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Vision Based Following of Structures using an UAV

Sivakumar Rathinam*, ZuWhan Kim and Raja Sengupta
Center for Collaborative Control of Unmanned Aerial Vehicles†, University of California, Berkeley.

Abstract— Inspecting and monitoring oil-gas pipelines, roads,
bridges, canals are very important in ensuring the reliability
and life expectancy of these civil systems. An autonomous
Unmanned Aerial Vehicle (UAV) can decrease the operational
costs, expedite the monitoring process and be used in situations
where a manned inspection is not possible. This paper addresses
the problem of monitoring these systems using an autonomous
UAV based on visual feedback. A single structure detection
algorithm that can identify and localize various structures
including highways, roads, and canals is presented in the paper.
A fast learning algorithm that requires minimal supervision is
applied to obtain detection parameters. The real time detection
algorithm runs at 5 Hz or more with the onboard video collected
by the UAV. Both hard ware in the loop and flight results of
the vision based control algorithm are presented in this paper.
An UAV equipped with a camera onboard was able to track a
700 meter canal based on vision several times with a average
cross track error of around 10 meters.

I. INTRODUCTION

This paper describes a control and image processing
system to enable an Unmanned Aerial Vehicle (UAV) to
track structures like oil-gas pipelines, roads, bridges, canals
etc. In particular the system has been tested with a road
and an aqueduct. We are motivated by the vast infrastructure
inspection industry using helicopter pilots. Infrastructures
such as oil pipelines, or roads, are imaged by helicopter
pilots to monitor their performance, detect faults, etc. UAV’s
could be a cheap way of executing these inspection functions,
potentially revolutionizing the economics of this industry.
Subsection I-A develops this point in some depth in the
context of freeway and pipeline inspection. Our ultimate goal
is to equip UAV’s with the autonomy to track a specified
structure and deliver images of the entire structure having
the required quality.

This paper describes an important component of such au-
tonomy. A UAV carrying out inspection activities should be
able to localize itself relative to the structure it is inspecting
and control itself to stay on top of the structure. For example,
when flying over the California aqueduct, we are able to
keep the UAV at an altitude of 100 meters and within 10
meters of the centerline of the canal. If the UAV stays on
top of the structure with this kind of precision, it should
be possible to control the imaging or inspecting sensor to
produce images with the desired coverage and precision. We
are currently working on the UAV control system for the
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Fig. 1. Example image frames from traffic monitoring video clips. Video
courtesy of MLB Company’s Bat UAV; http://www.spyplanes.com.

inspecting sensor that will deliver images good enough for
the detection of structural damage, leaks, etc.

The structure tracking control system in this paper is based
on machine vision. We use vision because cameras are cheap,
light, and consume little power. All of these are factors when
using UAV’s. We explore vision based control rather than
GPS waypoint control, because the machine vision gives us
the tracking error directly relative to the structure rather than
via a coordinate system fixed to the earth. This will make the
system robust to GPS inaccuracies. In the long run, a better
tracking system may be obtained by fusing both vision and
GPS.

We use GPS to guide the UAV to the vicinity of the
structure and line it up. We then learn the structure from a
sample image the UAV obtains. Once features of the structure
are learnt from this sample image, the system is designed
to keep recognizing the structure in subsequent images and
track it. The following are the main contributions of this
work:

1) A single algorithm can identify and localize various
structures including highways, roads, and canals. A fast
learning algorithm that requires minimal supervision is
applied to obtain detection parameters. This algorithm
has been tested with the onboard video collected by the
UAV flying over highways1 and canals2. The algorithm
runs at 5 Hz or more.

2) An UAV equipped with a camera onboard was able to
track a 700 meter canal based on vision several times
with a average cross track error of around 10 meters.

