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Superposition approaches have generally been proposed to create a dynamic rheological map to access 

colloidal glassy dynamics beyond experimental time windows. However, the validity of the superposition 

approaches in colloids near the glass transition is questionable owing to the well-known emergence of a 

β-relaxation process there. Here, we employ a time-concentration superposition (TCS) approach, 

analogous to time-temperature superposition (TTS) and TCS approaches in molecular systems, utilizing a 

combination of macroscopic rheological experiments and microscopic Brownian dynamics (BD) 

simulations, where concentration jumps are performed by a sudden growth of particle size (soft PS-

PNIPAM particles in experiment and nearly hard spheres in simulation) at a fixed number of particles. 

We have examined whether a characteristic master curve can be obtained through horizontal and vertical 

shifting of the dynamic data, finding that TCS does not hold for either the experimental or simulation 

systems. We identify the origin of this breakdown as not only the emergence of a strong β-relaxation 

process but also its overlap with the α-relaxation in both the experimental soft-sphere and the simulated 

near hard-sphere colloids near to the glass transition concentration. Further understanding of the lack of 

validity of TCS results from analysis of both experimental and simulation data in the framework of the 

Baumgaertel-Schausberger-Winter (BSW) relaxation spectrum which provide a means to determine the 

concentration dependences of both the α- and the β-relaxations, which seem to follow TCS themselves.
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I. INTRODUCTION 

      The physics of the glass transition in condensed soft matter has attracted wide interest in 

fundamental theory, technology, and application [1-6]. In analogy to the bubble raft model [7-9] 

utilized to study phase and deformation behavior of metals, colloidal dispersions have been 

proposed as models to study the dynamic behavior of molecular systems [10-11]. The success of 

generating colloidal phase diagrams from molecular theories has driven the widely held view 

that some of the equilibrium mechanisms governing molecular system dynamics may also be 

valid for colloidal dispersions. One example is the time-temperature superposition (TTS) and 

time-concentration superposition (TCS) principles in molecular and polymer glass-formers, 

explained as a preservation of structural relaxation modes over all temperatures or concentrations, 

with only a change in the magnitudes of the relaxation times themselves. Such a simple shifting 

of the dynamic (relaxation time) spectrum permits construction of broad rheological or 

dynamical “maps” that extend the range of data beyond that readily obtainable by experiment 

[12-15]. In these methods the relaxation function (spectrum) shifts uniformly along the time or 

frequency axis with changing temperature or concentration, i.e., all relaxation modes have the 

same qualitative temperature or concentration dependence. In such cases the relaxation times are 

related through a shift factor aT = τi(T)/τi(Tref) or aφ = τi(φ)/τi(φref) that is a function of absolute 

temperature, T, or volume fraction φ, obtained by superposing response curves over reference 

curve but for different temperature or concentration. Here, one curve is arbitrarily selected as the 

reference curve, and all other curves are shifted to overlap with it; τi(Tref) is the relaxation time 

for the reference temperature curve, and τi(T) is the relaxation time for the shifted curve. The 

same procedure is envisioned for relaxation of colloids at different particle volume fraction. In 

the case of the ideal hard-sphere colloidal system, φ =4πa3n/3, where a is the hydrodynamic 
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particle size set by diffusivity, and n is the number density [12-16]. The shift factors are then 

scaled relaxation times, meaning that once a superposition is successful the relaxation time at 

any temperature or concentration can be obtained from the product of shift factor and reference 

relaxation time at reference temperature or concentration [17]. Such scaling is a powerful method 

of data treatment not only when it is successful, but perhaps more so when it is not: any 

breakdown of the superposition provides information concerning main and secondary relaxations 

which may individually scale, but when combined results in breakdown of superposition [18-21].  

      While the use of superposition principles in polymeric systems is widespread, there has been 

much less exploration of such behavior in colloidal systems [22-29]. In polymeric glass-formers, 

the time-temperature superposition or time-concentration superposition principles discussed 

above have been used as practical and useful tools to construct maps of material dynamics. In 

colloids there have been some efforts to propose superposition to explore the dynamic behavior 

and the insight into relaxation mechanisms, particularly close to the glass transition. 

