income distribution.

3.1.3. Representing dynamics
Agricultural systems are inherently dynamic: crop growth occurs

over time within the growing season; crop productivity may depend
on soil moisture and nutrient carryover, crop rotations and other dy-
namics of the system. Consequently, most process-based bio-physical
simulation models of agricultural systems are dynamic, with associated
needs for data both over space and time to represent both spatial het-
erogeneity and temporal properties (Jones et al., 2017-in this issue B).

However, the problemof representing human behavior in a dynamic
setting adds greatly to the complexity of systems models (Antle and
Stoorvogel, 2006). Economic behavior depends on expectations of
future outcomes, and decisions aremade sequentially, with information
being acquired as decisions are made and realizations are observed.
Some management decisions like fertilization rates are based on intra-
seasonal processes (getting the highest profit that season); other lon-
ger-term decisions span multiple growing seasons (multi-season crop
rotations; machinery investments; livestock purchases and sales, and
perennial crop planting and management decisions). Similarly, it is
challenging to represent both dynamics and heterogeneity in economic
models, andmost dynamic models are highly simplified or stylized. The
challenge is even greater when multiple dynamic model components
are linked, due to differences in spatial and temporal units and overall
model complexity.

An areawhere there is a particular need for advances in the dynamic
analysis capability is for assessment of the impacts of weather variabil-
ity and extremes on agricultural systems, and the search for more resil-
ient systems better adapted to such conditions. Current impact
assessmentmethods that use averagedweather data, or economic anal-
yses that do not incorporate dynamic effects of extreme events on a
farm household's wealth and assets such as livestock, are not able to ef-
fectively evaluate these questions.

Although it is beyond the scope of this paper to elaborate on the
challenges of modeling system dynamics, it is clear that progress in
modeling system dynamics is essential but challenging. How to achieve
this progress in a tractable and useful way should be a priority for basic
research on next generation models, but motivated by the kinds of uses
that stakeholders see for models and related knowledge products.

3.1.4. Pathway and scenario design
It is not possible to model everything that influences an agricultural

system. Consequently, models are based on a logical structure in which
some factors (“drivers” or “exogenous” variables) take on values speci-
fied by the modeler or the model user. How these drivers are set or
modified to represent the conditions under which the analysis is being
carried out is a key aspect of modeling that has been under-studied.
The issue is now receiving more attention in climate research, but
needs to receive more attention from thewider modeling development
community. In particular, if models are to be linked to end-users
through knowledge products, the user needs to understand the context
in which the analysis or “simulation experiment” is being conducted
and the types of effects that are being quantified (Antle and Stöckle
2016).

One solution to this challenge is through a participatory process of
pathway and scenario development, building on the participatory
modeling methods that have been developed, e.g., see Giller et al.
(2011). For climate impact assessment, AgMIP has been developing sys-
tematic approaches to development of “pathways” (plausible future
conditions) and “scenarios” (specific parametric representations of a
system consistentwith a pathway), using the concept of Representative
Agricultural Pathways (Valdivia et al., 2015). Stakeholders can provide
inputs into the future pathways and scenarios, and this participation
also facilitates their ability to use model outputs. An example of a
knowledge product could be “apps” that help users of climate impact as-
sessments better understand climate assessment scenarios and better
interpret model results. AgMIP is developing an “impacts explorer” as
a type of knowledge product for this purpose. New approaches are
now being explored for scenario development that exploit new data
and advanced computer science methods such as machine learning.

3.2. Crop systems

Development of next-generation crop models can be divided into
several categories: significant improvements in simulation of important
crop processes and responses to stress; extension from simplified crop
models to cropping systems models that address complexity in space,
time and the number of processes considered; and scaling up from
field-basedmodels to landscape, national, continental, and global scales.
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3.2.1. Needing improvements
Several crop processes requiremajor advances in understanding and

simulation capability in order to narrow uncertainties around how
crops will respond to changing atmospheric conditions, both changes
in mean variables and changes in extremes. Experimentalists and mod-
elers need to work together from the outset to ensure that the right re-
search questions are posed as experiments are planned, critical field
data are gathered at appropriate times, and process-based understand-
ing is captured so as to transfer new insights from the field to the crop
models directly and expeditiously.

3.2.1.1. Extreme events. Extremeweather and climate events are respon-
sible for significant economic and social costs in agricultural regions
around theworld and are expected to increase in duration and intensity
undermost climate change scenarios (IPCC, 2014). Cropmodels need to
accurately represent the relevant impacts of weather and climate ex-
tremes. This includes more precise understanding of what thresholds
qualify a weather or climate event as “extreme” for different crops in
different regions and what simulation processes need to be improved
to describe crop responses and their variability to such extreme events.
Sequential periods of yield-reducing weather conditions can be espe-
cially damaging, such as two or more consecutive dry years as often ex-
perienced in sub-Saharan Africa (e.g. Tittonell, 2014). Other extreme
events could be extended periods of record-high temperatures or
flooding during a growing season.

