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Abstract

Semiparametric and Robust Methods for Complex Parameters in Causal Inference

by

Wenjing Zheng

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Professor Mark van der Laan, Co-chair

Professor Antoine Chambaz, Co-chair

This dissertation focuses on developing robust semiparametric methods for complex pa-
rameters that emerge at the interface of causal inference and biostatistics, with applica-
tions to epidemiological and medical research. Specifically, it address three important
topics: Part I (chapter 1) presents a framework to construct and analyze group sequential
covariate-adjusted response-adaptive (CARA) randomized controlled trials (RCTs) that
admits the use of data-adaptive approaches in constructing the randomization schemes
and in estimating the conditional response model. This framework adds to the existing lit-
erature on CARA RCTs by allowing flexible options in both their design and analysis. Part
II (chapters 2 and 3) concerns two parameters that arise in longitudinal causal effect anal-
ysis using marginal structural models (MSMs). Chapter 2 presents a targeted maximum
likelihood estimator (TMLE) for the the dynamic MSM for the hazard function. This
estimator improves upon the existing inverse probability weighted (IPW) estimators by
providing efficiency gain and robustness protection against model misspecification. Chap-
ter 3 addresses the issue of effect modification (in a MSM) by an effect modifier that is post
exposure. This parameter is particularly relevant if an effect modifier of interest is missing
at random; or if one wishes to evaluate the effect modification of a second-line-treatment
by a post first-line-treatment variable, where assignment of the first-line-treatment shares
common determinants with the outcome of interest. We also present a TMLE for this
parameter. Part III (chapters 4 and 5) addresses semiparametric inference for mediation
analysis. Chapter 4 presents a TMLE estimator for the natural direct and indirect effects
in a one-time point setting; it improves upon existing estimators by offering robustness,
weakened sensitivity to near positivity violations, and potential applications to situations
with high-dimensional mediators. Chapter 5 studies longitudinal mediation analysis with
time-varying exposure and mediators. In it, we propose a reformulation of the mediation
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problem in terms of stochastic interventions, establish an identification formula for the
mediation functional, and present a TMLE for this parameter. This chapter contributes
to existing literature by presenting a nonparametrically defined parameter of interest in
longitudinal mediation and a multiply robust and efficient estimator for it.

Chapter 1: An adaptive trial design allows pre-specified modifications to some aspects
of the on-going trial based on analysis of the accruing data, while preserving the validity
and integrity of the trial. This flexibility potentially translates into more efficient studies
(e.g. shorter duration, fewer subjects) or greater chance of answering clinical questions
of interest (e.g. detecting a treatment effect if one exists, broader does-response informa-
tion, etc). In an adaptive CARA RCT, the treatment randomization schemes are allowed
to depend on the patient’s pre-treatment covariates, and the investigators have the oppor-
tunity to adjust these schemes during the course of the trial based on accruing informa-
tion, including previous responses, in order to meet some pre-specified objectives. In a
group-sequential CARA RCT, such adjustments take place at interim time points given
by sequential inclusion of blocks of c patients, where c ≥ 1 is a pre-specified integer. In
this chapter, we present a novel group-sequential CARA RCT design and corresponding
analytical procedure that admits the use of flexible approaches in constructing randomiza-
tion schemes and a wide range of data-adaptive techniques in estimating the conditional
response model. Under the proposed framework, the sequence of randomization schemes
is group-sequentially determined, using the accruing data, by targeting a formal, user-
specified optimal randomization design. The parameter of interest is nonparametrically
defined and is estimated using the paradigm of targeted minimum loss estimation. We es-
tablish that under appropriate empirical process conditions, the resulting sequence of ran-
domization schemes converges to a fixed design, and the proposed estimator is consistent
and asymptotically Gaussian, with an asymptotic variance that is estimable from data, thus
giving rise to valid confidence intervals of given asymptotic levels. To illustrate the pro-
posed framework, we consider LASSO regression in estimating the conditional outcome
given treatment and baseline covariates. The asymptotic results ensue under minimal con-
dition on the growth of the dimension of the regression coefficients and mild conditions
on the complexity of the classes of randomization schemes.

Chapter 2: In many applications, one is often interested in the effect of a longitudinal
exposure on a time-to-event process. In particular, consider a study where subjects are
followed over time; in addition to their baseline covariates, at various time points we
also record their time-varying exposure of interest, time-varying covariates, and indicators
for the event of interest (say death). Time varying confounding is ubiquitous in these
situations: the exposure of interest depends on past covariates that confound the effect
of the exposure on the outcome of interest, in turn exposure affects future confounders;
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right censoring may also be present in a study of this nature, often in response to past
covariates and exposure. One way to assess the comparative effect of different regimens
of interest is to study the hazard as a function of such regimens. The features of this
hazard are often encoded in a marginal structural model. This chapter builds upon the
work of Petersen, Schwab, Gruber, Blaser, Schomaker, and van der Laan (2014) to present
a targeted maximum likelihood estimator for the marginal structural model for the hazard
function under longitudinal dynamic interventions. The proposed estimator is efficient and
doubly robust, hence offers an improvement over the incumbent IPW estimator.

Chapter 3: A crucial component of comparative effectiveness research is evaluating the
modification of an exposure’s effect by a given set of baseline covariates (effect modi-
fiers). In complex longitudinal settings where time-varying confounding exists, this effect
modification analysis is often performed using a marginal structural model. Generally, the
conditioning effect modifiers in a MSM are cast as variables of the observed past. Yet,
in some applications the effect modifiers of interest are in fact counterfactual. For in-
stance, for a specific value of the first-line treatment, one may wish to evaluate the effect
modification of a second-line-treatment by a post first-line-treatment variable, wherein the
first-line-treatment assignment shares common determinants with the outcome of interest.
In this case a simple stratification on the first-line treatment will only yield effect modifi-
cation over a subpopulation given by said determinants. Hence, the wished parameter of
interest should be formulated in terms of randomization on first-line treatment as well. In
another example, the effect modifiers may be subject to missingness, which may depend
on other baseline confounders; a simple complete-case analysis may introduce selection
bias due to the high correlation of these confounders with the missingness of the effect
modifier. In this case, one would formulate the wish parameter of interest in terms of
an intervention on missingness. We call these counterfactual effect modifiers. In such
situations, analysis by stratification alone may harbor selection bias. In this chapter, we
investigate MSM defined by counterfactual effect modifiers. Firstly, we determine the
identification of the causal dose-response curve and MSM parameters in this setting. Sec-
ondly, we establish the semiparametric efficiency theory for these statistical parameters,
and present a substitution-based, semiparametric efficient and doubly robust estimator us-
ing the targeted maximum likelihood estimation methodology. However, as we shall see,
due to the form of the efficient influence curve, the implementation of this estimator may
prove arduous in applications where the effect modifier is high dimensional. To address
this problem, our third contribution is a projected influence curve (and the corresponding
TMLE estimator), which retains most of the robustness of its efficient peer and can be
easily implemented in applications where the use of the efficient influence curve becomes
taxing. In addition to these two robust estimators, we also present an IPW estimator, and
a non-targeted G-computation estimator.
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Chapter 4: In many causal inference problems, one is interested in the direct causal ef-
fect of an exposure on an outcome of interest that is not mediated by certain intermediate
variables. Robins and Greenland (1992) and Pearl (2001) formalized the definition of
two types of direct effects (natural and controlled) under the counterfactual framework.
The efficient influence curves (under a nonparametric model) for the various natural ef-
fect parameters and their general robustness conditions, as well as an estimating equation
based estimator using the efficient influence curve, are provided in Tchetgen Tchetgen
and Shpitser (2011a). In this chapter, we apply the targeted maximum likelihood frame-
work to construct a semiparametric efficient, multiply robust, substitution estimator for
the natural direct effect which satisfies the efficient influence curve equation derived in
Tchetgen Tchetgen and Shpitser (2011a). We note that the robustness conditions in Tchet-
gen Tchetgen and Shpitser (2011a) may be weakened, thereby placing less reliance on the
estimation of the mediator density. More precisely, the proposed estimator is asymptoti-
cally unbiased if either one of the following holds: i) the conditional mean outcome given
exposure, mediator, and confounders, and the mediated mean outcome difference are con-
sistently estimated; (ii) the exposure mechanism given confounders, and the conditional
mean outcome are consistently estimated; or (iii) the exposure mechanism and the medi-
ator density, or the exposure mechanism and the conditional distribution of the exposure
given confounders and mediator, are consistently estimated. If all three conditions hold,
then the effect estimate is asymptotically efficient. Extensions to the natural indirect effect
are also discussed.

Chapter 5: In this chapter, we study the effect of a time-varying exposure mediated by
a time-varying intermediate variable. More specifically, consider a study where baseline
covariates, time-varying treatment, time-varying mediator, time-varying covariates, and
an outcome process are observed on subjects that are followed over time. The treatment
of interest is influenced by past covariates and mediator, and affects future covariates and
mediator. Right censoring, if present, occurs in response to past covariates and treatment.
We also allow the outcome to be a time-to-event (say survival) process, in which case,
at each time we record whether death has occurred. Due to subtleties that are unique to
time-varying exposures and mediators, we reformulate the mediation problem in terms
of stochastic interventions, as proposed by Didelez, Dawid, and Geneletti (2006) in the
one-time point setting. Upon establishing the estimands of interest, we derive the efficient
influence curves and establish their robustness properties. Applying the targeted maxi-
mum likelihood methodology, we use these efficient influence curves to construct multi-
ply robust and efficient estimators. We also present an IPW estimator and a non-targeted
substitution estimator for these parameters.
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Part I

Covariate-Adjusted Response-Adaptive
(CARA) Randomized Controlled (RCT)

Trial Designs
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Chapter 1

When Adaptive CARA RCT meets
Data-Adaptive Estimation: Targeted
Maximum Likelihood Estimation for
Adaptive Randomized Controlled Trial
Designs

1.1 Introduction
Adaptive clinical trial design methods have garnered growing attention in the recent years,
in large part due to their greater flexibility over their traditional counterparts. In a tradi-
tional trial design, key aspects of the trials are set before the start of the data collection,
usually based on assumptions about certain parameters of the study that are yet unsure
at the design stage. The success of the trial, therefore, depends on the accuracy of these
original assumptions. By contrast, an adaptive trial design allows pre-specified modifica-
tions to some aspects of the on-going trial based on analysis of the accruing data, while
preserving the validity and integrity of the trial. This flexibility potentially translates into
more efficient studies (e.g. shorter duration, fewer subjects) or greater chance of answer-
ing clinical questions of interest (e.g. detecting a treatment effect if one exists, broader
does-response information, etc).

We focus here on the study of the so-called adaptive group-sequential covariate-adjusted
response-adaptive (CARA) randomized controlled trials (RCT). In an adaptive CARA
RCT, the treatment randomization schemes are allowed to depend on the patient’s pre-
treatment covariates, and the investigators have the opportunity to adjust these schemes
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during the course of the trial based on accruing information, including previous responses,
in order to meet some pre-specified objectives. In a group-sequential CARA RCT, such
adjustments take place at interim time points given by sequential inclusion of blocks of c
patients, where c≥ 1 is a pre-specified integer. We consider the case of c= 1 for simplicity
of exposition, though the discussions generalize to any c > 1.

The trial protocol pre-specifies the observed data structure, scientific parameters of in-
terest, analysis methods, and a criterion characterizing an optimal randomization scheme,
which ought to reflect the goals of the adaptation and can be approximated using the ac-
cruing data. Here, baseline covariates and a primary outcome of interest are measured
on each patient. We choose the marginal treatment effect of a binary treatment as the
scientific parameter of interest, ψ0. The analysis employs targeted minimum loss estima-
tion (TMLE). The TMLE methodology was first introduced by van der Laan and Rubin
(2006) in the independent identically distributed (i.i.d.) setting; its extension to adaptive
RCTs was considered in van der Laan (2008) and Chambaz and van der Laan (2013), upon
which a large part of this chapter relies. For concreteness sake, we choose the so-called
Neyman design as our optimal randomization scheme. The Neyman design minimizes
the Cramér-Rao lower bound on the asymptotic variances of a large class of estimators
of ψ0. The resulting Neyman allocation probabilities are evaluated conditionally on the
baseline covariates. By targeting the Neyman design, we aim at improving the efficiency
of the study, i.e., at reaching a valid result using as few blocks of patients as possible. We
emphasize that the results and procedures presented here are generally applicable to other
parameters and optimal randomization schemes, after corresponding adjustments.

Since the randomization is response-adaptive, a consistent estimator of the conditional
response model can more effectively steer the the adaptation towards the optimal ran-
domization scheme. Moreover, since a patient’s primary outcome is often correlated with
many individual characteristics, greater latitude in adjusting for these baseline covariates,
in both treatment allocation and outcome estimation, allows the investigators to better ac-
count for heterogeneity in the patient population. With the complexity of modern trials,
information is often available on vast number of covariates; traditional parametric regres-
sion techniques are often too restrictive in such a high-dimensional scenario. While the
use of data-adaptive techniques is very common in i.i.d. context (e.g. traditional RCT), its
applicability in an adaptive RCT remains rather uncharted.

In this chapter, we present a general framework to construct and analyze group sequen-
tial CARA RCTs that admits the use of flexible approaches in constructing randomization
schemes and in estimating the conditional response model. The proposed framework is
targeted in the sense that: (i) the sequence of randomization schemes is group-sequentially
determined, using the accruing data, by targeting a formal, user-specified optimal random-
ization design; (ii) the paradigm of targeted minimum loss estimation aims to optimize the
bias-variance tradeoff of the estimates of the nuisance parameters towards the nonparamet-
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rically defined parameter of interest. This framework injects flexibility into randomization
adaptation and response prediction through loss-based estimation over classes of functions
that may change with sample size. We establish that under appropriate empirical process
conditions, the resulting sequence of randomization schemes converges to a fixed design,
and the proposed estimator is consistent (regardless of the consistency of the response
model) and asymptotically Gaussian, with an asymptotic variance that is estimable from
data, hence giving rise to valid confidence intervals of given asymptotic levels. Moreover,
the limiting design equals the target Neyman design if the response model is consistent and
if the Neyman design can be approximated by the user-supplied classes of randomization
schemes.

To illustrate the proposed framework, we consider LASSO regression in estimating the
conditional outcome given treatment and baseline covariates. This example encompasses
the parametric approach of Chambaz and van der Laan (2013) as a special case. The
asymptotic results ensue under minimal condition on the growth of the dimension of the
regression coefficients and mild conditions on the complexity of the classes of randomiza-
tion schemes. The performance of the procedure is evaluated in a simulation study.

Before we delve into the main contents, let us motivate our discussion with a bird’s
eye view of the landscape of CARA designs.

Literature Review
Adaptive randomization has a long history that can be traced back to the 1930s. We re-
fer to Rosenberger (1996), Rosenberger, Sverdlov, and Hu (2012), (Hu and Rosenberger,
2006, Section 1.2) and (Jennison and Turnbull, 2000, Section 17.4) for a comprehensive
historical perspective. Many chapters are devoted to the study of response-adaptive ran-
domizations, which select current treatment probabilities based on responses of previous
patients, but not on the covariates of the current patients. We refer to Hu and Rosenberger
(2006), Chambaz and van der Laan (2011a), Rosenberger et al. (2012) for a bibliogra-
phy on that topic. In a heterogeneous population, however, it is often sensible to take
into account the patients’ characteristics for treatment assignment. CARA randomiza-
tion tackles heterogeneity by dynamically calculating the allocation probabilities based
on previous responses and current and past values of certain covariates. Compared to the
broader literature on response-adaptive randomization, the advances in CARA randomiza-
tion are relatively recent, but growing steadily. Among the first approaches, Rosenberger,
Vidyashankar, and Agarwal (2001), Bandyopadhyay and Biswas (2001) considered ran-
domization procedures defined as explicit functions of the conditional responses, which
are modeled by generalized linear models. Though these procedures are not defined based
on formal optimality criteria, their general goal is to allocate more patients to their cor-
responding “better” treatment arm. Atkinson and Biswas (2005) presented a biased-coin
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design with skewed allocation, which is determined by sequentially maximizing a function
that combines the variance of the parameter estimate, based on a Gaussian linear model
for the conditional response, and the conditional treatment effect given covariates. Up till
here, very little work had been devoted to asymptotic properties of CARA designs. Sub-
sequently, Zhang, Hu, Cheung, and Chan (2007), Zhang and Hu (2009) established the ef-
ficiency theory for CARA designs converging to a given target design when the responses
follow a generalized linear model, and proposed a covariate-adjusted doubly-adaptive bi-
ased coin design whose asymptotic variance achieves the efficiency bound. Chang and
Park (2013) proposed a sequential estimation of CARA designs under generalized linear
models for the response. This procedure allocates treatment based on the patients’ baseline
covariates, accruing information and sequential estimates of the treatment effect and uses
a stopping rule that depends on the observed Fisher information. With regard to hypothe-
sis testing, Shao, Yu, and Zhong (2010), Shao and Yu (2013) provided asymptotic results
for valid tests under generalized linear models for the responses. Most recently, progress
has also been made in CARA designs in the longitudinal settings, see for example Biswas,
Bhattacharya, and Park (2014), Huang, Liu, and Hu (2013), Sverdlov, Rosenberger, and
Ryeznik (2013). In the bulk of literature listed here, the analytic strategy fundamentally
relies on defining the parameter of interest as regression coefficients on a generalized lin-
ear model. While this approach yields accessible estimators, the validity of its inference
is at the mercy of the model specification. In particular, if the model is misspecified, the
parameter estimates will be biased under the adaptive RCT sampling; in these cases, a
standard RCT would be preferable.

Chambaz and van der Laan (2013) proposed a targeted CARA design where the treat-
ment allocation is conditional on a summary measure of the covariates that takes only
finitely many values. This framework defines the parameter of interest nonparametrically,
and applies TMLE methodology in the analysis, thus leading to consistent and asymptotic
normal parameter estimates that are robust to misspecification of the parametric working
model for the response. However, assigning treatment based on finitely valued summary
measures is perhaps too restrictive in real-life RCTs where response to treatment may
be correlated with a large number of a patient’s baseline characteristics, some of which
continuous. Moreover, as mentioned before, although a misspecified parametric working
model for the response does not hinder the consistency of the effect estimate, it may still
hamper the estimate’s efficiency and the convergence of the CARA design to the targeted
optimal design.

We generalize the results of Chambaz and van der Laan (2013) to address the two
issues mentioned above. We adopt a loss-based approach to the construction of more
flexible CARA randomization schemes while exploiting data-adaptive estimators for the
estimation of the response model, in search for more effective targeting of the optimal
scheme, greater efficiency of the parameter estimate through better variable adjustments,
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and more accurate estimation of the variance of the estimator.

Organization
The remainder of this chapter is organized as follows. In section 1.2, we introduce a gen-
eral framework for constructing and analyzing an adaptive group-sequential CARA RCT
design using data-adaptive loss-based estimation and TMLE procedure. In section 1.3, we
present the theoretical results on the convergence of this targeted CARA design and the
asymptotics, consistency and central limit theorem of the TMLE estimator. We illustrate
this framework using the LASSO methodology to model the conditional response given
baseline covariates and treatment in section 1.4. The performance of the LASSO-based
group-sequential CARA RCT is assessed in a simulation study in section 3.5. The chapter
closes on a summary in Section 1.6.

1.2 Targeted CARA RCT using Data-adaptive
Loss-based Estimation

In the introduction, we have outlined the incentives to use flexible procedures to estimate
the conditional response given treatment and covariates and to construct the randomization
schemes. Such procedures we consider here stem from data-adaptive loss-based estima-
tors for the nuisance parameters (van der Laan and Robins (2003a)); in particular, both the
conditional response estimator and the adaptive randomization scheme are defined as min-
imizers of a user-specified weighted loss, over (possibly) changing classes of functions.

We begin by establishing the key features of the trial, namely, the parameter of inter-
est, analysis method, and the optimal randomization scheme. Then, we describe the data
generating process and the targeted minimum loss estimation procedure.

Observed Data Structure, Parameter of Interest and Optimal Design
Prior to data collection, the trial protocol specifies the observed data structure, parameter
of interest and the target optimal randomization design, the latter two expressed in terms of
features of the true, unknown data-generating process in the population of interest. In this
chapter we consider a basic data structure and a simple parameter of interest. The range of
application of the methods presented here extends beyond this limited yet instructive case.

Sections 2.2, 2.2 and 1.2 are respectively devoted to the presentation and discussion of
the observed data structure, parameter of interest, and optimal randomization design.



CHAPTER 1. TMLE FOR CARA RCT 7

Observed Data Structure

The data structure O writes as O ≡ (W,A,Y ), where W ∈ W consists of the baseline co-
variates (some of which may be continuous), A ∈ A ≡ {0,1} is the binary treatment of
interest, and Y ∈ Y is the primary outcome of interest. We assume that the outcome
space O ≡W ×A ×Y is bounded. Without loss of generality, we may then assume that
Y ∈ Y ≡ (0,1) is bounded away from 0 and 1.

Every distribution of O consists of three components. On one hand, the marginal
distribution of W and the conditional distribution of Y given (A,W ) form a couple which
is given by nature. On the other hand, the conditional distribution of A given W , also
known as (a.k.a.) randomization scheme, is controlled by the investigators of the RCT.
To reflect this dichotomy, we denote the distribution of O as PQ,g, where Q equals the
couple formed by the marginal distribution of W and the conditional distribution of Y
given (A,W ), and g equals the randomization scheme. We shall use G to denote the set of
all randomization schemes. For a given Q, we denote QW the related marginal distribution
of W and QY the related conditional expectation of Y given (A,W ). Moreover, we denote
Q0 the true couple in our population of interest, which is unknown to us, and we assume
that this Q0 does not vary during the whole duration of the RCT. Thus, for any Q and g,
PQ0,g is the true, partially unknown distribution of O when treatment is drawn using g, and
EPQ,g(Y |A,W ) = QY (A,W ), PQ,g(A = 1|W ) = g(1|W ) = 1−g(0|W ) PQ,g-almost surely.

Parameter of Interest

In this chapter, the parameter of interest we consider is the marginal treatment effect on an
additive scale:

ψ0 ≡ EPQ0 ,g
{QY,0(1,W )−QY,0(0,W )}=

∫
(QY,0(1,w)−QY,0(0,w))dQW,0(w),

which evidently depends on PQ0,g only through Q0. Of particular interest in medical, epi-
demiological and social sciences research, this parameter can be interpreted causally un-
der assumptions on the data-generating process (Rosenbaum and Rubin (1983) and Pearl
(1995)). Let M denote the set of all possible distributions of O. Central to our approach
is formulating ψ0 as the value at any PQ0,g of the mapping Ψ : M → [−1,1] characterized
by

Ψ(PQ,g)≡ EPQ,g {QY (1,W )−QY (0,W )}=
∫
(QY (1,w)−QY (0,w))dQW (w).

Since Ψ only depends on PQ,g through Q, we may sometimes write Ψ(Q) in place of
Ψ(PQ,g).

The mapping Ψ is pathwise differentiable; its efficient influence curve sheds light on
the asymptotic properties of all regular and asymptotically linear estimators of Ψ(PQ0,g).
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The latter statement is formalized in the following lemma —we refer the reader to Bickel,
Klaassen, Ritov, and Wellner (1998), van der Laan and Robins (2003a), van der Vaart
(1998b) for definitions and proofs.

Lemma 1.1. The mapping Ψ : M → [−1,1] is pathwise differentiable at every PQ,g ∈
M with respect to (wrt) the maximal tangent space. Its efficient influence curve at PQ,g,
denoted as D∗(PQ,g), orthogonally decomposes as

D∗(PQ,g)(O) = DW (Q,g)(W )+DY (Q,g)(O)

with

DW (Q)(W ) ≡ QY (1,W )−QY (0,W )−Ψ(Q),

DY (Q,g)(O) ≡ 2A−1
g(A|W )

(Y −QY (A,W )) .

The variance VarPQ,g D∗(P)(O) is a generalized Cramér-Rao lower bound for the asymp-
totic variance of any regular and asymptotically linear estimator of Ψ(PQ,g) when sam-
pling independently from PQ,g.

Moreover, if either QY = Q′Y or g = g′ then EPQ,gD∗(PQ′,g′)(O) = 0 implies Ψ(PQ,g) =
Ψ(PQ′,g′).

The last statement of Lemma 2.1, often referred to as a “double-robustness” property,
assures that D∗ can be deployed to safeguard against model misspecifications when esti-
mating ψ0. This is especially relevant in an RCT setting, since the randomization scheme
g is known whenever one samples an observation from PQ,g.

Optimal Design

Suppose our goal of adaptation is to reach a randomization scheme of higher efficiency,
i.e., to obtain a valid estimate of ψ0 using as few blocks of patients as possible. By
Lemma 2.1, the asymptotic variance of a regular, asymptotically linear estimator is lower-
bounded by ming∈G VarPQ0,g

D∗(PQ0,g). In this light, the Neyman design (see e.g. Hu and
Rosenberger (2006))

g0 ≡ argmin
g∈G

VarPQ0 ,g
D∗(PQ0,g) = argmin

g∈G
EPQ0 ,g

(Y −QY,0(A,W ))2

g2(A|W )
(1.1)

can be considered as an optimal randomization design (“optimal design” for short). Since
its definition involves the unknown Q0, the optimal design g0 is unknown too. It is read-
ily seen that g0 is characterized by g0(1|W ) = σ0(1,W )/(σ0(1,W ) + σ0(0,W )), where
σ2

0 (A,W ) is the conditional variance of Y given (A,W ) under Q0. It therefore appears that,
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under this randomization scheme, the treatment arm with higher probability for a patient
with baseline covariates W is the one for which the conditional variance of the outcome is
higher.

In a situation where we knew the optimal design, we could undertake the covariate-
adjusted trial consisting of drawing independently observations from PQ0,g0 . The next
task would be to build a regular, asymptotically linear estimator with asymptotic variance
VarPQ0,g0

D∗(PQ0,g0) based on the resulting data. In the present situation, we are going to
“target” g0 at some pre-determined interim steps. By targeting g0 we mean estimating g0
based on past observations and relying on the resulting estimator to collect the next block
of data. In addition to targeting g0, each interim analysis will also consist of building an
adaptive, targeted, regular and asymptotically linear estimator of ψ0. The details of this
procedure are presented in Section 1.2.

Data-Generating Mechanism and Estimation Procedures
Describing the data-generating mechanism amounts to presenting how we target the opti-
mal design g0 at each interim step, which involves the estimation of the conditional expec-
tation QY,0. We initiate the data-generating process in Section 5.2, describe a data-adaptive
loss-based estimation procedure of QY,0 in Section 1.2 and the related targeting procedure
of g0 in Section 1.2. By then, the data-generating mechanism is fully characterized by
recursion.

Initiating the Data-Generating Mechanism

In what follows, we denote Oi ≡ (Wi,Ai,Yi) the i-th observation that we sample. The in-
dexing indicates the time ordering of the data collection: j < i means that O j was collected
before or at the same time as Oi. For convenience, we let On≡ (O1, . . . ,On) be the ordered
vector of first n observations, with convention O0 ≡ /0. In the adaptive trial, the treatment
Ai is drawn conditionally on Wi from the Bernoulli law with parameter gi(1|Wi), where
the randomization scheme gi : A → [0,1] depends on past observations Oi−1. We set
gn≡ (g1, . . . ,gn), the ordered vector of first n randomization schemes. The data-generating
distribution of On is denoted PQ0,gn . It is formally characterized by the following factor-
ization of the density of On wrt the product of the dominating measures: for any g ∈ G ,

PQ0,gn(On) =
n

∏
i=1

PQ0,gi(Oi) =
n

∏
i=1

QW,0(Wi)×gi(Ai|Wi)×PQ0,g(Yi|Ai,Wi).

Let gb be the balanced randomization scheme wherein each arm is assigned with prob-
ability 1/2 regardless of baseline covariates. For a pre-specified n0, we first draw n0 inde-
pendent observations O1, . . . ,On0 from PQ0,gb . At an interim point, suppose one has thus
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far drawn n observations On ∼ PQ0,gn . An estimator of QY,0 is obtained based on On;
the next randomization scheme gn+1 is defined using said estimator and (On,gn), then the
(n+ 1)-th observation On+1 is drawn from PQ0,gn+1 . We will describe the estimation of
QY,0 and construction of gn+1 in the two following sections.

Data-Adaptive Loss-based Estimation of the Conditional Outcome Expectation

At an interim point, we have drawn n observations On ∼ PQ0,gn . The construction of our
estimator of QY,0 relies on a working model Q1,n and on a loss function L for QY,0, both
specified by the investigators. Specifically, QY,0 is the minimizer of QY 7→PQ0,gL(QY ) over
QY , the set of all conditional expectations of Y given (A,W ), and Q1,n is a user-specified
subset of QY . Note that the value of g ∈ G plays no role in this characterization. We
can represent Q1,n ≡ {QY,β : β ∈ Bn}, where Bn is an indexing set for Q1,n. Recall from
section 1.2 that Y is bounded away from 0 and 1; therefore, we also require that Q1,n be
uniformly bounded away from 0 and 1 across all n. That is, there exists constants mY and
MY satisfying 0 < mY < infQY∈

⋃
n Q1,n infO QY (A,W ) and supQY∈

⋃
n Q1,n

supO QY (A,W ) <
MY < 1.

Common among the possible loss functions are the least-square loss function

L(QY,β )(O)≡ (Y −QY,β (A,W ))2, (1.2)

and, since Y is assumed bounded from 0 and 1, the quasi negative-log-likelihood loss
function

−L(QY,β )(O)≡ Y log(QY,β (A,W ))+(1−Y ) log
(
1−QY,β (A,W )

)
. (1.3)

Given a user-specified reference gr ∈ G that is bounded away from 0 and 1, we estimate
QY,0 with the minimizer of the weighted empirical risk:

QY,βn ∈ argmin
QY,β∈Q1,n

1
n

n

∑
i=1

(
L(QY,β )(Oi)

gr(Ai|Wi)

gi(Ai|Wi)

)
. (1.4)

Though different loss functions can yield risks that are minimized at QY,0 over QY ,
the choice of loss function, however, distinctly affects the behavior of the estimator and
conveys differential interpretation for its performance. Therefore, it is an important deci-
sion left to be addressed by the investigator. The class Q1,n may depend on n, in which
case its complexity grows with sample size; for inference sake, such growth should re-
main tethered. In section 1.3, we will learn sufficient conditions on the complexity of
Q1,n under which the empirical risk converges to the true risk over Q1,n. The choice of
Q1,n, together with the loss function L, determines the technique used to estimate QY,0.
For instance, in the traditional parametric approach, Q1,n = Q1 for all n, and this class is
indexed by a finite dimensional parameter set. In a spline regression model, Q1,n is the
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the set of smooth piecewise polynomial functions over the bounded A ×W with a given
degree and knot sequence. In partitioning estimation, for a given partition Πn of A ×W ,
Q1,n is the set of all piecewise constant functions wrt Πn, and can be represented as the
span of indicator functions on the partition cells. Under the LASSO methodology, which
we depict in section 1.4, Q1,n is the linear span of a given basis, with Bn being the set of
coefficient vectors with a bounded L1-norm and dimension that may depend on n.