A. Motivation

• Traffic Surveillance: Unmanned Aerial Vehicles
equipped with cameras are seen as potential low cost

1Highway video courtesy of MLB Company’s Bat video. Can be viewed
at www.spyplanes.com

2video obtained by flying a UAV over a canal at Crows landing Naval
Auxiliary Landing Field, Patterson, CA



Fig. 2. Possible target applications: a) surveillance (Hanshin Expressway,
Japan), and b) oil pipeline inspection (Alaska oil pipeline).

platforms that can be used for traffic surveillance (figure
1). The transportation departments in states such as
Ohio [1], Florida [2] and Georgia [3] have already
initiated research in this area. The information that
would be useful to collect in this application are lane
changes of the vehicles, average inter-vehicle distances,
heavy vehicle counts, accidents, vehicle trajectories and
type of vehicles. Even though loop detectors can be
used, they provide only local information and cannot
provide details like lane changes of vehicles. On the
other hand, a UAV equipped with a camera can provide
a global view of freeways with the relevant information
thus enhancing the real time monitoring aspect. Also,
the UAVs have an advantage over manned vehicles
as they can fly at lower heights and can be used in
conditions when weather conditions are not suitable
for flying with pilots [1]. Collecting useful information
with UAVs in this application has two problems to it:
The first problem is to keep the camera in view of the
road and the second is to process the image to collect
relevant data. This paper attempts to address the first
problem where the vehicle is trying to track the road
in the presence of Global Positioning system (GPS)
inaccuracies. Compensating for GPS inaccuracies would
be useful in applications where the roads have been
shifted from their original position as shown in figure
2. Figure 2 shows the effect of an earthquake (1995)
on the Hanshin Expressway in Japan. The road has
been completely displaced by several meters. It might be
difficult to obtain instant feedback of the road conditions
after such disasters. Also, the difficulty of relying on
GPS and Geographic Information System (GIS) is that
the GIS information should be retrieved beforehand and
the UAVs path should be roughly pre-planned. The GIS
information should be available and current, which may
not always be the case. In addition, in certain cases, such
as in a combat situations, GPS may not be available
also.

• Oil Pipeline Inspection: The Trans-Atlantic pipeline
system (figure 2) transports oil from the north slope
of Alaska to Valdez-the most northern most ice free
port in Alaska. The pipeline system [4] is 800 miles
long and supplies approximately 17 percent of the crude

oil produced in the United States. Majority of this
pipeline system lies within a 7.00 Richter zone with
the zone near the Valdez port (maximum earthquake
prone zone) at 8.5 Richter magnitude [5] [6]. Based on
the crude oil price estimates in 2002, the shutdown of
this pipeline system represents an economic impact of
1 million dollars per hour [5]. Monitoring and mainte-
nance of both pre and post earthquake conditions plays
a important role in protecting the structural integrity
and functional reliability of this system. This was best
illustrated by the satisfactory performance of the system
during the Denali fault earthquake (7.9 Richter scale) in
2002 due to a comprehensive and focused inspection
effort by Alyeska [4]. There was no oil spilled and
the entire pipeline operation was resumed after 66
hours [5]. This system which is on this massive scale
requires sustained monitoring efforts to increase its life
expectancy. Currently, Alyeska conducts routine aerial
surveillance at least twice per month. In addition to
the current efforts, it would be of immense value if
the same monitoring operations could be automated by
an autonomous unmanned aerial vehicle. The pipeline
system is designed to be zigzag to allow for sideways
movements that are a result of temperature changes.
Even though the exact GPS location of this zigzag
pattern might be known before an occurrence of a
earthquake, exact location of these pipelines may not
known after its occurrence. For example, the pipeline
systems around the Denali fault are designed so that
they can move 20 feet horizontally and 5 feet vertically.
Hence, an autonomous unmanned aerial vehicle that
navigates based both on visual information would be
very useful for this application also.

The underlying problem in these applications is that of
requiring an unmanned aerial vehicle to follow structures3

based on visual feedback. This is the problem that is ad-
dressed in the paper. Structures could be pipelines, roads,
canals, power grids etc.

II. RELATED LITERATURE

Vision based following has engaged researchers for nearly
two decades. Almost all the work done in this area relevant
to this work is on ground vehicles following roads or lanes.
This section is organized as follows: First, most of the
techniques that are used for road detection using ground
vehicles is discussed; then the road following strategies that
have worked well in speeds closer to that of an UAV is
presented next; and finally the previous work related to UAVs
and the current approach is discussed.

The road detections algorithms that exist in the literature
can be categorized based on the kind of the roads they can
handle. The roads can be mainly divided as follows:

• Roads with explicit lane marks or boundaries

3Structure is a entity made up of a number of parts that are held or put
together in a particular way. Depending on the application, these parts could
be pipelines, road segments, power grids etc.