3.2.1.2. Genetics. Developing predictive capacity that scales from geno-
type to phenotype is challenging due to biological complexities associ-
ated with genetic controls, environmental and management effects,
and interactions among plant growth and development processes.
Crop model improvements are needed to link complex traits at gene
network, organ, andwhole plant levels (Parent and Tardieu, 2014). Phe-
notypes are linked to changes in genomic regions via associations with
model coefficients (Hammer et al., 2006). Hwang et al. (this issue) dis-
cuss how genetic information can be incorporated into next generation
crop models.

3.2.1.3. Carbon, temperature, water, and nutrients. Crops are already
experiencing higher levels of carbon dioxide (CO2) and temperature in
agricultural regions around theworld. Understanding of how accelerat-
ed rates of CO2 and temperature rise will interact to affect crop growth
and productivity is growing (Long et al., 2006), but this improved un-
derstanding needs to be incorporated into crop models (Leakey et al.,
2009). Water relations of soils and crops are also important, and opti-
mizing carbon and nutrient cycling, aswell asmultiple nutrient interac-
tions – beyond the current focus exclusively on nitrogen x water
interactions – plays a crucial role in sustainable intensification. The sim-
ulation of all of these processes and their interactions andmanagement,
especially (i) under conditions of stress and (ii) considering soil biology-
mediated processes, needs to be radically improved.

3.2.1.4. Pests, diseases, weeds, and their management. Insect pests, dis-
eases and weeds are important yield-reducing factors in terms of food
production and economic impact, but are not addressed adequately or
at all in most models. This important challenge is addressed in Section
3.5 below and in Donatelli et al. (2017-this issue).

3.2.1.5. Ozone. There is evidence indicating that ozone damage to crop
productivity is substantial, but is rarely considered in crop modeling
studies (Leisner and Ainsworth, 2012). Information about ozone im-
pacts on crop yields is available, but damage processes and functions
need to be developed. Model improvements in regard to ozone effects
on crops include inclusion of ozone response functions and comparison
of response functions with process-based approaches such as leaf con-
duction, aerodynamic boundary-layer resistance, and whole canopy
conductance parameterizations. In order to learn much more about
the different responses of different crop species and varieties, ozone
data collection should be incorporated into the AgMIP protocols for sen-
tinel site experimental design.

3.2.1.6. Nutrition. Crop modelers, breeders, physiologists, and human
health and nutrition researchers need to broaden the scope of modeling
to include nutritional quality of food as well as behavioral aspects of
food utilization so as to enable more fully developed projections of fu-
ture risk of hunger due to climate change and development pathways.
For crop modelers, this requires moving from a yield-only perspective
to one that includes processes that affect nutritional quality, such as car-
bon dioxide concentration, drought, and insect pressure (Rosenzweig
and Hillel, 2008). Simulations of non-staple crops, for many of which
crop models have not been developed, are needed to understand nutri-
tional effects (Müller et al., 2014). For example, as people move out of
hunger, one of the primary correlates of health is fruit and vegetable
consumption and better models of how these crops may be affected
by climate change and other processes will become increasingly impor-
tant. At cropping system level, there ismounting evidence on the strong
positive correlation that exists between crop diversity, nutritional func-
tional diversity and balanced diets in developing regions (e.g. Khoury et
al., 2014; Remans et al., 2011).

3.2.2. From crops to farming systems
The field of crop modeling was built on a single crop-by-crop ap-

proach. A new paradigm is now emerging that moves beyond ‘crops’
to ‘farming systems.’ These new farming system simulation tools incor-
porate the complexity that comes with many interacting biophysical
and socioeconomic components (van Wijk et al., 2009; Giller et al.,
2011). Such farm system models, however, have tended to place em-
phasis on farm-scale interactions between system components while
reducing the detail with which cropping systems are simulated, to re-
duce uncertainty and numerical dispersion, bymeans of so-called ‘sum-
mary models’ (e.g. Tittonell et al., 2010) or more parsimonious or
‘minimum-data’ approaches (Antle et al., 2014b). Such tradeoffs be-
tween model complexity and modeling capabilities can be now better
overcome through the increasing computational power and data avail-
able for NextGenmodels. From the cropmodeling perspective, progress
on the number and types of simulated crops (including vegetables and
fruits), uncertainty propagation related to model parameters and struc-
ture, ex ante testing of adaptations, and scaling are needed (Ewert et al.,
2015a).

3.2.2.1. Intercrops and complex rotations. Many models now incorporate
the ability to simulate multi-year crop rotations (e.g., Stöckle et al.,
2003; Kollas et al., 2015). Some models allow for more than one crop
in the same field. For example, Corre-Hellou et al. (2009) developed a
model for pea–barley intercroppingbased on STICS that allows an inver-
sion of dominance in height between species during the crop cycle and a
trophic link between crop growth rate and the potential for N2 fixation.
Next steps in regard to rotations and intercrops are to advance technol-
ogy so that modelers can rapidly incorporate multiple crops within
fields, and multiple crops over time as the usual practice. Then the re-
sponse of these more complex cropping systems can be tested under
different sustainable intensification management strategies utilizing
the updated simulation environments. Similarly, inversion studies can
be performed to determine optimal cropping systems andmanagement
strategies for particular desired outcomes.