Here, the reference randomization scheme gr delivers the option to differentially weight
each observation when fitting of the estimator QY,βn . But more than that, as we shall see
in section 1.3, gr will also serve to define an L2 norm on QY .

Adapting Towards the Optimal Design

We now turn to the construction of the next randomization scheme gn+1.
Our optimal design minimizes g 7→ VarPQ0,g

D∗(PQ0,g) over the class G of all random-
ization schemes, see (1.1). We adopt a loss-based approach, by defining gn+1 as the mini-
mizer in g of an estimator of VarPQ0,g

D∗(PQ0,g) over a user-specified class of randomization
schemes. This approach is applicable in the largest generality. In the case that W is dis-
crete, or if one is willing to assign treatment only based on a discrete summary measure V
of W , gn+1 can be defined explicitly as an estimator of the Neyman design based on QY,βn

and observations On; we refer the readers to Chambaz and van der Laan (2013) for details.
To proceed, we first note that, for all g′ ∈ G ,

g0 = argmin
g∈G

EPQ0 ,g
′
(Y −QY,0(A,W ))2

g(A|W )g′(A|W )
.

This equality teaches us that for the sake of estimating g0 using observations drawn from
PQ0,g′ we may consider the loss function LQY characterized over G by

LQY (g)(O)≡ (Y −QY (A,W ))2

g(A|W )
,

provided it is weighted by 1/g′(A|W ). Note that this loss function is indexed by a given
QY .

Recall that we have already drawn n observations On ∼ PQ0,gn and estimated QY,0
with QY,βn . Now, consider a class of randomization schemes, G1,n ⊂ G that may depend
on n and are uniformly bounded away from 0 and 1 across all n. In other words, for
G1 ≡

⋃
n≥1 G1,n, 0 < mg ≤ infg∈G1 infO∈O g(A |W ) and supg∈G1

supO∈O g(A |W )≤Mg < 1,
for some fixed constants mg and Mg. We define the next randomization scheme as

gn+1 ∈ argmin
g∈G1,n+1

1
n

n

∑
i=1

LQY,βn
(g)(Oi)

gi(Ai|Wi)
= argmin

g∈G1,n+1

1
n

n

∑
i=1

(
Y −QY,βn(Oi)

)2

g(Ai|Wi)gi(Ai|Wi)
(1.5)
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We emphasize the importance of the uniform boundedness of the union G1 when choosing
the classes of estimators G1,n. In particular, this uniform boundedness implies the follow-
ing property: given any gr ∈ G that is bounded away from 0 and 1, there exists some
constant κ > 0, such that

∥∥∥ g
gr

∥∥∥
∞

≤ κ , for all g ∈ G1. This property is pivotal in obtaining
asymptotic results in the next section; for ease of reference, we shall call it the dominated
ratio property of G1.

In many applications, it suffices to use a fixed class G1,n = G1 for all n. However, in
some situations, e.g if the population is very heterogeneous, a suitable but fixed G1 may
be too large for the adaptation to begin at a reasonable point (as a sizable sample may be
required), and thereby depriving the trial of many of the advantages of an adaptive design.
By allowing the class of randomization schemes to depend on n, one gains the flexibility
to modify such classes according to the modesty or generosity of the sample size.

This completes the description of our data-generating mechanism.

Targeted Minimum Loss Estimation
Given n observations On ∼ PQ0,gn and the estimator QY,βn of QY,0 defined in (1.4), we
may carry out the estimation of the parameter of interest ψ0. We choose the targeted
minimum loss estimation methodology. In the setting of a covariate-adjusted RCT with
fixed design, a TMLE estimator is unbiased and asymptotically Gaussian regardless of
the specification of the working model used for the estimation of QY,0. It is known that
unbiasedness and asymptotic normality still hold in the context of this chapter (CARA
RCT for the estimation of ψ0 based on copies of O), if the randomization schemes depend
on W only through a summary measure taking finitely many values and the working model
used for the estimation of QY,0 is a simple linear model (this basically amounts to taking
dn = d constant and bn =M) in Section 1.4), see Chambaz and van der Laan (2013). Yet by
relying on more flexible randomization schemes and on more adaptive estimators of QY,0
we may achieve a greater efficiency through better estimation of the optimality criteria
that may facilitate adaptation toward the optimal design, better adjustment of the variables
that may directly improve the estimation of the parameter of interest, and more accurate
estimation of the variance of the estimator.

In a glimpse, the proposed strategy consists of targetedly updating the initial estimator
QY,βn by minimizing a pre-specified loss along a least favorable (wrt ψ0) submodel through
QY,βn , and then evaluating Ψ at the resulting updated estimator of Q0. Formally, consider
the negative-log-likelihood loss, see (1.3), which we denote L∗. This is a valid loss function
for QY upon our assumption that Y takes values within the unit interval. Correspondingly,
consider the following one-dimensional parametric working model through QY,βn: for a
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given closed, bounded interval E ⊂ R containing 0 in its interior,{
QY,βn(ε)≡ expit

(
logit(QY,βn)+ εH(gn)

)
: ε ∈ E

}
, (1.6)

with notation H(g)(O)≡ 2A−1
g(A|W ) . This model passes through QY,βn at ε = 0 and satisfies the

score condition ∂

∂ε
L∗(QY,βn(ε))|ε=0 =DY (QY,βn,gn). The optimal fluctuation parameter εn

minimizes the weighted empirical risk along the working model:

εn ∈ argmin
ε∈E

1
n

n

∑
i=1

L∗(QY,βn(ε))(Oi)
gn(Ai|Wi)

gi(Ai|Wi)
. (1.7)

Set Q∗Y,βn
≡ QY,βn(εn) and Q∗

βn
≡ (QW,n,Q∗Y,βn

), where QW,n is the empirical marginal
distribution of the W . The TMLE estimator of ψ0 is defined as

ψ
∗
n ≡

1
n

n

∑
i=1

Q∗Y,βn
(1,Wi)−Q∗Y,βn

(0,Wi).

It satisfies ψ∗n = Ψ(Q∗
βn
).

1.3 Asymptotics
In this section, we assay the theoretical properties of the targeted CARA design and its
corresponding estimator depicted in section 1.2. Throughout this section, we should bear
in mind that G1 =

⋃
n G1,n satisfies the dominated ratio property outlined in section 1.2. We

first introduce further notation in Section 1.3, then we investigate the convergence of the
targeted CARA design in Section 1.3 and the asymptotic behavior of the TMLE estimator
in Section 1.3.

Notation
In general, given a known g ∈ G and an observation O drawn from PQ0,g, Z ≡ g(A|W ) is a
deterministic function of g and O. Note that Z should be interpreted as a weight associated
with O and will be used as such. Therefore, we can augment O with Z, i.e., substitute
(O,Z) for O, while still denoting (O,Z) ∼ PQ0,g. In particular, during the course of our
trial, conditionally on Oi−1, the randomization scheme gi is known and we can substitute
(Oi,Zi) = (Oi,gi(Ai|Wi)) ∼ PQ0,gi for Oi drawn from PQ0,gi . By uniform boundedness of
G1, the inverse weights 1/gi(Ai|Wi) are bounded.

The empirical distribution of On is denoted Pn. For a function f : O × [0,1]→ Rd ,
we will use the notation Pn f ≡ n−1

∑
n
i=1 f (Oi,Zi). Likewise, for any fixed PQ,g ∈M ,
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PQ,g f ≡ EPQ,g f (O,Z) and, for each i = 1, . . . ,n, PQ0,gi f ≡ EQ0,gi[ f (Oi,Zi)|Oi−1], PQ0,gn f ≡
n−1

∑
n
i=1 EQ0,gi[ f (Oi,Zi)|Oi−1].

We endow QY with the norm ‖ · ‖2,PQ0,g
r given by

‖QY −Q′Y‖2
2,PQ0 ,g

r ≡ EPQ0 ,g
r

(
QY (A,W )−Q′Y (A,W )

)2
.

Similarly, we endow the set G with the norm ‖ · ‖2,QW,0 given by

‖g−g′‖2
2,QW,0

≡ EQW,0

(
g(1|W )−g′(1|W )

)2
.

More generally, for a function f on O× [0,1], we shall use ‖ · ‖∞ to denote the sup norm
‖ f‖∞ ≡ supO×[0,1] | f (O,Z)|, and for an given P ∈M and r, and we shall use ‖ · ‖r,P to
denote the Lr(P) norm ‖ f‖r,P ≡ (P f r)1/r.

For any class of functions F , equipped with a norm ‖ · ‖ and δ > 0, N(δ ,F ,‖ · ‖) is
the δ -bracketing number of F wrt ‖ · ‖ and J(1,F ,‖ · ‖) ≡

∫ 1
0

√
logN(δ ,F ,‖ · ‖)dδ is

the corresponding bracketing entropy (evaluated at 1).

Convergence of the Targeted CARA Design
Our first concern is the convergence of the estimators QY,βn , see (1.4). The equivalent
of this result in the i.i.d. setting is well established (e.g. van der Vaart (1998b), Pollard
(1984)). The following proposition revises those results for the current adaptive RCT
setting.

Proposition 1.1 (Convergence of QY,βn).
Consider the following assumptions:

A1. The conditional density under Q0 of Y given (A,W ) wrt some dominating measure is
bounded away from 0.

A2. There exists a QY,β0 , bounded away from 0 and 1, such that for all δ > 0,

PQ0,gr L(QY,β0)< inf{
‖QY−QY,β0

‖2,PQ0 ,g
r≥δ :QY∈QY

}PQ0,gr L(QY ).

A3. For each n, there exists some QY,βn,0 ∈Q1,n satisfying

PQ0,gr L(QY,βn,0) = inf
QY,β∈Q1,n

PQ0,gr L(QY,β ).

Moreover, PQ0,grL(QY,βn,0)→ PQ0,grL(QY,β0) as n→ ∞.
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A4. The classes Q1,n satisfy J(1,L(Q1,n),‖ · ‖2,PQ0,g
r ) = o(

√
n).

Under A1–A4,
∥∥QY,βn−QY,β0

∥∥
2,PQ0,g

r
→ 0 in probability.

Proof. See appendix.

This proposition stipulates conditions under which QY,βn converges to some limiting
QY,β0 , which may depend on the user-supplied reference design gr. If the true response
model QY,0 can be approximated by Q1,n, then QY,β0 = QY,0 by virtue of the loss function
selection. Assumption A2 requires that approximately minimizing the risk PQ0,grL(QY )
should specify QY,β0 . Assumption A3 requires that the approximation error be tending to
0 as n→ ∞. The main constraint is assumption A4, which concerns the ”size” or com-
plexity of the classes L(Q1,n) (and hence of Q1,n). Understandably, the class of candidate
estimators Q1,n may grow with sample size; if this rate of increasing complexity (ex-
pressed in terms of bracketing integral) is controlled at o(

√
n), then we can still achieve

convergence of the estimators QY,βn .

We now turn to the convergence of the targeted CARA design {gn}n≥1, see (1.5),
toward a fixed, limiting design g∗0 ∈ G .

Proposition 1.2 (Convergence of the targeted CARA Design).
Consider the setup of Proposition 1.1 and the following additional assumptions:

A5. There exists g∗0 ∈ G , bounded away from 0 and 1, such that for all δ > 0

PQ0,gr

LQY,β0
(g∗0)

gr < inf{
‖g−g∗0‖2,QW,0

≥δ :g∈G
}PQ0,gr

LQY,β0
(g)

gr . (1.8)

Similarly, for each n, there exists some gn,0 ∈ G1,n satisfying

PQ0,gr

LQY,β0
(gn,0)

gr = inf
g∈G1,n

PQ0,gr

LQY,β0
(g)

gr .

Moreover, PQ0,gr
LQY,β0

(gn,0)

gr → PQ0,gr
LQY,β0

(g∗0)

gr , as n→ ∞.

A6. The classes 1/G1,n ≡ {1/g : g ∈ G1,n} satisfy J(1,1/G1,n,‖ · ‖2,PQ0,g
r ) = o(

√
n).

A7. Let h1(QY )(O,Z)≡
∣∣QY (O)−QY,β0(O)

∣∣.
The classes h1(Q1,n) satisfy J(1,h1(Q1,n),‖ · ‖2,PQ0,g

r ) = o(
√

n).

Under A1–A7, ‖gn(1|W )−g∗0(1|W )‖2,QW,0 → 0 in probability.
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Proof. See appendix.

We have already emphasized that through the choice of G1,n, the investigators of the
RCT benefit from a great flexibility in treatment allocation. The main constraint on the
classes G1,n is A6, a condition on the complexity/richness of the class. We refer the reader
to (van der Vaart, 1998b, Examples 19.7-19.11, Lemma 19.15) for typical examples. They
notably include “well-behaved” parametric classes and VC classes. In particular, G1,n can
be a fixed class (not dependent on n) that consists of randomization schemes such that the
allocation probabilities only depend on W through a discrete summary measure of it, as
considered in Chambaz and van der Laan (2013). Under our proposed framework, since
each adaptation of the randomization scheme depends on a loss function indexed by the
estimator of QY,0, convergence of the design will also depend on the complexity of the
classes of outcome estimators Q1,n — analogous to A4, assumption A7 controls the rate
of growth in complexity of Q1,n, as characterized by the bracketing entropy.

The limiting randomization scheme g∗0 depends on the user-supplied reference design
gr only through QY,β0: replacing gr with any g ∈ G in (1.8) does not alter the definition of
g∗0. Furthermore, g∗0 can be interpreted as the most optimal design in some G ′1 ⊃ G1 given
the limiting conditional outcome model QY,β0:

g∗0 ∈ argmin
g∈G ′1

VarPQ0 ,g
D∗Y (QY,β0 ,g) = argmin

g∈G ′1

{
VarPQ0 ,g

D∗Y (Q0,g)+PQ0,g

(
QY,0−QY,β0

)2

g2

}
.

Comparing the above equality with (1.1) yields that g∗0 = g0, the Neyman design, when-
ever QY,β0 = QY,0 and g0 ∈ G ′1. In general, g∗0 minimizes an objective function that is the
sum of the Cramér-Rao lower bound and a second-order residual. This underscores the
motivation for using a flexible estimator in estimating QY,0: by minimizing this second-
order residual of the limiting conditional outcome model, we are closer to adapting toward
the desired optimal design in G ′1.

The convergence in probability of gn also imply the following convergences that we
shall use later.

Corollary 1.1 (Convergence of 1
gn

, 1
n ∑

n
i=1 gi, 1

n ∑
n
i=1

1
gi

).
‖gn − g∗0‖2,QW,0 converges to 0 in probability, implies the following useful conver-

gences:

1. ‖gn−g∗0‖2,QW,0 converges to 0 in L1.

2.
∥∥∥ 1

gn
− 1

g∗0

∥∥∥
2,QW,0

converges to 0 in probability and in L1.

3.
∥∥1

n ∑
n
i=1 gi−g∗0

∥∥
2,QW,0

converges to 0 in probability and in L1.
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4.
∥∥∥1

n ∑
n
i=1

1
gi
− 1

g∗0

∥∥∥
2,QW,0

converges to 0 in probability and in L1.

Proof. See appendix.

Consistency and Central Limit Theorem
Having secured the convergence of the data-adaptive initial conditional outcome estimator
and of the targeted CARA RCT, we are now ready to obtain the consistency and a central
limit theorem for the targeted parameter estimate ψ∗n of ψ0. As with the initial LASSO
estimators of the conditional outcome, we are firstly concerned with the convergence of
the updated estimators Q∗Y,βn

, as this shall lay the stones for the consistency of ψ∗n and a
central limit theorem.

Proposition 1.3 (Consistency of ψ∗n ).
Consider the setups of Propositions 1.1 and 1.2 and the following additional assump-

tion:

A8. There exists a unique ε0 ∈ E such that

ε0 ∈ argmin
ε∈E

PQ0,g∗0L∗(QY,β0(ε)).

Assume that A1– A8 are met and define Q∗Y,β0
≡ QY,β0(ε0). It holds that ‖Q∗Y,βn

−
Q∗Y,β0

‖2,PQ0,g
r → 0 in probability. Moreover, ψ∗n consistently estimates ψ0.

Proof. See appendix.

If QY,β0 = QY,0 then ε0 = 0; therefore, the updating procedure in TMLE will preserve
the consistency of the initial estimator Ψ(QY,βn). More importantly, proposition 1.3 guar-
antees that even if QY,β0 6= QY,0, ψ∗n still consistently estimates ψ0, by double-robustness
of the methodology. As we shall see in proposition 1.4, the convergence of the updated
outcome estimators Q∗Y,βn

(to the truth or otherwise) is crucial for studying the asymptotic
behavior of the parameter estimate ψ∗n .

The following exact linear expansion of the TMLE estimate ψ∗n is useful in proving
the central limit theorem for ψ∗n .

Lemma 1.2 (Exact Linear Expression of ψ∗n ).
For both β = β0 and β = βn, introduce d∗Y,β and q∗Y,β given by

d∗Y,β (O,Z) ≡ 2A−1
Z

(
Y −Q∗Y,β (A,W )

)
,

q∗Y,β (W ) ≡ Q∗Y,β (1,W )−Q∗Y,β (0,W ),
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It follows from the definition of ψ∗n ≡Ψ(Q∗
βn
) that

ψ
∗
n −ψ0 = −PQ0,g∗0D∗(PQ∗

βn
,g∗0) (1.9)

= (Pn−PQ0,gn)
{

d∗Y,β0
+D∗W (Q∗

β0
)
}

+ (Pn−PQ0,gn)
{(

d∗Y,βn
−d∗Y,β0

)
+
(

q∗Y,βn
−q∗Y,β0

)}
(1.10)

Proof. See appendix.

In specifying the working model Q1,n for the conditional outcome expectation, we
have allowed the class of estimators to change with n. In general, given a sequence of
classes Fn, the nature of the functions may be very different between the classes, but
in order to establish a central limit theorem, it is required that the sequence of envelope
functions Fn satisfy the so-called Lindeberg condition:

PQ0,gr F2
n = O(1),

PQ0,gr F2
n
{

Fn > δ
√

n
}
→ 0, for every δ > 0. (1.11)

This condition is fulfilled by the envelopes of the classes

Q∗1,n ≡
{

expit
(
logit(QY,β )+ εH(g)

)
: QY,β ∈Q1,n,g ∈ G1,n,ε ∈ E

}
,

due to their uniform boundedness. As we shall see in the next proposition, this Lindeberg
condition and assumptions A9 and A10, which concerns the asymptotic complexity of the
classes Q1,n and G1,n, pave the way to the convergence of random variables of the form√

n
(
Pn−PQ0,gn

)
θ(Q∗Y,βn

), for a function QY 7→ θ(QY ).

Proposition 1.4 (Asymptotic Linearity and Central Limit Theorem for ψ∗n ).
Using the notations in lemma 1.2, define

Σn ≡
1
n

n

∑
i=1

(
d∗Y,βn

(Oi,Zi)+D∗W (Q∗
βn
)(Wi)

)2
. (1.12)

Consider the setups of Propositions 1.1, 1.2 and 1.3 and the following additional
assumption:

A9. The sequence of entropies J
(

δn,Q1,n,‖ · ‖2,PQ0,g
r

)
→ 0 for every δn ↓ 0.

A10. The sequence of entropies J
(

δn,1/G1,n,‖ · ‖2,PQ0,g
r

)
→ 0 for every δn ↓ 0.

A11. For any deterministic function F, F(O) = 0 PQ0,g∗0-almost surely implies that F = 0
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Assume that A1–A11 are met. Then

ψ
∗
n −ψ0 = (Pn−PQ0,gn)

{
d∗Y,β0

+D∗W (Q∗
β0
)
}
+oP(1/

√
n)

=
1
n

n

∑
i=1

{
d∗Y,β0

(Oi,Zi)+D∗W (Q∗
β0
)(Wi)−PQ0,g∗0D∗(PQ∗

β0
,g∗0)
}
+oP(1/

√
n). (1.13)

Moreover, (Σn/n)−1/2(ψ∗n −ψ0) converges in distribution to the standard normal distri-
bution.

Proof. See appendix.

The expression (1.13) amounts to the version asymptotic linearity under the current
adaptive RCT setting. The last statement in proposition 1.8 underpin the statistical analysis
of the proposed targeted CARA RCT. In particular, denoting ξ1−α/2 the (1−α/2)-quantile

of the standard normal distribution,
[
ψ∗n ±ξ1−α/2(Σn/n)1/2

]
is a confidence interval of

asymptotic level (1−α).

1.4 Example: Targeted LASSO-based CARA RCT
In the previous two sections we have presented a general framework for constructing and
analyzing CARA RCTs using data-adaptive loss-based estimators of the conditional out-
come expectation, coupled with the TMLE methodology for parameter estimation. As
described in the introduction, high-dimensional settings are increasingly common in clin-
ical trials working with heterogenous populations. A popular device in high-dimensional
statistics, due to its computational feasibility and amenability to theoretical study, is the
LASSO methodology (Tibshirani (1996)) — a shrinkage and selection method for general-
ized regression models that optimizes a loss function of the regression coefficients subject
to constraint on the L1 norm. In this section, we illustrate the application of the proposed
framework using a LASSO estimator for the conditional outcome expectation; the para-
metric estimators considered in Chambaz and van der Laan (2013) are a special case of a
LASSO estimator.

LASSO Estimation of the Outcome’s Conditional Expectation
Consider {bn}n≥1 and {dn}d≥1 two non-decreasing, possibly unbounded sequences over
R+ and, for some M > 0 and every n≥ 1, introduce the subset

BM,n ≡
{

β ∈ `1 : ‖β‖1 ≤min(bn,M) and ∀ j ≥ dn, β
j = 0

}
(1.14)
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of `1 ≡
{

β ∈ RN : ∑ j∈N |β j|< ∞
}

. Let
{

φ j : j ∈ N
}

be a uniformly bounded set of func-
tions from A ×W to R. Without loss of generality, we may assume that ‖φ j‖∞ = 1
for all j ∈ N. For all β ∈ `1, we denote Φβ : A ×W → R the function Φβ (A,W ) ≡
∑ j∈Nβ jφ j(A,W ).

The construction of our LASSO estimators for QY,0 relies on user-specified working
model Q1,n and loss function L for QY,0. For instance, we can take Q1,n ≡ {QY,β ≡ Φβ :
β ∈ BM,n} with M = 1, and the least-square loss function L in (1.2). We can also take
Q1,n ≡ {QY,β ≡ expit(Φβ ) : β ∈ BM,n} with M a deterministic upper-bound on | logit(Y )|
(recall that Y is assumed bounded away from 0 and 1), and the quasi negative-log-likelihood
loss function L in (1.3). Note that in both cases, for all β ∈ BM,n, ‖QY,β‖∞ is upper-
bounded by a deterministic upper-bound on |Y |.

Recall that we have already drawn n observations On ∼ PQ0,gn . Given a user-specified
reference gr ∈ G that is bounded away from 0 and 1, we estimate QY,0 with QY,βn , where

βn ∈ argmin
β∈BM,n

1
n

n

∑
i=1

(
L(QY,β )(Oi)

gr(Ai|Wi)

gi(Ai|Wi)

)
. (1.15)

The above minimization with the constraint ‖β‖1 ≤min(bn,M), see (1.14), can be rewrit-
ten as a minimization free of the latter constraint by adding a term of the form λn‖β‖1 to
the empirical criterion, where λn depends on bn. This is the so-called LASSO procedure
introduced by Tibshirani (1996) for the sake of obtaining estimators with fewer nonzero
parameter values, thus effectively reducing the number of variables upon which the given
solution is dependent. Note that when dn = d is held constant by choice, (1.15) should be
interpreted as a standard parametric procedure rather than as a LASSO.

Asymptotics for the Targeted LASSO-based CARA RCT
Using the theoretical results procured in the section 1.3, we show that the LASSO-based
target CARA RCT design is indeed convergent, and the corresponding TMLE estimator is
consistent and satisfies a central limit theorem.

Proposition 1.5 (Convergence of LASSO QY,βn).
Consider either the working model Q1,n given by QY,β ≡Φβ and the squared error loss

L in (1.2), or the logistic model given by QY,β ≡ expit
(
Φβ

)
and the negative log-likelihood

loss in (1.3).
Consider the following assumptions:

B1. The conditional density under Q0 of Y given (A,W ) wrt some dominating measure is
bounded away from 0.
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B2. There exists a unique β0 ∈
⋃

n≥1 BM,n such that

β0 ∈ argmin
β∈
⋃

n≥1 BM,n

PQ0,gr L(QY,β ).

B3. For each n, there exists βn,0 ∈ BM,n such that

βn,0 ∈ argmin
β∈BM,n

PQ0,gr L(QY,β ).

B4. It holds that dn = O(nr) for some 0 < r < 1 .

Under B1–B4,
∥∥QY,βn−QY,β0

∥∥
2,PQ0,g

r
→ 0 in probability.

Proof. See appendix.

The sequence of dimensions {dn}n for the lasso coefficients are allowed to grow with
n. However, to ensure that the resulting class Q1,n has a manageable complexity (in terms
of the entropy condition A4), it is required that the speed of {dn}n be controlled at O(nr)
for 0 < r < 1 (assumption B4).

Proposition 1.6 (Convergence of the targeted LASSO-based CARA Design).
Consider the setup of Proposition 1.5 and the following additional assumptions:

B5. There exists g∗0 ∈ G , bounded away from 0 and 1, such that for all δ > 0

PQ0,gr

LQY,β0
(g∗0)

gr < inf{
‖g−g∗0‖2,QW,0

≥δ :g∈G
}PQ0,gr

LQY,β0
(g)

gr .

Similarly, for each n, there exists some gn,0 ∈ G1,n satisfying

PQ0,gr

LQY,β0
(gn,0)

gr = inf
g∈G1,n

PQ0,gr

LQY,β0
(g)

gr .

Moreover, PQ0,gr
LQY,β0

(gn,0)

gr → PQ0,gr
LQY,β0

(g∗0)

gr .

B6. The classes 1/G1,n ≡ {1/g : g ∈ G1,n} satisfy J(1,1/G1,n,‖ · ‖2,PQ0,g
r ) = o(

√
n).

Under B1–B6, ‖gn(1|W )−g∗0(1|W )‖2,QW,0 → 0 in probability.

Proof. See appendix.
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As commented following proposition 1.2, assumption B6 concerns the complexity of
the class G1. The condition can be satisfied for well-behaved classes such as parametric
classes or VC classes.

The assumptions B1 – B6 readily guarantee convergence of the updated conditional
outcome estimators and consistency of the TMLE parameter estimate.

Proposition 1.7 (Consistency of LASSO-based ψ∗n ).
Consider the setups of Propositions 1.5 and 1.6, and the following additional assump-

tion:

B7. There exists a unique ε0 ∈ E such that

ε0 ∈ argmin
ε∈E

PQ0,g∗0L∗(QY,β0(ε)).

Assume that B1– B7 are met and define Q∗Y,β0
≡ QY,β0(ε0).

It holds that ‖Q∗Y,βn
−Q∗Y,β0

‖2,PQ0,g
r → 0 in probability. Moreover, ψ∗n consistently esti-

mates ψ0.

Proposition 1.8 (Central Limit Theorem for LASSO-based ψ∗n ).
Using the notations in lemma 1.2, define

Σn ≡
1
n

n

∑
i=1

(
d∗Y,βn

(Oi,Zi)+D∗W (Q∗
βn
)(Wi)

)2
.

Consider the setups of Propositions 1.5, 1.6 and 1.7 and the following additional as-
sumption:

B8. The sequence of entropies J
(

δn,1/G1,n,‖ · ‖2,PQ0,g
r

)
→ 0 for every δn ↓ 0.

B9. For any deterministic function F, F(O) = 0 PQ0,g∗0-almost surely implies that F = 0

Assume that B1–B9 are met. Then

ψ
∗
n −ψ0 = (Pn−PQ0,gn)

{
d∗Y,β0

+D∗W (Q∗
β0
)
}
+oP(1/

√
n)

=
1
n

n

∑
i=1

{
d∗Y,β0

(Oi,Zi)+D∗W (Q∗
β0
)(Wi)−PQ0,g∗0D∗(PQ∗

β0
,g∗0)
}
+oP(1/

√
n).

Moreover, (Σn/n)−1/2(ψ∗n −ψ0) converges in distribution to the standard normal distri-
bution.

Proof. See appendix.
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1.5 Simulation Study
We present here the results of a simulation study of the performances of the targeted CARA
RCT using LASSO estimators for the conditional outcome expectation

Simulation Scheme
We rely on the same simulation scheme as in Chambaz and van der Laan (2013). For
completeness, let us recall that Q0 is such that:

• the baseline covariate W equals (U,V ), where U and V are independently drawn
with U uniformly distributed on [0,1] and QW,0(V = 1) = 1/2, QW,0(V = 2) = 1/3,
QW,0(V = 3) = 1/6;

• the conditional distribution of Y given (A,W ) is the Gamma distribution with condi-
tional mean

QY,0(A,W ) = 2U2 +2U +1+
(

AV +
1−A
1+V

)
and conditional variance

σ
2
0 (Y |A,W ) =

(
U +A(1+V )+

1−A
1+V

)2

.

The marginal treatment effect on an additive scale satisfies ψ0 =
91
72 ' 1.264.

In this study, we consider the simple case of a fixed class, as opposed to changing with
n, of randomization schemes. Specifically, we target the optimal designs corresponding to
eight parametric working models G11, . . . ,G18 that we present in Table 1.1.