 The time-concentration superposition (TCS) principle in colloidal systems was exploited by 

Mattsson, et al. [26] to determine the concentration dependence of the relaxation time in a series 

of colloids of different particle hardness.  The work resulted in the now well-known observation 

that "Soft colloids make strong glasses" [26].  However, while it is well-known that β-relaxation 

emerges at high frequency, the authors focused primarily on the α-relaxation, missing an 

important opportunity to explore the validity of TCS over a fuller range of frequencies. 

Examination of their full dynamic curves reported in the Supplemental Information reveals 

another relaxation mechanism that appears at high frequency and at the higher concentrations; 

while the authors did not recognize this, it suggests to us an important regime where TCS was 

not investigated. More recently, Archer and co-workers studied soft colloidal particle systems to 
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examine the validity of time-concentration superposition [24, 25]. They argued for its validity 

over a large range of concentrations and very broad (reduced) frequency regime, despite the clear 

emergence of a high frequency β-relaxation. Similar findings have been made for polymeric 

materials [21], but for time-temperature superposition. Surprisingly, despite substantial study of 

both soft and hard colloidal systems that exhibit relatively strong relaxations for both the α-

process and the β-process [30-33], we are not aware of any reports specifically demonstrating the 

failure of TCS. We believe this simple emergence of two independent relaxation modes in itself 

suggests a potential violation of TCS. The aim of this study is to determine whether a violation 

of TCS emerges in colloidal glass-formers as a result of the emergence of the β-relaxation. 

 In addition, there have been other superposition principles proposed in the domains of both 

polymer/molecular glasses as well as in colloidal glasses. Hence, full understanding of 

superposition principles is essential. Though we do not interrogate these other principles in this 

work, it is worth a brief discussion of them.  First, in molecular glasses, there has been some 

effort to use reduced time concepts in the development of non-linear constitutive laws. For 

example, both the Tool-Narayanaswamy-Moynihan (TNM) [34-36] and the Kovacs, Aklonis, 

Hutchinson, Ramos (KAHR) [37] models of structural recovery rely on time-temperature 

superposition and time-structure superposition ideas to describe the non-linear response of 

glasses that are out of equilibrium. Theories also have been developed with these so-called 

material clock [38, 39] types of models to describe relaxation responses as well as to try to 

understand yielding and other non-linear mechanical responses as resulting from stress- or strain-

enhanced mobility [40-48]. Many of these models use either stress or strain as parameters that 

accelerate the molecular dynamics with a fundamental idea underpinning these models that of a 

spectrum of relaxation times that shifts rigidly along the time axis with the change of the 
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stimulus (stress, strain, temperature, pressure, concentration), without a change in the shape of 

the spectrum. In the case of colloids, there has been less work in this area, but, for example, 

Archer and co-workers have proposed that time-strain superposition can describe the mechanical 

response of colloidal systems [27, 28]. At different strains one finds that the responses can be 

shifted just as if one were working at different temperatures. Also, a recent work by Fielding, et 

al.[49] models colloidal deformation response using the strain to accelerate the material time 

[49].  While it is clear from experiment [50-53] and simulation [54-56] that applied stress or 

strain seem to accelerate time or increase the molecular/colloidal mobility, caution in all such 

superposition attempts comes from some work by O'Connell and McKenna in which time-strain 

superposition was found to describe the relaxation data, but the created master curve was 

different from that obtained by time-temperature superposition [57].  

 In addition, strain-rate frequency superposition (SRFS) has been proposed to explore 

structural relaxation in soft materials [22]. In a typical experiment, a constant strain-rate 

amplitude is applied to the sample and frequency is varied, i.e., the strain amplitude of the 

oscillations is varied proportionally to the reciprocal of the frequency. It was found that a master 

curve could be constructed through vertical superposition. The method and conclusions obtained 

are, however, problematic because the method results in a violation of the Kramers-Kronig 

relation relevant to dynamic measurements [23]. Hence, SRFS should be interpreted with caution, 

though there is recent work on particle filled elastomers that suggest special conditions in which 

this superposition may be valid [58].  