3.2.2.2. Linkages to livestock production.Most smallholder farming in the
world involves integrated crop-livestock systems that cannot be repre-
sented by crop modeling alone. Thus, next-generation farming system
models include key linkages to livestock. Progress towards these link-
ages has beenmade in theNUANCES-FARMSIM (Nutrient Use in Animal
and Cropping systems: Efficiencies and Scales FARM SIMulator) that al-
locates limited resources across the farm and simulates theway organic
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matter is recycled or redistributed within the farm in both crops and
livestock (Tittonell et al., 2009); these decisions determine the long-
term production capacity of the system (van Wijk et al., 2009; Giller et
al., 2011). Valdivia et al. (2012, 2016) developed and applied a bio-
physical and econometric simulation model that includes dynamic in-
teractions between crops and livestock through nutrient cycling.

As discussed below, livestock linkages that need to be fully incorpo-
rated include growth and productivity models for perennial grasslands
and rangelands aswell as the usual annual crops used as fodder. Model-
ing of grassland and rangeland systems requires also considering the
grazing/browsing behavior of herbivores and their interaction with
grass/range species, which typically leads to spatial heterogeneity in
productivity and other ecosystem services. Information from local ex-
periments (such as collated by the Global Research Alliance - Sandor
et al., 2016) will be required to develop and test the grassland and
rangeland models in a wide range of environments. These models will
then be capable of deployment with livestock models, regional farm
data, and inputs related to management and climate. On the manage-
ment side, the effects of animal labor need to be included as well.

3.2.3. Scaling up from field to landscape
New farming system simulation tools are incorporating the com-

plexity that comeswithmany interacting biophysical and socioeconom-
ic components, especially in smallholder farming systems in developing
countries. A key issue is how to represent heterogeneity in these com-
plex systems; some modeling frameworks use “typologies” (van Wijk
et al., 2009; Giller et al., 2011), while others take a distributional,
point-based or gridded approach thatmay represent the range of condi-
tions more fully (Antle et al., 2014b), if data needed to characterize
those variations are available. The question of appropriate model detail
is clearly important (Giller et al., 2011).

For the cropping portions of the more complex farming systems
models, future research should focus on improving cropmodels for larg-
er-scale applications. To date, large-area cropmodels have not been de-
veloped to capture the relationships important at an aggregated
regional scale and long time-horizons (Ewert et al., 2015b); the AgMIP
Coordinated Global and Regional Assessment (GCRA) is undertaking
this task (Rosenzweig et al., 2016). Other areas for research aimed at
better understanding of scaling-up of cropmodels for large-area assess-
ments include: inclusion of spatial variability in soils (Laloy and
Bielders, 2009) and inmanagement, particularly for N fertilization, sow-
ing dates, and crop varieties. A particular challenge is to understand the
impact of methods to scale-up crop rotations (Teixeira et al., 2015).

Cropping systemmodels need to be able to simulate easily a diverse
set of farms rather than just one or several representative farms. There
are several approaches for scaling up, including use of gridded models
and development of simpler quasi-empirical models for landscape-
scale analysis (Lobell and Burke, 2010; Ewert et al., 2011). Large-scale
computation can allow for muchmore extensive use of griddedmodels
than in the past (Elliott et al., 2014; Jones et al., 2017-in this issue B).
Soils and climate input datasets become important as simulation goes
from field to landscape scale. There are several types of dynamic process
gridded cropmodels: those developed from the site-basedmodels such
as DSSAT and APSIM; ecosystem-based models; and dynamic land-sur-
face models. An example of a more statistical model is the agroecologi-
cal zone (AEZ) approach developed by IIASA and the FAO (Fischer et al.,
2000.

Landscape processes such as biotic interactions between pests and
their natural enemies in space and time are currently poorly captured
in cropping system models. Attempts to model landscape level popula-
tion dynamics for both pests and bio-controllers tend to simplify
cropping systems and their dynamics, and consider them as different
‘land uses’. Yet the diversity and phonological stages of crops in the
landscape, plus the management practices implemented in each field,
have an important influence on the population dynamics of crop pests
and diseases. Much progress is needed in linking these two scales in
our modeling of agricultural landscapes, aiming to contribute to their
sustainable intensification.

3.2.4. Crop model interoperability and improvement
A key question for the next generation of cropping systemmodels is

the degree of interoperability. Historically, scientists (as individuals or
groups) tended to have exposure to, and in-depth knowledge of, a sin-
gle crop model (Thorburn et al., 2015).