In addition to the latter parametric working models, we consider eight statistical proce-
dures for the estimation of the conditional expectation QY,0. Four of them consist of para-
metric estimation on small-dimensional models Q11, . . . ,Q14. In contrast, the four oth-
ers rely on moderate-dimensional parametric models, `1-penalization and cross-validation
to select the best regularization parameter. We denote Q15, . . . ,Q18 these “machine-
learning”, as opposed to “parametric”, procedures/models, which embody the LASSO
estimating procedure of Section 1.4. We summarize in Table 1.2 what are Q11, . . . ,Q18.
All procedures involve the logistic loss, even though the support of the marginal distri-
bution of Y under P0 is R+, not [0,1]. In fact, given a sample O1, . . . ,On, we first scale
Y1, . . . ,Yn to [0,1], then regress the scaled outcomes on (A,W ) based on the logistic loss and
one procedure among Q11, . . . ,Q18, then scale back the resulting conditional expectation
to the original range of the observed outcomes.
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working model parametric form dimension optimal
variance

G11 θ0 1 18.50
G12 ∑

3
v=1 θv1{V = v} 3 18.18

G13 θ0 +θ1U 2 18.37
G14 ∑

3
v=1 θv1{V = v}+θ4U 4 18.05

G15 θ0 +∑
3
v=1 θv1{V = v}U 4 18.12

G16 ∑
3
v=1 θv1{V = v}+θ4U +∑

3
v=2 θ3+v1{V = v}U 6 18.01

G17 θ0 +∑
3
v=1 θv1{V = v}U +∑

3
v=1 θ4+v1{V = v}U2 7 18.36

G18 ∑
3
v=1 θv1{V = v}+θ4U +θ5U2 +∑

3
v=2 θ4+v1{V = v}U

+∑
3
v=2 θ6+v1{V = v}U2 9 18.03

Table 1.1: Parametric working models G1k (k = 1, . . . ,8). In the second column, we report the
parametric forms of logit((gθ (W )−δ )/(1−2δ )) for generic elements gθ ∈ G1k (k = 1, . . . ,8). We
set δ = 10−2. In the third column, we give the dimensions of the models. In the fourth column,
we report the numerical values of argming∈G1k

VarPQ0,g
D∗(PQ0,g)(O) (k = 1, . . . ,8), with precision

10−2. Recall that VarPQ0 ,g
b D∗(PQ0,g)(O) = 23.87, with precision 10−2.

Set B = 1000 and let n = (250,500,750,1000,1250,1500,1750,2000,2250,2500) be
a sequence of sample sizes. For each combination (k, l) ∈ {1, . . . ,8}2, we repeatedly sim-
ulate B = 1000 times a targeted CARA RCT based on G1k and Q1l , performing an update
of the randomization scheme and the computation of the TMLE of ψ0 at every interme-
diate sample size ni (1 ≤ i ≤ 10), which we denote ψ∗ni,klb. The simulations are mutually
independent. The associated 95%-confidence intervals Ini,klb rely on estimated variances
of the TMLE as given in (1.12). For each combination (k, l) and intermediate sample size
ni, we compute the empirical variance of the corresponding TMLE

Ŝni,kl =
1
B

B

∑
b=1

ψ
∗2
ni,klb−

(
1
B

B

∑
b=1

ψni,klb

)2

and the empirical coverage of the corresponding confidence interval

Ĉni,kl =
1
B

B

∑
b=1

1{ψ0 ∈Ini,klb}.

The simulation study is conducted using R R Core Team (2014) and the package
glmnet Friedman, Hastie, and Tibshirani (2010).
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working model parametric form dimension

pa
ra

m
et

ri
c Q11 ∑

3
v=1 θv1{V = v}+θ4U +θ5A 5

Q12
θ0 +A

(
θ1U +∑

3
v=2 θv1{V = v}

)
+(1−

A)
(
θ4U +∑

3
v=2 θ3+v1{V = v}

) 7

Q13 A
(
∑

3
v=1 θv1{V = v}+θ4U

)
+(1−A)

(
∑

3
v=1 θ4+v1{V = v}+θ8U

)
8

Q14
A
(
∑

3
v=1 θv1{V = v}+θ4U +θ5U2

)
+(1−

A)
(
∑

3
v=1 θ5+v1{V = v}+θ9U +θ10U2

) 10

L
A

SS
O Q15

A
(
∑

3
v=1 θv1{V = v}+θ4U +θ5U2

)
+(1−

A)
(
∑

3
v=1 θ5+v1{V = v}+θ9U +θ10U2

) 10

Q16
A
(
∑

3
v=1 θv1{V = v}+∑

5
l=1 θ3+lU l

)
+(1−

A)
(
∑

3
v=1 θ8+v1{V = v}+∑

5
l=1 θ11+lU l

) 16

Q17
A
(
∑

3
v=1 θv1{V = v}+∑

10
l=1 θ3+lU l

)
+(1−

A)
(
∑

3
v=1 θ13+v1{V = v}+∑

10
l=1 θ16+lU l

) 26

Q18
A
(
∑

3
v=1 θv1{V = v}+∑

20
l=1 θ3+lU l

)
+(1−

A)
(
∑

3
v=1 θ23+v1{V = v}+∑

20
l=1 θ26+lU l

) 46

Table 1.2: Working models Q1k(k=1, . . . , 8) for the conditional expectation QY,0. In the second
column, we report the parametric form of logit((qθ (A,W )−δ )/(1−2δ )) for generic elements
qθ ∈ Q1k (k = 1, . . . ,8). We set δ = 10−2. In the third column, we give the dimensions of the
models. All working models are exploited in combination with the quasi negative-log-likelihood
loss function (1.3). Models Q11,Q12,Q13,Q14 are straightforwardly fitted by relying on the R

function glm. Models Q15,Q16,Q17,Q18 are LASSO-fitted by relying on the R function glmnet.

Discussion of the Results
Coverage

We propose an evaluation of the coverage performances based on testing. For every (k, l)∈
{1, . . . ,8}2 and ni (1≤ i≤ 10), the statistic B×Ĉni,kl follows a Binomial distribution with
parameter (B,πni,kl) for some πni,kl ∈ [0,1]. Denote p̂95

ni,kl the exact p-value of the one-
sided binomial test of H95

ni,kl : “πni,kl ≥ 95%” against “πni,kl < 95%”. Under H95
ni,kl , p̂95

ni,kl is
drawn from the uniform distribution on [0,1].

For every ni (1 ≤ i ≤ 10), we carry out one-sample Kolmogorov-Smirnov tests of the
null stating that the common law of {p̂95

ni,kl : 1 ≤ k ≤ 8, l ∈ L } (L ⊂ {1, . . . ,8}) is the
uniform distribution on [0,1] against the alternative that the common law is stochasti-
cally smaller than the uniform distribution on [0,1]. Rejecting the null for its alternative
indicates a defective coverage. The p-values of four such Kolmogorov-Smirnov tests are
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ni 250 500 750 1000 1250 1500 1750 2000 2250 2500⋂
1≤ k ≤ 8
1≤ l ≤ 8

H95
ni,kl < 0.001 < 0.001 0.011 0.003 0.011 0.006 0.110 0.362 0.003 0.059

⋂
1≤ k ≤ 8
1≤ l ≤ 4

H95
ni,kl < 0.001 0.015 0.023 < 0.001 0.151 0.034 0.025 0.080 0.281 0.414

⋂
1≤ k ≤ 8
5≤ l ≤ 8

H95
ni,kl < 0.001 < 0.001 0.175 0.567 0.004 0.037 0.785 0.804 0.004 0.072

⋂
1≤ k ≤ 8
1≤ l ≤ 8

H94
ni,kl 0.028 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

Table 1.3: Evaluating the coverage performances based on testing. The first row gives p-values
of Kolmogorov-Smirnov tests of the null consisting of the intersection of all H95

ni,kl . The second and
third rows give p-values of Kolmogorov-Smirnov tests of the nulls consisting of the intersections of
all H95

ni,kl based on parametric procedures (second row) and of all H95
ni,kl based on LASSO procedures

(third row). The fourth row gives p-values of Kolmogorov-Smirnov tests of the null consisting of
the intersection of all H94

ni,kl .

reported in Table 1.3. The first row corresponds to the choice L = {1, . . . ,8}. It teaches us
that the expected 95%-coverage is generally not guaranteed. One may wonder if the same
conclusion holds when focusing in turn on the parametric procedures (set L = {1, . . . ,4})
or on the LASSO procedures (set L = {5, . . . ,8}). Inspecting the second and third rows
of Table 1.3 does not reveal an interesting pattern. One may now wonder to what extent
the 95%-coverage is deficient. To answer this question, we proceed similarly. We denote
p̂94

ni,kl the exact p-value of the one-sided binomial test of H94
ni,kl : “πni,kl ≥ 94%” against

“πni,kl < 94%”. Under H94
ni,kl , p̂94

ni,kl is drawn from the uniform distribution on [0,1]. For
every ni (1 ≤ i ≤ 10), we carry out a one-sample Kolmogorov-Smirnov test of the null
stating that the common law of { p̂94

ni,kl : 1 ≤ k ≤ 8,1 ≤ l ≤ 8} is the uniform distribution
on [0,1] against the alternative that the common law is stochastically smaller than the uni-
form distribution on [0,1]. The p-values of these tests are reported in the fourth row of Ta-
ble 1.3. The conclusion is clear and satisfactory: even if the 95%-confidence intervals fail
to guarantee the wished coverage, one can safely consider them as valid 94%-confidence
intervals.
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Standard Deviation

Here we investigate how the targeted CARA RCT behaves in terms of standard deviation of
the produced estimators. As in the previous subsection, the investigation relies on testing.
For every (k, l) ∈ {1, . . . ,8}2 and ni (1≤ i≤ 10), we first compute the statistic

Tni,kl =
1
B ∑

B
b=1(Σni,klb)

1/2−
(
Ŝni,kl

)1/2(
1
B ∑

B
b=1 Σni,klb−

( 1
B ∑

B
b=1(Σni,klb)1/2

)2
)1/2 ,

where Σni,klb is the estimated variance of the TMLE produced at intermediate sample size
ni by the b-th simulated targeted CARA RCT based on G1k and Q1l , see (1.12). Thus, Tni,kl
sheds some light on the estimation of the standard deviation of the TMLE ψ∗ni

at sample
size ni by (Σni/n)1/2 for the targeted CARA RCT based on G1k and Q1l .

For every ni (1≤ i≤ 10), we perform a Lilliefors test of normality based on the sam-
ple {Tni,kl : 1 ≤ k ≤ 8, l ∈ L } with L = {1, . . . ,8}. The p-values of these tests are re-
ported in Table 1.4. They teach us that there is no stark evidence of non-normality across
the ten intermediate sample sizes. This first conclusion justifies the next step: for ev-
ery ni (1 ≤ i ≤ 10), we perform a one-sided Student test of “µni ≥ 0” against “µni < 0”,
where µni denotes the mean of the common distribution of {Tni,kl : 1 ≤ k ≤ 8, l ∈ L }
with L = {1, . . . ,8}. The p-values of these tests are reported in the two first rows of Ta-
ble 1.4. Adjusting for multiple testing in terms of the Benjamini and Yekutieli procedure
for controlling the false discovery rate at the 5% level, we conclude that estimating the
variance as in (1.12) is over-optimistic at least for intermediate sample sizes smaller than
or equal to n3 = 750. One may wonder if the same conclusions hold when focusing in
turn on the parametric procedures (set L = {1, . . . ,4}) or on the LASSO procedures (set
L = {5, . . . ,8}). Inspecting separately the third and fourth rows of Table 1.4 on one hand
then the fifth and sixth rows on the other hand leads to the conclusion that estimating the
variance as in (1.12) is over-optimistic only for intermediate sample sizes smaller than
or equal to n2 = 500, still adjusting for multiple testing in terms of the Benjamini and
Yekutieli procedure for controlling the false discovery rate at the 5% level.

The gap between the conclusions reached when considering all procedures or the para-
metric and LASSO ones separately may be simply explained by a loss of power due to the
reduction of sample size (64 versus 32), or by subtle differences induced by the nature of
Q1l . In any case, in light of Section 1.5, the under-estimation of the true variance based
on (1.12) is necessarily slight at most.
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ni 250 500 750 1000 1250 1500 1750 2000 2250 2500
Lilliefors 0.670 0.330 0.866 0.033 0.538 0.837 0.133 0.528 0.466 0.022
Student < 0.001 < 0.001 0.002 0.006 0.008 0.012 0.007 0.008 0.044 0.038

Lilliefors 0.755 0.043 0.270 0.021 0.543 0.620 0.206 0.172 0.685 0.206
Student < 0.001 < 0.001 0.013 0.026 0.025 0.026 0.021 0.036 0.226 0.420

Lilliefors 0.561 0.894 0.864 0.517 0.500 0.314 0.251 0.783 0.971 0.283
Student < 0.001 < 0.001 0.044 0.059 0.087 0.116 0.084 0.063 0.050 0.011

Table 1.4: Investigating the targeted CARA RCT in terms of standard deviation of the pro-
duced estimators. In the first row we report the p-values of the Lilliefors tests of normality of the
sample {Tni,kl : 1≤ k, l ≤ 8} (1≤ i≤ 10). In the second row, we report the p-values of the Student
tests of “µni ≥ 0” against “µni < 0”, where µni denotes the mean of the common distribution of
{Tni,kl : 1≤ k, l ≤ 8}. In the third and fourth rows (fifth and sixth rows, respectively), we report the
p-values of the same Lilliefors and Student tests based on the samples {Tni,kl : 1≤ k≤ 8,1≤ l ≤ 4}
corresponding to parametric procedures (on the samples {Tni,kl : 1≤ k ≤ 8,5≤ l ≤ 8} correspond-
ing to LASSO procedures, respectively).

1.6 Summary
We have presented in this chapter a new group-sequential CARA RCT design and cor-
responding analytical procedure that admits the use of flexible data-adaptive techniques.
The procedure is targeted in the sense that (i) the sequence of randomization schemes is
group-sequentially determined by targeting a user-specified optimal randomization design
based on accruing data and, (ii) the paradigm of targeted minimum loss estimation aims
to optimize the bias-variance tradeoff of the estimates of the nuisance parameters towards
the nonparametrically defined parameter of interest. For clarity sake, we focused on the
marginal effect of a binary treatment as the parameter of interest and the Neyman allo-
cation as the targeted optimal design, in an effort to produce an estimator with smaller
asymptotic variance, but our methodology extends beyond this instructive framework.

Targeted minimum loss estimation is doubly robust, as it yields a consistent parame-
ter estimate in the RCT setting regardless of the specification of the conditional response
model. Nonetheless, when the randomization is response-adaptive, a consistent estimator
of the conditional response model may lead to a more effective adaptation towards the op-
timal randomization scheme. Moreover, as a patient’s primary outcome is often correlated
with many individual characteristics, greater latitude in adjusting for these baseline covari-
ates, in both treatment allocation and outcome estimation, allows the investigators to better
account for heterogeneity in the patient population. These two observations motivate the
use of flexible data-adaptive techniques in estimating the conditional outcome expectation,
as well as in constructing the randomization schemes. The proposed framework incorpo-
rates such techniques through loss-based estimation over classes of estimators that may
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change with n. Under assumptions on the rate of growth of these classes, the resulting
sequence of randomization schemes converges to a limiting design, and the TMLE esti-
mator is consistent and asymptotically Gaussian, with an asymptotic variance that we can
estimate too. Consequently, we can build valid confidence intervals of given asymptotic
levels.

To illustrate the proposed framework, we considered the case that the estimator of
the conditional outcome given treatment and baseline covariates, a key element of the
procedure, is obtained by LASSO regression. The asymptotic results can be achieved
under minimal condition on the growth of the dimension of the regression coefficients and
mild conditions on the complexity of the classes of randomization schemes. A simulation
study confirms our theoretical results. Across 64 different choices of pairs of working
models and 10 intermediate sample sizes ranging from 250 to 2500, there is no empirical
evidence that the 95%-confidence intervals do not provide at least 94%-coverage, based on
1000 independent replications. In addition, in the same framework, there is no empirical
evidence that the estimators of the variances of the TMLE estimators are over-optimistic
for sample sizes larger than 500, adjusting for multiple testing in terms of the Benjamini
and Yekutieli procedure for controlling the false discovery rate at the 5% level. For smaller
sample sizes, the under-estimation is slight at most.

We will soon make available a R package to allow interested readers to test the pro-
cedure. In the future, we will also consider alternative strategies to randomly assign suc-
cessive patients to the treatment arms in such a way that the overall empirical conditional
distribution of treatment given baseline covariates be as close as possible to the current
best estimator of the targeted optimal design. This will require both new theoretical devel-
opments and simulation studies.

1.7 Acknowledgements
The simulation study in section 3.5 is performed by Antoine Chambaz.

1.8 Chapter Appendix

A.1 Proofs of results in main content
Proof of proposition 1.1.

Define M(QY ) = PQ0,grL(QY ) and Mn(QY ) =
1
n ∑

n
i=1

gr(Ai|Wi)
Zi

L(QY )(Oi). To apply
lemma 1.3 below, it suffices to show supQY,β∈Q1,n

∣∣Mn(QY,β )−M(QY,β )
∣∣= oP(1).
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Define `(QY )(O,Z)≡ gr(A|W )
Z L(QY )(O). Then,

sup
QY,β∈Q1,n

∣∣Mn(QY,β )−M(QY,β )
∣∣= sup

QY,β∈Q1,n

∣∣∣∣∣1n n

∑
i=1

gr(Ai |Wi)

gi(Ai |Wi)
L(QY,β )(Oi)−PQ0,gr L(QY,β )

∣∣∣∣∣
= sup

QY,β∈Q1,n

∣∣∣∣∣1n n

∑
i=1

`(QY,β )(Oi,Zi)−PQ0,gi`(QY,β )

∣∣∣∣∣= sup
f∈`(Q1,n)

|(Pn−PQ0,gn) f | .

To see that the last expression equals oP(1), we first note that due to uniform bounded-
ness of G1 and boundedness of gr, a δ -bracket for L(Q1,n) corresponds to a kδ -bracket

for `(Q1,n), for a fixed constant k. Therefore, J
(

1, `(Q1,n),‖ · ‖2,PQ0,g
r

)
equals, up to a

universal constant, to J
(

1,L(Q1,n),‖ · ‖2,PQ0,g
r

)
. Hence, we can apply lemma 1.7 with

assumption A4 to conclude that sup f∈`(Q1,n)

∣∣(Pn−PQ0,gn

)
f
∣∣= oP(1).

Proof of proposition 1.2.

Let `QY (g)(O,Z) =
LQY (g)(O)

Z . We will apply lemma 1.3 with M(g) = PQ0,gr
LQY,β0

(g)

gr ,

and Mn(g) = 1
n ∑

n
i=1

LQY,βn
(g)(Oi)

Zi
. It suffices to show that supG1,n

|Mn(g)−M(g)|= oP(1).
Indeed,

sup
g∈G1,n

|Mn(g)−M(g)|= sup
g∈G1,n

∣∣∣∣∣1n n

∑
i=1

LQY,βn
(g)(Oi)

Zi
−PQ0,gr

LQY,β0
(g)

gr

∣∣∣∣∣
≤ sup

g∈G1,n

∣∣∣∣∣1n n

∑
i=1

LQY,β0
(g)(Oi)

Zi
−PQ0,gr

LQY,β0
(g)

gr

∣∣∣∣∣+ sup
G1,n

∣∣∣∣∣1n n

∑
i=1

LQY,βn
(g)(Oi)−LQY,β0

(g)(Oi)

Zi

∣∣∣∣∣
The first term on the right hand side of the inequality is sup f∈`QY,β0

(G1,n)

∣∣(Pn−PQ0,gn

)
f
∣∣.

From boundedness of QY,β0 and uniform boundedness of G1, the bracketing numbers of
`QY,β0

(G1,n) and 1/G1,n are proportional by a fixed constant. Therefore, applying lemma
1.7 with assumption A6 yields sup f∈`QY,β0

(G1,n)

∣∣(Pn−PQ0,gn

)
f
∣∣= oP(1).
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We now study the second term:

sup
g∈G1,n

∣∣∣∣∣1n n

∑
i=1

LQY,βn
(g)(Oi)−LQY,β0

(g)(Oi)

Zi

∣∣∣∣∣
.

1
n

n

∑
i=1

∣∣∣(Yi−QY,βn(Oi)
)2−

(
Yi−QY,β0(Oi)

)2
∣∣∣

Zi
.

1
n

n

∑
i=1

∣∣QY,βn(Oi)−QY,β0(Oi)
∣∣

Zi

= PQ0,gn

∣∣QY,βn−QY,β0

∣∣
Z

+(Pn−PQ0,gn)

∣∣QY,βn−QY,β0

∣∣
Z

= PQ0,gr
∣∣QY,βn−QY,β0

∣∣+(Pn−PQ0,gn)

∣∣QY,βn−QY,β0

∣∣
Z

= oP(1).

The first inequality follows from the uniform boundedness of G1,n. The second inequality
follows boundedness of QY,βn , QY,β0 , Y , and an application of the mean value theorem,
which states that if a function f is continuous on [a,b] and differentiable on (a,b), then
f (b)− f (a) = f ′(c)(b−a), with c∈ (a,b). For the last equality, we first note that first term
on the left hand side converges to 0 in probability. Indeed, from the Cauchy-Schwartz in-

equality we obtain PQ0,gr
∣∣QY,βn−QY,β0

∣∣≤ {PQ0,gr
(
QY,βn−QY,β0

)2
}1/2

, where the larger
term converges to 0 in probability by proposition 1.1. The second term on the right hand
side is upper bounded by sup f∈h1(Q1,n)

∣∣∣(Pn−PQ0,gn

) f
Z

∣∣∣. To see that this upper bound con-
verges in probability to 0, it suffices note that since Z is uniformly bounded away from
0 and 1, the bracketing numbers for the classes h1(Q1,n) and { f/Z : f ∈ h1(Q1,n))} are
proportional by a fixed constant. Therefore, assumption A7 allows us to apply lemma 1.7
to reach the desired conclusion on this upper bound.

Proof of corollary 1.1.
Results 1 and 2 follow from uniform boundedness of G1. It remains to show result 3

(result 4 is proven in analogous manner). We show result 3 by showing the L1 convergence,
which in turn implies the convergence in probability. Indeed,

E

∥∥∥∥∥1
n

n

∑
i=1

gi−g∗0

∥∥∥∥∥
2,QW,0

≤ E

(
1
n

n

∑
i=1
‖gi−g∗0‖2,QW,0

)
=

1
n

n

∑
i=1

E ‖gi−g∗0‖2,QW,0
.

Result 1 implies that the sequence
{

E
∥∥gi−g∗0

∥∥
2,QW,0

}
i

converges to 0, then, applying
Cesaro’s lemma, one may conclude that their partial sums also converge to 0, thus proving
the desired L1 convergence.
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Proof of proposition 1.3.
Define a deterministic function M(ε) =

∣∣∣PQ0,g∗0DY
(
QY,β0(ε),g

∗
0
)∣∣∣, and a stochastic

process Mn(ε) =
∣∣∣1

n ∑
n
i=1

gn(Ai|Wi)
gi(Ai|Wi)

DY
(
QY,βn(ε),gn

)∣∣∣. From definition of ε0 and differen-
tiability of L∗(QY,β (ε)) with respect to ε , we know that M(ε0) = 0. By construction
of TMLE, we also know that Mn(εn) = 0. To apply lemma 1.3, it suffices to show
supε∈E |Mn−M|= oP(1). Indeed,

sup
ε∈E
|Mn(ε)−M(ε)|

= sup
ε∈E

∣∣∣∣∣1n n

∑
i=1

2Ai−1
gi(Ai |Wi)

(
Yi−QY,βn(ε)(Ai,Wi)

)
−PQ0,g∗0

2A−1
g∗0(A |W )

(
Y −QY,β0(ε)(A,W )

)∣∣∣∣∣
≤ sup

ε∈E

∣∣∣∣(Pn−PQ0,gn)
2A−1

Z

(
Y −QY,β0(ε)

)∣∣∣∣ (1.16)

+ sup
ε∈E

∣∣∣∣∣1n n

∑
i=1

2Ai−1
gi(Ai |Wi)

(
QY,β0(ε)(Ai,Wi)−QY,βn(ε)(Ai,Wi)

)∣∣∣∣∣ (1.17)

We first study (1.16). Defining fε(O,Z) = 2A−1
Z

(
Y −QY,β0(ε)(A,W )

)
, the expression

(1.16) is equivalent to supε∈E
∣∣(Pn−PQ0,gn

)
fε

∣∣. In order to apply lemma 1.7 (with a fixed
class), we shall first control the bracketing entropy of the class { fε : ε ∈ E }. Using the
shorthand notation q(A,W )≡ logit(QY,β0)(A,W ), we note that

| fε1(O,Z)− fε2(O,Z)|

=

∣∣∣∣2A−1
Z

∣∣∣∣ |expit{q(A,W )+ ε1H(g∗0)(A,W ))}− expit{q(A,W )− ε2H(g∗0)(A,W )}|

≤
∣∣∣∣ 2A−1
gZ(A |W )

∣∣∣∣ |exp{−q(A,W )− ε1H(g∗0)(A,W ))}− exp{−q(A,W )− ε2H(g∗0)(A,W ))}|

. |ε1− ε2| .

For the last inequality, we first bound the difference of the exponential functions using
the mean value theorem argument as before. Then, we apply uniform boundedness of G1
to conclude that expression on the left-hand-side of the inequality is less or equal, by up
to a constant, to the distance between the ε’s. This Lipschitz condition, together with the
boundedness of E , imply that the parametric class { fε : ε ∈ E } indeed satisfies the entropy
condition of lemma 1.7 (e.g. example 19.7 in van der Vaart (1998b)). The boundedness
conditions in the same lemma is satisfied by uniform boundedness of G1, Y and QY,β (ε).
Therefore, we conclude from lemma 1.7 that (1.16) converges to 0 a.s.

Next, we study (1.17). Let us adopt the notations sn,ε(O) = logit(QY,βn)+ εH(gn) and
s0,ε(O) = logit(QY,β0)+εH(g∗0), so that QY,βn(ε)(O) = expit(sn,ε(O)) and QY,β0(ε)(O) =
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expit(s0,ε(O)). Then, we have

(1.17)≤ sup
ε∈E

1
n

n

∑
i=1

1
Zi
|expit(sn,ε(Oi))− expit(s0,ε(Oi))|

. sup
ε∈E

1
n

n

∑
i=1

1
Zi
|sn,ε(Oi)− s0,ε(Oi)|

≤ sup
ε∈E

1
n

n

∑
i=1

1
Zi

{∣∣logit(QY,βn(Oi))− logit(QY,β0(Oi))
∣∣+ |ε| |(H(gn)(Oi)−H(g∗0)(Oi))|

}
.

1
n

n

∑
i=1

∣∣logit(QY,βn(Oi))− logit(QY,β0(Oi))
∣∣

Zi
+

1
n

n

∑
i=1

|1/gn(Oi)−1/g∗0(Oi)|
Zi

.
1
n

n

∑
i=1

∣∣QY,βn(Oi)−QY,β0(Oi)
∣∣

Zi
+

1
n

n

∑
i=1

|1/gn(Oi)−1/g∗0(Oi)|
Zi

≡ (Pn−PQ0,gn)

∣∣QY,βn−QY,β0

∣∣
Z

+PQ0,gn

∣∣QY,βn−QY,β0

∣∣
Z

+(Pn−PQ0,gn)h2(gn)+PQ0,gnh2(gn),

where h2(g)(O,Z) ≡ |1/g(O)−1/g∗0(O)|
Z . The second inequality follows from applying the

mean value theorem argument on the exponential function, as we did in the previous para-
graph. The fourth inequality follows from boundedness of E . The fifth inequality follows
from yet another mean value theorem argument. We have shown in proof of proposition

1.2 that under the stated assumptions,
(
Pn−PQ0,gn

) ∣∣∣QY,βn−QY,β0

∣∣∣
Z + PQ0,gn

∣∣∣QY,βn−QY,β0

∣∣∣
Z =

oP(1). To apply lemma 1.7 to conclude that
(
Pn−PQ0,gn

)
h2(gn) = oP(1), it suffices to

note that A6 and the uniform boundedness of G1,n and g∗0 implies that h2(G1,n) satisfies the
entropy condition in said lemma. Finally,

PQ0,gnh2(gn). PQ0,gr |gn−g∗0|

= EQW,0 |gn(1 |W )−g∗0(1 |W )| ≤
{

EQW,0 (gn(1 |W )−g∗0(1 |W ))2
}1/2

.

The upper bound converges to 0 in probability by proposition 1.2. We have thus shown
that supε∈E |Mn(ε)−M(ε)|= oP(1). Applying lemma 1.3, we may conclude that εn con-
verges to ε0 in probability.

Define Q′1 = {Q∗Y,β0
}
⋃

n Q1,n, and G ′1 = {g∗0}
⋃

n G1,n. For the space Q′1× G ′1× E ,
we define a norm that is the sum of the componentwise norms. The previous results
imply that (QY,βn,gn,εn) converge to (QY,β0 ,g

∗
0,ε0) in probability. Define the function

f (QY ,g,ε) ≡ expit
(

logit(QY )+ ε
2A−1

g

)
. To see that f is continuous over Q′1×G ′1×E ,
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we note that

‖ f (QY,1,g1,ε1)− f (QY,2,g2,ε2)‖2,PQ0 ,g
r .

∥∥∥∥logit(QY,1)+ ε1
2A−1

g1
− logit(QY,2)− ε2

2A−1
g2

∥∥∥∥
2,PQ0 ,g

r

≤ ‖logit(QY,1)− logit(QY,2)‖2,PQ0 ,g
r +

∥∥∥∥ε2

(
1
g1
− 1

g2

)∥∥∥∥
2,PQ0 ,g

r

+

∥∥∥∥ 1
g1

(ε1− ε2)

∥∥∥∥
2,PQ0 ,g

r

. ‖QY,1−QY,2‖2,PQ0,g
r +‖g1−g2‖2,QW,0

+ |ε1− ε2| ,

where the first and the last inequalities follow from the uniform boundedness of the classes
Q′1, G ′1 and E , and from a mean value theorem argument on the exponential function
and the log function, respectively. Therefore, continuous mapping theorem applies to f .
In particular, we may conclude that Q∗Y,βn

= f (QY,βn,gn,εn) converges in probability to
Q∗Y,β0

= f (QY,β0,g
∗
0,ε0). This proves our first claim.

The second claim follows directly from property of DY :

0 = PQ0,g∗0DY (Q∗Y,β0
,g∗0) = PQ0,g∗0

(
2A−1

g∗0(A |W )

(
Y −Q∗Y,β0

))
= EQW,0 (QY,0(1,W )−QY,0(0,W ))−EQW,0

(
Q∗Y,β0

(1,W )−Q∗Y,β0
(0,W )

)
= Ψ(Q0)−Ψ(Q∗

β0
),

where Q∗
β0
≡ (QW,0,Q∗Y,β0

).