      Finally, a method of orthogonal superposition was recently proposed to study the structural 

relaxation response of colloidal glasses subjected to steady shearing flows [29]. In this instance a 

dynamic probe is superimposed orthogonally to the shearing plane and apparent storage and loss 
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moduli obtained. The results were interpreted to imply that a time-strain rate mapping could be 

used to describe the response of the system. Yet, there is a significant body of work that suggests 

the orthogonal superposition is extremely difficult to interpret. The idea originated in the 

polymer rheology community [59, 60], but there is a consensus in the literature since then that 

strongly indicates that unambiguous interpretation of such data requires a valid non-linear 

constitutive model [61-64]. However, it does appear that the orthogonal superposition is more 

readily interpreted than is parallel superposition [63, 64]. Finally, it is worth noting that in the 

careful orthogonal superposition work from Jacob, et al. [29] the superposition seemed valid 

primarily in the low frequency regime of the orthogonal probe, while in the high frequency 

regime superposition is at best only approximate. 

 An important aspect of the present work is that we analyze the data, first, by using simple 

shifting procedures to observe whether or not time-concentration superposition holds for both 

investigated systems, then by fitting the data to the empirical Baumgaertel-Schausberger-Winter 

(BSW) relaxation spectrum [66] we establish the concentration dependences of both the α- and 

β-relaxations in addition to establishing whether or not the shapes of the individual mechanisms 

change as they shift with concentration.  

II. EXPERIMENT 

A. Synthesis and characterization 

      A sterically stabilized thermo-sensitive core-shell PS-PNIPAM [Polystyrene-Poly (N-

isopropylacrylamide)] colloid in water was used for the rheological experiments. The thermo-

sensitive core-shell PS-PNIPAM colloids were prepared through a two-step polymerization. The 

PS core latex containing 5.0 wt.% NIPAM was synthesized through emulsion polymerization 



7 
 

and the recipe has been described in detail in [67]. The PNIPAM shell was made to have a 

homogeneous distribution of cross-linker [68], which differs from the previously used method 

[67, 69]. It is formed on the surface of the PS core latex through an in-situ polymerization: 100 g 

PS core latex dispersion (8.49 wt.% in dried) is loaded into a 500 ml three-neck round bottom 

flask and diluted with 200 g water under magnetic stirring at 600 rpm. 0.109 g N, N'-

Methylenebisacrylamide (MBA, 20.0 wt.% in total cross-linker) and 3.2 g NIPAM (40.0 wt.% in 

total monomer) are added into the mixture and the mixture is bubbled with nitrogen gas for 45 

min. The reaction mixture is heated to 80 °C. The polymerization is initiated by adding 0.166 g 

potassium persulfate (KPS) dissolved in 20 ml water. After 5 min, a 50 ml solution containing 

0.436 g MBA (80.0 wt.% in total cross-linker) and 4.8 g NIPAM (60.0 wt.% in total monomer) 

is added continuously into the mixture over 60 min. The reaction is allowed to run for 4 h at 

80 °C after completion of the loading steps. The thermo-sensitive core-shell PS-PNIPAM latexes 

were purified through dialysis against water for one week and the latexes dried at room 

temperature under vacuum. 

      The system was chosen owing to the ability to trigger changes in particle size via swelling 

and de-swelling with changes in temperature, as described in [67, 69]. The hydrodynamic 

diameter with a size polydispersity of 18% was measured using dynamic light scattering [70-72] 

and it can be described with a linear temperature dependence between 22 and 32 °C, DH (T) = 

194.65-2.15*T (T in Celsius, °C), in nanometers, as shown in Figure 1, consistent with findings 

from other groups [11, 73]. Importantly, the inter-particle interactions in PNIPAM dispersions 

changes from repulsive to attractive as temperature increases. However, the transition strongly 

depends on the thickness of the PNIPAM shell [74]. For the present PS-PNIPAM colloidal 

dispersion, gelation behavior has not been found even at temperatures above the lower critical 
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solution temperature (LCST), consistent with other reports [11, 73, 75, 76]. The repulsive forces 

from both electrostatic (negative charge from initiator) and steric (from the hairy structure of the 

PNIPAM) interactions dominate in the PS-PNIPAM system used here. Another relevant point is 

that the investigated temperature range from 30 °C to 28.2 °C is below the LCST and leads to a 

particle diameter change of 3%. 