• Roads with differences in color or texture compared to
the non-road sections

Algorithms in the literature dealing with roads having
explicit lane marks or boundaries generally use vanishing
points to help detect lane boundaries. The idea is that if the
boundaries of the road are assumed to be parallel and lie on
the ground plane, they meet in the image at a pixel location
called the vanishing point. Vanishing points can be found by
first finding all the lines in the image and then using a Hough
transform. The lines in the image can themselves be found
again using a Hough transform. Apart from accounting for
the perspective effect of the cameras, the vanishing points
help identify roads even when parts of the road are covered
by shadows. For example, even if there are shadows covering
portions of road, as long as there are line segments (road
boundaries) that have a dominant orientation towards the
vanishing point, the information in a vanishing point can used
to cover the shadow regions. This idea can also be extended
to curved roads as given in [7]. In [7], the roads are split
into horizontal strips and vanishing points are found for each
strip. If all the road boundaries in the different sections are
assumed to be in the ground plane, then the vanishing points
from all the sections lie on a line (called the vanishing line).
Again this vanishing line acts as a global constraint when
finding curved roads.

In [8],[9] & [10] the image is first rectified using the
position of the camera and the internal camera parameters.
The pixels that have relative superiority (in brightness) over
neighboring pixels are identified. Then the best concatenation
of pixels that have road markings are identified. These
algorithms do not assume any road model and found the
road just by collecting low level features. There are also
algorithms that use a specific model like lines, parabolas or
splines to describe a road. Essentially, the problem is then to
identify the set of parameters that describe the different road
models. In [11], the road are modeled as lines. The algorithm
in [11] uses the fact that each image should have a maximum
number of line segments along a common orientation, the
line segments are clustered based on the orientation of the
segments and total length of the segments. Finally road
boundaries are picked from the remaining set. In [12], the
road is represented by a set of piecewise line segments
called line-snakes. The lines are picked initially by dynamic
programming and then a energy function is minimized to
perturb the lines to fit the road edges in the successive frames.
In [13] & [14] roads are modeled as a parabola. A cubic
B-spline is used to represent the road in [7]. This way of
representing the curve uses fewer parameters (control points)
but the curve can take arbitrary shapes. Vanishing points
act as global constraints to initialize this B-spline. Then an
iterative algorithm is used to update the control points of the
curve for successive frames.

There are also region based methods that primarily use
color or texture as the main source of difference between the
road and the non-road sections. These methods use the three
color components to differentiate between road and non-road.
In [15], clusters of pixels with approximately similar RGB

values are identified. Then using the mean RGB value of
each cluster, neural networks is used to classify them as
road or non-road. Then, using the road segments, the center
line of the road is found. In [16],[17] bayesian methods are
used to mainly identify the road and non-road sections. The
algorithm given in [17] is a bit more general in the sense
that they can detect road intersections. Also [18] presents
a road detection system primarily based on color. In both
[17] and [18], motion cues are used across frames to help
classification. In [18], only two road classes (sunny and
shaded) are used where as [17] accommodates more road
appearances. But the road following system was fast enough
to follow roads at 20 km/h. All the algorithms using neural
nets and bayesian classifiers need to be trained using a
sample image in the beginning.

The aerial image analysis literature also has road detection
algorithms [19]. However, aerial image analysis applications
do not usually require realtime computation. Most of the
proposed algorithms are non-realtime, and focused on rural
roads with low-resolution.

Ozugner [20] provides a control strategy based on simple
proportional control and showed that the closed loop stability
can be always be guaranteed by choosing an appropriate
look ahead distance. Dickmans et. al [21] provide a road
detection algorithm based on extended kalman filter and
employed a control strategy based on full state feedback.
The vehicle was tested at speeds up to 100 m/s in the
race track(Autobahn). [22] provide a simple edge detection
algorithm and compare different control strategies (lead-lag
control, full state feedback and input-output linearization) for
the road following problem. The vehicle moved at a speed
of around 70 km/hr.