Proof of lemma 1.2.
The first equality (1.9) follows directly from definition of D∗:

PQ0,g∗0D∗(PQ∗
βn
,g∗0) = PQ0,g∗0

2A−1
g∗0

(
Y −Q∗Y,βn

)
+PQ0,g∗0q∗Y,βn

−Pnq∗Y,βn

= PQ0,g∗0qY,0−PQ0,g∗0q∗Y,βn
+PQ0,g∗0q∗Y,βn

−Pnq∗Y,βn

= Ψ(Q0)−Ψ(Q∗
βn
),

where qY,0 ≡ QY,0(1,W )−QY,0(0,W ).
Let Pn,gn denote the empirical distribution of On weighted by gn(Ai|Wi)

gi(Ai|Wi)
. To see (1.10)

holds, first note that

ψ
∗
n −ψ0 =−PQ0,g∗0D∗(PQ∗

βn
,g∗0)

=−
{

PQ0,g∗0DY (Q∗βn
,g∗0)+PQ0,g∗0DW (Q∗

βn
)
}
+
{

Pn,gnD∗Y (Q
∗
βn
,gn)+PnDW (Q∗

βn
)
}

= PnDW (Q∗
βn
)−PQ0,g∗0DW (Q∗

βn
)︸ ︷︷ ︸

(a)

+Pn,gnD∗Y (Q
∗
βn
,gn)−PQ0,g∗0DY (Q∗βn

,g∗0)︸ ︷︷ ︸
(b)

,
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where the second equality follows from the fact that both summands in Pn,gnD∗Y (Q
∗
βn
,gn)+

PnDW (Q∗
βn
) are zero, as implied by construction of Q∗Y,βn

. Our proof of (1.10) relies on the
following expansions. Firstly,

(a) =
(
Pn−PQ0,g∗0

)
DW (Q∗

βn
)+
(
Pn−PQ0,g∗0

)
DW (Q∗

β0
)−
(
Pn−PQ0,g∗0

)
DW (Q∗

β0
)

= (Pn−QW,0)DW (Q∗
β0
)+(Pn−QW,0)

(
DW (Q∗

βn
)−DW (Q∗

β0
)
)

= (Pn−QW,0)DW (Q∗
β0
)+(Pn−QW,0)

(
q∗Y,βn

−q∗Y,β0

)
+(Pn−QW,0)

(
Ψ(Q∗

β0
)−Ψ(Q∗

βn
)
)

= (Pn−PQ0,gn)DW (Q∗
β0
)+(Pn−PQ0,gn)

(
q∗Y,βn

−q∗Y,β0

)
.

Secondly,

(b) =
1
n

n

∑
i=1

(
gn(Ai |Wi)

gi(Ai |Wi)

2Ai−1
gn(Ai |Wi)

(Yi−Q∗Y,βn
(Ai,Wi))−PQ0,g∗0

2A−1
g∗0

(Y −Q∗Y,βn
)

)
=

1
n

n

∑
i=1

(
2Ai−1

gi(Ai |Wi)
(Yi−Q∗Y,βn

(Ai,Wi))−PQ0,gi

2A−1
gi(A |W )

(Y −Q∗Y,βn
)

)
= (Pn−PQ0,gn)d∗Y,βn

= (Pn−PQ0,gn)d∗Y,β0
+(Pn−PQ0,gn)

(
d∗Y,βn

−d∗Y,β0

)
Adding (a) and (b) yields the desired expression in (1.10).

Proof of proposition 1.4.
In light of lemma 1.2, in order to show (1.13), it suffices to prove

(Pn−PQ0,gn)
(

q∗Y,βn
−q∗Y,β0

)
= oP(1/

√
n) and (Pn−PQ0,gn)

(
d∗Y,βn

−d∗Y,β0

)
= oP(1/

√
n).

We shall do so via lemma 1.8.
Since all functions in Q∗1,n are uniformly bounded inside the unit interval, the envelope

functions Fn of Q∗1,n will satisfy the Lindeberg condition. We first wish to show that
J(δn,Q∗1,n,‖ · ‖2,PQ0,g

r )→ 0 for every δn ↓ 0. Define

f (QY,β ,g,ε)≡ expit
(
logit(QY,β )+ εH(g)

)
;

so that Q∗1,n = f (Q1,n,G1,n,E ). Given α > 0, A7 and A6 imply that N(α, logit(Q1,n),‖ ·
‖2,PQ0,g

r ) and N(α,1/G1,n,‖ · ‖2,PQ0,g
r ) are finite. Since E ⊂ R is bounded, N(α,E ,‖ ·

‖2,PQ0,g
r ) is also finite. Given f (QY,β ,g,ε) ∈ Q∗1,n, let [lQ,uQ], [lg,ug] and [lε ,uε ] be the

α-brackets for logit(QY,β ), 1/g and ε , respectively. Then the bracket

[expit(lQ + lεH(lg)) ,expit(uQ +uεH(ug))]
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is a bracket containing f (QY,β ,g,ε), with length upper-bounded, up to a universal con-
stant, by 3α . Therefore,

N(α,Q∗1,n,‖ · ‖2,PQ0 ,g
r ). N(k1α,Q1,n,‖ · ‖2,PQ0,g

r )N(k2α,1/G1,n,‖ · ‖2,PQ0 ,g
r )N(k3α,E ,‖ · ‖2,PQ0 ,g

r ).

From the inequality
√

a+b≤
√

a+
√

b, we obtain

J(δn,Q
∗
1,n,‖ · ‖2,PQ0 ,g

r ). J(δn,Q1,n,‖ · ‖2,PQ0,g
r )+ J(δn,1/G1,n,‖ · ‖2,PQ0 ,g

r )+ J(δn,E ,‖ · ‖2,PQ0 ,g
r ).

Assumptions A9, A10 and boundedness of E respectively imply that each of the terms
converge to 0 for every δn ↓ 0. We conclude that J(δn,Q∗1,n,‖ · ‖2,PQ0,g

r )→ 0 for every
δn ↓ 0.

Now, define q(QY )(W )≡ QY (1,W )−QY (0,W ). We wish to show

(Pn−PQ0,gn)
(

q∗Y,βn
−q∗Y,β0

)
≡ (Pn−PQ0,gn)

(
q(Q∗Y,βn

)−q(Q∗Y,β0
)
)
= oP(1/

√
n).

Indeed, the functions of q
(
Q∗1,n

)
are bounded within (−1,1), therefore the corresponding

sequence of envelope functions satisfy the Lindeberg condition. For a given α-bracket
[l,u] of Q∗1,n, we obtain a mα-bracket [l(1,W )− u(0,W ),u(1,W )− l(0,W )] of q(Q∗1,n),
for some m > 3/ infO∈O gr(A |W ). Therefore, the previous conclusion implies that for
every δn ↓ 0, we have J(δn,q(Q∗1,n),‖ · ‖2,PQ0,g

r ))→ 0. A similar argument shows that

PQ0,gr

(
q(Q∗Y,βn

)−q(Q∗Y,β0
)
)2

= oP(1) because ‖Q∗Y,βn
−Q∗Y,β0

‖2,PQ0,g
r = oP(1). These two

observations allow us to apply lemma 1.8 with η = (QY,β ,ε,g), ηn = (QY,βn,εn,gn), η0 =
(QY,β0,ε0,g∗0) and

fθ ,η(O)≡ θ(η)(O)≡ q
(
expit

(
logit(QY,β )+ εH(g)

))
.

We thus conclude that
∣∣∣√n

(
Pn−PQ0,gn

)(
q∗Y,βn

−q∗Y,β0

)∣∣∣= oP(1).

Next, define dY (QY )(O,Z) = 2A−1
Z (Y −QY (A,W )). Then

√
n(Pn−PQ0,gn)

(
d∗Y,βn

−d∗Y,β0

)
=
√

n(Pn−PQ0,gn)
(

dY (Q∗Y,βn
)−dY (Q∗Y,β0

)
)
.

From uniform boundedness of Z, Y and of Q∗1,n for all n, the envelope functions of
dY (Q∗1,n) satisfy the Lindeberg condition. The same uniform boundedness of Z also
implies that the bracketing number of Q∗1,n and dY (Q∗1,n) differ by a constant. More-
over, the convergence ‖Q∗Y,βn

−Q∗Y,β0
‖2,PQ0,g

r = oP(1), established in proposition 1.3, im-

plies that PQ0,gr

(
dY (Q∗Y,βn

)−dY (Q∗Y,β0
)
)2
→ 0 in probability. Applying lemma 1.8 with

θ(η)(O,Z)≡ dY (expit(logit(QY )+ εH(g)) we obtain
√

n
(
Pn−PQ0,gn

)(
d∗Y,βn

−d∗Y,β0

)
=

oP(1). This proves (1.13).
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To prove the CLT, we wish to apply theorem 9 of Chambaz and van der Laan (2011b).
For convenience, we simplify our notation and use c0 to denote d∗Y,β0

+DW (Q∗Y,β0
). Firstly,

PQ0,gnc2
0 ≡

1
n

n

∑
i=1

PQ0,gic
2
0 (1.18)

=
1
n

n

∑
i=1

{
PQ0,g∗0

(Y −Q∗Y,β0
)2

g∗0gi

}
+PQ0,g∗0

(
2DY (Q∗Y,β0

,g∗0)DW (Q∗Y,β0
)+DW (Q∗Y,β0

)2
)

(1.19)

= PQ0,g∗0


(

Y −Q∗Y,β0

)2

g∗0

1
n

n

∑
i=1

1
gi

+PQ0,g∗0

(
2DY (Q∗Y,β0

,g∗0)DW (Q∗Y,β0
)+DW (Q∗Y,β0

)2
)

(1.20)

Let us now show that the first term in the last expression converges in probability to

PQ0,g∗0DY

(
Q∗Y,β0

,g∗0
)2

; consequently, PQ0,gnc2
0 converges to PQ0,g∗0D∗

(
PQ∗

β0
,g∗0

)2
≡ Σ0 in

probability. Indeed,

E

∣∣∣∣∣∣∣PQ0,g∗0


(

Y −Q∗Y,β0

)2

g∗0

(
1
n

n

∑
i=1

1
gi
− 1

g∗0

)
∣∣∣∣∣∣∣

≡ E

∣∣∣∣∣EQW,0

{
∑

a=0,1
f (a,W )

(
1
n

n

∑
i=1

1
gi(a |W )

− 1
g∗0(a |W )

)}∣∣∣∣∣
. E

{
EQW,0

∣∣∣∣∣1n n

∑
i=1

1
gi(1 |W )

− 1
g∗0(1 |W )

∣∣∣∣∣
}
+E

{
EQW,0

∣∣∣∣∣1n n

∑
i=1

gi(1 |W )−g∗0(1 |W )

∣∣∣∣∣
}

≤ E

∥∥∥∥∥1
n

n

∑
i=1

1
gi(1 |W )

− 1
g∗0(1 |W )

∥∥∥∥∥
2,QW,0

+E

∥∥∥∥∥1
n

n

∑
i=1

gi(1 |W )−g∗0(1 |W )

∥∥∥∥∥
2,QW,0

,

where f (a,W )≡ EPQ0,g
∗
0

(
(Y −Q∗Y,β0

)2 | a,W
)

. The first inequality (up to a universal con-
stant), is due to boundedness of G1, Y and Q∗Y,β0

, and the second inequality is result of
Cauchy-Schwartz inequality on the integrand. The right-hand-side of the final inequality
converges to 0 by corollary 1.1. Consequently, E

{
PQ0,gnc2

0
}

converges in probability to
Σ0. A similar argument also shows that PQ0,gnc2

0−EPQ0,gnc2
0 converges in probability to

0. From assumption A11, we know that Σ0 is strictly greater than 0. Therefore, applying
theorem 9 of Chambaz and van der Laan (2011b),

√
n
(
Pn−PQ0,gn

)
c0 converges to a nor-

mal distribution with variance Σ0. Moreover, (Pn−PQ0,gn)c
2
0 converge to 0 in probability

by strong law of large number for martingales.
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Proof of proposition 1.5.
By definition, the sets BM,n are nested, i.e. BM,n ⊂ BM,n+1. Therefore, the sequence{

PQ0,grL(QY,βn,0)
}

n
is non-increasing and lower bounded by PQ0,grL(QY,β0). A straightfor-

ward set-theoretic argument shows that PQ0,grL(QY,β0) = limn→∞PQ0,grL(QY,βn,0). To apply
proposition 1.1, it remains to show that L(Q1,n) has bracketing integral of order o(

√
n).

Indeed, at each n, BM,n ⊂Rdn and the function L(QY,β ) is smooth in β . Therefore, the uni-
form boundedness of the basis functions and of ‖β‖1 imply that

∣∣L(QY,β )−L(QY,β ′)
∣∣ .

f (O)‖β − β ′‖ for some function f . We may apply the geometric argument in exam-
ple 19.7 of van der Vaart (1998b) to conclude that, for n sufficiently large, the num-
ber of δ -brackets needed equals, up to a universal constant, to the number of δ -balls
to cover the hypercube ‖β‖1 ≤ M in Rdn . The length between two neighboring ver-
tex on this cube is L =

√
dnM. This big hypercube can be covered by

⌈
L
√

dn/(2δ )
⌉dn

many small hypercubes whose sides have lengths 2δ/
√

dn. Each of these cubes can
be circumscribed in a ball of diameter

√
dn(2δ/

√
dn)2 = 2δ . Therefore, we conclude

that N(δ ,L(Q1,n),‖ · ‖2,PQ0,g
r ) . ddnM/(2δ )edn . Therefore, J(1,L(Q1,n),‖ · ‖2,PQ0,g

r ) .

O
(√

dn log(dn)
)
= o(
√

n) if dn = O(nr) for 0 < r < 1. This completes the proof.

Proof of proposition 1.6.
To apply proposition 1.2, it suffices to note that by the reverse triangular inequality and

Lipschitz continuity of the absolute value function, the same argument as in the previous
proof can be applied to conclude that B4 implies J(1,h1(Q1,n),‖ · ‖2,PQ0,g

r ) = o(
√

n).

Proof of proposition 1.8.
To apply proposition 1.4, it suffice to show that assumptions B4 imply J(δn,Q1,n,‖ ·

‖2,PQ0,g
r )→ 0 for every δn ↓ 0. Indeed,

J(δn,Q1,n,‖ · ‖2,PQ0 ,g
r ).

∫
δn

0

√
logddnM/(2α)edndα ≤

∫
δn

0
dn log(dnM/α)dα

= dnδn log(dnM)−dnδn log(δn)+dnδn = O(nr
δn (log(δn)+ log(n))) ,

where the first inequality is explained in the proof of proposition 1.5 and the last equality
follow from assumption B4 that dn = O(nr). Therefore, we conclude that J(δn,Q∗1,n,‖ ·
‖2,PQ0,g

r )→ 0 for every δn→ 0 satisfying nr log(n)δn→ 0. This is complete the proof since
such δn can be used in obtaining the result in lemma 1.8.

A.2 Useful lemmas
From here onward, the uncountable supremum will be interpreted as the essential supre-
mum. We will use 1{A} to denote the indicator function of the set A.
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The following lemma from Van Der Vaart and Wellner (1996) ensures convergence of
M-estimators, and consequently, also of Z-estimators.

Lemma 1.3 (Convergence of M-estimators, Van Der Vaart and Wellner (1996)).
Let Mn stochastic processes indexed by a metric space V , and let M : V → R be a

deterministic function. Consider a sequence of subsets Vn ⊂ V . Suppose the following
assumptions hold:

1. There exists a point ν0 ∈ V such that M(ν0) < infν /∈T M(ν) for every open set
T ⊂ V containing ν0.

2. For every n, there exists ν∗n ∈Vn such that M(ν∗n ) = infVn M(ν). Moreover, M(ν∗n )−
M(ν0) = o(1).

3. supv∈Vn
|Mn(ν)−M(ν)|= oP(1)

If the sequence νn ∈ Vn satisfies Mn(νn)−Mn(ν
∗
n ) ≤ 0, then νn converges in probability

to ν0.

Proof. Firstly, assumptions 1, 2 and 3 imply that

0 ≤ M(νn)−M(ν0)

= (M(νn)−Mn(νn))+(Mn(νn)−Mn(ν
∗
n ))+(Mn(ν

∗
n )−M(ν∗n ))+(M(ν∗n )−M(ν0))

≤ sup
Vn

|Mn(ν)−M(ν)|+(M(ν∗n )−M(ν0))

= oP(1).

Now, let d(·, ·) denote the metric on V . From assumption 1, we have: for each η > 0, there
is a δ > 0 such that P(d(νn,ν0)≥ η) ≤ P(M(νn)−M(ν0)≥ δ ). From the observation
above, we may thus conclude that P(d(νn,ν0)≥ η)→ 0 as n→ ∞.

Much of the results in this chapter concerning uniform laws of large numbers are de-
rived from the maximal inequalities in lemmas 1.4 and 1.5, which are due to van Handel
(2011). To draw on those results, we make the following definitions. Let φ(x) = ex−x−1.
Given a class of functions F , n ≥ 1, K > 0, δ > 0, let N = N(δ ,F ,‖ · ‖2,PQ0,g

r ), and de-

fine a (n,F ,K,δ )-bracketing set as a collection
{(

Λ
j
i ,Γ

j
i

)
i≤ n

}
j≤N

such that for each

f ∈F , there exits j ≤ N satisfying Λ
j
i ≤ f (Oi,Zi)≤ Γ

j
i , for all i≤ n, and such that for all

j ≤ N, 2K2

n ∑
n
i=1 E

{
φ

( ∣∣∣Λ j
i−Γ

j
i

∣∣∣
K

)
|Oi−1

}
≤ δ 2. Let N (n,F ,K,δ ) denote the cardinality
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of the smallest (n,F ,K,δ )-bracketing set. We also define

Rn,K( f ) =
2K2

n

n

∑
i=1

PQ0,giφ

(
| f |
K

)
,

for all f ∈F and n.

Lemma 1.4 (Proposition. A.2 in van Handel (2011)).
For i≤ n, let Pi denote the empirical distribution of the first i observations. Fix K > 0.

There exists an universal constant C > 0 such that for all n≥ 1, R > 0,

P

(
sup
f∈F

1{Rn,K( f )≤ R}max
i≤n

i
n
(Pi−PQ0,gi) f ≥ α

)
≤ 2exp

(
− nα2

C2(c1 +1)R

)
,

for any α,c0,c1 > 0 such that c2
0 ≥C2(c1 +1) and

c0√
n

∫ √R

0

√
logN (n,F ,K,u)du≤ α ≤ c1R

K

Lemma 1.5 (Corollary A.8 in van Handel (2011)).
Consider the same setup as in lemma 1.4. Suppose the class F is finite.
Fix K > 0. For every R > 0, and every event C

E
[

max
f∈F

1{nRn,K( f )≤ R}max
k≤n

k (Pk−PQ0,gk) f
]
≤

√
2R log

(
1+
|F |
P(C)

)
+8K log

(
1+
|F |
P(C)

)
.

If in addition sup f∈F ‖ f‖∞ ≤ 3U, then

E
[

max
f∈F

1{nRn,K( f )≤ R}max
k≤n

k (Pk−PQ0,gk) f
]
≤

√
2R log

(
1+
|F |
P(C)

)
+8U log

(
1+
|F |
P(C)

)
.

We summarize a few observations regarding Rn,K and N (n,F ,K,δ ) in lemma 1.6 .

Lemma 1.6 (L2-norm version of lemma 7 in Chambaz and van der Laan (2011b)).
Fix K > 0. Suppose U = sup f∈F ‖ f‖∞ < ∞. Then

1. For each n≥ 1, f ∈F , Rn,4U( f )≤ 4
3

1
n ∑

n
i=1 PQ0,gi | f |

2.

2. Let κ > 0, and gs ∈ G be such that
∥∥∥ g

gs

∥∥∥
∞

≤ κ for all data-generating treatment as-

signments g. Then, for each n≥ 1, δ > 0, logN (n,F ,4U,
√

2κδ )≤ logN(δ ,F ,‖·
‖2,PQ0,g

s ).
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Proof. For any m ≥ 2, PQ0,gi | f |
m ≤Um−2PQ0,gi | f |

2 ≤ m!
2 Um−2PQ0,gi | f |

2. Therefore, for
K = 4U ,

2K2PQ0,giφ

(
| f |2

4U

)
= 2(4U)2

∑
m≥2

PQ0,gi | f |
m

m!(4U)m ≤ 2(4U)2
∑

m≥2

m!
2 Um−2PQ0,gi | f |

2

m!(4U)m

= 16 ∑
m≥2

PQ0,gi | f |
2

(4)m =
4
3

PQ0,gi | f |
2 .

This proves the first result.
For the second result, fix δ > 0 and let N = N(F ,‖ · ‖2,PQ0,g

s ,δ ). Suppose we have

(` j,u j) j≤N a set of δ -brackets, under ‖·‖2,PQ0,g
s , covering F . Let Λ

j
i =min(` j(Oi,Zi),−U)

and Γ
j
i = max(u j(Oi,Zi),U). For each f ∈F , if it’s covered by [` j,u j], then, for all i≤ n,

Λ
j
i ≤ f (Oi,Zi) ≤ Γ

j
i . We also know that −U ≤ Λ

j
i ≤ Γ

j
i ≤U and ` j ≤ Λ

j
i ≤ Γ

j
i ≤ u j. In

particular, at a fixed j ≤ N, for each i≤ n and for all m≥ 2,

E
(∣∣∣Λ j

i −Γ
j
i

∣∣∣m |Oi−1

)
= PQ0,gi

(∣∣∣Λ j
i −Γ

j
i

∣∣∣m)
≤ (2U)m−2PQ0,gi

∣∣∣Λ j
i −Γ

j
i

∣∣∣2 ≤ (2U)m−2
κPQ0,gs

∣∣∣Λ j
i −Γ

j
i

∣∣∣2 ≤ (2U)m−2
κPQ0,gs

∣∣` j−u j
∣∣2

≤ (2U)m−2
κδ

2 ≤ m!
2
(2U)m−2

κδ
2.

Therefore, with the same K as before, we have

2K2PQ0,giφ


∣∣∣Λ j

i −Γ
j
i

∣∣∣
4U

= 2(4U)2
∑

m≥2

PQ0,gi

∣∣∣Λ j
i −Γ

j
i

∣∣∣m
m!(4U)m ≤ 32U2

∑
m≥2

m!
2 (2U)m−2κδ 2

m!(4U)m = 2κδ
2.

We have thus shown that N (n,F ,4U,
√

2κδ )≤ N(F ,‖ · ‖2,PQ0,g
s ,δ ).

Using lemmas 1.4, one can obtain exponential inequalities needed to establish a uni-
form law of large numbers. Lemma 1.7 below modifies theorem 8 in Chambaz and van der
Laan (2011b) to use an L2-metric and allow the classes of functions to change with n. In
said chapter, one requires that the bracketing integral under sup norm be finite. Here we
weaken the condition by controlling the bracketing integral under the L2-norm. This is pos-
sible because the dominated ratio property of G1 allows one to bound N (n,F ,4U,

√
2κδ )

with N(F ,‖ ·‖2,PQ0,g
s ,δ ) (See lemma 1.6). Since the classes may grow with n, we control

their complexity by controlling the growth of the entropies at speed o(
√

n). If the class is
fixed, i.e. Fn = F for all n, then the entropy is required to be finite.

Lemma 1.7 (Sieved and L2-norm version of theorem 8 in Chambaz and van der Laan
(2011b)).
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Let U = supn sup f∈Fn
‖ f‖∞ < ∞.

If the sequence of entropies satisfies J
(

U
√

2/(3κ),Fn,‖ · ‖2,PQ0,g
r

)
= o(
√

n) , then
for each α > 0, there is a constant c and Nα such that for all n≥ Nα ,

P

(
sup
f∈Fn

(Pn−PQ0,gn) f ≥ α

)
≤ 2e−nc

Consequently, sup f∈Fn

∣∣(Pn−PQ0,gn

)
f
∣∣ converges to 0 almost surely.

Proof. Given α > 0, let K = 4U , R = 4
3U2, c1 = αK

R , c0 = C
√

c1 +1. Recall that from
lemma 1.6, Rn,K( f )≤ R for all f . Choose Nα satisfying

J
(√

R/2κ,Fn,‖ · ‖2,PQ0 ,g
r

)
≤
√

n
α

c0
√

2κ
for all n > Nα .

This is possible due to our assumption on the growth rate of the entropies. Allowing the
class F to change with n in lemma 1.6 does not affect the needed inequality

N (n,F ,4U,
√

2κδ )≤ N(F ,‖ · ‖2,PQ0 ,g
s ,δ ).

Therefore, after a change of variable, it follows that for all n > Nα ,

√
n≥
√

2κ
c0

α

∫ √R/2κ

0

√
logN(x,F ,‖ · ‖2,PQ0 ,g

r )dx≥ c0

α

∫ √R

0

√
logN (n,F ,4U,x)dx.

Similarly, the proof of lemma 1.4 in van Handel (2011) remains valid if we allow F to
depend on n. Consequently, we obtain

P

(
sup
f∈F

(Pn−PQ0,gn) f ≥ α

)
≤ P

(
sup
f∈F

max
i≤n

i
n
(Pi−PQ0,gi) f ≥ α

)
≤ 2exp

(
−n

α2

c2
0R

)
.

To obtain the central limit theorems, we require convergences
√

n
(
Pn−PQ0,gn

)
fn =

oP(1), for some random functions fn ∈Fn. Lemma 1.8 specifies sufficient conditions on
Fn for this convergence. The result of this lemma relies on the bracketing entropy bound
for the first moment of a supremum of the empirical process. Such a bound was derived
in lemma 19.34 of van der Vaart (1998b) for the i.i.d. setting, and we refashion it here in
lemma 1.9 to suit the current data generating mechanism. For the next two lemmas, let
Log(x)≡ max(1, log(x)).
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Lemma 1.8 (Convergence empirical process, (van der Vaart and Wellner (2007)).
Let Fn =

{
(O,Z) 7→ fθ ,η(O,Z) : θ ∈Θ,η ∈ Tn

}
be a class of measurable functions

with envelope functions Fn. Suppose the following holds:

1. The sequence of envelope functions Fn satisfy the Lindeberg condition in (1.11).

2. The sequence of entropies satisfy J
(

δn,Fn,‖ · ‖2,PQ0,g
r

)
for every sequence δn ↓ 0.

Then, for a sequence ηn ∈ Tn satisfying supθ∈Θ PQ0,gr
(

fθ ,ηn− fθ ,η0

)2→ 0 in probability
for some η0, we have supθ∈Θ

∣∣√n
(
Pn−PQ0,gn

)(
fθ ,ηn− fθ ,η0

)∣∣→ 0 in probability.

Proof. Define F ′
n ≡

{
fθ ,ηn− fθ ,η0 : θ ∈Θ

}
. For a given δ > 0, the choice of ηn implies

that for n sufficiently large, PQ0,gr
(

fθ ,ηn− fθ ,η0

)2
< δ 2 for all θ ∈ Θ. We may apply

lemma 1.9 to each class F ′
n, since n is fixed in the proof of said lemma. Consequently, for

an(δ )≡ δ/

√
Log

(
N(δ ,F ′

n,‖ · ‖2,PQ0,g
r )
)

,

E
(

sup
θ∈Θ

∣∣√n(Pn−PQ0,gn)( fθ ,ηn− fθ ,η0)
∣∣)

. J(δ ,F ′
n,‖ · ‖2,PQ0 ,g

r )+
√

nκPQ0,gr Fn1
{

Fn >
√

nan(δ )
}

. J(δ ,Fn,‖ · ‖2,PQ0 ,g
r )+

PQ0,gr F2
n 1{Fn >

√
nan(δ )}

an(δ )
,

where the second equality follows the fact that the bracketing number of F ′
n is less than

the bracketing number of Fn for a fixed δ , and the fact that
√

na(δ )PQ0,gr Fn1
{

Fn >
√

nan(δ )
}
< PQ0,gr F2

n 1
{

Fn >
√

nan(δ )
}
.

Assumption 2 implies that J(δ ,F ′
n,‖ · ‖2,PQ0,g

r ) = O(1) for every δ > 0, therefore, δ 7→
an(δ ) is bounded away from 0. Consequently, the Lindeberg condition implies that the
second term in the right hand side of the last inequality above converges to 0 as n→ ∞

for every fixed δ . Assumption 2 also implies that the first term can be arbitrarily small as
n→ ∞ by choosing a small enough δ .

To complete the proof, suppose one is given η and α . We can pick δ ∗ such that
J(δ ∗,Fn,‖ · ‖2,PQ0,g

r < ηα/2 for all n greater than some fixed N1. We then apply lemma
1.9 with this given δ ∗. Since P(1{Fn >

√
nan(δ

∗)}) to 0 as n→ ∞, we can pick N2 such
that

an(δ
∗)−1PQ0,gr F2

n 1
{

Fn >
√

na(δ ∗)
}
< ηα/2
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for all n > N2. It follows from the Markov inequality and the above conclusion that

P
(

sup
θ∈Θ

∣∣√n(Pn−PQ0,gn)( fθ ,ηn− fθ ,η0)
∣∣≥ η

)
≤ η

−1E
(

sup
θ∈Θ

∣∣√n(Pn−PQ0,gn)( fθ ,ηn− fθ ,η0)
∣∣). α

for all n > max(N1,N2). This completes the proof.

Lemma 19.34 in van der Vaart (1998b) provides a maximal inequality for the first
moment of a supremum of the empirical processes of the form

√
n(Pn−P0) f under an

i.i.d. setting. The following lemma 1.9 generalizes this maximal inequality for empirical
processes of the form

√
n(Pn−PQ0,gn) f ), under the current adaptive RCT sampling.

Lemma 1.9. (Generalization of lemma 19.34 in van der Vaart (1998b) to martingales)
Consider a class F of measurable functions f : O→R with PQ0,gr f 2 < δ 2 for every f .

Let F be an envelope function of this class. Define a(δ ) = δ/
√

LogN(δ ,F ,‖ · ‖2,PQ0,g
r .