FIG. 1 (color online). Temperature dependence of hydrodynamic diameter for the thermo-sensitive core-shell PS-
PNIPAM particle in water, measured using dynamic light scattering (Solid line represents the linear equation fit: DH 
(T) = 194.65-2.15*T, T in Celsius, °C).        

The volume fraction of a hard-sphere dispersion can be quantified by the density and mass 

fraction. However, it is very difficult to determine the thermodynamic volume fraction of soft 

colloidal dispersions due to the interpenetration and compression of the hairy structure of the 

PNIPAM shell [30, 76].  In the present work the effective volume fraction is used and was 

calculated at different temperatures based on the hydrodynamic size obtained from dynamic light 

scattering, and is given by φeff (T) = φeff(collapsed) [DH(T)/Dcollapsed]3 [77, 78], where φeff(collapsed)/φ∞ 

is 0.291 at 37 °C and Dcollapsed is 92.3 nm. The effective volume fraction of the soft particle 

dispersion in the collapsed (particle) state was calculated based on the density and mass fraction 
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[77, 78], which may underestimate the effective volume fraction due to a small amount of water 

in the collapsed shell [79, 80] even at high temperature. We further remark that the effective 

volume fraction of the soft colloidal dispersion was also determined from relative viscosity 

measurements at very low concentrations using the Einstein-Bachelor equation [22, 76]. There is 

a large difference in the effective volume fractions between these two methods, hence a large 

uncertainty in the true volume fraction of the soft colloidal systems. The effective volume 

fraction based on the dilute concentration relative viscosity determinations, is up to several 

hundred percent [22, 81, 82], even though the actual maximum volume fraction cannot exceed 

unity. Therefore, in analogy to the scaling by Tg or �g used in the so-called Angell plot (log τ vs 

Tg/T) for glass-forming systems [30, 83], we have scaled the concentrations in this work (both 

the experimental and the simulations) by the nominal divergence value φ∞ determined from a 

Vogel-Fulcher-Tammann [84-86] type of fitting of the data, as described subsequently. Hence, 

(φ/φ∞) is used throughout the work as the scaled concentration. Scaling the volume fraction by 

φ∞ provides a way to scale out the uncertainties in the volume fractions of the soft colloids and 

relate them to the nominal ideal glass volume fraction. The same scaling with the hard-sphere 

simulation data provides a means of comparison of the systems at similar "distances" from the 

glass concentration. 

B. Rheological measurements 

      Rheometry was performed using a stress-controlled rotary rheometer (AR-G2, TA 

Instruments), equipped with a cone-plate geometry having a diameter of 40 mm and cone angle 

of 2o. The colloidal sample was surrounded by Krytox oil to prevent solvent evaporation during 

testing. The rheological measurements were performed after sudden volume fraction increases 
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(up-jumps) from the liquid state at a low volume fraction to various final high volume fractions, 

and then aged into an intransient state, where the response became independent of time.  

C. Brownian dynamics simulations 

      Brownian dynamics (BD) simulations of a nearly hard-sphere colloidal dispersion were 

conducted using the LAMMPS dynamic simulation package [87], with parameters set to recover 

Stokesian colloidal physics as described previously [87, 88]. The colloidal system comprised 

55,000 freely draining Brownian spheres with average hydrodynamic radius a. Particles 

interacted via a nearly hard-sphere Morse potential and a size polydispersity of 7% was applied 

to avoid crystallization [89]. The system was periodically replicated to model an infinite system. 

The concentration jumps in the simulations were carried out by performing jumps in particle 

diameter at a fixed number of particles. Particle positions were monitored throughout each 

simulation and the mean-square displacement (MSD) computed from this data and evaluated as a 

function of lag time, where the determinations were made in a sequence of waiting times 

following the concentration jump. The intransient state was identified as the time at which the 

MSD became independent of aging time. The volume fraction up-jumps in simulation were 

performed from the same initial volume fraction of 0.50 to the various final volume fractions 

which ranged from 0.51 to 0.58. A quench rate of ௗఝௗ௧ ൌ  = ଶ was used, where Dܽ/ܦ0.25

kBT/6πηa is the diffusion coefficient of a single colloid of size a in a solvent with viscosity η and 

a2/D is the Brownian time tB. Consequently, it physically takes 0.04 Brownian times to change 

the volume fraction by 0.01, e.g., from 0.50 to 0.51. After the quench, the colloidal system at 

each volume fraction was aged for different waiting times and the MSD measured over the lag 

time until an intransient state was reached, as evidenced by overlapping of the MSD curves with 

increasing waiting time after the volume fraction jump. 
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III. RESULTS AND DISCUSSION 