Crop models allow useful extrapolation and prediction for prescrip-
tive management, but most current crop models lack the ability to han-
dle spatially connected processes (i.e., water flow, weeds, and pest
dynamics) within a field or landscape. Use of the models with real-
time, remotely sensed data is not currently available to most farmers
or farm advisors (Basso et al., 2001; Janssen et al., this issue).

AgMIP aims to increase efficiency of model improvement and appli-
cation by sharing information between different models and encourag-
ing the use of multiple models in impact assessment (Rosenzweig et al.,
2013). Ideally, parameters from one crop model can be uploaded into
databases and then downloaded, reformatted for use in another
model. However, AgMIP has found that this sharing of parameter values
between models is not necessarily straightforward.

AgMIP is bringing different modeling groups together to compare
and improve their models. The aims are to develop a better understand-
ing of different cropmodels across the agricultural modeling communi-
ty; improve both individual cropmodels and the entire group of models
for a particular crop; and improve the efficiency and effectiveness of
multi-model applications in agriculture.

3.3. Livestock production

In addition to the linkages with crop models discussed above, in-
cluding the need for modularization and inter-operability, there are a
number of areas inwhich advances in livestockmodeling could improve
the information needed to support a variety of Use Cases, for both farm-
level and landscape-scale decisions. More comprehensive livestock
models are needed, covering a wide diversity of ruminant and other
species, adequately pre-parameterized for most common situations
andwith default values for users to parameterizemodels to their condi-
tions. Summary or meta-models from comprehensive, dynamic models
could be developed as on-farm decision aids. These tools could include
summary models for intake, production and greenhouse gas emissions
calculations. Someof these summarymodels could be developed asmo-
bile phone technologies.

Other improvements could include development of extensive, stan-
dardized feed libraries linked to a GEO-WIKI for improving mapping of
feeds globally. These libraries could also be used for deriving functions
of feed quality for different agroecological conditions. One way this
could be accomplishedwould be to expand existing household data col-
lection protocols to include suitable data for livestock.

As a step towards addressing heterogeneity, more detailed crop and
livestock production systems typologies would be useful. These typolo-
gies could be derived from existing farm household, agro-ecology, farm,
rangeland, population,markets and other spatial data. NextGen produc-
tion systems mapping needs to include intensification, gender dimen-
sions of family labor and control over assets and income, and
operation size indicators.

Better spatial data are needed, including spatially explicit standard-
ized feeds and productivity data. Ideally these data would be linked to
crowdsourcing and large data rescue initiatives. Improved spatially ex-
plicit farm and regional data on production costs for different livestock
technologies are also needed. This information is seldom available and
is crucial for both regional and global analyses. These data would enable
bio-spatial analysis of livestock yield gaps to guide investments and to
identify opportunities to use livestock as a vehicle for agricultural devel-
opment, poverty reduction, and environmental protection.
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Livestock components of future scenarios are needed for climate im-
pact assessment and other forward-looking analysis. Improved and con-
sistent story-lines are required for the livestock sector in all scenarios.
These story-lines can be produced as part of global and regional “repre-
sentative agricultural pathways” being developed by AgMIP and other
research teams. Currently, such story-lines exist only for the global
“shared socio-economic pathways”used in climate impact assessments;
see Havlik et al. (2014); Herrero et al. (2014).

3.4. Pastures and rangelands

Pastures and rangelands are integral to all livestock production sys-
tems and are often closely integrated with crop production systems
(e.g., pasture in rotation). The biophysical components of these systems
and driving data required to model them are largely similar to those of
crop production systems, but several features of these components of
agricultural systems need to be addressed in next generation models.

Management data tend to be sparsely available and representing
continuity of plant populations is challenging. Advancing our ability to
understand how grasslands are managed – to understand, for example,
what species are planted, what inputs (irrigation, fertilization, etc.) are
provided, what grazing management (timing, intensity) is applied – is
centrally important for improving our ability to model pasture and
rangeland systems. Planted pastures and native grazing lands both con-
tain a variety of species, some of which are more palatable, nutritious,
grazing-resistant, or fire-resilient than others.

A more open, data-rich environment could facilitate evaluation of a
variety of approaches for representing long-term dynamics, which
could address several important grassland management and assess-
ment issues. Managing grass swards (and desirable forb and species)
tomaintain desirable plants is a primary goal of grasslandmanagement,
but one for which modeling tools have offered limited assistance.
Models that represent vegetation dynamics are also desirable for under-
standing longer-term changes in species that can impact productive ca-
pacity, sensitivity to degradation, and carbon dynamics (particularly
woody encroachment). Year-to-year variability is a key component for
understanding potential utility and risk of relying on grassland forage
resources. Next generation models that enhance our ability to forecast
this risk would mark a substantial and meaningful advance. There is a
need for better links between the agricultural modeling communities
and ecological researchers studying long-term vegetation dynamics.