The following inequality holds for each n≥ 1:

E

{
sup
f∈F

∣∣√n(Pn−PQ0,gn) f
∣∣}. J(δ ,F ,‖ · ‖2,PQ0,g

r )+
√

nE

(
1
n

n

∑
i=1

PQ0,giF1
{

F >
√

na(δ )
})

≤ J(δ ,F ,‖ · ‖2,PQ0 ,g
r )+
√

nκPQ0,gr F1
{

F >
√

na(δ )
}

Proof. For ease of notation, we will denote the uniform norm of a real-valued operator Π

on F as ‖Π‖F ≡ sup f∈F |Π( f )|.
The second inequality in the result follows from the dominated ratio property of G1

and the fact that F1{F >
√

na(δ )} ≥ 0. It suffices to show the first inequality. We first
divide the class F by

√
na(δ ). On one hand, we have

E
(∥∥√n(Pn−PQ0,gn) f 1

{
F >
√

na(δ )
}∥∥

F

)
≤ E

(√
n(Pn +PQ0,gn)F1

{
F >
√

na(δ )
})

≤ 2
√

nE

(
1
n

n

∑
i=1

PQ0,giF1
{

F >
√

na(δ )
})

, (1.21)

where the first inequality follows from the fact that∣∣√n(Pn−PQ0,gn) f
∣∣≤√n(Pn +PQ0,gn) | f | ≤

√
n(Pn +PQ0,gn)h,

whenever | f |< h.
Now, we wish to bound E

(∥∥√n
(
Pn−PQ0,gn

)
( f 1{F ≤

√
na(δ )})

∥∥
F

)
. The brack-

eting number for the class { f 1{F ≤
√

na(δ )} : f ∈F} is smaller than that of F . So,
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without loss of generality, we may assume from now on that functions in F are upper-
bounded by

√
na(δ ). We proceed using a chaining technique to replace F with a finite

class.
Fix q0 such that 4δ ≤ 2−q0 ≤ 8δ . Define a nested sequence of partitions on F , indexed

by integers q≥ q0, as follows:

1. For each integer q ≥ q0, cover F with Nq = N(2−q,F ,‖ · ‖2,PQ0,g
r ) many brackets,

[lqi,uqi]i≤Nq . Define Fqi = [lqi,uqi]
⋂(⋃

j<i[lq j ,uq j ]
)C. Then, F =

⋃Nq
i=1 Fqi is a

partition of F at level q.

2. For each partitioning set Fqi at level q, define ∆qi = uqi − lqi . Then, the following
conditions hold

(a) ∑
q≥q0

2−q√LogNq .
∫

δ

0

√
LogN(α,F ,‖ · ‖2,PQ0 ,g

r )dα;

(b) sup
f ,g∈Fqi

| f −h| ≤ ∆qi ≤ 2F ≤ 2
√

na(δ );

(c) PQ0,gr ∆
2
qi
< 2−2q.

3. From this sequence (indexed by q) of partitions, we obtain a nested sequence as
follows: At level q that is not a success refinement, we replace each partitioning set
in level q by its intersection with all partitioning sets in the previous levels. The new
partition has the size at most N̄q = Nq0 · · ·Nq. Using the inequality

√
log(∏Np) ≤

∑
√

logNp, the previous condition (a) is still satisfied. From here on, we use Nq to
denote N̄q. It should be reminded that it now denotes the number of partitioning sets
at level q, not number of brackets.

At each level q, for each Fqi , fix a representative fqi ∈Fqi , and define for any f ∈F :
if f ∈Fqi ,

πq f = fqi the representative of its partitioning set

∆q f = ∆qi the envelope for differences in its partitioning set.

We have now given F a finite representation.
Define for each fixed n, each q≥ q0 and each f ∈F :

aq = 2−q/
√

LogNq+1

Aq−1 f = 1
{

∆q0 f ≤
√

naq0 , . . . ,∆q−1 f ≤
√

naq−1
}

Bq f = 1
{

∆q0 f ≤
√

naq0 , . . . ,∆q−1 f ≤
√

naq−1,∆q f >
√

naq
}
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By nestedness, Aq f and Bq f are constant in f within each Fqi . Note also that δ ≤ 2δ ≤
2−(q0+1) by definition of q0, aq0 = 2a(2−(q0+1)), and δ 7→ a(δ ) is an increasing function.
Therefore, ∆q0 f ≤ 2F ≤ 2

√
na(δ )≤

√
naq0 . Hence Aq0 f = 1.

Using these ingredients, the function O 7→ f (O) can be rewritten as:

f = πq0 f + ∑
q≥q0+1

( f −πq f )Bq f + ∑
q≥q0+1

(πq f −πq−1 f )Aq−1 f .

Indeed, note that either Bq f = 0 for all q > q0 (in which case Aq f = 1), or there exists a
unique q1 such that Bq1 f = 1, and Bq f = 0 for all q 6= q1, and Aq f = 1 for all q< q1, Aq f =
0 for all q ≥ q1. In the first case, f = πq0 f + limq→∞ πq f −πq0 f , where limq→∞ πq f = f
follows from the fact that both πq f and f are in the bracket [lq,uq] and as q→∞ the size of
the bracket ‖uq− lq‖2,PQ0,g

r → 0. In the second case, f = πq0 f +( f −πq1 f )+∑
q1
q0+1(πq f −

πq−1 f ).
Using this representation of f , we obtain the inequality

E
∥∥√n(Pn−PQ0,gn) f

∥∥
F

≤ E
∥∥√n(Pn−PQ0,gn)πq0 f

∥∥
F
+E

∥∥∥∥∥ ∑
q≥q0+1

√
n(Pn−PQ0,gn)( f −πq f )Bq f

∥∥∥∥∥
F

+E

∥∥∥∥∥ ∑
q≥q0+1

√
n(Pn−PQ0,gn)(πq f −πq−1 f )Aq−1 f

∥∥∥∥∥
F

. (1.22)

Our goal is to bound the right-hand-side of the inequality.
To bound the first term on the right-hand side of (1.22), we note that there are Nq0

many functions πq0 f . Applying lemma 1.5 with the functions πq0 f/
√

n, U = 2−1aq0 (since∣∣πq0 f
∣∣≤√na(δ )≤

√
na(2−(q0+1)) =

√
n2−1aq0), R= 4

3κδ 2 (by definition of our class F ,
PQ0,gr(πq0 f )2 ≤ δ 2), we obtain the inequality

E
∥∥√n(Pn−PQ0,gn)πq0 f

∥∥
F

. δ

√
log(1+Nq0)+2−1aq0 log(1+Nq0)

. δ

√
Log(Nq0)+aq0 Log(Nq0). ∑

q≥q0+1
2−q
√

Log(Nq) (1.23)

The second inequality follows from the fact that log(1+Nq)≤ 2Log(Nq): if Nq ≤ e, then
log(1+Nq)≤ log(1+ e); else log(1+Nq)≤ 2log(Nq), for Nq > e.

For the second term on the right-hand side of (1.22), note that | f |< h implies that

|(Pn−PQ0,gn) f | ≤ (Pn +PQ0,gn)h = (Pn−PQ0,gn)h+2PQ0,gnh.
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Therefore,
∣∣ f −πq f

∣∣ ≤ ∆q f implies that

E

∥∥∥∥∥ ∑
q≥q0+1

√
n(Pn−PQ0,gn)( f −πq f )Bq f

∥∥∥∥∥
F

≤ ∑
q≥q0+1

E
∥∥√n(Pn−PQ0,gn)∆q f Bq f

∥∥
F

+ ∑
q≥q0+1

E

∥∥∥∥∥2
√

n
1
n

n

∑
i=1

PQ0,gi∆q f Bq f

∥∥∥∥∥
F

(1.24)

To bound first term in (1.24), first note that for a fixed level q, there at most Nq many
∆q f Bq f functions, each corresponding to the partitioning set Fqi containing f (recall that
the partition is nested, so the partition for f at all previous levels are therefore determined
by Fqi). Therefore, sup f∈F

∣∣√n
(
Pn−PQ0,gn

)
∆q f Bq f

∣∣ can be replaced by taking maxi-
mum over a finite set of size Nq. In particular, there are finitely many ∆q f Bq f/

√
n. More-

over, ‖∆q f Bq f/
√

n‖∞ ≤ aq−1 because ∆q f Bq f ≤ ∆q−1 f Bq f ≤
√

naq−1 (first inequality
by nestedness and second inequality by definition of Bq f ), and PQ0,gi

∣∣∆q f Bq f/
√

n
∣∣2 ≤

κPQ0,gr
∣∣∆q f Bq f/

√
n
∣∣2 = κPQ0,gr(∆q f Bq f )2/n ≤ κ2−2q/n. Hence, we can apply lemma

1.5, with U = aq−1, K = 4U , R = 4
3κ(2−2q), to conclude that

E
∥∥√n(Pn−PQ0,gn)∆q f Bq f

∥∥
F
≤
√

32κ

3
2−2q log(1+Nq)+8aq−1 log(1+Nq)

. 2−q
√

log(1+Nq)+
2−q√

Log(Nq)
log(1+Nq). 2−q

√
Log(Nq).

Now, we bound the second term in (1.24). Since Bq f = 1 only if
√

naq < ∆q f , it follows
that
√

naqPQ0,gi∆q f Bq f ≤ PQ0,gi

(
∆q f

)2 Bq f ≤ 2−2q. Therefore,∥∥∥∥∥2
√

n
1
n

n

∑
i=1

PQ0,gi∆q f Bq f

∥∥∥∥∥
F

≤ 2
√

n
2−2q
√

naq
= 2

2−2q

aq
' 2−(q+1)

√
Log(Nq+1).

Therefore, we obtain a bound for (1.24):

E

∥∥∥∥∥ ∑
q≥q0+1

√
n(Pn−PQ0,gn)( f −πq f )Bq f

∥∥∥∥∥
F

. ∑
q≥q0+1

{
2−q
√

Log(Nq)+
2
aq

2−2q
}

. ∑
q≥q0+1

2−q
√

Log(Nq), (1.25)

For the last term on the right-hand side of (1.22), there are at most Nq possibilities for

(πq f − πq−1 f )Aq−1 f . Therefore, we apply lemma 1.5 to the functions (πq f−πq−1 f )Aq−1 f√
n ,
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U = aq−1 (because
∣∣πq f −πq−1 f

∣∣Aq−1 f ≤ ∆q−1 f Aq−1 f ≤
√

naq−1), K = 4U , and R =
4
3κ(2−2q), and obtain

E

∥∥∥∥∥ ∑
q≥q0+1

√
n(Pn−PQ0,gn)(πq f −πq−1 f )Aq−1 f

∥∥∥∥∥
F

. ∑
q≥q0+1

{
2−q
√

Log(Nq)

}
(1.26)

Combining (1.22), (1.23),(1.25) and (1.26), we have

E
∥∥√n(Pn−PQ0,gn) f 1

{
F ≤
√

na(δ )
}∥∥

F
. ∑

q≥q0+1
2−q
√

Log(Nq)

.
∫

δ

0

√
LogN(α,F ,‖ · ‖2,PQ0 ,g

r )dα

This result, together with (1.21), prove the lemma.
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Part II

Semiparametric Inference for Marginal
Structural Models
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Chapter 2

Targeted Maximum Likelihood
Estimation of Dynamic Marginal
Structural Models for the Hazard
Function

2.1 Introduction
Many research questions in medical and social sciences aim to understand the causal effect
of a longitudinal exposure on a time-to-event process. In particular, consider a study where
subjects are followed over time; in addition to their baseline covariates, at various time
points we also record their time-varying exposure of interest, time-varying covariates, and
indicators for the event of interest (say death). Time varying confounding is ubiquitous
in these situations: the exposure of interest depends on past covariates, and in turn affects
future covariates; right censoring may also be present in a study of this nature, often in
response to past covariates and exposure.

To define the causal effect of a longitudinal exposure on mortality, we can use a formal
causal framework (Robins (1986)). In it, we first formulate the exposures of interest in
terms of interventions to set the values of the exposure and censoring variables, and then
compare the distribution of the would-be outcome process (a.k.a. counterfactual outcome
process) under different interventions. Depending on the research questions of interest,
these interventions can be static — assigning the same treatment option to all subjects, or
they can be individualized (a.k.a dynamic) — assigning treatment options based on past
covariates. Since static interventions are a special case of dynamic interventions, we will
use the term dynamic for both kinds. One way to assess the effect of the interventions on
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mortality is to study how the hazard of the counterfactual outcome changes as a function
of time and the interventions; this can be accomplished by summarizing the key features
of the hazard function in a marginal structural model (MSM, Robins (1986),Neugebauer
and van der Laan (2007)). The MSM not only provides adequate dimension reduction over
a potentially complicated hazard function, it also mitigates near positivity violations (due
to lack of support for an intervention) by extrapolation.

The parameters of an MSM are often estimated using Inverse Probability Weighted es-
timation (IPW, van der Laan and Petersen (2007), Robins, Hernan, and Brumback (2000a),
Robins (1999), Robins, Orellana, and Rotnitzky (2008)). This estimator is intuitive, easy
to implement, and admits influence curve based variance estimates. However, its con-
sistency hinges on correct specification of the conditional treatment (and, if applicable,
censoring) probabilities. Moreover, in the presence of strong confounding, the inverse
probability weights can become unwieldily large, thus producing very unstable estimates.
In the case of static intervention, this instability can be mitigated by introducing marginal
kernel weights that down-weight treatment options with little data support; but this solu-
tion has limited applicability when the interventions are truly individualized.

Doubly robust and efficient augmented-IPW estimator for a static MSM was proposed
in Robins and Rotnitzky (1992), Robins (2000) and Robins, Rotnitzky, and van der Laan
(2000b). Under this framework, estimators are defined as solutions to the estimating equa-
tion given by the efficient influence curve. While this estimator provides efficiency gain
and bias reduction over a misspecified IPW estimator, it still suffers the same general sen-
sitivity to large inverse probability weights. Robins (2000), Robins (2002) and Bang and
Robins (2005) proposed an alternative doubly robust estimator based on the innovative in-
sight that the statistical parameters and the corresponding efficient influence curves for the
¡S¡ on the intervention-specific mean can be expressed in terms of iterated conditional ex-
pectations. This observation allowed for estimation of only minimal nuisance parameters
in addition to the treatment mechanism.

The targeted maximum likelihood estimation (TMLE, van der Laan and Rubin (2006),
van der Laan and Rose (2011)) provides a doubly robust and efficient estimator using the
substitution principle, therefore it can potentially improve finite sample performance by
incorporating global information encoded in the parameter map. A TMLE estimator for
longitudinal static MSMs using a stratified approach was proposed by Schnitzer, Moodie,
van der Laan, Platt, and Klein (2014). This stratified TMLE uses the longitudinal TMLE
for the intervention-specific mean in van der Laan and Gruber (2012) to estimate the mean
under each of the static interventions of interest, and then use these to fit MSMs for the
hazard and survival functions. While this estimator readily improves upon IPW, it is still
vulnerable to insufficient support as it does not take advantage of the extrapolation in the
MSM. Most recently, Petersen et al. (2014), building on the results from Robins (2000),
Robins (2002) and Bang and Robins (2005), presented a pooled TMLE estimator for lon-
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gitudinal dynamic MSM for intervention-specific means. This estimator directly targets
the parameters of the MSM, and pools over all interventions of interest in the the updat-
ing step, potentially weakening the data support needed to achieve efficiency and double
robustness. Petersen et al. (2014) also described how their proposed framework can be
generalized to MSM for functions of intervention-specific means.

This chapter builds upon the work of Petersen et al. (2014) to present a targeted maxi-
mum likelihood estimator for the marginal structural model for the hazard function under
longitudinal dynamic interventions. The proposed estimator is efficient and doubly robust,
hence offers an improvement over IPW estimator; it directly targets the MSM parameters
by pooling across interventions to update the initial nuisance parameter estimates, hence
offers an improvement (in terms of relaxing sensitivity to data support) over the stratified
TMLE.

Organization of chapter
This chapter is organized as follows. In section 2.2, we describe the data structure and
define the statistical estimand using a nonparametric causal framework. In section 2.3, we
first review the non-targeted substitution estimator and the IPW estimator for the estimands
of interest, and then present the efficient influence curve, and describe the proposed TMLE
estimator. Section 3.5 evaluates the performance of these three estimators in a simulation
study mimicking an observational cohort study. This chapter concludes with a summary.

2.2 Defining the Parameter of Interest
Consider a longitudinal data structure

O = (L0,A0,L1,A1, . . . ,Lt ,At ,LK+1) ,

where L0 denotes the baseline covariates; At encodes the exposure variable A1
t and the cen-

soring indicator A2
t , where A2

t = 1 indicates the subject was right censored at a time C ≤ t;
and Lt denotes all the time-varying covariates measured between At−1 and At . In partic-
ular, Lt includes the counting outcome process Yt ⊂ Lt , where Yt = 1 indicates event (say
death) has occurred at a time T ≤ t. We shall use the boldface notation Lt ≡ (L0, . . . ,Lt),
L j,t ≡

(
L j, . . . ,Lt

)
and L−1 ≡ /0; similarly for the vector At . The observed data consists of

n independent and identically distributed (i.i.d.) copies of O drawn from a distribution P0.
Let M be a statistical model for P0; the assumptions on this statistical model are limited to
true user knowledge, in particular, we avoid strong and restrictive parametric assumptions.

To illustrate these notations (and the subsequent concepts), let us consider the follow-
ing example from HIV research (extracted from Petersen et al. (2014)). The study popula-
tion is HIV-infected subjects with immunological failure on first line antiretroviral therapy.
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The baseline t = 0 is the time of immunological failure, and data is collected on a monthly
basis post failure. Lt encompasses time varying covariates at time t, including CD4+ T
cell counts and Yt , an indicator of death by time t. L0 includes the baseline values of these
covariates at t = 0, as well as time-independent variables such as patient demography and
history prior to first line failure. The treatment variable A1

t is the indicator of switching to
second line therapy by time t. For simplicity sake, we assume no right censoring in this
example.

The time-ordering assumptions implied in the notation can be made explicit by a non-
parametric structural equations causal model (NPSEM, Pearl (2009)):

Lt = fLt (Lt−1,At−1,ULt ) ; At = fAt (Lt ,At−1,UAt ) , for k = 0, . . .K +1.

This causal model assumes that each variable X in the observed data structure is an un-
known deterministic function fX of certain observed variables, which we refer to as the
parents of X and denote by Pa(X), and some unmeasured exogenous random factors UX .
This causal model defines a random variable with distribution PO,U on a unit.

In the HIV example, at each time t, the investigators may specify that CD4 counts,
death, and the decision to switch therapy all depend on the patient’s entire observed past
and unmeasured factors. But if they know that the decision to switch to second line therapy
is based only on the most recent CD4 measurement, then Pa(A1

t ) may be restricted to
exclude all earlier CD4 measurements.

Parameter of Interest
An intervention rule d is a function that deterministically assigns treatment at time t ac-
cording to At = d (Lt). This rule may be static — assigning the same treatment option at
regardless of covariate history; or it may be individualized — assigning differential treat-
ment options to different covariate histories. We will use the boldface notation At = d(Lt)
to denote the vector (Ak = d (Lk))k=0,...t ; this means that each of the variables Ak, from
k = 0 to t, was assigned value according to rule d and its covariate history. In the HIV
example, a static rule would be to always switch to second line at some m months after
failing first line therapy, and an individualized rule would be to switch at the first time t
when the patient’s CD4 counts drop below a pre-specified threshold r.

Given a set D of intervention rules of interest , investigators are often concerned about
their comparative causal effect on the outcome process Yt . To be more precise, consider
an ideal experiment where all subjects are assigned treatment under an intervention rule
d, and right censoring is also prevented; the covariates, on the other hand, take the value
that they may in response to rule d. We call the variables At the intervention variables,
as they are the ones that are subject to manipulation in the ideal experiment. This ideal
experiment can be formalized in the NPSEM by setting the equations for At to At = d (Lt),
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and replacing the input At−1 into Lt with d(Lt−1), which are treatment assignments from
time 0 to t− 1 under rule d and history Lt−1. As a result, the only random endogenous
variables of the system are the covariates; we use Lt(d) to denote the time varying covari-
ates that result under the intervention rule d, in particular Yt(d) is the indicator of death
under such a regimen. The comparative causal effect of rule d1 vs rule d2 can be assessed
by comparing the distributions of the outcome processes Yt(d1) vs Yt(d2).

Suppose we wish to understand how the outcome process Yt(d) changes as a function
of d, t and some baseline covariate V ⊂ L0. To this end, we study the intervention-specific
hazard function λ (d, t,V )≡ P(Yt(d) = 1 |Yt−1(d) = 0,V ) on the space D×τ×V , where
D is the set of rules we wish to compare, τ = {1, . . .K +1}, and V is the outcome space
of V . Studying the entire function (d, t,V ) 7→ λ (d, t,V ) may be difficult due to feasibil-
ity of computation, amenability to theoretical understanding, and interpretation of results,
instead we can study a more tractable, simplified model/summary of this function which
captures how λ changes as a function of (d, t,V ) in only a few summarizing parameters.
More specifically, we consider a marginal structural working model mψ(d, t,V ) param-
eterized by ψ ∈ RJ for λ (d, t,V ). In addition, we also consider a user-specified kernel
weight function h(d, t,V ), and the standard log-likelihood loss. Our causal quantity of
interest is the best (assessed by the loss function) weighted (by h) approximation (given
by the working model mψ ) of the hazard function λ . Formally, the causal parameter is
defined as

Ψ(PO,U)≡ argmin
ψ

E
{

∑
t∈τ,d∈D

h(d, t,V )I(Yt−1(d) = 0)

× log
(

mψ(d, t,V )Yt(d)
(
1−mψ(d, t,V )

)1−Yt(d)
)}

.

= argmin
ψ

E0 ∑
t∈τ,d∈D

h(d, t,V )P(Yt−1(d) = 0 | L0)

× log
(

mψ(d, t,V )λ (d,t,L0)
(
1−mψ(d, t,V )

)1−λ (d,t,L0)
)
. (2.1)

To be concrete, from here on, we will follow common practice and consider a generalized
linear working model with logit link, mψ(d, t,V ) = expit(ψ ·φ(d, t,V )), where φ(d, t,V )
is the vector of linear predictors. However, it is important to note that the methods pre-
sented here can be generalized to other working MSM.

Continuing our HIV example, suppose we wish to assess how delay in switching to
second line therapy affect mortality. Let dm denote the rule that dictates switching to
second line therapy at m months after first line failure. That is, At = dm(Lt) = 0 for t < m
and Yt = 0, and At = dm(Lt) = 1 for t ≥ m. Let D be the set of all possible switching
times within the study, i.e. D = {dm : m = 0, . . . ,K,∞}. If we are only interested in the
marginal hazard, then we set V = /0. Or, if we wish to assess the hazard function stratified
by CD4 at the time of first line failure, then we can set V = 1{CD40 < 50 cells/µ`}. For
simplicity, let us continue this example with the former option, and let the weights be
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h(d, t) = 1. Same as in Petersen et al. (2014), we choose the logistic working model to be
mψ(dm, t,V ) = expit(ψ0 +ψ1t +ψ2max(t−m,0)), where max(t−m,0) = 0 if the patient
hasn’t switched by time t−1, and max(t−m,0) = t−m encodes how long the patient has
been on second line therapy if he had readily switched.

Thus far, we have used the NPSEM to formulate the parameter of interest Ψ(PO,U) in
(2.1). This parameter is a function of the distributions of Lt(d) and Yt(d), which are gen-
erated within an ideal experiment. Unfortunately, such ideal experiments are not always
possible in real life; consequently Ψ(PO,U) is not always estimable from the observed data.
Then, what are the sufficient assumptions on the data-generating process under which the
parameter Ψ(PO,U) can be identified using the observed data distribution P0?

To answer this question, we review the expression in (2.1) and note that P(Yt−1(d) =
0 | L0) = 1−E(Yt−1(d) | L0) and

λ (d, t,L0) =
P(Yt(d) = 1,L0)−P(Yt(d) = 1,Yt−1(d) = 1,L0)

P(Yt−1(d) = 0,L0)

=
E(Yt(d) | L0)−E(Yt−1(d) | L0)

1−E(Yt−1(d) | L0)
. (2.2)

Consequently, to identify Ψ(PO,U) as a function of P0, it suffices to establish the identifi-
cation of the time-dependent causal dose-response curve {E(Yt(d) | L0) : d ∈D , t ∈ τ}.

To this end, we make the sequential randomization assumption (Robins (1986)):

Ak ⊥ L(d) | Pa(Ak), (2.3)

and the positivity assumption

P0 (Ak = d(Lk) | Lk,Ak−1 = d(Lk−1))> 0 a.e., (2.4)

for every d ∈ D and k ∈ τ . Assumption (2.3) specified that at each k, the variables
Ak are randomized conditional on its parent variables. In our HIV example, this can be
satisfied if the parent variables of Ak contain all common determinants of mortality and the
decision to switch therapy. Assumption (2.4) requires that under P0, for each rule d and
its compatible covariate history, there is non-zero probability that the subject’s exposure
will continue to follow this rule at any given time. In our HIV example, given one has not
yet switched to second line therapy, there should be non-zero probability that the patient
will switch at any given time m in D . Assumption (2.4) would be violated if, say, D
contains the rule to switch at 6 months but no patient in the study population switches
therapy at 6 months failing first line. This assumption would also be violated if, say,
all patients with CD4 ≥ 50 cells/µ` at first line failure switch to second line at 1 month
after immunological failure. Note that the sequential randomization assumption (2.3) is
an untestable assumption on the data-generating process under which we can claim (2.1)
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equals the statistical estimand (2.7). Other way around, given the statistical estimand
(2.7), assumption (2.3) provides a way to assess causal interpretation of this parameter.
On the other hand, the positivity assumption (2.4) is an assumption on the data-generating
distribution P0 (and hence testable using observed data) under which the estimand (2.7) is
well-defined.

Under assumptions (2.3) and (2.4), we obtain identification of the intervention-specific
mean:

E(Yt(d) | L0) = ∑
l1,t

yt

t

∏
j=1

P0(l j | L0, l j−1,A j−1 = d(L0, l1, j−1))≡ Qd,t
1 (P0)(L0). (2.5)

This in turn identifies the intervention-specific hazard function:

λ (d, t,L0) =
Qd,t

1 (P0)(L0)−Qd,t−1
1 (P0)(L0)

1−Qd,t−1
1 (P0)(L0)

.. (2.6)

Consequently, the causal parameter of interest Ψ(PO,U) in (2.1) is identified as a function
of the observed data distribution given by

ψ0 ≡Ψ(P0)≡ argmin
ψ

{
EP0 ∑

t∈τ,d∈D
h(d, t,V )

(
1−Qd,t−1

1,0 (L0)
)

×

(
Qd,t

1,0(L0)−Qd,t−1
1,0 (L0)

1−Qd,t−1
1,0 (L0)

logmψ(d, t,V )+
1−Qd,t

1,0(L0)

1−Qd,t−1
1,0 (L0)

log
(
1−mψ(d, t,V )

))}
. (2.7)

The remainder of this chapter focuses on statistical inference for ψ0.

2.3 Estimators for ψ0

Recall that the observed data consist of n i.i.d. copies of O∼P0 ∈M . Before we introduce
the proposed efficient and doubly robust estimator, we will review two available estimators
for ψ0: the non-targeted substitution G-computation estimator and the IPW estimator. The
proposed targeted maximum likelihood estimator uses either of these in its updating step.
But before we proceed, we shall agree on the following notation.

Notations
We use Pn to denote the empirical distribution of n i.i.d. copies of O ∼ P0. Given a
function O 7→ f (O), Pn f denotes the empirical mean Pn f ≡ 1

n ∑
n
i=1 f (Oi). More general

for any P ∈M , P f ≡ EP f (O).
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For a generic P ∈M . We use QL0 to denote the marginal distribution of L0. General-
izing (2.5), for a given t ∈ τ and d ∈D , denote at P ∈M :

Qd,t
k (P)(Lk−1)≡∑

lk,t
yt

t

∏
j=k

P(l j | Lk−1, lk, j−1,A j−1 = d(Lk−1, lk, j−1)), for k ≤ t, (2.8)

and Qd,t
t+1(·) ≡ Yt . In the above notation, the superscript t signals the expectant outcome

variable Yt and the subscript k signals the length of the conditioning covariate history.
Under assumptions (2.3) and (2.4), Qd,t

k (P0)(Lk−1) = E(Yt(d) | Lk−1,Ak−1 = d(Lk−1)),
which is the conditional mean of Yt(d) given an observed past that has followed the rule
d up to time k− 1. For simplicity, we may sometimes write Qd,t

k instead of Qd,t
k (P)

when referring to the functional evaluated at a generic P ∈M , and Qd,t
k,0(Lk−1) instead

of Qd,t
k (P0)(Lk−1) when the functional is evaluated at P0 ∈ M. Bang and Robins (2005)

made a key observation that these functionals satisfy the relation

Qd,t
k (Lk−1) = EP

[
Qd,t

k+1(Lk)
∣∣∣Lk−1

]
. (2.9)

These functionals are also monotonic in t, i.e. for a given k, Qd,t
k ≤Qd,t+1

k for all t ≥ k. We

will adopt the notation Q≡
(

QL0,
{

Qd,t
k :, t ∈ τ,k ≤ t,d ∈D

})
. We denote the treatment

allocation probabilities P(Ak | Lk,Ak−1) as g(Ak | Lk,Ak−1), and the product ∏
t
k=1 g(Ak |

Lk,Ak−1) as g(At | Lt). For our purposes, the couple (Q,g) readily specifies a distribution
P ∈M , so sometimes we may abuse notation and write P = (Q,g). At the data generating
distribution P0, we adopt the subscripts Q0 and g0.

G-computation Estimator
The identification formula in (2.7) is generally known as the G-computation formula
(Robins (1986)). Readily, it delivers a non-targeted substitution estimator (as opposed
to the targeted substitution estimator that is TMLE), which is generally known as the
parametric G-computation (Gcomp) estimator. More precisely, using the notations in sec-
tion 5.2, the statistical estimand Ψ(P0) in (2.7) can be expressed as Ψ(Q0). Therefore, a
non-targeted estimator Qn of Q0 will yield a non-targeted substitution estimator Ψ(Qn) of
Ψ(Q0).

Recall that Q0 consists of the marginal distribution of L0, QL0(P0), and the conditional
means of Yt(d), Qd,t

k (P0) defined in (2.8). To estimate the marginal distribution QL0(P0),
we can use the empirical distribution of L0, denoted QL0

n . To estimate the conditional
means Qd,t

k (P0), one approach is to estimate the conditional densities for each Lt given
its parents and use the definition in (2.8). While this density-based approach ensures that
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the monotonicity of in t of Qd,t
k is preserved, the dimension of the nuisance parameter

and the computational cost will grow with the the dimension of Lt and the number of
time points. One way to implement this approach is to simplifying parametric modeling
assumptions on these nuisance parameters. We refer to Taubman, Robins, Mittleman, and
Hernan (2009) and Young, Cain, Robins, OReilly, and Hernán (2011) for expositions of
this technique.

To minimize estimation of nuisance parameters, one can exploit the recursive relation
(2.9) noted by Bang and Robins (2005), and use the many available regression techniques
(parametric or data-adaptive) in the literature. We can implement this regression-based
approach by running the following two-level algorithm.