A. Experimental section       

      Figure 2 shows plots of typical rheological data obtained from the dynamic experiments in 

the present study, following a jump from the liquid state at φ/φ∞= 0.802, into the putative glassy 

region[4,6,10,26,29,30]. Figure 2(a) shows the creep compliance, which exhibits the expected 

aging response for the PS-PNIPAM colloidal dispersion evolving toward an intransient state 

after a volume fraction up-jump from an equilibrium state at φ/φ∞= 0.802 to φ/φ∞= 0.885. Just 

after the jump, the system has been driven out of equilibrium. The creep compliance curves shift 

to the right with increasing aging time and eventually overlap with each other, indicating that the 

intransient state is approached [90]. We remark that physical aging occurs at a fixed volume 

fraction (iso-volume fraction condition) for the colloidal dispersions, different from the isobaric 

and isothermal conditions usually investigated in molecular systems [1, 21, 91]. Fig. 2b-d show 

the frequency dependence of storage modulus G’(ω) and loss modulus G”(ω) for systems aged 

into the intransient state for three different (scaled) volume fractions after up-jumps from φ/φ∞= 

0.802 to φ/φ∞ = 0.844, 0.868 and 0.885 in Figures 2b, 2c, and 2d, respectively.  The crossover 

point where G’(ω) equals G”(ω) shifts to lower frequency with increasing volume fraction, and 

the relaxation time τα (τα = 1/ω at G’(ω) = G”(ω)) becomes longer as crowding slows dynamics. 

Another point of interest is that with increasing volume fraction, a plateau develops in G’(ω) and 

is accompanied by a minimum in G”(ω), typical of glass-forming colloids [10, 11, 29].  
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FIG. 2 (color online). Experimental Results: (a) Creep aging behavior for the PS-PNIPAM colloidal dispersion 
after volume fraction up jump from φ/φ∞=0.802 to φ/φ∞=0.885 and then aged into intransient state. The frequency 
dependence of storage modulus G’(ω) (open symbols) and loss modulus G”(ω) (closed symbol) for the PS-
PNIPAM colloidal dispersion after volume fraction up jump from φ/φ∞=0.802 to φ/φ∞=0.844 (b), 0.868 (c), and 
0.885 (d), and measured in intransient state. (Solid lines represent the Baumgaertel-Schausberger-Winter (BSW) 
relaxation spectrum fitting [66].)  

      Analogous to TTS in molecular systems, if a time-concentration superposition (TCS) is valid, 

a master curve should emerge upon shifting the data in Figure 2 by scalar shift factors acon and 

bcon to give reduced storage modulus bconG’(ωacon) and reduced loss modulus bconG”(ωacon), 

where the subscript “con” denotes the concentration-jump. The results of such shifting are 

plotted in Fig. 3a. The master curve was constructed by horizontal shifting of the dynamic data to 

a reference curve at volume fraction φ/φ∞ = 0.852. Vertical shifting was also needed and the 

vertical shift factors bcon are reported in Fig. 3b. In the low frequency terminal region, the data in 

Figure 3a fall on a single master curve and the reduced G’(ω) and G”(ω) are proportional to 

(reduced) frequency with a scaling relationship: G”(ω) ~ ω1 and G’(ω) ~ ω2, following a typical 

Maxwellian behavior [16]. In contrast, while the G’(ω) data seem to superpose over the entire 

frequency range, it is clear that as volume fraction increases, the crossover regime (region where 

G"(ω) exhibits a minimum) in G"(ω) becomes wider and deeper and the G"(ω) data do not 
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superimpose. Another point of interest is seen in Fig. 3b where the relaxation time τα (extracted 

from the crossover point between G’(ω) and G”(ω)) is plotted as a function of volume fraction. 