There have been many approaches to vision based landing
[23] [24] and navigation [25] [26] for UAVs. Structure fol-
lowing by small autonomous vehicles is a relatively new area.
All the known previous work uses artificial markings such
as special landing patterns to enable UAV localization. Our
previous vision based road following work on a short runway
(refer [27]) was the first contribution in this area without the
use of any artificial markings. In [27], Bayesian RGB pixel
classifiers were applied to detect the lane markings in the
middle of the road (figure 3). Then the road was localized
by fitting a line to the detected lane markings. Although
the same approach may be applied to some other types of
roads by re-learning the road and/or lane colors, it is still
not adequate to apply such algorithms to highways or other
local streets unless the UAV flies at a low altitude so that
the lane markings are visible.

A. Our Approach
Our road detection approach is clearly distinguishable

from the previous work available in the literature. While most
of the previous work use model-based detection algorithms,
we introduce a semi-supervised learning algorithm (which
can also be done on-line with simple manual verification) to
detect many kinds of structure including highways, roads and
canals. No lane markings are required, but the assumption is



Fig. 3. Our previous experiment [27]. First vision-based UAV navigation
on outdoor environment without artificial markings. The experiment was
done on a short runway. The road detection was based on off-line learning
(supervised) of lane marking and road pixel colors.

that the target structure is locally linear (consists of lines and
curves) and has distinguishable boundary to the background.
In addition, the user intervention in the learning is minimal.
All we need is to pick an sample image for learning and
verify the result.

The algorithm proposed in this work has two main com-
ponents: 1) learning the target structure from a single sample
image and 2) realtime detection of the structure. The learning
algorithm automatically generates a cross-section profile of
the target structure with the boundaries marked in it. The
detection algorithm uses this cross-section profile to fit a
cubic-spline curve to the target structure.

Once the equation of the curve to be followed is obtained,
following it by a non holonomic vehicle has been addressed
in the literature [28] [29]. In [28], the problem of following
a curve is formulated for a unicycle kinematic model in
the moving frame. They primarily present local stability and
simulation results of the control law. This control law was
primarily used for the vision based control experiments in
this work. This will be discussed in more details in the later
sections.

III. PROBLEM SETUP

In this paper, the fixed wing airplane is modeled as a
unicycle model traveling at a linear speed v with a bounded
angular rate ω. A point (x, y) that is stationary in the iner-
tial frame (north,east directions), as seen from the moving
airplane, evolves according to the following equations:

˙x(t) = ωy(t)− v,
˙y(t) = −ωx(t),

ω(t) ∈ [−a, +a],
(1)

where a is the bound on the yaw rate command. The
structure (road, canal, pipeline etc) is assumed to be a simple
curve ν(x, t) as shown in the figure 4 lying on the ground

Fig. 4. Problem setup

plane. Moreover, the curve is assumed not to self intersect
or wind up. As the vehicle moves the curve ν(x, t) evolves
according to ∂ν

∂t = −ωx − ∂ν
∂x (ων − v). A vehicle tracking

a curve perfectly implies that at all times ν(0, t) = 0 and
dν(0,t)

dx = 0. The avionics package on the airplane ensures
that the vehicle is flying level at a fixed commanded altitude.
Hence, the relative (x, y) coordinates of the curve (structure)
as seen from the moving frame is all that is required to
control the vehicle. The detection algorithm explained in
the next section identifies the structure and outputs the
image coordinates of points on the structure. These image
coordinates are then converted to (x, y) coordinates of the
curve as seen from the moving airplane by applying the
appropriate transformation. The goal of the controller is to
choose the yaw rate command ω based on the measurements
from the vision sensor and control the evolution of the curve
ν(x, t) in order to drive the vehicle along it.

IV. LEARNING AND REAL-TIME DETECTION OF THE
STRUCTURE

The algorithm consists of three steps. First is the learning
phase where a sample image is used to generate a cross-
section profile of the structure. This step is implemented
off line. The second step matches this cross-section profile
with the horizontal samples of the target image to find the
boundaries and the position of the structure in the target
image. A curve fitting algorithm in the third step is then
applied to determine the equation of the structure being
followed in the image plane. The second and the third steps
are implemented real time for each target image.