1. Starting at t = K + 1, we estimate the conditional means
{

Qd,t
k (P0) : k ≤ t,d ∈D

}
as follows:

a) Initiate at k = t: Recall that Qd,t
t (P0) ≡ EP0 (Yt | Lt−1,At−1 = d(Lt−1)) and

Qd,t
t+1 ≡ Yt . We obtain an estimator Qd,t

t,n of Qd,t
t (P0) by regressing Yt on the

observed values Lt−1 and A1
t−1 among observations that remain uncensored

by time t−1, and evaluate the fitted function at the observed Lt−1 and the in-
tervened values A1

t−1 = d(Lt−1), for these uncensored observations. We can
organize the data by having one row for each patient i and each regimen d.

b) At each subsequent k = t − 1, . . . ,1: At the previous step, we have thus far
obtained an estimator Qd,t

k+1,n of Qd,t
k+1(P0). To obtain an estimator Qd,t

k,n of

Qd,t
k (P0), we regress Qd,t

k+1,n(Lk) on the observed values Lk−1 and A1
k−1 among

those observations that remained uncensored by time k− 1, and evaluate the
fitted function at the observed Lk−1 and the intervened values A1

k−1 = d(Lk−1)
on these uncensored observations.

c) After iterating step (b) in order of decreasing k, we have
{

Qd,t
k,n : k ≤ t,d ∈D

}
.

2. Repeat step 1 in order of decreasing t, from t = K to t = 1. At the end, we will have
obtained estimators

{
Qd,t

k,n : t ∈ τ,k ≤ t,d ∈D
}

Monotonicity in t, i.e. Qd,t
k,n ≤ Qt+1

k,n for each fixed k ≤ t, can be enforced in step 1.b with
respect to Qt+1

k,n obtained at the previous t +1 level, or it can be enforced after running the
entire algorithm. One simple way to enforce the monotonicity is by sequential truncation;
other more sophisticated approaches are available, but they are outside the scope of this
chapter.
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At the end of this algorithm, we have the conditional means
{

Qd,t
1,n(L0) : t ∈ τ,d ∈D

}
for each of the n observations. Pool together these estimates Qd,t

1,n(L0) over all d and t,
we will have one row per patient i, rule d ∈ D and t ∈ τ . The G-computation estimator

ψ
Gcomp
n ≡Ψ(Qn) is obtained by fitting a weighted logistic regression of

Qd,t
1,n(L0)−Qd,t−1

1,n (L0)

1−Qd,t−1
1,n (L0)

according to the MSM, with weights h(d, t,V )(1−Qd,t−1
1,n (L0)).

Consistency of ψ
Gcomp
n relies on consistency of Qn. In the density-based approach, this

means consistent estimation of all the conditional densities of Lt given its parents; in the
regression approach, this means consistent estimation of the conditional means Qd,t

k (P0).
In either case, correct specification of Q0 under a finite dimensional parametric model is
possible only in limited applications. Alternatively, we may use machine learning algo-
rithms, such as Super Learner. This option is more enticing, especially when used with
the regression-based approach, since there are more data-adaptive techniques available to
estimate the conditional mean of a binary variable via regression. However, theoretical
results on the asymptotic behavior, such as a central limit theorem, of the resulting esti-
mator Ψ(Qn) are not available. Moreover, a non-targeted estimator Qn of Q0 is obtained
by minimizing a global loss function for Q0, not for Ψ(Q0). This means, in particular, that
the bias-variance tradeoff in Qn is optimized for the high-dimensional nuisance parame-
ter Q0, instead of a much lower-dimensional parameter of interest Ψ(Q0). The proposed
targeted estimator in section 5.4 aims to address these two issues by providing a substitu-
tion estimator that is asymptotically linear (under appropriate regularity conditions), and
optimizes the bias-variance tradeoff of Qn towards Ψ(Q0) via an updating step.

Inverse Probability Weighted Estimator
Inverse probability weighted estimation (van der Laan and Petersen (2007),Robins et al.
(2008)) is a popular methodology for estimating the parameters of a marginal structural
model in the presence of time-varying confounding, due to its ease of implementation and
its asymptotic linearity, which allows for construction of Wald confidence intervals.

To begin, we first note that the statistical estimand in (2.7) can be rewritten in an IPW
form:

Ψ(P0) = Ψ
IPW (g0)

≡ argmin
ψ

{
EP0 ∑

t∈τ,d∈D
h(d, t,V )

I(At−1 = d(Lt−1))

g0 (At−1 = d(Lt−1) | Lt−1)
(1−Yt−1)

× log
(

mψ(d, t,V )Yt
(
1−mψ(d, t,V )

)1−Yt
)}

. (2.10)
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The IPW estimator ψ IPW
n ≡ΨIPW (gn) is obtained by fitting weighted logistic regression

of Yt according to the MSM, with weights h(d, t,V ) I(At−1=d(Lt−1))
gn(At−1=d(Lt−1)|Lt−1)

(1−Yt−1), where
gn is an estimator for g0.

The asymptotic theory of the IPW estimator is well understood in the literature. We
refer the reader to Robins (1999), van der Laan and Robins (2003b) and van der Laan and
Petersen (2007), where the last reference specifically addresses dynamic intervention rules.
In summary, ψ IPW

n described above satisfies the estimating equation PnDIPW (ψ,gn) = 0,
where

DIPW (ψ,g) = ∑
t∈τ,d∈D

h̃(d, t,V )
I(At−1 = d(Lt−1))

g(At−1 = d(Lt−1) | Lt−1)
(1−Yt−1)

(
Yt −mψ(d, t,V )

)
, (2.11)

with h̃(d, t,V ) ≡ h(d, t,V )φ(d, t,V ). If the mapping ΨIPW : M → RJ produces a unique
minimizer and hence characterized by the equation PDIPW (ΨIPW (g),g) = 0, then ψ IPW

n is
a consistent estimator of ψ0 provided gn is a consistent estimator of g0. Moreover, ψ IPW

n
is asymptotically linear with influence curve

ICIPW (g0) = MIPW (ψ0,g0,P0)
−1DIPW (ψ0,g0), (2.12)

where

MIPW (ψ ′,g,P)≡−∂ PDIPW (ψ,g)
∂ ψ

|ψ=ψ ′

= EP

{
∑

t∈τ,d∈D
h(d, t,V )φ(d, t,V )φ(d, t,V )T I(At−1 = d(Lt−1))

g(At−1 = d(Lt−1) | Lt−1)
(1−Yt−1)

×mψ ′(d, t,V )(1−mψ ′(d, t,V ))
}
.

Let ΣIPW
n denote the sample covariance matrix of MIPW (ψ IPW

n ,gn,Pn)
−1DIPW (ψ IPW

n ,gn).
The variance of

√
n(ψ IPW

n −ψ0) can be estimated using ΣIPW
n . Consequently, we can con-

struct Wald confidence intervals of level (1−α) as
[
ψ IPW

n ±ξ1−α/2(Σ
IPW
n /n)1/2

]
, where

ξ1−α/2 is the (1−α/2)-quantile of the standard normal distribution.
Though both G-computation estimator and IPW estimator properly account for time-

varying confounding, the popularity of IPW over G-computation estimator is apparent
from its ease of implementation and its theoretical validity for Wald confidence intervals.
Moreover, the treatment probabilities g0 may arguably be easier to specify correctly than
the sequential conditional means Qd,t

k (P0). However, the G-computation estimator is not
entirely without merit compared to the IPW estimator, as the latter is generally more sus-
ceptible to near positivity violations due to the inverse probability weighting in (2.10).
Often times the kernel functions h(d, t,V ) are chosen to stabilize these inverse probability
weights; this remedy, however, is less effective when the rules d are individualized, since
the marginal function h(d, t,V ) cannot depend on the time varying covariates Lt .
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Targeted Maximum Likelihood Estimator
As discussed earlier, consistency of the IPW estimator relies on consistency of gn, while
consistency of the G-computation estimator relies on consistency of Qn. In this section,
we propose a semiparametric efficient estimator that is robust against misspecification of
either Q0 or g0. These theoretical promises hinge on the use of one important ingredient
— the efficient influence curve for ψ0.

The Efficient Influence Curve

Central to our methods is viewing the parameter of interest ψ0 as the value evaluated at
P0 of the map Ψ : M → RJ , where Ψ(P) is given by equation (2.7) after replacing the
functionals Qd,t

1,0 ≡ Qd,t
1 (P0) with Qd,t

1 (P) and the marginal expectation under P0, EP0{·},
with the marginal expectation under P, EP{·}. It is also straightforward to note from (2.7)
that Ψ(P) = Ψ(Q). From its definition, we see that ψ = Ψ(P) satisfies the characterizing
equation

0 =U(ψ,Q,P)

= EP ∑
t∈τ,d∈D

h̃(d, t,V )
(

1−Qd,t−1
1 (L0)

)(Qd,t
1 (L0)−Qd,t−1

1 (L0)

1−Qd,t−1
1 (L0)

−mψ(d, t,V )

)
. (2.13)

Note that U(ψ,Q,P) = PDIPW (ψ,g).
The mapping Ψ is pathwise differentiable on M ; its efficient influence curve (EIC)

sheds light on the asymptotic properties of all regular and asymptotically linear estimators
of Ψ(P0). The latter statement is formalized in the following lemma. We refer the reader
to Bickel, Klaassen, Ritov, and Wellner (1997), van der Laan and Robins (2003b) van der
Vaart and Wellner (1996) for definitions and proofs about properties of efficient influence
curves in general. The efficient influence curve for the mapping P 7→ Ψ(P) in (2.7) can
be derived using the characterizing equation (2.13) via the functional delta method; this
derivation can be found in Petersen et al. (2014) and Schnitzer et al. (2014), we provide it
in the appendix for completeness sake.

Lemma 2.1 (Efficient influence curve for Ψ).
Suppose the mapping Ψ : M → RJ is well-defined at P, in the sense that it’s a unique

minimizer and hence characterized by the equation U(Ψ(P),Q,P) = 0. Then, its efficient
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influence curve at P = (Q,g), denoted D∗(Q,g), is given by D∗ (Ψ(Q),Q,g), where

D∗ (ψ,Q,g)(O)≡M(ψ,Q,P)−1×

{
∑
t∈τ

∑
d∈D

Dd,t(ψ,Q,g)(O)+DL0(ψ,Q)(O)

}
, (2.14)

with

M(ψ,Q,P)≡−∂U(ψ,Q,P)
∂ψ

= EP

{
∑

t∈τ,d∈D
h(d, t,V )φ(d, t,V )φ(d, t,V )T

(
1−Qd,t−1

1 (L0)
)

mψ(d, t,V )(1−mψ(d, t,V ))
}
,

Dd,t(ψ,Q,g)(O)≡ Jψ(d, t,V )
t

∑
k=1

I(Ak−1 = d(Lk−1))

g(Ak−1 = d(Lk−1) | Lk−1)

(
Qd,t

k+1(Lk)−Qd,t
k (Lk−1)

)
,

DL0(ψ,Q)(O)≡ ∑
t∈τ,d∈D

h̃(d, t,V )
(

1−Qd,t−1
1 (L0)

)(Qd,t
1 (L0)−Qd,t−1

1 (L0)

1−Qd,t−1
1 (L0)

−mψ(d, t,V )

)
.

with Jψ(d, t,V ) = h̃(d, t,V )− I(t ≤ K)h̃(d, t +1,V )(1−mψ(d, t +1,V ).
The variance VarP D∗ (Ψ(Q),Q,g)(O) is a generalized Cramér-Rao lower bound for

the asymptotic variance of any regular and asymptotically linear estimator of Ψ(P).
Moreover, if either Q = Q0 or g = g0, then P0D∗(Ψ(Q),Q,g) = 0 implies that Ψ(Q) =

Ψ(Q0).

Proof. See appendix for derivation of (2.14) and proof of double robustness; see Bickel
et al. (1997), van der Laan and Robins (2003b) and van der Vaart and Wellner (1996) for
the statement regarding variance bounds.

Now, we are ready to describe the implementation of a TMLE estimator using D∗.

The Loss Function, the Fluctuation Model, and the Algorithm

In a glimpse, our strategy consists of targetedly updating given initial estimators Qn of Q0
by minimizing a pre-specified loss along a least favorable (with respect to ψ0) submodel
through Qn; iterate this updating procedure until the estimating equation PnD∗(Q∗n,gn) = 0
is solved at some final targeted estimate Q∗n of Q0, and then evaluate Ψ at this Q∗n.

More specifically, for each d ∈D , t = K +1, . . . ,1 and k ≤ t, consider the quasi nega-
tive log likelihood loss for Qd,t

k , indexed by its expectant Qd,t
k+1:

L
(

Qd,t
k

)
(O)≡−I (Ak−1 = d(Lk−1)) log

(
Qd,t

k (Lk−1)
Qd,t

k+1(Lk)
(

1−Qd,t
k (Lk−1)

)1−Qd,t
k+1(Lk)

)
.

(2.15)
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We suppressed the indexing by Qd,t
k+1 in the notation. The corresponding least favorable

submodel through Qd,t
k , parametrized as

{
Qd,t

k (ε) : ε ∈ RJ
}

, is chosen to satisfy the score

condition ∑
t
k=1

∂L
(

Qd,t
k (ε)

)
∂ε

|ε=0= Dd,t (ψ,Q,g). In particular, we can choose

Qd,t
k (ε) = expit

(
logitQd,t

k + ε Hd,t
k (ψ,g)

)
, (2.16)

where Hd,t
k (ψ,g)(Lk−1)≡

Jψ (d,t,V )
g(Ak−1=d(Lk−1)|Lk−1)

. Note that the dependency of Qd,t
k (ε) on ψ

and g are suppressed in the notation.
Before describing the algorithm, we make the following observation. Due to the form

of the efficient influence curve, the direction of fluctuation Hd,t
k (ψ,g) depends on the esti-

mand itself; consequently, the implementation of the TMLE for the hazard MSM conceals
more subtleties than its counterpart for the survival MSM in Schnitzer et al. (2014) and
Petersen et al. (2014). For one, in addition to non-targeted initial estimates Qn and gn, an
initial estimate of ψ0 is also needed to perform the first update for Qn. One should choose
a consistent initial estimator (albeit not doubly robust), such as the G-computation or the
IPW estimator. Since iteration will be performed, choosing either one of these should
have the same asymptotic implications, however, it may make a difference in finite sample
performance when Qn is misspecified. The second subtlety is that this TMLE estimator
is truly iterative, wherein each iteration uses the previously obtained updated estimate of
ψ0 to steer the direction of fluctuation. The goal of these iterations is to produce targeted
estimators Q∗n of Q0 that satisfy the efficient score equation PnD∗(Q∗n,gn) = 0. However,
once the residual term PnD∗(Q∗n,gn) becomes smaller than the standard error of the estima-
tor, computational efforts spent to further minimize it will only yield diminishing returns.
Therefore, we use as stopping rule |PnD∗(Q∗n,gn)|/ ˆSEn < 1/

√
n, where ˆSE is estimated

using
√

V̂ar(D∗(Q∗n,gn))/n.
With these issues in mind, we are now ready to describe the algorithm.

1. Obtain initial estimators gn of g0 and Qn of Q0. For the latter, estimate the marginal
distribution of L0 using the empirical distribution, and estimate the conditional means
Qd,t

k (P0) using the regression-based technique described in section 3.4. Obtain initial
estimator ψn of ψ0 using either the IPW estimator ΨIPW (gn) or the G-computation
estimator Ψ(Qn).

2. Given initial estimators ψn, gn and Qn =
(

QL0
n ,
{

Qd,t
k,n, t ∈ τ,k ≤ t,d ∈D

})
, we se-

quentially update the conditional means Qd,t
k,n in a two-level algorithm as follows:
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a) Starting at t = K+1, estimate the conditional means
{

Qd,t
k (P0) : k ≤ t,d ∈D

}
as follows:

i. Initiate at k = t: Recall that Qd,t
t (P0)≡EP0 (Yt | Lt−1,At−1 = d(Lt−1)) and

Qd,t
t+1 ≡ Yt . We update the initial estimator Qd,t

t,n of Qd,t
t (P0) by Qd,t,∗

t,n ≡
Qd,t

t,n
(
ε t

t,n
)

where

ε
t
t,n ≡ argmin Pn ∑

d∈D
L
(

Qd,t
t,n (ε)

)
.

To implement this, first pool the data by creating one row per patient i
and regimen d ∈ D . Then, regress Yt on Hd,t

t (ψn,gn)(Lt−1) with offset
logitQd,t

t,n(Lt−1), among observations that remained uncensored by time

t−1 and assigning weight I
(

A1
t−1,i = d(Lt−1,i)

)
to row (i,d).

ii. At each subsequent k = t− 1, . . . ,1: We have an initial estimator Qd,t
k,n of

Qd,t
k (P0), and at the previous step, we have obtained an updated estimator

Qd,t,∗
k+1,n of its expectant Qd,t

k+1(P0). The update estimator Qd,t,∗
k,n is given by

Qd,t,∗
k,n ≡ Qd,t

k,n(ε
t
k) where

ε
t
k,n ≡ argmin Pn ∑

d∈D
L
(

Qd,t
k,n (ε)

)
.

We can obtain this by regressing Qd,t,∗
k+1,n(Lk) on Hd,t

k (ψn,gn)(Lk−1) with

offset logitQd,t
k,n(Lk−1) and weights I

(
A1

k−1 = d(Lk−1)
)
, among observa-

tions that remained uncensored by time k−1.
iii. After iterating step (ii) in order of decreasing k, we have obtained updated

estimators
(

Qd,t,∗
k,n : k ≤ t,d ∈D

)
.

b) Repeat step (a) in order of decreasing t, from t = K to t = 1.

3. At the end of the two-level algorithm in step (2) above, we have obtained tar-
geted estimators Q∗n =

(
QL0

n ,
{

Qd,t,∗
k,n (·) : t ∈ τ,k ≤ t,d ∈D

})
. In particular, we

have
{

Qd,t,∗
1,n (L0) : t ∈ τ,d ∈D

}
for each of the n observations. Pool together these

estimates Qd,t,∗
1,n (L0) over all d and t, we will have one row per patient i, rule d ∈D

and t ∈ τ . We can then update the parameter estimate using ψ∗n ≡ Ψ(Q∗n); this can

be implemented by fitting a weighted logistic regression of
Qd,t,∗

1,n (L0)−Qd,t−1,∗
1,n (L0)

1−Qd,t−1,∗
1,n (L0)

ac-

cording to the MSM, with weights h̃(d, t,V )(1−Qd,t−1,∗
1,n (L0)).
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4. Repeat step 2 and 3 using ψ∗n and Q∗n as initial estimators. Iterate this procedure until

the stopping criteria PnD∗(Q∗n,gn)/ ˆSEn < 1/
√

n, where ˆSEn =
√

V̂ar(D∗(Q∗n,gn))/n,
is satisfied.

5. The final updates and Q∗n and ψ∗n are the targeted maximum likelihood estimators
for Q0 and ψ0, respectively.

Statistical Inference of TMLE

As we alluded to earlier, given the pre-specified loss function (5.14), the corresponding
least favorable submodel (5.15) is chosen so that, by design, the TMLE estimator Q∗n sat-
isfies |PnD∗(Q∗n,gn)| ≈ 0. From this property stems the doubly robust and locally efficient
properties of ψ∗n .

Specifically, under regularity and empirical process conditions (see e.g. van der Laan
and Rose (2011)), if both Q∗n and gn are consistent estimators, then ψ∗n is asymptoti-
cally linear with influence curve D∗(Q0,g0); if gn converges to g0, but Q∗n converges to
some Q∗ (which may be correctly specified or otherwise), then the influence curve of ψ∗n
equals D∗(Q0,g0) minus its projection onto the tangent space of M for g0. In either case,√

n(ψ∗n −ψ0) converges weakly to a normal distribution with covariance matrix equal to
or greater than the covariance matrix of D∗(ψ0,Q∗,g0). Consequently, the asymptotic
variance of

√
n(ψ∗n −ψ0) can be conservatively estimated using Σ∗n, the sample covariance

matrix of D∗(ψ∗n ,Q
∗
n,gn). We can construct asymptotically conservative confidence inter-

vals of level (1−α) as
[
ψ∗n ±ξ1−α/2(Σ

∗
n/n)1/2

]
, where ξ1−α/2 is the (1−α/2)-quantile

of the standard normal distribution. Note that this influence curve based variance estimate
assumes that the weights h(d, t,V ) are known functions; when these weights are estimated,
this variance estimate should be interpreted as estimating the variance of an estimator of
MSM parameters defined by the estimated weights.

2.4 Simulation Study
In this section, we evaluate the relative performances of the G-computation estimator, IPW
estimator and TMLE estimator for the parameters of a marginal structural model for the
hazard function. For each estimator, we assess the bias, variance, mean squared error
(MSE) and coverage estimates for the influence curve based 95% confidence intervals.
This data generating process, together with the running example, are extracted from Pe-
tersen et al. (2014), only a few parameters are changed to prevent near positivity violations.
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Data Generating Process
We use a data generating process that resembles the running example. The goal is to assess
the effect of delay in switching to a second line antiretroviral therapy on mortality among
HIV infected patients who failed their first line therapy.

A sample consists of n i.i.d. copies of

O = (W,CD40,A0,Y1,CD41,A1, . . . ,YK ,CD4K ,AK ,YK+1) .

The baseline variable W encodes sex, the baseline age and disease stage, the time varying
covariate CD4t encodes the most recent CD4 count measurement at time t, and Yt is the
indicator of death by time t. The treatment variable A1

t is the indicator of having switched
to second line therapy by time t. The censoring variable A2

t consists of (C1
t ,C

2
t ), indicating

database closer by time t and loss to follow up by time t, respectively.
We briefly summarize the data generating steps here, deferring the details of the dis-

tributions to the appendix. First, we draw the baseline time independent covariates W . At
each time t ≥ 0, if uncensored, first draw the CD4 count measurement for time t based
on baseline covariate W , prior CD4 counts, and treatment status at previous time point
A1

t−1. Then, determine censoring by database closure C1
t based on W . If still uncensored,

determine censoring by loss to followup C2
t based on W , prior CD4 counts, and previous

regimen status A1
t−1. If still uncensored and have not switched, determine switching us-

ing W and current CD4 counts CD4t . Finally, determine death based on W , current CD4
counts CD4t and current regimen status A1

t .

Target Parameter
An intervention rule of interest dm switches to second line therapy at m months after first
line therapy failure and prevents right censoring, given the subject is still alive. The set of
regimens of interest are indexed by possible switching times, D = {dm : m = 0, . . . ,K+1}.
Note that each dm is in fact a static rule assigning At = am

t , where am
t = 0 at t < m and am

t =
1 at t ≥m. We summarize the hazard function λ (dm, t) = P(Yt(dm) = 1 |Yt−1(dm) = 0) as

mψ(dm, t) = expit(ψ0 +ψ1t +ψ2max(t−m,0)) ,

and use kernel weights

h(dm, t) = P0
(
At−1 = am

t−1
)

I(t < t∗),

where t∗ is the first time point where all subjects have either died or censored. Both
P0
(
At−1 = am

t−1
)

and t∗ are estimated from data, but are treated as given in our parameter
definition. This weight mitigates near positivity violation by down-weighting rules with
little support in data.
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Estimators
We use the regression-based approach in section 3.4 to estimate the initial estimator Qn of
Q0. A correctly specified Qd,t

k,n is obtained by regressing Qd,t
k+1,n on W and the entire past

covariate history Lk−1 ≡ (CD40, . . . ,CD4k−1) and exposure history A1
k−1. A misspecified

Qd,t
k,n uses an intercept model. A correctly specified gn estimates the conditional probability

of C1
t by adjusting for W and CD40; estimates conditional probability of C2

t by adjusting
for W , the last observed CD4t−1 and A1

t−1; and estimates treatment allocation probabilities
by adjusting for W and CD4t . A misspecified gn uses an intercept model. Both gn and
Qn are fitted using Super Learner, under 10-fold cross-validation, with candidate fitting
algorithms glm, neural net, and stepAIC.

We will implement the Gcomp and IPW estimators as described in sections 3.4 and
3.4, we will implement two versions of the TMLE estimator, one with Gcomp as ini-
tial estimator, denoted as TMLEGcomp, and one with IPW as initial estimator, denoted as
TMLEIPW . In both IPW and TMLE, the product of g in the denominator is truncated be-
low at 0.01. The iterations in TMLE will stop at either PnD∗(Q∗n,gn)/ ˆSEn < 1/

√
n, where

ˆSEn =
√

V̂ar(D∗(Q∗n,gn))/n, or at the 17th iteration, whichever comes first.

Results
We assess bias, variance, MSE and coverage probability of the confidence intervals of the
estimators over 500 samples of size n = 500, with number of time points K = 2. The
results are displayed in table 2.1. The TMLE implementations in all simulations ended by
the stopping rule, and for our purposes are deemed convergent.

Firstly, we compare the two TMLE estimators (with different initial estimators) across
the board, and note that, after rounding up to 3 significant digits, the choice of initial
estimator has little effect on the performance of the TMLE estimator. Therefore, we will
focus on comparative performance of Gcomp, IPW and either TMLE.

When both Q0 and g0 are correctly specified, theoretical results predict that TMLE
should be more efficient than IPW, and both TMLE and IPW are asymptotically normal
with an asymptotic variance that can be estimated by V̂arD∗(Q∗n,gn) and V̂arDIPW (gn),
respectively; consequently, finite sample variance of these estimators can be approximated
using the sample variance of their influence curves divided by

√
n. For the given sample

size n = 500 and number of time points K = 2, however, we see that (i) TMLE only
has slight efficiency gain over IPW; (ii) the influence curve (IC) based variance estimates
of the TMLE and IPW (”IC-based var.”) grossly underestimate the true variance of the
estimator; (iii) The coverage of the Wald 95% confidence intervals made using IC based
variance estimates (”Coverage: IC var. CI”) is very poor. Just how much of the poor
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coverage in (iii) is attributed to the poor estimate given by the IC-based variance estimator,
as observed in (ii), and how much of it indicates an underlying problem with achieving
asymptotic normality? To answer this, we construct a Wald confidence interval using the
true variance of the estimators, which can be approximated using the sample variance
across the 500 simulations. The coverage of these confidence intervals is reported under
”Coverage: true var. CI”. We see that this second set of confidence intervals have coverage
close to the 95% confidence level, given the moderate sample size. This suggests that the
poor coverage problem in (iii) is mostly attributed to poor variance estimate. Indeed,
increasing sample size to n = 5000 (table 2.2) improves significantly the coverage of the
confidence intervals, as the IC based variance estimate more accurately approximates the
true variance of the estimators. The efficiency gain of TMLE over IPW is also more
apparent in larger sample size. These observations teaches us that even though IPW and
TMLE estimators have theoretically valid IC based variance estimates, their accuracy (and
the coverage of the corresponding confidence intervals) are generally sensitive to sample
size (with respect to the complexity of the data structure) and to potential bias in the
truncation of gn. Consequently, better variance estimate of these estimators, beyond using
their first order term in the taylor expansion, is needed, but this is beyond the scope of
this chapter. Alternative, instead of employing central limit theorem based inference, one
may also obtain variance estimates via bootstrap, when willing to pay the computational
expense.

The double robustness properties provide bias reduction as predicted by lemma 2.1.
When gn is misspecified and Qn is correctly specified, TMLE provides significant bias
reduction over the misspecified IPW, with only slight increase in variance, hence leading
to overall smaller MSE. The benefit of this bias-variance tradeoff is perhaps more apparent
in large sample sizes, since the overall MSE of the TMLE estimators will decrease with
sample size, whereas those of IPW will stabilize. When Qn is misspecified and gn is
correct, TMLE also provides bias reduction over the misspecified Gcomp, but this may
come at the price of increased variance.
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2.5 Summary
In this chapter, we have presented a doubly robust and efficient substitution estimator for
a longitudinal dynamic (or static) marginal structural model for the hazard function. This
work builds upon the pooled TMLE methodology in Petersen et al. (2014), as well as
earlier work by Bang and Robins (2005).

Unlike TMLE for MSM for survival functions or means, TMLE for MSM for a hazard
function is a bona fide iterated estimator and requires an initial estimator of the parameter
of interest. There is no theoretical predictions on which initial estimator is more advan-
tageous, the simulations have also offer little evidence in favor of either. This seems to
suggests that the choice of initial estimator has little effect, at least in moderate and large
sample sizes.

The proposed TMLE estimator offers theoretical advantages over the popular IPW es-
timator and a non-targeted substitution Gcomp estimator: 1) it offers protection against
model misspecifications, 2) it is locally efficient. Moreover, compared to the IPW esti-
mator, TMLE ought to be generally less sensitive (though not immune) to near positivity
violations, thanks to the substitution principle. We test these theoretical promises in a
simulation study mimicking an observational cohort study. The bias reduction over a mis-
specified IPW or Gcomp estimator is clear even for a moderate sample size. On the other
hand, the efficiency gain of TMLE over IPW is clear only at large sample sizes in this
simulation. We also see that at moderate sample sizes, the influence curve based vari-
ance estimate of IPW and TMLE is a poor estimate of the true variance. Even though
this variance estimate can be improved with increased sample size, its performance is still
not satisfactory for real life applications. This suggests that a more sophisticated variance
estimate, as well as appropriate diagnostics, are needed for these two estimators. Future
research priorities should focus on variance estimation and inference methods that remain
resilient in the face of moderate confounding and multiple time points.
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2.6 Chapter Appendix

Derivation of Efficient Influence Curve
In order to apply the functional delta method, we first rewrite the characterizing equation
(2.13) as

U(ψ,Q,P) = EP ∑
t∈τ,d∈D

h̃(d, t,V )
(

1−Qd,t−1
1 (L0)

)(Qd,t
1 (L0)−Qd,t−1

1 (L0)

1−Qd,t−1
1 (L0)

−mψ(d, t,V )

)
= EP ∑

t∈τ,d∈D
h̃(d, t,V )

(
Qd,t

1 (L0)−Qd,t−1
1 (L0)−mψ(d, t,V )+mψ(d, t,V )Qd,t−1

1 (L0)
)

= EP ∑
t∈τ,d∈D

Jψ(d, t,V )Qd,t
1 (L0)− h̃(d, t,V )mψ(d, t,V ). (2.17)

Since 0 =U(Ψ(P),Q,P), it follows from implicit differentiation that

dΨ(P)
dP

=−dU(Ψ(P),Q,P)
dΨ(P)

−1 dU(ψ,Q,P)
dP

.

Straightforward computations shows that indeed

− dU(ψ,Q,P)
dψ

= EP

{
∑

d∈D

τ

∑
t=1

h(d, t,V )
(

1−Qd,t−1
1 (L0)

)
mψ(d, t,V )(1−mψ(d, t,V ))φ(d, t,V )φ(d, t,V )T

}
.

This proves the expression for M(ψ,Q,P) in (2.14).