The primary use of forage resources is for grazing animals, yet most
grassland models are only loosely coupled with grazers (livestock or
wildlife). Better integration through grazing effects on grasslands, graz-
er distributions across landscapes, forage demand/consumption, live-
stock/wildlife movement, etc., would enhance the ability of models to
contribute to important emerging issues. For example, holistic grazing
management, in which several aspects of management vary in response
to a variety of different cues from the land and expectations about future
conditions, can be impossible to evaluate with current modeling frame-
works. A system that integrated user demand into the model develop-
ment process could lead to implementation of new data-management
feedback loops within models. Such interactions between users and
producers of information could direct data collection (e.g., by drone or
remote sensing) to facilitate model use. Models that better represent
grazer-grassland interaction are also crucial for understanding how effi-
ciently livestock use forage resources, what is necessary to sustainwild-
life populations, and howmuch grassland output might be available for
other uses (e.g., biofuels).

3.5. Pests and diseases for crops and livestock

As noted above, a major limitation of existing models is how they
represent pests and diseases. A number of limitations and needs for
pest and disease models and their use in crop and economic models
were presented in a recent review by van Bruggen et al. (2015) and
are elaborated in Donatelli et al. (2017-this issue). Here, we note some
of the important areas that must be improved in NextGen models.
3.5.1. Improved statistical modeling of within-season pest and disease
threats using automated data collection and cloud computing

It is now possible to collect weather data continuously from ground-
based sensors and to merge these data with medium-term weather
forecasts and remote sensing data on crop growth and pest and disease
damage. (Both growth and damage can be detected by satellite or drone
by monitoring the crop's spectral properties.) Then, using sophisticated
statistical modeling done centrally, real-time advice can be distributed
to farmers through the web or through mobile phones enabling them
to take precautionary actions.
3.5.2. Understanding the consequences of climate change forweed, pest and
disease threats

The Intergovernmental Panel on Climate Change has reviewed the
existing evidence for how climate change may affect weeds, pests, and
diseases (Porter et al., 2014). One issue with this evidence base is that
there is a clear publication bias towards reports of increased threats –
people often do not bother to write up no-effect results. There is a gen-
eral recognition thatwe need goodmodels to help tease out different ef-
fects that changingweather will have simultaneously on both crops and
the organisms that compete with or attack them. There has already
been some work applying crop physiology-type models to weeds, and
developingmoremechanisticmodels of the effect of temperature on in-
sect pests. There is an opportunity and need formore integratedmodels
that include interactions between organisms, for example between
weeds and crops, and between pests and the predators and parasites
that attack them. A variety of different approaches are possible, and
there is a need for an AGMIP-type approach to help the community de-
cide how best to move forward.
3.5.3. Livestock disease
Highly contagious diseases of livestock present a major threat to ag-

riculture, both in the developed and developing worlds. Diseases may
be chronic in livestock populations, emerge from wildlife reservoirs, or
possibly be introduced deliberately by man as an act of bioterrorism.
Models are required to help understand how a disease will spread,
and to help policymakers design optimal interventions. These models
must encompass not only the epidemiology of the disease but also
how it is affected by agricultural practices and in particular the move-
ment of livestock by farmers. There have been significant recent ad-
vances in this area, often building on work on human diseases. For
example, it is now possible to take livestock movement data and use it
to parameterize an epidemiological model (Kobayashi et al., 2007;
Brooks-Pollock et al., 2014). There are the beginnings of a model com-
parison movement in human epidemiology; livestock disease epidemi-
ology would also benefit from this approach.
3.5.4. Novel genetic control methods
There is intense current research activity into novel geneticmethods

of insect control. Most of this work is currently directed at the insect
vectors of human diseases such as malaria, though the same methodol-
ogy can be applied to insect pests of crops and of course the vectors of
livestock diseases. The greatest advantage of these approaches is that
they involve self-sustaining interventions that spread naturally through
a pest population, although because they are nearly all classified as ge-
neticallymodified, the regulatory issues surrounding them are complex.
Cutting-edge modeling work in this field involves joint population and
genetic dynamic models, many of which are explicitly spatial. This
topic is likely to be one of the most important and exciting areas of
modeling as applied to agriculture over the next few decades.
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3.6. Precision management, data and information technology

Integrated agricultural technologies, defined as the integration of
improved genetics, agronomic input, information technology, sensors,
and intelligent machinery, will play a pivotal role in agriculture in the
years to come. These innovations will be driven by economic forces,
by the need to produce more food with limited land and water for the
increasing population, and at the same time by the push to save re-
sources to reduce the environmental impact associated with food pro-
duction. While these changes are occurring now in the commercial-
scale industrialized agricultures of the world, many of these technolo-
gies have the capability to be adapted to conditions in other parts of
the world. The cell phone now allows farmers in rural areas almost ev-
erywhere in the world to have low-cost information about prices, for
example. Similarly, it is likely that unmanned aerial vehicles will rapidly
be adapted to conditions around the world and used to carry out activ-
ities such as monitoring crop growth and pest occurrence, and improve
management decisions. In large-scale, capital-intensive agricultural sys-
tems, these technologies are rapidly leading to the automation of many
production activities, particularly machinery operation and decisions
about input application rates.