Basically, the approach consists of the following steps:
• Learning the structure from a sample image

1) Image Rectification
2) Structure identification and localization

• One dimensional signal matching
• Curve fitting
Before we present the details of each of the steps, the

following subsection discusses the geometry of a linear
structure and is basic to the algorithm design in the learning
and detection steps.
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Fig. 5. A geometry of parallel lines.

A. Geometry of a Linear Structure

Lines along a linear structure (for example, road bound-
aries and lanes) are roughly parallel to each other. Figure 5
illustrates a geometry of two parallel lines. All parallel lines
meet at a single vanishing point, (x0, y0), in the image
coordinates. Consider two points, (x, y) and (x′, y′), on any
line as shown in figure 5. Since all these points lie on a line,
we have,

x− x0

y − y0
=

x′ − x0

y′ − y0

⇔ x′ =
y0 − y′

y0 − y
x +

y − y′

y − y0
x0 = αx + β,

(2)

where α and β are constants given y, y′ and the vanishing
point (x0, y0). If I(.) and I ′(.) indicate the horizontal
intensity profiles given y and y′ respectively, then the above
equation implies that the intensity profiles of two horizontal
cuts of an image can be modelled by a following linear
relationship:

I(x) = I ′(αx + β) + ηI , (3)

where ηI is a noise term.
This leads to our definition of a cross-section profile.

Given a sample image, we define a cross-section profile of a
structure by I(x) which minimizes the sum of ηI for all scan
lines of an image. The main part of our learning procedure is
to automatically find a cross-section profile given an image,
and use it to localize the structure.

Note that images taken from different perspectives may
have incompatible cross-section profiles(even if there is no il-
lumination variation). However, when the airplane is looking
roughly straight down at the structure, the variance among
the cross-section profiles will be small, and our detection
algorithm works well, as shown in the experiments.

B. Learning the structure from a sample image
The objective of this off line phase is to generate a

cross-section profile that represents the desired structure.
The boundaries of the structure are assumed to be roughly
parallel to each other. Figure 5 illustrates the perspective
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Fig. 6. The suggested learning approach. First, the image is rectified. The
statistics of the rectified image (the means and the variances) suggests a
rough position of the road.

projection of two parallel lines (i.e. boundaries) in an image.
The learning phase consists of two steps: removing this
perspective effect in the image (also called image rectifi-
cation) and choosing an appropriate representation of the
structure from this rectified image. Figure 6 illustrates the
learning algorithm. The learning algorithm is based on the
assumption that the example image contains a linear part of
the structure. It is usually not difficult to find a linear part
of the structure because the learning requires only a single
sample image. Also, the learning procedure does not need to
work in realtime. However, since the current implementation
of the algorithm takes approximately 200 ms, it can also be
used in applications where it is required to learn the structure
on the fly.

1) Image Rectification: The basic idea here is to find
the vanishing point of the lines in the image and use the
information in that to rectify each horizontal scan of the
image. The Vanishing point is found by using a RANSAC
style algorithm. The RANSAC (RANdom SAmple Consen-
sus, [30]) algorithm is a robust fitting algorithm that has been
successfully applied to computer vision problems. In this
algorithm, long line segments are first extracted by using
the edges in the sample image. This is followed by line
grouping and line fitting as shown in the figure 7. The group
of lines that are closer to the vertical axis of the image
is selected (This is under the assumption that the sample
image was taken with the structure roughly parallel to the
vertical sides of the image). Since any two line segments
suggest a vanishing point, vanishing point hypotheses can be
generated from any pair of line segments. A vanishing point
hypothesis created by line segments a and b is evaluated
by the calculating its alignment error with all the other line
segments (figure 8). The alignment error of a line segment
with respect to a hypothesis is defined as the pixel distance,
d, between an end-point of the line segment and a virtual
line, l, which connects the hypothesis and the center of the
line segment. The best scoring hypothesis is chosen as the
vanishing point.

Once the vanishing point is known, the target image can
be rectified using equation 3. For each horizontal intensity



Fig. 7. Vertical line segments are detected to find the vanishing point.

Vanishing point hypothesis

a

b

c

l

d

Fig. 8. Evaluation of a vanishing point hypothesis.

profile I ′ in the sample image, the corresponding profile I
in the rectified image can be obtained by a following linear
relationship: I(x) = I ′(αx+β). An example of the rectified
image is shown in figure 6.