Next, note that dU(ψ,Q,P)
dP = dU(ψ,Q,P)

dQL0
dQL0

dP +∑t∈τ ∑d∈D
dU(ψ,Q,P)

dQd,t
1

dQd,t
1

dP . can be obtained

by a simple application of the functional delta method method, using the efficient influence
functions for QL0 and Qd,t

1 obtained in Petersen et al. (2014). Therefore, we have

DL0(ψ,Q)(O)≡∑
t∈τ

∑
d∈D

h̃(d, t,V )
(

1−Qd,t−1
1 (L0)

)(Qd,t
1 (L0)−Qd,t−1

1 (L0)

1−Qd,t−1
1 (L0)

−mψ(d, t,V )

)
,

Dd,t(ψ,Q,g)(O) = Jψ(d, t,V )
t

∑
k=1

I(Ak−1 = d(Lk−1))

gk (Ak−1 = d(Lk−1) | Lk−1)

(
Qd,t

k+1(Lk)−Qd,t
k (Lk−1)

)
.

Now, we show the robustness property. If Q = Q0, the result is trivial by definition
of Ψ(Q) and Qt

k. We only need to check the second case. When g = g0, at each t, the
sum from k = 1 to k = t forms a telescopic sum, leaving only the first and the last term.
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Using expression in (2.17) to rewrite DL0(Ψ(Q),Q), we have, up to a constant normalizing
matrix,

0 = P0D∗(Ψ(Q),Q,g0) = P0

τ

∑
t=1

∑
d∈D

JΨ(Q)(d, t,V )Qd,t
1,0(L0)−P0

τ

∑
t=1

∑
d∈D

JΨ(Q)(d, t,V )Qd,t
1 (L0)

+P0

τ

∑
t=1

∑
d∈D

JΨ(Q)(d, t,V )Qd,t
1 (L0)− h̃(d, t,V )mΨ(Q)(d, t,V )

= P0

τ

∑
t=1

∑
d∈D

JΨ(Q)(d, t,V )Qd,t
1,0(L0)− h̃(d, t,V )mΨ(Q)(d, t,V )

=U(Ψ(Q),Q0,P0).

Therefore, Ψ(Q) = Ψ(Q0).

Data Generating Distribution for the Simulation Study
The baseline covariate W consists of W = (W1,W2,W3,W4), where W1 = I(30≤ age≤ 39),
W2 = I(age > 39), W3 indicates sex, and W4 = disease stage.

To mimic the data generating process in a real life clinical cohort data, we include
a monitoring variable Mt , which indicates whether the subject had come into the clinic
at time t and thus have their CD4 measured and have the chance to switch regimen. Let
CD4u

t denote the underlying true CD4 counts within a patient; the observed covariate CD4t
equals this underlying CD4u

t only if a patient was seen at time t (i.e. Mt = 1). Subsequent
CD4 values CD4u

t and death Yt depend on the underlying CD4 counts, not the observed
ones. The regimen status A1

t has non-zero probability of changing only if the patient was
seen at time t, while the decision to change regimen status depends on the observed CD4
counts. This monitoring variable is excluded from the adjustment set in the analysis for
two reasons: (1) it is an instrumental variable for the effect of switching on mortality; (2)
its inclusion would produce positivity violations since subjects who were not seen at the
clinic would have zero probability of switching regimen.

Let ε1,t and ε2,t be errors drawn from a standard normal distribution. The data gener-
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ating distributions are given as follows:

W1 ∼ Bern(0.3), (W2 |W1 = 0)∼ Bern(0.5), W3 ∼ Bern(0.5), W4 ∼ Bern(0.3);

P(Yt = 1 |W,CD4u
t ) = expit

(
−1−0.1W1−0.1W2 +0.1W3−0.2W4−0.7CD4u

t−1−0.9A1
t−1
)

CD4u
t =

{
max(min(ε1,t −W4,4) ,−4) if t = 0,
max

(
min

(
ε1,t +0.1W1−0.1W2−0.1W3−0.5W4 +0.9CD4u

t−1 +A1
t−1,4

)
,−4

)
if t ≥ 1;

P(Mt = 1 |W,CD4t−1,A1
t−1) ={

1 if t = 0,
expit

(
0.4+0.1W1−0.2W2 +0.3W3 +0.1W4−0.1CD4t−1 +0.2A1

t−1
)

if t ≥ 1;

CD4t =

{
CD4u

t if Mt = 1,
CD4t−1 if Mt = 0;

P(C1
t = 1 |W,CD40) =

{
0 if t = 0
1− expit(2+0.1W1 +0.2W2 +0.1W3 +0.1W4 +0.1CD40) if t ≥ 1;

C2
t = I (Mt−2 = 0,Mt−1 = 0,Mt = 0)

P(A1
t = 1 |Mt ,A1

t−1,W,CD4t) =
1 if t ≥ 1 and A1

t−1 = 1;
0 if t = 0 or if t ≥ 1 and A1

t−1 = 0 and Mt = 0;
expit(−0.5+0.1W1 +0.1W2 +0.2W3 +0.2W4−1.5CD4t + ε2,t) otherwise.
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Chapter 3

Marginal Structural Models with
Counterfactual Effect Modifiers: a twist
to a familiar story

3.1 Introduction
In social and medical sciences, research questions often involve systematic comparison
of the effectiveness of different exposures on a well-defined outcome of interest. But be-
yond the overall comparative effectiveness of the exposures on a diverse population, the
researchers are also interested in identifying factors that modify the effect of the expo-
sures. Will augmenting a failed citalopram regimen with other medications be beneficial
(compared to switching to other medications entirely) for depression patients with certain
medical or psychiatric history, but harmful for others? Can an aggressive course of cancer
treatment be very effective (compared to a standard treatment) in reducing risk of metas-
tasis on patients with a specific gene mutation, but makes little difference on the general
patient population? This type of comparative effectiveness research (CER) often invokes
knowledge about the pre-exposure individual characteristics that can potentially change
the effect of the exposures. Consequently, a crucial component of CER is evaluating the
modification of an exposure’s effect by a given set of pre-exposure covariates (effect mod-
ifiers).

Marginal Structural Models (MSM), introduced by Robins (1997a), model the marginal
distributions of an intervention-specific counterfactual mean outcome, possibly condition-
ing on a subset of pre-treatment covariates — the effect modifiers. The MSMs are use-
ful tools for analyzing the causal effect of a time-varying treatment in the presence of
time-varying confounding, as well as for studying the modification of these effects by pre-
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treatment covariates (note that though MSM can also be used to study interactions, that
application is beyond the scope of this article and we refer to? for a discussion on the
delineation between effect modification and interaction). Generally, the effect modifiers
of interest are cast as variables of the observed past, either as pre-treatment covariates (e.g.
see Robins et al. (2000a) for an exposition on pre-treatment effect modifiers) or as vari-
ables in an observed history (see van der Laan, Petersen, and Joffe (2005) for a presentation
of the so-called history-adjusted MSM). Yet, in some applications the effect modifiers of
interest are in fact counterfactual. For example, consider an observational study where
HIV-infected individuals are followed over time and their CD4 T-cell counts (among other
time-varying covariates) are measured at regular intervals. Upon immunological failure of
their first-line Antiretroviral Therapy (ART), patients are switched to a second-line ART
within a certain period of time. For a specific first-line ART drug, say Zidovudine (AZT),
one wishes to evaluate how the effect of delaying switching to second-line ART on mor-
tality is modified by the CD4 counts measured at the time of first-line failure. However,
suppose high viral load at diagnosis is highly predictive of receiving AZT as first line
treatment. In this case, it is not suffice to perform the effect modification analysis con-
ditioning on the observed first line CD4 and stratify on those who received AZT at first
line, lest we assess the effect modification by CD4 counts at failure only among those with
high viral load at diagnosis. Instead, one may cast the CD4 counts at failure as counter-
factual variables under the intervention to set the first-line treatment to AZT, this way, the
statistical estimand accounts for selection bias in the first line treatment assignment by
mimicking that an ideal experiment where first line treatment was randomized. In another
example, the baseline effect modifiers of interest may be missing at random, wherein the
missingness may share common determinants with treatment and the outcome of interest.
Consider, for instance, the STAR*D (Sequenced Treatment Alternatives to Relieve De-
pression) trial, a multi-level, longitudinal pragmatic trial of treatment strategies for major
depression ( http://www.edc.gsph.pitt.edu/stard/). Potential modifiers of a given
level’s treatment effect include the patient’s response to previous level’s treatment and the
patient’s psychiatric history measured at screening. After an initial screening, patients are
enrolled into level 1 of the study, where everyone is assigned citalopram. At the start of
each subsequent level, if a patient still remains in the study, then he is randomized into one
of his chosen treatment strategies. At level 2, the patient can choose between augmenting
the citalopram or switching to a new regimen (or to be randomized into either strategy if
he chooses so). Suppose we wish to assess the effect modification of 2nd level’s treatment
by the depression symptoms measured at the exit of level 1. These symptom measures are
obtained at clinical visits and level exit surveys. It is reasonable to believe that the more
depressed patients and those less satisfied with their level 1 treatments will be less inclined
to follow up with the surveys and visits or to report these symptom measures (we acknowl-
edge the high possibly of missing not at random in this example, but that is beyond the
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scope of this paper). Consequently, a simple complete-case analysis may fail to adjust for
selection bias introduced by this missingness.

In this chapter, we investigate MSMs defined by counterfactual effect modifiers. We
aim to make the following contributions to the literature. Firstly, we determine the identifi-
cation of the causal dose-response curve and MSM parameters in this setting. Secondly, we
establish the semiparametric efficiency theory for these statistical parameters, and present
a substitution-based, semiparametric efficient and doubly robust estimator using the tar-
geted maximum likelihood estimation methodology (TMLE, e.g. van der Laan and Rubin
(2006), van der Laan and Rose (2011)). However, as we shall see, due to the form of the
efficient influence curve, the implementation of this estimator may prove arduous in ap-
plications where V is high dimensional. To address this problem, our third contribution is
a projected influence curve (and the corresponding TMLE estimator), which retains most
of the robustness of its efficient peer and can be easily implemented in applications where
the use of the efficient influence curve becomes taxing. In addition to these two robust
estimators, we also present an inverse-probability-weighted (IPW) estimator (e.g. Robins
(1997a), Hernan, Brumback, and Robins (2000)), and a non-targeted G-computation esti-
mator (Robins (1986)).

This chapter is organized as follows. In section 3.2, we use a nonparametric struc-
tural equations framework (Pearl (2009)) to formulate the causal inference problem and
determine the identifiability of the desired causal parameters from the observed data distri-
bution. In section 3.3, we present the efficient influence curve for the parameter of interest
under a saturated semiparametric model, as well as a projected influence curve. The ro-
bustness conditions for the efficient and the projected influence curves are established. In
section 3.4, we present the construction of two TMLE estimators, one using the projected
influence curve (and we call it the ∆-TMLE) and one using the efficient influence curve
(and we call it the full TMLE, an IPW estimator, and a non-targeted G-computation estima-
tor. In section 3.5, a simulation study demonstrates robustness properties of the ∆-TMLE.
In section 3.6, we use STAR*D to illustrate the application of ∆-TMLE. A summarizing
discussion concludes the chapter .

3.2 Parameters of MSM with Counterfactual Modifier
Consider a longitudinal data structure O = (W,A1,L1, . . . ,AK,LK)∼ P0, where W encodes
baseline covariates, At is the variable measured at time t that encodes the exposures of
interest and censoring indicators, and Lt encodes covariates (including time-varying con-
founders) measured between At and At+1, including the outcome process of interest Yt .
YK is the final outcome of interest. For the sake of discussion, assume that Yt is either
a binary or a bounded continuous variable (without losing generality, we may assume
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it’s bounded between (0,1)). Suppose we wish to evaluate effect modification of At by
a particular V ⊂W , in an ideal experiment where a variable affecting V , call it ∆ , had
been set to a given value ∆ = δ . For instance, if V is subject to missingness and ∆ in-
dicates whether V is measured, then one may wish to intervene to set ∆ = 1. In other
applications, ∆ may be a first-line treatment and V is a covariate measured between ∆

and the second-line treatments At , and one is interested in effect modification by V had
the first-line treatment been at a particular level ∆ = δ . The other baseline covariates
W\{V} are divided into those preceding ∆ in our time-ordering — we call them W1 —
and those succeding ∆ — we call them L0. Consequently, the observed data structure
becomes O = (W1,∆,V,L0,A1,L1, . . . ,AK,LK).

In our STAR*D example, regular follow-up visits are conducted throughout each level.
At each follow-up visit, covariates are collected, and the patient is subject to dropout, en-
tering remission, or moving onto next level. Suppose we want to compare the effects
of switching medication vs augmenting medication at level 2, on the chances of entering
remission by the end of that level, among patients who failed the citalopram assigned to
everyone at level 1. We use the discrete time scale of weeks. By study protocol, all subjects
will have either entered remission (treatment success), moved onto the next level (treat-
ment failure), or dropped out (right censoring), by the end of K = 23 weeks. A1 encodes
the treatment strategy received by a patient at level 2: this can be augmenting medica-
tion (A1 = 0), switching medication (A1 = 1), or to receive cognitive therapy (A1 = 2);
we are only interested in comparing switching medication vs augmenting medication. For
t ≥ 2, At is a counting process which drops to 0 if patient was censored by time t. Lt in-
cludes time-varying covariates such as visit statistics (time in level thus far, visit frequency,
etc), side-effect burden and symptom measures at time t. Lt also contains two counting
processes: the outcome process Yt , which is a binary indicator for entering remission by
time t, and a failure process Et that jumps to 1 if a patient is moved to the next level, in
which case the remission status will be zero for this level and the patient is considered
non-censored (since the outcome was observed to be unsuccessful). Our final outcome of
interest is YK — the remission status by end of 23 weeks. Once either the censoring pro-
cess At≥2, the success process Yt or the failure process Et jumps, all subsequent variables
are encoded by carrying forward the last observation. Baseline covariate W has variables
collected at screening, as well as summary of patient’s history throughout level 1 (recall
that all patients are prescribed citalopram at level 1). To assess effect modification by the
patient’s response to previous level’s treatment, V can be a psychiatric score taken at exit
of level 1. Many such effect modifiers of interest are subject to missingness, we use ∆

to indicate whether V is measured. In this case, W1 consists of the covariates (and their
missingness status) collected from enrollment up to level 1 exit, as well as level 1 exit
summaries, such as frequency of visit and adherence to study protocol, that may affect
missingness of V .
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The time-ordering assumptions can be captured by a nonparametric structural equa-
tions model (NPSEM, Pearl (2009)):

W1 = fW1 (UW1) ; ∆ = f∆ (W1,U∆) ; V = fV (W1,∆,UV ) ; L0 = fL0 (W1,∆,V,UL0) ;

At = fAt (W1,∆,V,At−1,Lt−1,UAt ) ; Lt = fLt (W1,∆,V,At ,Lt−1,ULt ) , (3.1)

where the boldface notation means Xs = (X0, . . . ,Xs), for X = L or A (for the latter the in-
dexing start at 1). We will also use the shorthand X = XK , and Xt

s = (Xt , . . . ,Xs). Variables
with degenerate indices, such as −1, are empty sets. This framework assumes that each
variable X in the observed data structure is an unknown deterministic function of observed
variables and some unmeasured exogenous random factors U . From here on, we will refer
to the observed variables in the input of fX as the parents of X . This causal model defines
a random variable with distribution PO,U on a unit.

Consider a hypothetical experiment where the research could enforce ∆ = δ and A = a
on all units. ∆ and A are the intervention variables. In the Star*D example, where the
natural intervention on ∆ is 1, this would entail taking precautions to enforce measurement
of V , assigning the strategy, say, a1 equals augmenting medication to all patients, and
preventing dropouts throughout the level. Use V (δ ), L0(δ ), Lt(a) and YK(a) to denote the
counterfactual modifier, non-intervention covariates and final outcome, respectively, under
the intervention of setting (∆,A) = (δ ,a). Note that the intervention of ∆ = δ on Lt and
YK are suppressed in this notation. To emphasize that in our question of interest the level
δ does not change, we shall give it a constant values, say δ = 1, to simplify notations later
on.

For a given exposure of interest A = a and an effect modifier value V = v, ρF
a,v(PO,U)≡

E(YK(a) |V (1) = v) is the mean counterfactual outcome under exposure A= a for individ-
uals with characteristic V = v, if ∆ = 1. A causal quantity of interest is the counterfactual
conditional dose–response curve {ρF

a,v(PO,U) : (a,v) ∈A ×V }, where V is the outcome
space of V and A is a set of interventions on A we wish to compare. In our STAR*D
example, A = {(a1 = 0,at≥2 = 1),(a1 = 1,at≥2 = 1)}, even though the outcome space
of the treatment node is a1 ∈ {0,1,2}. This dose-response curve can be summarized by
a working MSM {mψ(a,v) : ψ ∈ S ⊆ Rd}. Since we are considering a final outcome that
is either binary or bounded in (0,1), the range of our working model m falls within the
unit interval. For a given kernel weight function h(a,v), the causal parameter of interest is
defined as

Ψ
F(PO,U) = argmin

ψ∈S

{
− ∑

(a,v)∈A×V

p(V (∆ = 1) = v)h(a,v)

×
{

ρ
F
a,v(PO,U) logmψ(a,v)+

(
1−ρ

F
a,v(PO,U)

)
log
(
1−mψ(a,v)

)}}
(3.2)
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In words, ΨF(PO,U) yields the best weighted approximation of the counterfactual condi-
tional dose-response curve, according to the user-specified quasi-loglikelihood loss, kernel
weights and MSM. Because we are not assuming that that the MSM is correctly specified
(it is only an approximation to the truth), the definition of this parameter hinges upon the
choice of model and the kernel weights (Neugebauer and van der Laan (2007)). The main
difference between this causal parameter and its analog in the familiar non-counterfactual
modifier story (e.g. Robins (1997a), Neugebauer and van der Laan (2007)) resides in the
nature of the conditioning variable in the dose-response curve, E(YK(a) | V (1) = v) vs
E(YK(a) | V = v), and the distribution of V used in the definition of optimizing function,
p(V (1) = v) vs p(V = v). For this reason, the parameter in (3.2) and its non-counterfactual
modifier analog can be staged on a common platform when comparing multiple effect
modifiers, some of which are missing.

To identify (3.2) from the data generating distribution P0, we make a positivity assump-
tion and the Sequential Randomization Assumption (SRA, derived by Robins (1997b)).
Specifically, under the positivity assumption, there exists {α∆,αt : t} ∈ (0,1) such that
α∆ ≤ p0(∆ = 1 |W1) and p0(At = at | ·) < 1−αt , for all t and a ∈ A , almost every-
where. The SRA assumes that ∆ ⊥ (W1,V (1),L0(1),{Lt(a) : t}), given parents of ∆, and
At ⊥ (W1,V (1),L0(1),{Lt(a) : t}), given parents of At . Under these conditions, the joint
distribution (W1,V (1),L0(1),{Lt(a) : t}) is identifiable from the observed data distribution
P0. In our STAR*D example, the plausibility of the SRA can be fortified by measuring
enough confounders of the modifier’s missingness, the treatment selection, and the cen-
soring mechanism.

By straightforward calculations, the SRA allows us to identify p(V (1) = v) as

γv(P0)≡ EW1,0 {p0(v | ∆ = 1,W1)} , (3.3)

and the counterfactual mean outcome ρF
a,v(PO,U) as

ρa,v(P0)≡ EW1,0

{
p0(V = v | ∆ = 1,W1)

EW1,0 {p0(v | ∆ = 1,W1)}
×Qa,1

t=0(P0)(V = v,W1)

}
, (3.4)

where, for t = 0, . . . ,K,

Qa,δ
t (P0)(Lt−1,V,W1) ≡∑

ltK

yK

(
K

∏
j=t

p0(l j | A j = a j,Lt−1, ltj−1,V,∆ = δ ,W1)

)
. (3.5)

Under the SRA,

Qa,1
t (P0)(Lt−1,V = v,W1) = EP0

(
YK(a)

∣∣∣At = at ,Lt−1,V = v,∆ = 1,W1

)
.

In other words, Qa,1
t (P0)(·) equals the counterfactual conditional mean outcome of YK(a),

given an observed history at time t that has thus far obeyed the intervention of interest.
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For sake of interpretation, it is also useful to rewrite (3.4) as

ρa,v(P0)

= E0

{
1/p0(∆ = 1 |W1)

EW1,0 (1/p0(∆ = 1 |W1) |V = v,∆ = 1)
Qa,1

t=0(P0)(L0,V = v,W1)

∣∣∣∣V = v,∆ = 1
}
. (3.6)

The weight 1/p0(∆=1|W1)
EW1,0(1/p0(∆=1|W1)|V=v,∆=1) adjusts for potential selection bias induced by ∆.

Indeed, when this weight equals 1, (3.6) and (3.4) are equivalent to the estimands in
a complete-case analysis, when ∆ represents missingness, or in an unadjusted stratified
analysis, when ∆ is a first-line treatment.

Combining (3.3) and (3.4), the causal MSM parameter ΨF(PO,U) in (3.2) identifies to

ψ0 ≡Ψ(P0)≡ argmin
ψ∈S

{
− ∑

(a,v)∈A×V

γv(P0)h(a,v)

×
{

ρa,v(P0) logmψ(a,v)+(1−ρa,v(P0)) log
(
1−mψ(a,v)

)}}
. (3.7)

At this juncture, for a more concrete discussion we consider the following MSM

mψ(a,v) = expit(ψ ·φ(a,v)) , (3.8)

where φ(a,v) is the vector of linear predictors in the generalized linear model. The linear
predictors are function of a and v. We emphasize that the methods in the next sections are
easily modified to other MSM.

In the forthcoming sections, we study the statistical inference of Ψ(P0).

Notations
Before we proceed, let us introduce some useful definitions and notations. Let M be a
saturated semiparametric model containing our data generating distribution P0. The pa-
rameter of interest in (3.7) is the map P 7→Ψ(P), from M to Rd , evaluated at P0.

Suppose we observe n i.i.d. copies of O∼ P0. Let Pn denote the empirical distribution
of this sample. For a function f of O, we will write Pn f ≡ 1

n ∑
n
i=1, and for a distribution P,

we will write P f = EP f (O).
We generalize the definitions in (3.5) to any P 7→ Qa,1

t (P) on M , for t ≤ K. At t =
K +1, we write Qa,1

K+1(P)(O)≡ YK . Bang and Robins (2005) noted the recursive property

Qa,1
t (P)(Lt−1,V,W1) = EP

[
Qa,1

t+1(P)(Lt ,V,W1)
∣∣∣At = at ,Lt−1,V,∆ = 1,W1

]
, (3.9)
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for t = 0, . . . ,K. This will prove useful in our upcoming endeavor. We also adopt the
notations QW1 for the marginal distribution of W1, QV (P) for the conditional distribution
P(V |W1,∆ = 1), and Q ≡

(
QW1(P),QV (P),Qa,1

t (P) : t = 0, . . .K
)

. We write g∆(P) for

the conditional probability P(∆ = 1 |W1), gA(P) for the treatment allocation probabilities
P(At | At−1,Lt−1,V,∆ = 1,W1), and g ≡ (g∆,gA). When referring to a generic P ∈M ,
we may sometimes write Q and g in place of Q(P) and g(P), similarly for their respective
components; when referring to the functions at the data-generating distribution P0, we may
sometimes write Q0 and g0, in place of Q(P0) and g(P0).

3.3 A Tale of Two Influence Curves
The first leg of our journey is determining the so-called Efficient Influence Curve (EIC)
for our parameter of interest. From a fundamental result in Bickel et al. (1997), under
standard regularity conditions, the variance of the canonical gradient of Ψ at P0 provides a
generalized Cramer-Rao lower bound for any regular and asymptotically linear estimators
of Ψ(P0). Therefore, this canonical gradient is a vital ingredient in building asymptotically
linear and efficient estimators; fittingly, it is also commonly known as the EIC. For param-
eters in causal inference and missing data applications (such as our case), the EIC also
provides insights into the potential robustness against model misspecifications. In section
3.3, we determine the EIC of Ψ under M .

However, as we shall see, in spite their theoretical prowess, estimators which use the
EIC will be difficult to implement in practice when the dimension of V is high. To solve
this problem, in section 3.3 we present a projection of the EIC onto a model where g∆ is
known; we refer to it as the (projected-IC). This projected-IC retains most of the robustness
properties of its efficient peer while altogether avoiding estimation of the components
relating to V , hence making a compelling case for trading full efficiency for practically
more attainable estimators in the case of high-dimensional V .

Recall that Ψ(P) optimizes a function of γv(P) and ρa,v(P). Note also that ρa,v(P) =
ηa,v(P)
γv(P)

, where ηa,v(P) = EP

{
QV (V = v | ∆ = 1,W1)×Qa,1

t=0(V = v,W1)
}
. We will make

use of the following useful characterizations for Ψ(P):
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Remark 3.1. For mψ(a,v) = expit(ψ ·φ(a,v)) and Ψ(P) defined as in (3.7), we have

0 = ∑
(a,v)∈A×V

h(a,v)φ(a,v)γv(P)
{

ηa,v(P)
γv(P)

−mΨ(P)(a,v)
}

= EP

{
∑

(a,v)∈A×V

h̃(a,v)QV (V = v | ∆ = 1,W1)
{

Qa,1
t=0(V = v,W1)−mΨ(P)(a,v)

}}

= EP

{
I(∆ = 1)

g∆(1 |W1)
∑

a∈A
h̃(a,V )

{
Qa,1

t=0(V,W1)−mΨ(P)(a,V )
}}

,

where h̃(a,V )≡ h(a,V )φ(a,V ). The computations are straightforward, and we left them
in the Appendix for reference.

Efficient Influence Curve
From first equality in remark 3.1, we can obtain the EIC for Ψ(P) via implicit differentia-
tion. We formally state the result here and leave the proof in the Appendix.

Lemma 3.1 (Efficient Influence Curve).
Consider Ψ : M → Rd as defined in (3.7). Suppose that the following k× k matrix is

invertible at (ψ,P) = (Ψ(P),P):

M(ψ,P) =
∂

∂ψ
∑

(a,v)∈A×V

γv(P)h(a,v)φ(a,v)
{

ρa,v(P)−mψ(a,v)
}

= P

{
I(∆ = 1)

g∆(1 |W1)
∑

a∈A
h(a, ,V )φ(a,V )φ(a,V )>mψ(a,V )

[
1−mψ(a,V )

]}
. (3.10)

The efficient influence curve of Ψ at P ∈M is given by

M (Ψ(P),P)−1 D∗(Q,g,Ψ(P)),
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where

D∗(Q,g,ψ) =
K

∑
t=0

D∗t (Q,g)+D∗V (Q,g,ψ)+D∗W1
(Q,ψ) (3.11)

with

D∗t ≡
I(∆ = 1)

g∆(1 |W1)
∑

a∈A
h̃(a,V )Ca

t

{
Qa,1

t+1(Lt ,V,W1)−Qa,1
t (Lt−1,V,W1)

}
,

D∗V ≡
I(∆ = 1)

g∆(1 |W1)
∑

(a,v)∈A×V

{
h̃(a,v)

(
Qa,1

t=0(V = v,W1)−mψ(a,v)
)

×
(
I(V = v)−QV (v | ∆,W1)

)}
D∗W1
≡ ∑

(a,v)∈A×V

h̃(a,v)QV (v | ∆ = 1,W1)
{

Qa,1
t=0(V = v,W1)−mψ(a,v)

}
,

with Ca
t = I(At=at)

∏
t
j=1 gA(A j=a j|A j−1=a j−1,L j−1,V,∆=1,W1)

, for t = 1, . . . ,K, and Ca
t = 1 for t = 0.

Proof. The proof is given in the Appendix.

Three major differences exist between D∗ and its analog in the non-counterfactual
modifier story. Firstly, per characterization of Ψ(P), the component D∗W1

, corresponding
to the marginal distribution of the pre-intervention variables, is weighted by QV . Sec-
ondly, D∗ has an additional component D∗V corresponding to the conditional distribution

of V . The weight
[
Qa,1

t=0(v,W1)−mψ(a,v)
]

in D∗V (P) underscores the role of V as an effect
modifier, besides being a post-intervention (on ∆) variable. Thirdly, the MSM parameter
ψ plays a role in both D∗W1

and D∗V .

Lemma 3.2 (Double robustness of the efficient influence curve).
If Q = Q0 or g = g0, then P0D∗(Q,g) = 0 implies Ψ(Q) = Ψ(Q0).

Proof. The proof is given in the Appendix

Note that in the condition (a) of lemma 3.2, QV = QV (P0) can be relaxed to

EP

{
h(a,V )φ(a,V )

[
Qa,1

t=0(V,W1)−mψ(a,V )
]∣∣∣∆ = 1,W1

}}
= EP0

{
h(a,V )φ(a,V )

[
Qa,1

t=0(V,W1)−mψ(a,V )
]∣∣∣∆ = 1,W1

}}
.
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Remark 3.2. Dimensionality of V and Implementation: When V is high-dimensional (or
continuous), one may wish to avoid explicit estimation of QV in D∗V and D∗W1

of (3.11). To
this end, rewrite D∗V (Q,g,ψ) and D∗W1

(Q,ψ) as

D∗V (Q,g,ψ)

=
I(∆ = 1)

g∆(1 |W1)
∑

a∈A

{
h̃(a,V )

[
Qa,1

t=0(V,W1)−mψ(a,V )
]

−EP

{
h̃(a,V )

[
Qa,1

t=0(V,W1)−mψ(a,V )
]∣∣∣∆,W1

}}
,

D∗W1
(Q,ψ) = ∑

a∈A
EP

{
h̃(a,V )

[
Qa,1

t=0(V,W1)−mψ(a,V )
]∣∣∣∆ = 1,W1

}
.

A regression-based estimator (parametric or data-adaptive) can be used to directly esti-
mate the conditional expectations with respect to QV in D∗V and in D∗W1

. For final evalua-
tion of the target parameter ψ , we must solve the estimating equation D∗W1

in the variable
ψ . This may be accomplished via powerful numerical tools. However, as this may increase
the computational expense as the regression-based estimator becomes more data-adaptive.

This dilemma motivates us to consider trading the fully efficiency D∗ for an influence
curve that retains most of the robustness properties while altogether avoiding estimating
of the components relating to V . We consider this option in section 3.3.

Projected Influence Curve
As motivated by remark 3.2, when V is high-dimensional, we may instead consider a
projected influence curve which still retains most of the robustness of D∗.