The automation of agriculture began in themid-nineties, resulting in
large amounts of data available to farmers and agribusiness companies.
Farmmachinery are now often equipped with high precision global po-
sitioning system controllers, which allow all activity on the farm to be
recorded, geo-referenced, and stored on remote computers: “in the
cloud.” All modern tractors collect data on a continuous basis and are
equipped with wireless connectivity for data transmission. Harvesters
record the yield at a particular location, planters can vary the plant spac-
ing or type of seed by location, and sprayers can adjust quantity and
type of fertilizer, fungicide or pesticide by location; all to a granularity
of just a few square meters. Yield monitoring can now be linked to un-
manned aerial vehicle (UAV) imagery to produce a prescriptionmap for
the farmer to implement. These private data could also provide tremen-
dous benefit to the researcher community, should access be increased.

Producers in some regions of the world now have historical crop
yield data for their fields at very high resolution. Combined with ad-
vanced satellite-based imagery, high-resolution spectral and thermal
data obtained from UAVs, and weather forecasts, growers have most
of the critical inputs required to convert this “big data” into an action-
able management plan with equipment that can vary fertilizer and
other inputs spatially within a field. Despite these rapid advances in
the sophistication and automation of farm equipment, a vital piece of
the equation is still lacking: the analysis of the vast amount of newly
available data in order to provide the farmer with a map of what action
to take where and when. Most variable rate application is currently
managed by farmers, using rule-of-thumb and empirical approaches,
and not by using a systems approach that accounts for the interaction
of soil, crop, management, and weather. Thus much of the power of au-
tomation remains unexploited.

In order to realize the full potential of more sophisticated equip-
ment, new modeling systems for precision agriculture are needed.
These systems could be based on comprehensive predictive crop yield
models that combine publicly available data, such as soil type, weather,
and prices, alongwith location-specific data from farmers' yieldmaps of
their fields, to provide a prescriptive cropmanagement plan at high spa-
tial resolution, as in Fig. 2. This type of system could deliver automated
crop simulations, crop management strategy recommendations, pro-
cess-based variable rate prescriptions, risk assessments, continual in-
season simulations, integration of in-season crop scouting UAVs flight
information, pest management prescriptions and accurate harvest rec-
ommendations via simple-to-use apps, websites, or smart phones.

In addition to the farm-to-landscape scale analysis represented in
Fig. 2, there will be a growing demand for agricultural systems models
to simulate and integrate the different components of the agricultural
value chain, to meet both policy requirements and corporate
sustainability goals (Fig. 3). Genetics, agronomic management (produc-
tion input), weather, soil, information technology and machinery will
need to be linked in a system approach to address these informational
needs. This is a new frontier for agricultural system modeling that
would extend to the broader food system and raise additional data
and analytical challenges.
3.7. Economic and social dimensions

We have noted earlier that the economic-behavioral aspect of agri-
cultural systems and their management is an area needing more atten-
tion, as suggested by a number of Use Cases at the farm and regional or
landscape scales.
3.7.1. Farm-level decision support
As illustrated in Fig. 2 and discussed in the previous section, various

management and production data are becoming available through mo-
bile technologies (e.g., tracking soil conditions, seeding and fertilizer ap-
plication rates, pesticide applications, crop growth, yield). An example
of this analytical capability is the AgBizLogic™ software developed by
several university extension programs,which allowsmanagers to calcu-
late short-term profitability and rates of return on long-term invest-
ments (Capalbo et al., 2017-in this issue). Similar proprietary software
tools are being developed and used. These analytical tools could be
linked with modules that track or predict environmental outcomes
such as soil erosion and net greenhouse gas emissions (e.g., AgBalance
by BASF). Low-bandwidth versions of these tools need to be developed
for use in areas where mobile phone technology is a limiting factor. An-
alytical tools need to be adapted to fit small-holder systems as indicated
by the NextGen Use Cases.

The flood of data on physical land-use, water availability and use,
and yields coming from mobile devices and remote sensing systems
suggest that both the biophysical and behavioral aspects of farm pro-
duction at specific locations can be estimated by sequential learning
processes. The use of advances in computational methods such as ma-
chine learning and remote sensing data is illustrated by analysis of the
impact of the 2009 and 2014 droughts on California agriculture, which
demonstrated the advantages of better data (Howitt et al., 2014).
3.7.2. Model improvements for regional investment and policy analysis
To facilitate the use of models for various locations and systems, and

to link to crop and livestock system simulation models, economic
models need to be incorporated into modules with standardized inputs
and outputs. Various types of economicmodels are available in the liter-
ature, including farm-level optimization models, regional positive qua-
dratic programming models, econometric land-use models, and
regional impact assessment models (van Wijk et al., 2014). User needs
should dictate which types of models should be used depending on in-
formational needs.