2) Structure Identification and Localization: Given the
rectified image, the objective of this part of the learning
phase is to output a cross-section profile of the sample image
with the boundaries of the structure marked in it. The cross-
section profile is obtained by taking the mean of the horizon-
tal scan lines in the rectified image (figure 6). The boundaries
of the structure in the cross-section profile is marked based
on a couple of observations. The first observation is that the
there are sharp intensity changes in the cross-section profile
that indicate the possible positions of the boundaries. Also,
note that there is a strong vertical correlation of the structure
that results in less variance for the corresponding pixels of
the cross-section profile. But the background on the other
hand has more noise with uncorrelated pixels and hence has
more variance. The boundaries are therefore marked by the
following procedure:

1) A set of boundary candidates are chosen based on the
observation that they have large intensity changes in
the cross-section profile. Detected boundary candidates
for the highway image are shown in figure 9.

2) For each pair of boundary candidates, the variance
profiles between them is examined. The pair that has
low variance for the majority of its variance profile is
chosen as the left and the right boundaries of the target

Fig. 9. Structure boundary candidates based on the cross-section profile.

structure.

C. One-dimensional Scan Line Matching
The objective of this algorithm is to find the boundaries

and the location of the structure in any given target image.
The detection is performed by matching the cross-section
profile attained in the learning step with the horizontal scan
lines of the given target image. Essentially from equation
3, finding the position and the width of the structure is
equivalent to finding the parameters α and β. The difficulty
of estimating α and β is that the two-dimensional search
space is too large to meet the real time constraint.

For the matching process, a feature matching technique is
applied. Let Ih be the one dimensional intensity profile of
a given horizontal scan h in the target image. Let L be the
learnt cross-section profile of the structure. First, two distinct
features that are far apart (greater than a chosen threshold) is
detected in L. A distinct feature is defined as a feature that
has large local intensity changes. For each distinct feature,
match candidates are found in Ih by performing correlation-
based template matching. For each and every possible pair
of the match candidates, say p, Ih is scaled and shifted (by
finding the appropriate parameters α and β in equation 3)
such that the two match candidates are aligned at the same
positions with those of L’s features. We denote this new
profile as I’h(p). The correlation4, denoted by Corr(I’h(p) of
the two vectors, I’h(p) and L, indicate the matching quality.
Three best hypotheses of α and β that correspond to the
three highest correlation scores are chosen per scan line for
curve fitting.

D. Curve Fitting
The objective of the curve fitting algorithm is to find the

equation of the centerline of the structure being followed on
the image plane. For each horizontal scan line of the target
image, from the previous step, center hypothesis candidates
can be obtained using parameters α and β. To reduce
computation, matches were found for every four scan lines.
As shown in the figure 10, it still gives enough matches for
curve fitting.

A cubic-spline is used to represent the curve. In a cubic-
spline representation, a point (xi(t), yi(t)) on a curve be-
tween i-th and (i + 1)-th control points is represented as:

xi(t) = ai + bit + cit2 + dit3,

yi(t) = ei + fit + git2 + hit3,

(4)

4Only the parts of the profiles I’h(p) and L in between the positions of
their respective features are used in the correlation



Fig. 10. Center hypotheses of an example image.

where 0 ≤ t ≤ 1, (xi(0), yi(0)) is the i-th control point, and
(xi(1), yi(1)) is the (i + 1)-th control point. The parameters
ai, . . . , hi are uniquely determined by the control points
assuming that the curve is smooth. A cubic-spline curve has
the useful property that its control points are actually on
the curve. This property is used to apply a RANSAC type
algorithm [30] for curve fitting. The curve fitting algorithm
randomly chooses a large number of (500 in our implemen-
tation) center hypotheses with 4 ∼ 6 control points. Each
center hypothesis determines a cubic-spline curve. For each
cubic-spline curve hypothesis, supporting scan line matches
are collected. A supporting scan line match of a curve
hypothesis is a match where its center point is close to the
curve and its width is compatible to other supporting scan
line matches. Among the hypothesis candidates, the curve
chosen to represent the structure is the one that minimizes
a score function. The score function of a curve hypothesis c
is defined as

S(c) = (1− λc)
∑

p∈m(c)

Corr(I’h(p), L), (5)

where m(c) is the set of supporting scan line matches of
c, λc is a penalty for the minimum description length (MDL)
criteria and Corr(I’h(p),L) is the correlation score calculated
for the match p in the one-dimensional scan line matching
process. λc = 0.05 was chosen for the curve hypotheses with
5 control points and λc = 0.1 for the curve hypotheses with
6 control points. The output of this algorithm is basically
in terms of the control points (image coordinates) of the
structure that resulted in the maximum score.