Typical of the behavior of glass-forming colloids, τα displays a dramatic growth with increasing 

volume fraction [10, 92-94]. The solid curves in the figure shows that the volume fraction 

dependence of τα and shift factors acon can be described by a modified Vogel-Fulcher-Tammann 

(VFT) fit [84-86]: log10 (τα) = B + C/(�∞-�), in which B = -9.126, C=0.6703, where φ∞ represents 

the modified VFT divergent volume fraction and φ∞= 0.454 in this case (see prior comments on 

volume fraction).  Unsurprisingly, as the divergent concentration is approached the relaxation 

time grows dramatically with increasing volume fraction (approximately five decades in the 

range here from φ/φ∞ = 0.802 to φ/φ∞ = 0.885), consistent with the glass-like behavior of colloids 

[30].  

 

FIG. 3 (color online). Experimental Results: (a) Time-concentration superposition (TCS) master curve [reduced 
G’(ω) (closed symbols) and reduced G”(ω) (open symbols)] constructed from dynamic data for the PS-PNIPAM 
colloidal dispersion after volume fraction up jump perturbations in intransient state and data in FIG. 2. The volume 
fractions given as φ/φ∞ are shown in the figure. (b) The relaxation time τα (closed squares), concentration 
dependence of horizontal (acon, closed diamonds) and vertical (bcon, closed hexagons) shift factors vs. volume 
fraction for the PS-PNIPAM colloidal dispersion (Solid line represents the Vogel-Fulcher-Tammann (VFT) fitting 
[84-86]). 

     To gain further insight into the individual relaxation modes and how they vary with 

concentration, the shape of the dynamic data in Figure 2(b-d) was analyzed via a Baumgaertel-
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Schausberger-Winter (BSW) relaxation spectrum/function [66].  The BSW relaxation spectrum 

was originally proposed to describe dynamic data in the terminal flow and rubbery plateau 

regions of entangled linear flexible monodisperse (LFM) polymers [66] and is based on an 

empirical power-law relaxation spectrum expressed in the following simple form [66, 95]:  

H (τ) = nαGN {( ఛఛഀሻ௡ഀ + ( ఛఛഁሻି௡ഁ}        (1) 

where H is the relaxation spectrum. Originally, nα and nβ corresponded to a slope for the 

spectrum in the entanglement regime and a slope for the spectrum in the transition to the glass, 

respectively; τα and τβ refer to characteristic times for the system. GN is a material-specific 

constant, and taken as the rubbery plateau modulus in the case of the entangled polymers. The 

storage modulus and loss modulus were obtained from the following equations [66]:  

G’ (ω) = GN +׬ ௗఛఛ ሺ߬ሻܪ ሺఠఛሻమଵାሺఛఠሻమఛ೘ೌೣ଴         (2) 

and  

G”(ω) = ׬ ௗఛఛ ሺ߬ሻܪ ሺఠఛሻଵାሺఛఠሻమఛ೘ೌೣ଴         (3)  

τmax represents the upper limit of the relaxation time spectrum. The BSW expression has also 

been successfully used to describe the relaxation response for small molecule glass-forming 

systems near to their glass transition temperature [96] and was recently found to describe the 

dynamics of concentrated soft colloidal dispersions [32], and successfully captured both the 

terminal and plateau regions of the glass-forming colloid, i.e., it fit the primary α-relaxation and 

secondary β-relaxation processes, respectively. In the present study, the solid lines in Fig. 2b-d 

represent the results of fitting a BSW function to our dynamic data for the concentrated colloidal 
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dispersions. We remark that when TTS is valid for molecular systems, it is found that both nα 

and nβ are constants independent of temperature while the relaxation times τα and τβ both follow 

the same temperature dependence [66, 95, 96]. As seen in Fig. 4a, for the present colloidal 

system, both nα and nβ are nearly independent of volume fraction. This is consistent with the 

postulation from Winter et al. [32] in their work using the BSW function to describe the 

dynamics of soft colloidal dispersions. In that case, they emphasized the behavior of the nα 

parameter and did not report the actual behavior of nβ. Fig. 4b, shows that the values of τα and τβ 

that represent the main and secondary relaxation times, respectively, exhibit different volume 

fraction dependences: τα grows dramatically with volume fraction, following a super-Arrhenius 

glass-like behavior, while τβ has a negligible dependence on volume fraction. As a result, the 

combination of different relaxation mechanisms leads to a breakdown of TCS for the full 

dynamic response of our colloidal dispersions, while the individual mechanisms follow TCS. We 

remark that the BSW fitting parameter τα in Fig. 4b shows the same volume fraction dependence 

as the α relaxation time obtained from the crossover point between G’(ω) and G”(ω) (Fig. 3b). 