Methods and protocols are required to link regional economic
models (price-taking land use and impact assessment models) with
market equilibriummodels (e.g., regional partial or general equilibrium
models). Some progress has been made on this front (Valdivia et al.,
2012; Van Ruijven et al., 2015) but much more development is needed
to address various aggregation and dis-aggregation issues (Antle et al.,
2014b).

Generalization of behavioral assumptions and investigation of their
effects on investment and policy analysis is also needed.Most economic
models make simple profit maximization assumptions. There is a rich
literature on risk modeling which could be incorporated. Recent ad-
vances in the expectations formation literature and the behavioral eco-
nomics literature could be investigated for use in agricultural systems
models.



Fig. 3. Components of the agricultural sector value chain.
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3.7.3. Social dimensions
As noted in Section 2, a demand-driven approach is needed that be-

gins with user-identified outcomes and indicators. Various outcomes
are of interest in the context of sustainability, and users often are seek-
ing to understand tradeoffs and synergies among economic, environ-
mental and social dimensions. Here we identify some key outcomes
that need to be incorporated into modeling approaches to address var-
ious Use Cases.
3.7.3.1. Income distribution and poverty. Most economic models provide
an estimate of some components of farm household income, but a com-
plete characterization of income sources is needed to evaluate income
distribution and poverty in farm household populations. Population-
level outcomes are needed, not only means or averages, as noted in
the discussion of heterogeneity in Section 3.1.2.
3.7.3.2. Food and nutritional security. Existingmodels represent food pro-
duction, but no existing model characterizes all factors that affect food
security (availability, access, stability, utilization) at the household or
regional levels. A major limitation is data on food consumption at the
household and personal levels over time. New methods of collecting
these data using mobile devices are being developed. Additionally, it is
necessary to express these data in other nutrient currencies beyond ki-
localories, in order to explore nutritional diversity issues, as well as sus-
tainable diets (Müller et al., 2014).
3.7.3.3. Health. Earlier work on health impacts of pesticide use on farm
workers and other occupational risks could be used to construct health
impact modules (Antle and Pingali, 1994). As elsewhere, big data (e.g.,
in this case, data from medical records or insurance claims) can be
used to improve understanding of impacts (Rzhetsky et al., 2014). Spe-
cialized health outcomes models can be linked to landscape-scale and
global-scale models (Springman et al., 2016).
3.7.3.4. Age, Gender and Health Status. Research on various aspects of
gender impacts and outcomes has advanced, primarily in terms of rele-
vant measures. With better data, analysis of gender impacts associated
with new technologies could be incorporated into existing farm house-
hold models and impact assessment models. A similar situation exists
for analysis of impacts by age and health status.
3.7.3.5. Vulnerability and equity. The application of different farm im-
provement methods has explicit winners but also unintended ‘casual-
ties’ and perverse incentives. From a development standpoint, it is
essential to understand these dynamics to ensure that appropriate pol-
icies are developed to maintain equal opportunities for all sectors of so-
ciety. For example, in many cases, rich farmers are the ones who adopt
technologies early. This factor could potentially disrupt power relation-
ships inmarkets, thus affecting poorer farmers. In this case it is essential
to design alternative options and safety nets for poorer farmers to pre-
vent widening the gap andmaking themmore vulnerable. Newmodels
should improve our understanding of these processes, aswemove from
single farm models to multi-farm and regional models. Methods utiliz-
ing population-based data are providing improved capability to repre-
sent distributional impacts and vulnerability (Antle et al., 2014b; Antle
et al., 2015).

3.8. Environment and system complexity

Current agricultural system models typically operate at the point/
field scales (Fig. 4a) with an emphasis on vertical fluxes of energy,
water, C, N and nutrients between the atmosphere, plant and soil root
zone continuum. A holistic upscaling from the point source to the land-
scape scale (Fig. 4b) requires incorporation of several interacting, com-
plex components, adding substantial complexity above and beyond the
agricultural system itself. Thus, a major consideration in environmental
modeling is how to best capture essential interactions while maintain-
ingmodels that are feasible to implement with available data and com-
putational resources.

Fig. 4 illustrates the various components linking point to landscape
scales. A first element for the linkage from point to landscape is estima-
tion of surface and subsurface fluxes and ecological transitions along the
lateral scale. Coupling with landscape microclimate models provides
the vertical inputs used by the agricultural systems models, as well as
gradients (precipitation, temperature, wind, vapor pressure deficit)
along the landscape. Coupling with hydrological models provides
water flow paths like surface runoff, vertical and lateral groundwater
flow, and interactions between vadose and groundwater zones and
with adjacent surface water bodies (channels, rivers, lakes and coastal
waters). Water quality models provides sediment and solute transport
along the landscape controlled by water flows (Fig. 4b), and other ef-
fects like wind erosion. Integration and upscaling of landscapes into
the watershed scale (Fig. 4c) requires 3-dimensional coupling of the
surface and subsurface water, energy and mass transfers. At this scale,



Fig. 4. Lateral connections across scales and environmental components.
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the groundwater aquifer system typically transcends the boundaries of
thewatershed and necessitates analysis at the regional scale to evaluate
not only the impacts of the cropping and animal production systems on
water quantity and quality, but also feedbacks from the hydrological
system in the agricultural system (shallow water table effects, drought
or low water availability for irrigation). Further, mesoscale rainfall and
evapotranspiration distribution models control the local surface and
subsurface flow intensities, pollution and abatement. At this scale,
human effects through land-use changes as well as ecological (vegeta-
tion, wildlife) dynamics and transitions on natural or protected lands
(riparian zones, conservation areas, water resource management infra-
structure etc.) are also an important and critical component to evaluate
the overall sustainability of the agricultural system.