The processed images of the road detection algorithm
for video are shown in figure 11. These image coordinates
are converted to the ground coordinates using the roll,
pitch angles and the height measurements from the sensors
onboard of the plane. These ground coordinates determines
the curve the UAV must follow. The yaw rate command
required to steer the UAV along this curve is discussed in
the next section.

Fig. 11. Detection algorithm working with the video courtesy of MLB
company (www.spyplanes.com).

V. CONTROLLING THE VEHICLE TO FOLLOW THE
DETECTED STRUCTURE

If the vehicle were exactly on the structure at time t with
no error (that is ν(0, t) = 0 and ν(x,t)

dt x=0
= 0 ), then the

yaw rate required to steer the vehicle along the curve is pro-
portional to the curvature, i.e, ω(t) = v d2ν(x,t)

dt2 , is sufficient
to steer the vehicle along the curve5. This is off course an
ideal scenario. In the practical situation, there is noise in the
measurement process (vision) or in the estimation of the state
of the vehicle relative to the curve (Not knowing the exact
roll, pitch or yaw etc.). Hence, the control proposed above
may not steer the vehicle along the curve for all practical
purposes. A novel idea was proposed in [28] where the
vehicle chooses a control based on a connecting contour. The
connecting contour joins the current location of the vehicle
to a point on the curve, thereby satisfying the geometric and
non-holonomic constraints. Figure 12 illustrates a connecting
contour. This connecting contour νc essentially must satisfy
at least the following set of conditions:

νc(0, t) = 0
dνc(x, t)

dt x=0
= 0

νc(xc, t) = ν(xc, t)
dνc(x, t)

dt x=xc

=
dν(x, t)

dt x=xc

(6)

where xc is the coordinate along the moving frame where
the connecting contour joins the desired path to be followed.
The simplest connecting contour that satisfies these four
conditions is a polynomial of degree 3. This simple contour
has the form:

νc(x, t) = α(t)x3 + β(t)x2 (7)

5Assuming the maximum curvature is less than the maximum yaw rate
of the vehicle.



Fig. 12. Illustration of the curve to be tracked and the connecting contour.

where α(t), β(t) are given by:

α(t) = −2
νc(xc, t)

x3
c

+
ν′c(xc, t)

x2
c

β(t) = 3
νc(xc, t)

x3
c

− ν′c(xc, t)
x2

c

Now, the yaw rate command required to steer the vehicle is
chosen to be proportional to the curvature of the connecting
contour at the origin. That is,

ω(t) = v
d2νc(0, t)

dt2

= 2v(3
νc(xc, t)

x3
c

− ν′c(xc, t)
x2

c

)

(8)

This control is computed at each sample period k based
the information of the state of the vehicle and the curve
at sample k. The parameter xc, which is the look ahead
distance at which the connecting contour joins the desired
curve, can be tweaked for performance. For example, a small
look ahead distance implies a large yaw rate command and
faster convergence. But this may not be possible because
the yaw rates are bounded (maximum absolute value for the
airplane used was 0.22 rad/sec). Large look ahead distances
may not be possible because the camera on the airplane may
be mounted such that only a specified forward distance of
the desired path could be seen. A larger look ahead distance
also implies that the vehicle is going to take a longer time
to reach the curve. In this work, a reasonable xc was chosen
based on several hardware in the loop simulations.

VI. EXPERIMENTAL RESULTS

The road detection algorithm and the control algorithm
were tested closed loop in both hard ware in the loop and
UAV flight results. The following subsections presents them.