Of additional interest in Fig. 4a, the value of nβ is larger than nα for the PS-PNIPAM systems, 

consistent with findings for other systems including polymers and colloids [11, 32, 66, 95, 96], 

although the physical meaning of this comparison is not yet established.  In contrast, the value of 

nα is larger than nβ in the mode coupling theory (MCT) prediction [32].  We also remark that the 

weak to zero dependence of the τβ on the concentration is similar to qualitative observations from 

other works [11, 30, 31, 97, 98].  
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FIG. 4 (color online). Experimental Results: (a) The BSW function fitting parameters nα and nβ vs φ/φ∞ for the 
PS-PNIPAM colloidal dispersion. (b) The BSW function fitting parameters τα and τβ for the PS-PNIPAM colloidal 
dispersion. τα and τβ refer to the characteristic times for the system (solid line represents the modified VFT [84-86] 
fit: B = -9.126 and C = 0.6703; dashed lines are given as guides to the eye). 
 
 

B. Simulations 

      To further examine TCS in colloidal dispersions, Brownian dynamics (BD) simulations were 

conducted to study the dynamics of a system that has aged into an intransient state after volume 

fraction up-jumps. The positions of each individual particle can be tracked over time throughout 

each simulation, and the slowing of particle dynamics carefully monitored as concentration 

increases. While diffusion has been shown to remain proportional to the inverse of suspension 

viscosity up to high volume fractions [99-106], the coefficient of proportionality in such a dense, 

non-continuum system is not quantitatively obtainable via a Generalized Stokes Einstein relation 

[89]. Nonetheless one can obtain an estimate via that relation [65]:  

G*(ω) ≈ kBT / πa(Δr2(1/ω)) Γ[1+α(ω)]       (4) 

where kB is the Boltzmann constant, T is absolute temperature, a is the hydrodynamic radius, Γ is 

the gamma function, and α(ω) = d ln (Δr2(t)) / d ln t at ω = 1/t.  The dynamic moduli G’(ω) and 

G”(ω) can, then, be calculated from [65]: 
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G’(ω) = G*(ω) cos(πα(ω)/2)         (5) 

and  

G”(ω) = G*(ω) sin(πα(ω)/2        (6) 

This provides a bridge between experiment and simulation. 

      Fig. 5a shows the reduced mean square displacement (MSD) (averaged over all particles in 

the system) vs time at different aging times after a volume fraction up jump from 0.50 (φ/φ∞ = 

0.828) to 0.58 (φ/φ∞ = 0.960). The simulations capture physical aging behavior similar to that of 

the experimental data displayed in Fig. 2a: as aging time increases the MSD curves shift to the 

right until they overlap at the longest time, indicating that the colloidal system has evolved into 

an intransient state. Fig. 5b shows the MSD vs time response (in the intransient state) at different 

final volume fractions, where short- and long-time regimes are evident. At short times, the 

particles diffuse within a cage of nearest neighbors without disturbing their arrangement. At 

intermediate times, they exchange places with their neighbors, a correlated motion that produces 

nonlinear growth in the MSD. As concentration grows, local cages become tight, resulting in the 

emergence of a plateau; this is commonly considered as the β-relaxation [107]. Eventually the 

particles are able to exchange positions with their neighbors many times even though they may 

remain close to their original positions; this diffusion corresponds to α-relaxation [107]. With 

increasing volume fraction, the plateau in MSD vs time gets longer. At lower volume fractions, 

there is no obvious plateau in G’(ω) nor a minimum in G”(ω), hence the BSW function is not 

applicable in this regime because of the limited frequency range available for the lower 

concentrations. At higher concentrations and analogous to the experimental TCS data treatment, 