Current crop modeling upscaling approaches based on land use
maps can be considered an efficientfirst-order approximation of the en-
vironmental linkages. For example, in the USA the US Geological Survey
(USGS) hierarchical system of Hydrologic Units Codes (HUC) (Seaber et
al., 1987) is commonly used as the reference spatial mapping system to
link spatially-explicit hydrological and crop yield simulations.
Srinivasan et al. (2010) applied the Soil and Water Assessment Tool
(SWAT) model (Arnold et al., 1998) to 8-digit subbasin HUCs (each
with average surface area of ~1813 km2) in the Upper Mississippi
River Basin and compared yields of themain crops (corn and soybeans)
with observed county-level USDA National Agricultural Statistical Sur-
vey (NASS, www.nass.usda.gov/Data_and_Statistics/Quick_Stats/
index.asp) data obtained for 1991–2001. SWAT uses spatially distribut-
ed watershed inputs to simulate hydrology, sediment and contaminant
transport and cycling (pesticides, bacteria, and nutrients) in soils and
streams, and crop/vegetative uptake, growth and yields. Because
many counties in the NASS database havemissing data it was necessary
to aggregate the crop yield data and simulation results to 4-digit subre-
gion HUCs (each with average surface area of ~43,511 km2). In general
SWAT predicted crop yields satisfactorily over the long-term average
formost 4-digit HUC (yield error less than 15%), although errors greater
than 20% were found for 14% of the HUCs studied. Further information
on crop management (e.g., fertilizer, tillage, and harvest) may improve
SWAT's perform conclude that these errors stem likely from those
predicting AET and soil moisture storage at these large aggregated
scale, and “one could extend the validity and confidence in the model
prediction of AET and soil moisture using a well-compared model on
crop yield” (Srinivasan et al., 2010). Thus, next generation models
should consider the lateral connections through the landscape and re-
gional scales to evaluate the sustainability of the integrated system, in-
cluding effects on water and soil resources quality and quantity and
ecological value.

Although model complexity has increased in recent years and is a
natural outcome of the proposed next generation integrated modeling,
there has been littlework to rigorously characterize the threshold of rel-
evance in integrated and complex models. Formally assessing the rele-
vance of the model in the face of increasing complexity would be
valuable because there is growing unease among developers and users
of complex models about the cumulative effects of various sources of
uncertainty on model outputs (McDonald and Harbaugh, 1983;
Manson, 2007; Cressie et al., 2009; Morris, 1991). New approaches
have been proposed recently to evaluate the uncertainty-complexity-
relevance modeling trilemma (Muller et al., 2011), or to identify
which parts of a model are redundant in particular simulations (Crout
et al., 2009). Innovative approaches to simplify model outcomes to
make them relevant in decision-making will be central to the next gen-
eration modeling efforts. New methods for evaluating uncertainty also
can be used to devise model simplification strategies. For example, the
identification of processes that do not influence particular scenarios,
and the use ofmetamodels, could allow simplificationwithout affecting
results (Ratto et al., 2007; Villa-Vialaneix et al., 2011; Ruane et al., 2014).
4. Conclusions

We envision newmodels and knowledge products that could accel-
erate the innovation process that is needed to achieve the goal of
achieving sustainable local, regional and global food security. Building
on the analysis of a set of Use Cases and interactions with stakeholders,
we propose a user-driven approach to agricultural systemmodel devel-
opment that would link a collaborative “pre-competitive space” for
model development and improvement to a “competitive space” for
knowledge product development. In addition, we identify desirable

http://www.nass.usda.gov
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features for models, and describe some of the potential advances that
we envisage for model components and their integration.

The concluding article for this Special Issue explores an implementa-
tion strategy that could link a pre-competitive space formodel develop-
ment to a competitive space for knowledge product development
(Antle et al., this issue B). This strategy involves critical advances in
data, and model developments at multiple scales. A key element is en-
gagement of stakeholders through research relevant to major Use
Cases, including small-scale systems that dominate developing country
agriculture, industrialized agricultural systems, and analysis for major
policy challenges such as climate change mitigation and adaptation.
Specific model improvements, such as those discussed in this paper,
would be based on further testing and evaluation of existing models,
the development and testing of modular model components and inte-
gration, and linkages of model integration platforms to new data man-
agement and visualization tools.
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