A. Hardware in the loop

A hardware-in-the-loop (HIL) simulation was developed
in order to perform initial closed loop tests of the vision and
the control algorithms. The aircraft dynamics are replaced by
a high-dimensional nonlinear simulation provided with the

Fig. 13. Shape of the road created using the Vega visualization software.

Fig. 14. Camera is oriented at an specified angle θ with respect to the
yaw axis. Hence, if the aircraft is flying parallel to the ground plane, then
θ = 0 is the case where the camera is looking straight down.

Piccolo avionics package [31]. The camera outputs were sim-
ulated using the Vega software package [32]. This software
[32] provides real time visualization of three dimensional
models of the testing environment. A curved road, as shown
in figure 13, was created in a virtual city using the Vega
software. The radius of the curve R (figure 13) was chosen
to be 200 meters to ensure that it is greater than the minimum
turning radius of the UAV. Camera was mounted at an
angle of θ = 30 degrees with respect to the yaw axis of
the aircraft (figure 14). Sample images of the final results
of vision based control algorithm are shown in figure 15.
Video of the closed loop results can be downloaded or
seen at http://path.berkeley.edu/∼siva/videos. The cross track
deviation error from the centerline of the canal is shown in
figures 16. The UAV was able to track a curved road with an
average error of 13.74 meters over 3200 meters of the road.

B. Flight results

The vision-based control system was tested using a Sig
Rascal model aircraft (Figure 17). Low level aircraft control
and stabilization is performed by a commercial Cloud Cap
Piccolo avionics package (Figure 18) [31]. The vision and the
control algorithms run on the onboard PC104 that communi-
cates directly with the Piccolo avionics box through a serial
port. The flight tests were conducted at Crows landing Naval



Fig. 15. Sample images from the processed video for the HIL simulation.
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Fig. 16. Cross track error from the centerline of the road for a look ahead
distance of 250 meters and camera at θ = 30 degrees with respect to the
yaw axis of the plane.

Fig. 17. Sig Rascal Model Aircraft used for flight tests.

Fig. 18. Piccolo avionics package that performs low level flight control
and stabilization.

Auxillary Landing Field, Patterson, California. A picture of
the canal over which the UAV was flown is shown in figure
19. The length of the canal as shown in the picture is around
700 meters. Test video of the canal was collected first by
flying the vehicle by waypoint navigation. The airplane was
held at a constant altitude of 100 meters. This height was
chosen in order to have a good resolution of the image of
the canal. The recorded onboard video was used as an input
to the learning phase of the road detection algorithm.

The final results6 of vision based control algorithm for the
UAV are shown in the figure 20. Two sets of experiments
were conducted:

1) The first with a look ahead distance of 175 meters and
the camera tilted at θ =10 degrees with respect to the
yaw axis of the plane and,

2) The second with a look ahead distance of 150 meters
and the camera at θ =15 degrees with respect to the
yaw axis of the plane.

The road detection algorithm runs at 5 Hz (takes ≤ 200
ms) or faster on the onboard PC104 (700 MHz, Intel Pentium
III). The cross track deviation error from the centerline of the

6Processed video of all the experimental results can be downloaded or
seen at http://path.berkeley.edu/∼siva/videos



Fig. 19. Canal at the Crowslanding facility.

canal is shown in figures 21 and 22. On average, the cross
track deviation error was around 10 meters over a stretch of
700 meters of the canal.

VII. CONCLUSIONS AND FUTURE WORK

This paper addresses the problem of monitoring structures
such as pipelines, roads, bridges etc using an autonomous
unmanned aerial vehicle (UAV) based on visual feedback.
A realtime detection algorithm for various structures such
as highways, roads and canals has been introduced. A fast
learning algorithm with minimal supervision is also intro-
duced. The algorithm has been tested with video of high-
ways and canals. Experimental results indicate a reasonable
performance of the closed loop vision based control with a
average error of around 10 meters over the stretch of 700
meters of the canal. Some of the future directions of the
current work include the following:

• Filtering the incoming vision data over a batch of frames
and updating the equation of the curve.

• Processing the collected video by following a structure
and inferring useful information from it.

• The airplane was modelled as a simple unicycle model
without taking into account the dynamics of the vehicle.

• Wind disturbances seems to be common while flying
the vehicle and hence they need to be included in
modelling.
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