a master curve from the simulated data was determined and is plotted in Fig. 5c. The dynamic 
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data for the high volume fractions in the range from 0.55 (φ/φ∞ = 0.911) to 0.58 (φ/φ∞ = 0.960) 

can be successfully fitted by the BSW function as the system develops more and more 

pronounced β-relaxation. It is of particular interest  that the freely draining BD simulations 

completely capture the essential experimental findings: the G”(ω) peak becomes wider and 

deeper with increasing volume fraction and a single master curve in the dynamic data cannot be 

obtained through TCS, indicating that TCS does not hold for concentrated colloidal dispersions 

and that hydrodynamic interactions play a negligible role. Horizontal and vertical shift factors 

are also plotted in Fig. 5d. The volume fraction dependence of the horizontal shift factor acon can 

be described by the modified VFT equation, a super-Arrhenius behavior with ߮ஶ= 0.604, B=-

3.219 and C=0.077. Fig. 5c and Fig. 5d show the BSW relaxation spectrum fitting parameters as 

functions of concentration. The slopes nα and nβ are nearly independent of the volume fraction, 

and τα and τβ follow different concentration dependences: τα follows a super-Arrhenius glass-like 

behavior, while τβ has a weak volume fraction dependence. We remark that the values of nβ are 

far above unity for the simulation data, consistent with simulation data from the literature [29] 

(that simulation data was digitized and fitted using the BSW relaxation spectrum), and higher 

than those in the experimental data [32]. We postulate that the reasons for the difference 

originate from the investigated conditions: for the BD simulation, only Brownian motion was 

considered, while for the experiment the particle softness also plays a role. 
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FIG. 5 (color online). Dynamic simulations: (a) Reduced mean square displacement (MSD) vs time from BD 
simulations for hard-sphere colloidal dispersion after volume fraction up-jump from 0.50 (φ/φ∞ =0.828) to 0.58 
(φ/φ∞ =0.960) at different aging times, where tB is the Brownian time. Note that the angle brackets indicate an 
ensemble average over all particles in the system. (b) Reduced MSD vs time for colloidal dispersions at different 
volume fractions in intransient state. (c) Reduced master curve was constructed following TCS and data was 
obtained from reduced MSD vs time in intransient state via the generalized Stokes-Einstein relation (GSER) [65, 67] 
([reduced G’(ω) (closed symbols) and reduced G”(ω) (open symbols)]). Inset: The BSW function fitting parameters 
nα and nβ vs φ/φ∞ (dashed lines are given as guides to the eye). (d) The concentration dependence of horizontal (acon) 
and vertical (bcon) shift factors and the BSW fitting parameters τα and τβ vs scaled volume fraction (Solid line 
represents the modified VFT fitting [84-86], where B = -3.219 and C = 0.077). (The coefficient “A” was applied to 
superimpose relaxation time τα with horizontal factor acon and A = 0.005) 
 

IV. CONCLUSIONS 

      We have examined the validity of time-concentration superposition for colloidal dispersions 

via experiment and simulation. It is found that time-concentration superposition fails for the 

investigated concentrated colloidal dispersions due to the development of a strong, high 

frequency, β-relaxation process which overlaps with the α-relaxation process. A quantitative 

analysis of the failure of time-concentration superposition was carried out via the Baumgaertel-
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Schausberger-Winter (BSW) relaxation spectrum. The BSW analysis of the dynamic data 

suggests that α- and β-relaxation mechanisms, while individually following TCS, show different 

volume fraction dependences, which, in turn, leads to the breakdown of time-concentration 

superposition. In addition, Brownian dynamics simulations produced MSD data from which the 

moduli were estimated via the generalized Stokes-Einstein relation (GSER). The simulated G’(ω) 

and G”(ω) results successfully capture the experimental behavior of a minimum in G”(ω) and 

show that the β-relaxation strongly separates from the α-relaxation as volume fraction increases, 

further showing that one cannot achieve a single master curve representation of the data. It is 

concluded that time-concentration superposition fails for the concentrated colloidal dispersions, 

as shown here by both experiment and simulation. However, as supported by the BSW analysis, 

the individual mechanisms are superposable, as frequently found in molecular systems [19, 106]. 

This should be further explored in other colloidal systems to assure that it is a general behavior. 
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