Lemma 3.3 (Projected Influence Curve).
Consider the setup in lemma 3.1. Up to a normalizing matrix M (Ψ(P),P)−1, the

following function is a gradient for Ψ at P under the model Mg∆ , where g∆ is known:

D∆(Q,g,ψ) =
K

∑
t=1

D∗t (Q,g)+D∆
W (Q,g,ψ),

where

D∆
W ≡

I(∆ = 1)
g∆(1 |W1)

∑
a∈A

h̃(a,V )
[
Qa,1

t=1(L0,V,W1)−mψ(a,V )
]
. (3.12)

In particular, it is a valid estimating function for Ψ : M → Rd .
Moreover, if g∆ = g∆(P0) and either Qa,1

t =Qa,1
t (P0) or gA = gA(P0), then P0D∆(Q,g)=

0 implies Ψ(Q) = Ψ(Q0).
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Proof. The proof is given in the Appendix.

At its face value, the proposed D∆ may seem less robust than D∗, as it always relies
on consistent estimation of g∆(P0). However, as we noted in remark 3.2, when V is high-
dimensional, there are more standard machine learning algorithms available for estimation
of g∆.

3.4 Statistical Inference
With the two influence curves D∗ and D∆ under our belt, in section 5.4 we will build two ro-
bust, substitution-based, asymptotically linear estimators via the targeted maximum likeli-
hood estimation (TMLE) methodology. In section 3.4, we describe an inverse-probability-
weighted (IPW) estimator that is most commonly used in the literature for estimating
coefficients in an MSM. It is easier to implement and may be more intuitive than the ro-
bust estimators; however, its consistency relies solely on the correct estimation of g0, and
may suffer stability problems when the weights are extreme. Under standard regularity
and empirical process conditions (detailed in e.g. Bickel et al. (1997)), both the TMLE
and IPW are asymptotically linear, hence allowing influence curve-based estimate for the
standard errors. In section 3.4, we describe a non-targeted substitution estimator which
utilizes a non-targeted MLE estimate of Q0 (or of Qa,1

t (P0) and g∆(P0)). This estimator is
biased if these non-targeted MLE are not consistent.

For most of the estimators below, we first need to procure estimators gn =
(
g∆

n ,g
A
n
)

of
g0. The marginal distribution of W1 will always be estimated by the empirical marginal
distribution. For a given estimator ψn of ψ0, we will use

M(ψn)≡ Pn

{
I(∆ = 1)

g∆
n (1 |W1)

∑
a∈A

h(a,V )φ(a,V )φ(a,V )>mψn(a,V )
[
1−mψn(a,V )

]}
to estimate the normalizing matrix.

Targeted Maximum Likelihood Estimator
In a traditional non-targeted MLE (like those in section 3.4), relevant parts of the like-
lihood are estimated either by stratification (nonparametric MLE), by fitting a parametric
statistical model, or by using a machine-learning algorithm. These likelihood estimates are
then used to evaluate the parameter of interest. As the number of potential confounders
increase, these methods may break down due to curse of dimensionality, or yield a bias–
variance trade off that is not the most optimal for the parameter of interest (which is a
lower-dimensional object than the likelihood components). A targeted MLE adds an up-
dating (targeting) step to the likelihood estimation process that aims to target the fit towards
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the parameter of interest, and provide potential robustness and semiparametric efficiency
gains. As a result of this targeting step, the final likelihood estimate (coupled with the
substitution-based parameter estimate) satisfies a user-chosen score equation, hence also
allowing inference based on the Central Limit Theorem. We refer to van der Laan and
Rose (2011) for the general methodology. Here, we construct two targeted estimators
using D∆ and D∗.

Both targeted estimators involve sequentially updating initial estimates of the Q com-
ponents by finding a best fluctuation along a submodel through a given initial estimate. We
gather the following two ingredients before proceeding. Regarding Qa,1

t as a conditional
expectation of Qa,1

t+1, we use the quasi loglikelhood loss function for Qa,1
t :

L
(

Qa,1
t

)
=−I(At = at)

{
log
(

Qa,1
t

)Qa,1
t+1

+ log
(

1−Qa,1
t

)(1−Qa,1
t−1)
}
. (3.13)

For a given (Q,g), and each t = 0, . . . ,K, consider the d-dimensional working submodel
{Qt(ε) : ε}, with

Qa,1
t (ε) = expit

(
logitQa,1

t + ε · h̃(a,V )
I(∆ = 1)

g∆(1 |W1)
Ca

t

)
. (3.14)

This submodel satisfies 〈 d
dε ∑a L

(
Qa,1

t (ε)
)
|ε=0〉 ⊃ 〈D∗t (Q,g)〉, where 〈x〉 represents the

linear span of a vector x.

TMLE using D∆

1. Start at t = K: regress YK on (LK−1,AK,L0,V,W1), among observations with ∆ = 1,
and then evaluate at AK = aK to obtain an initial estimator Qa,1

t=K,n of Qa,1
t=K(P0). The

optimal fluctuation amount around this initial estimate is given by

εK,n ≡ argmin
ε

∑
a

PnL
(

Qa,1
t=K,n(ε)

)
.

This can be implemented by creating one row for each individual with ∆i = 1 and
each a ∈ A , and fitting a weighted logistic regression of YK on the multivariate
covariate φ(a,V )

g∆
n (1|W1)

Ca
K(gn) on these observations with weights I(AK = aK)h(a,V ) and

offset Qa,1
t=K,n(LK−1,V,W1). Update the initial estimator using Q∗,a,1t=K,n≡Qa,1

t=K,n(εK,n).

2. At each subsequent step t = K − 1, . . . ,1, we have thus far obtained an updated
estimator Q∗,a,1t+1,n for each individual with ∆i = 1 and each a ∈ A . Regress Q∗,a,1t+1,n
on (Lt−1,At ,L0,W1,V ) among observations with ∆ = 1 and evaluate at At = at to
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get an initial estimator Qa,1
t,n of Qa,1

t (P0). The optimal fluctuation amount around this

initial estimator is given by εt,n = argminε ∑a PnL
(

Qa,1
t,n (ε)

)
, and can be obtained in

an analogous manner to step 1. The updated estimator is Q∗,a,1t,n ≡ Qa,1
t,n (εt,n).

3. After sequentially performing step (2) in order of decreasing t, we now have a tar-
geted estimator Q∗,a,1t=1,n of Qa,1

t=1(P0). Obtain ψ
∆,T MLE
n by fitting a weighted logistic

regression of Q∗,a,1t=1,n(V,W1) on φ(a,V ), with weights h(a,V ) I(∆=1)
g∆

n (1|W1)
. We call this

estimator the ∆-TMLE.

By construction, PnD∆

(
Q∗,a,1t,n ,gn,ψ

∆,T MLE
n

)
= 0. From lemma 3.3, ψ

∆,T MLE
n is an unbi-

ased estimator of ψ0 if either (1) g∆
n and Q∗,a,1t,n for t = 1, . . . ,K are consistent, or (2) gn

is consistent. Compared to the full TMLE using D∗ in the next section, this estimator
is particularly appealing when V is high-dimensional, and still provides more robustness
protection than the estimators in sections 3.4 and 3.4. Moreover, under standard regularity
and empirical process conditions, ψ

∆,T MLE
n is asymptotically linear with influence curve

M(Ψ(P0))
−1D∆(P0). The asymptotic covariance of

√
n(ψ∆,T MLE

n −ψ0) can be estimated
by the the sample covariance matrix Σ

∆,T MLE
n of M(ψ∆,T MLE

n )−1D∆

(
Q∗,a,1t,n ,gn,ψ

∆,T MLE
n

)
.

TMLE using D∗

To use D∗, we also consider the loss function L(QV )≡− logQV (V | ∆ = 1,W1), and a
d-dimensional fluctuation model through a given QV at ε = 0 given by

QV (ε)(V | ∆ = 1,W1)≡
QV (V | ∆ = 1,W1)exp [ε ·B(Q,ψ)(W1,V )]

∑v QV (v | ∆ = 1,W1)exp [ε ·B(Q,g,ψ)(W1,v)]
,

where B(Q,ψ)(W1,V ) ≡ ∑a h̃(a,V )
{

Qa,1
t=0(V,W1)−mψ(a,V )

}
. It is easy to verify that

〈 d
dε

I(∆=1)
g∆(1|W1)

L(QV (ε))|ε=0〉 ⊃ 〈D∗V (Q,g,ψ)〉. The targeted estimator which uses the D∗ will
do so via estimators for QV , instead of via estimators for a conditional mean with respect
to QV as discussed in remark 3.2. This way, the estimates for ψ0 can be easily obtained by
fitting a weighted regression.

1. Perform steps (1) and (2) over t = K, . . . ,0 in section 3.4 to obtain a targeted estima-
tor Q∗,a,1t=0,n.

2. Let QV
n be an estimator of QV (P0). For each a ∈A , v ∈ V and individual i, create a

row of data consisting of Q∗,a,1t=0,n(V = v,W1), h(a,v), φ(a,v) and QV
n (v | ∆ = 1,W1).
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Obtain a first-iteration estimator ψ1
n of ψ0 by fitting a weighted logistic regression

of Q∗,a,1t=0,n(V = v,W1) on φ(a,v), with weights h(a,v)×QV
n (v | ∆ = 1,W1), on this

pooled data.

3. Given ψ1
n obtained in step (3), we update the estimator for QV (P0) as follows. Us-

ing previously obtained Q∗,a,1t=0,n, gn, and ψ1
n , the optimal fluctuation amount around

the initial QV
n is given by εV

n = argminε Pn
I(∆=1)

g∆
n (1|W1)

L
(
QV

n (ε)
)
. This can be obtained by

solving for ε in the equation

0 =
n

∑
i=1

I(∆i = 1)
g∆

n (1 |W1,i)

×

{
B̂n(W1,i,Vi)−

∑v B̂n(W1,i,v)QV
n (v | ∆ = 1,W1,i)exp

[
ε · B̂n(W1,i,v)

]
∑v QV

n (v | ∆ = 1,W1,i)exp
[
ε · B̂n(W1,i,v)

] }

where B̂n ≡ B
(
(Q∗,a,1t=0,n : a),ψ1

n

)
. The updated density is given by Q1

V,n ≡ QV
n (ε

V
n ).

4. Having obtained an updated density QV, j
n at the j-th iteration, repeat step (2) and (3)

to obtain a targeted estimate of ψ
j+1

n and Q j+1
V,n , until εV

n converges to 0. In practice,
this convergence can be achieved (close to 0) after a few iterations. We denote the
final updates as ψ

∗,T MLE
n , and Q∗,Vn . We call this estimator the full TMLE.

Let Q∗n ≡
(

QW1
n ,Q∗,Vn ,(Q∗,a,1t,n : a)

)
, where QW1

n is the empirical distribution of W1. By

design, PnD∗(Q∗n,gn,ψ
∗,T MLE
n ) = 0. From lemma 3.2, we know that ψ

∗,T MLE
n is unbi-

ased if either Q∗n = Q0 or gn = g0. Under standard regularity and empirical process
conditions, ψ

∗,T MLE
n is asymptotically linear with influence curve M(Ψ(P0))

−1D∗(P0).
The asymptotic covariance of

√
n(ψ∗,T MLE

n −ψ0) can be estimated by the sample co-
variance matrix Σ

∗,T MLE
n of

{
M(ψ∗,T MLE

n )−1D∗
(

Q∗n,gn,ψ
∗,T MLE
n

)}
. In particular, since

M(Ψ(P0))
−1D∗(P0) is the canonical gradient of Ψ at P, the estimator ψ

∗,T MLE
n is asymp-

totically efficient if all relevant components in D∗ are consistently estimated.

Inverse Probability Weighted estimator
From remark 3.1, another valid estimating function for Ψ is given by

DIPW (g,ψ)≡ I(∆ = 1)
g∆(1 |W1)

∑
a∈A

h̃(a,V )Ca
K
[
YK−mψ(a,V )

]
. (3.15)
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Up to a normalizing matrix M (Ψ(P),P)−1, as defined in (3.10), DIPW (g,ψ) is a gradient
for Ψ under a model Mg where g is known. This is an unbiased estimating function for
ψ0 if g(P) = g0. To implement the IPW estimator, for each a ∈ A and each individual i
with ∆i = 1 and Ai,K = a, we create a row of data consisting of Yi, φ(b f a,Vi), h(a,Vi), Ca

K ,
g∆

n (1 |W1,i). The estimator ψ IPW
n can be obtained by fitting a weighted regression of Y on

φ(a,V ), with weights 1
g∆

n (1|W1)
h(a,V )Ca

K . This ψ IPW
n satisfies PnDIPW (gn,ψ

IPW
n ) = 0, and

it’s unbiased if gn consistently estimates g0. Under standard regularity and empirical pro-
cess conditions, ψ IPW

n is asymptotically linear with influence curve M(Ψ(P0))
−1DIPW (g0).

The asymptotic covariance of
√

n(ψ IPW
n −ψ0) can be estimated by the sample covariance

matrix ΣIPW
n of

{
M(ψ IPW

n )−1DIPW (gn,ψ
IPW
n
)}

.

Non-Targeted Substitution Estimator
This is commonly referred to as the G-computation estimator; it utilizes non-targeted MLE
estimators for the components of the data generating distribution that are relevant in the
definition of Ψ. From (3.7) and remark 3.1, we can express Ψ(P0) as Ψ

(
Qa,1

t=0(P0),QV (P0)
)

or Ψ

(
Qa,1

t=0(P0),g∆
0

)
, the latter option opens the door for G-computation estimator in ap-

plications with high-dimensional V . Unlike the other estimators discussed so far, there is
no theory ensuring a central limit theorem based inference for the G-computation estima-
tor.

To obtain an estimator Qa,1
t=0(P0), we can use a sequential regression approach by per-

forming steps (1) and (2) of section 3.4, starting at t = K and ending at t = 0, but without
the targeting procedure, i.e. always use Qa,1

t+1,n instead of Q∗,a,1t+1,n at t. At the end of K +1

steps, we have an estimator Qa,1
t=0,n.

We first consider the representation Ψ

(
Qa,1

t=0(P0),QV (P0)
)

. Let QV
n be an estimators

of QV (P0). For each observation i, each a ∈ A and each v ∈ V , we create a row of
data consisting of Qa,1

t=0,n(V = v,W1),φ(a,v),h(a,v),QV
n (v | ∆ = 1,W1). The estimator

ψ
V,Gcomp
n can be obtained by a weighted regression Qa,1

t=0,n(V = v,W1) on φ(a,v), with

weights h(a,v)QV
n (v | ∆ = 1,W1). This ψ

V,Gcomp
n is unbiased if both Qa,1

t=0,n and QV
n are

consistent.
Consider now the alternative representation Ψ

(
Qa,1

t=0(P0),g∆
0

)
, from the equalities in

remark 3.1. For each observation i with ∆i = 1, and each a ∈ A , create a row of data
consisting of Qa,1

t=0,n(V,W1), φ(a,V ), h(a,V ), g∆
n (1 |W1). The estimator ψ

∆,Gcomp
n can be

obtained by a weighted regression Qa,1
t=0,n(V,W1) on φ(a,V ), with weights h(a,V )

g∆
n (1|W1)

. This

ψ
∆,Gcomp
n is unbiased if both Qa,1

t=0,n and g∆
n are consistent.
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3.5 Simulation Study
In this section, we examine the relative performance of the IPW estimator (section 3.4),
the ∆-TMLE estimator (section 3.4), and the G-computation estimator (section 3.4) for the
parameters of a MSM model.

Data Generating Process and Target Parameter
We consider a survival type example with data structure O = (W1,∆,V,L0,(At ,Lt) : t =
1, . . .K) with K = 3, where A1 is the treatment assignment, At for t > 1 is the indicator
of remaining in the study by time t. Time varying covariate Lt consist of L1

t , L2
t , and the

death indicator Yt . The data generating process is as follows:(
W 1

1 ,W
2
1
)
∼ (Bern(0.3),Bern(0.7)) ;

∆∼ Bern
(
expit(1+2W 1

1 +0.1W 2
1 )
)

;

V ∈ {0,1,2} ∼
{

I(V = 1)∼ Bern(expit(−2+1.2W 1
1 +0.7W 2

1 ),

{I(V = 2) |V 6= 1} ∼ Bern(expit(−0.7+1.2W 1
1 +W 2

1 )
}

;

L1
0 ∼ Bern

(
expit(−0.2+2W 1

1 +0.5W 2
1 +0.2I(V = 1)+0.4I(V = 2))

)
,

L2
0 ∼ Bern

(
expit(−0.8+W 1

1 +W 2
1 −0.3I(V = 1)−0.1I(V = 2))

)
;

At ∼



Bern
(

expit(−1+W 1
1 +1.3W 2

1 +0.1I(V = 1)+0.1I(V = 2)+1.2L1
0 +L2

0−0.7W 1
1 ×L2

0

−0.5W 2
1 ×L1

0)
)

, for t = 1,

Bern
(

expit
(
2+W 1

1 +W 2
1 +0.1I(V = 1)+0.1I(V = 2)+0.6L1

0 +1.2L2
0−0.5A−0.1t

+0.8L1
t −0.3L2

t +0.1L1
t−1−0.2L2

t−1−0.3A×L2
0 +0.2A×W 1

1 −0.3A×L2
t

−0.2A×L1
t−1
))

, for t > 1.

L1
t ∼ Bern

(
expit

(
−1+W 1

1 +0.1W 2
1 −0.5I(V = 1)−0.7I(V = 2)+L1

0 +0.3L2
0 +1.5A+0.4t

−L1
t−1−0.8A× I(V = 1)−0.2A× I(V = 2)−0.3A×W 1

1
))

;

L2
t ∼ Bern

(
expit

(
−2+0.1W 1

1 +0.1W 2
1 +0.5I(V = 1)+0.5I(V = 2)+0.7L1

0 +0.2L2
0−A+0.2t

+L2
t−1−0.2A× I(V = 1)−0.4A× I(V = 2)−0.3A×L2

0
))

;

Yt ∼ Bern
(

expit
(
−1.4+1.5W 1

1 +W 2
1 −0.7I(V = 1)−0.8I(V = 2)+L1

0 +L2
0 +A−L1

t −0.1L2
t

−L1
t−1−0.3L2

t−1 +A× I(V = 1)+0.8A× I(V = 2)−0.3A×L1
t

−0.4A×L1
t−1−0.3A×L2

0−0.2A×W 1
1
))

.

Once either the censoring jumps to 0 or death process jump to 1, then all subsequent
variables are encoded by carrying forward their last observation.
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Our interventions of interest are ∆ = 1 and A = {(0,1,1),(1,1,1)}. Under the above
distribution, 0.1 < g0(A1 = 1 | ·)< 0.95, and g0(At = 1 | ·)> 0.5 for all t ≥ 2.

We model the dose response {ρa,v : a,v} by the MSM

mψ(a,v) = expit(ψ1 +ψ2a1 +ψ3v1 +ψ4v2 +ψ5a1v1 +ψ6a1v2) = expit(ψ ·φ(a,v)),

where φ(a,v) = (1,a1,v1,v2,a1v1,a1v2), with kernel weights h(a,v) = p0(a | v,∆ = 1).
Note that in this case, the kernel weights are assumed to be known. The target parameter
defined in (3.7) takes value ψ0 = (0.825,0.105,0.249,−0.046,1.474,0.960).

Estimators
The ∆ mechanism g∆ is estimated using Super Learner (van der Laan, Polley, and Hubbard
(2007)) with candidate fitting algorithms glm and nnet, adjusting for W 1

1 and W 2
1 . Using

sample splitting, Super Learner selects a convex combination of the candidate algorithms
which yields an estimator with minimal cross validated risk. Theoretical results from
van der Vaart, Dudoit, and van der Laan (2006) and van der Laan, Dudoit, and Keleş (2004)
showed that this estimator converges to an oracle estimator. We use two estimators for gA:
a correctly specified logistic model (shorthand ’gc’), and a misspecified logistic model
(’gm’) that omits W 1

1 ,W
2
1 ,L

1
0,L

2
0,L

1
t . The denominator for each Ca

t is truncated below by
0.025. We use two estimators for Qa,1

t (P0): both use Super Learner with candidate fitting
algorithms glm and nnet, the correctly specified estimator (’Qc’) adjusts for all baseline
variables and all time-varying covariates up to one time lag, the misspecified estimator
(’Qm’) only adjusts for V1 and V2 at each time t.

We consider 3 cases of model misspecification on Qa,1
t and gA: all correct (’Qc, gc’);

correct Qa,1
t and misspecified gA (’Qc,gm’); misspecified Qa,1

t and correct gA (’Qm, gc’).
For all three cases we always use the same correctly specified g∆. We implement the
second version of the G-comp estimator in 3.4, where the weights are given by g∆. The
G-computation estimator changes only under specifications ’Qc, gc’ and ’Qm, gc’. The
IPW estimator changes only under specifications ’Qc, gc’ and ’Qc, gm’.

Results
The bias, variance, and coverage probability (for the influence-function-based confidence
intervals) are appraised using 500 repetitions.

In table 3.1, we see that when gA is misspecified, ∆-TMLE using a correct Qa,1
t reduces

bias over the misspecified IPW estimator. Similarly, when Qa,1
t is misspecified, ∆-TMLE

using the correct gA reduces bias over the misspecified G-computation estimator. When
comparing the correct vs misspecified G-comp, and the correct vs misspecified IPW, co-
efficients involving the adjusted covariates (V1,V2) were still estimated very well by the
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misspecified estimator. Under ’Qc, gc’, the correct G-computation estimator converges
much slower than the IPW and the ∆-TMLE estimators. We posit that this may be due to
its sole reliance on the nonparametric likelihood estimates. As expected, G-computation
has the smallest sample variance, and IPW has the largest sample variance despite the
truncated estimators for g. Under certain regularity conditions, the IPW and ∆-TMLE es-
timators are asymptotically linear — table 3.2 tabulates the coverage probability of their
Influence-Function based confidence intervals. At the correct models (Qc,gc), IPW and
∆-TMLE are asymptotically linear with influence curve DIPW and D∆, respectively. We
used

√
ˆvarDIPW

n /n and
√

ˆvarD∆
n/n to estimate their respective standard errors. As sample

size grows, the actual coverage probabilities are quite close to the nominal coverage prob-
ability, with IPW having a better coverage. When one of the components is misspecified,
the ∆-TMLE still provides very good coverage, even though theoretically D∆ is only part
of its influence curve; we postulate that this is because the influence curve based standard
error estimates are large relative to the finite sample bias. The misspecified IPW has very
good coverage for the covariates that were adjusted for in the misspecified model, but very
bad coverage for the confounded coefficients (A and the intercept).

3.6 Data Analysis Example
To illustrate the application of the ∆-TMLE, we revisit our earlier example: the Sequenced
Treatment Alternatives to Relieve Depression (STAR*D). After an initial screening pro-
cess, patients are enrolled into level 1 of the treatment, where everyone was treated with
citalopram. At the start of each subsequent level, if a patient still remains in the study, then
he is randomized into one of his accepted treatment options. Regular follow-up visits are
conducted throughout each level. At each follow-up visit, covariates are collected, and the
patient is subject to dropout, entering remission, or moving onto next level. At level 2, we
wish to identify potential modifiers of the effect of switching medication vs augmenting
medication on the chances of entering remission by the end of level 2. These modifiers
are collected prior to the assignment of level 2 treatment and many are subject to miss-
ingness, therein lies the need for the tools developed here. Our study population is the set
of 1395 patients at level 2 who found medication strategies acceptable. Note that because
switching medication and augmenting medication are general treatment strategies that en-
compasses various treatment options (specific drugs), for most patients these strategies are
self-selected.

The data structure was described in detail in section 3.2 as part of our running example.
We consider here two types of potential effect modifiers: some are measured at screening
and some are measured at exit of level 1. Table 3.3 summarizes percent of missingness,
range, and scale of each effect modifier. Table 3.4 tabulate the events in level 2 by strategy
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Table 3.1: Results: Bias, Variance, MSE for estimators of ψ0. Qc = correct Qa,1
t , Qm= misspecified

Qa,1
t , gc=correct gA, gm=misspecified gA.

ψ Intercept A V1 V2 A×V1 A×V2
n 500 2000 500 2000 500 2000 500 2000 500 2000 500 2000
Bias
Qc, gc
Gcomp 0.334 0.364 0.606 0.603 0.82 0.818 0.560 0.552 1.377 1.390 0.906 0.904
IPW 0.016 0.017 0.056 0.063 0.169 0.131 0.070 0.073 0.402 0.117 0.083 0.099
∆-TMLE 0.036 0.001 0.021 0.002 0.078 0.054 0.014 0.008 0.519 0.018 0.002 0.006
Qc, gm
IPW 0.492 0.512 0.831 0.836 0.094 0.131 0.075 0.072 0.638 0.160 0.026 0.004
∆-TMLE 0.022 0.033 0.029 0.028 0.069 0.029 0.02 0.006 0.499 0.015 0.008 0.008
Qm, gc
Gcomp 0.751 0.773 1.383 1.353 0.66 0.640 0.431 0.414 1.089 1.069 0.752 0.727
∆-TMLE 0.01 0.024 0.04 0.064 0.123 0.124 0.048 0.062 0.462 0.103 0.041 0.081
Variance
Qc, gc
Gcomp 0.082 0.019 0.112 0.023 0.137 0.033 0.084 0.017 0.038 0.008 0.022 0.005
IPW 0.134 0.035 0.226 0.051 0.939 0.118 0.353 0.068 9.605 0.235 0.555 0.112
∆-TMLE 0.113 0.029 0.187 0.041 0.734 0.091 0.279 0.053 9.149 0.169 0.398 0.092
Qc, gm
IPW 0.114 0.030 0.196 0.045 0.897 0.093 0.259 0.056 9.298 0.184 0.418 0.094
∆-TMLE 0.097 0.026 0.16 0.036 0.718 0.078 0.21 0.048 9.062 0.141 0.319 0.078
Qm, gc
Gcomp 0.095 0.024 0.146 0.035 0.147 0.045 0.091 0.024 0.191 0.057 0.071 0.025
∆-TMLE 0.123 0.031 0.201 0.044 0.839 0.105 0.316 0.057 9.424 0.207 0.464 0.096
MSE
Qc, gc
Gcomp 0.195 0.151 0.479 0.387 0.809 0.701 0.397 0.322 1.934 1.941 0.842 0.822
IPW 0.134 0.035 0.229 0.054 0.967 0.135 0.358 0.073 9.767 0.248 0.562 0.122
∆-TMLE 0.115 0.029 0.187 0.041 0.740 0.094 0.279 0.053 9.419 0.17 0.398 0.092
Qc, gm
IPW 0.357 0.292 0.887 0.744 0.906 0.111 0.264 0.062 9.704 0.21 0.419 0.094
∆-TMLE 0.097 0.027 0.16 0.036 0.723 0.079 0.210 0.048 9.311 0.141 0.319 0.078
Qm, gc
Gcomp 0.66 0.621 2.059 1.865 0.583 0.455 0.277 0.195 1.377 1.2 0.6378 0.554
∆-TMLE 0.123 0.031 0.203 0.048 0.854 0.12 0.318 0.061 9.637 0.218 0.466 0.103

received. Note that there are 3 strategies received, but we are only comparing switch-
ing medication vs augmenting medication. The multivariate nature of most of the effect
modifiers underscores the need for ∆-TMLE. If V is screening covariate, W1 includes all
demographic variables and medical and psychiatric history prior to enrollment, and miss-
ing indicator for each of those variables; if V is level 1 exit covariate, then we add to W1
variables summarizing number of visits, adherence to study protocol, and time spent in
level 1.

The MSM is a generalized linear model with logit link. The linear predictor φ(a,v) =
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Table 3.2: Coverage Probability for the Asymptotically Linear Estimators, using Influence-
Function based Confidence Interval. Qc = correct Qa,1

t , Qm= misspecified Qa,1
t , gc=correct gA,

gm=misspecified gA.

Intercept A V1 V2 A×V1 A×V2
n 500 2000 500 2000 500 2000 500 2000 500 2000 500 2000
Qc, gc
IPW 0.948 0.946 0.944 0.940 0.966 0.930 0.940 0.952 0.912 0.950 0.956 0.960
∆-TMLE 0.934 0.932 0.934 0.942 0.936 0.924 0.918 0.946 0.906 0.942 0.942 0.938
Qc, gm
IPW 0.698 0.146 0.556 0.022 0.956 0.928 0.958 0.958 0.928 0.942 0.958 0.964
∆-TMLE 0.964 0.956 0.954 0.956 0.984 0.984 0.972 0.986 0.932 0.954 0.966 0.964
Qm, gc
∆-TMLE 0.942 0.930 0.942 0.948 0.956 0.930 0.936 0.954 0.896 0.942 0.954 0.958

(1,a1,v,a1× v) and ψ ∈ R4 for the binary V , and φ(a,v) =
(
1,a1,v,v2,a1× v,a1× v2)

and ψ ∈ R6 for the non-binary V . The kernel weights are h(a,V ) = p0(AK = a |V ), to be
estimated using Super Learner with fitting algorithms glm, nnet and bayesglm. The
initial estimators of g and Qa,1

t adjust for all baseline covariates and time-varying covari-
ates with up to 2 time lag (each covariate is coupled with its missingness indicator). We
used Super Learner with the fitting algorithms glm, knnreg, nnet and bayesglm;
each fitting algorithm is coupled with each of the following screening algorithms: Spear-
man correlation tests at significance levels 0.01, 0.05, 0.1, 0.2; ranking p-values from the
correlation tests and take the top m variables, where m ranges, in increments of 10, from
10% to 90% of the total number of variables being considered.

The measure of treatment heterogeneity is given by

β (ψ)≡max
v

`OR(v;ψ)−min
v

`OR(v;ψ),

where

`OR(v;ψ) = log
m(1,v;ψ)

1−m(1,v;ψ)
− log

m((0,v;ψ)

1−m(0,v;ψ)
= ψ2 +ψ4v or ψ2 +(ψ5,ψ6) · (v,v2),

for binary V or discrete V , respectively. This measure quantifies the most change in
log odds ratio between any two values of V . Consider the null hypothesis H0 : β (ψ0) = 0.
Using ∆-TMLE, we obtain an estimator βn = β (ψ∆,T MLE

n ) of β0 for each V . An application
of the functional delta Method, with the covariance matrix Σn of the estimated influence
curve D∆

n , yields a standard error estimate SEn for βn. We use the test statistics Tn =
βn/SEn ∼ N(0,1). The false discovery rate (FDR) of the simultaneous comparisons are
controlled at 0.05 with the Benjamini-Hochberg procedure. The results of the analysis are
summarized in table 3.5
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Table 3.3: Effect modifiers of interest for level 2. hdtot: Hamilton D17 score; anxious: indicator
of anxious depression; atypical: indicator of atypical depression; melancholic: indicator of melan-
cholic depression; grseb: side-effect burden score; qctot: QIDS total score; qstot: self-reported
QIDS totoal score; ictot: IDS C30 score.

% missing Range type
min max

At Screening
hdtot < 1 0.00 42.00 Continuous
anxious 6 0.00 1.00 Binary
atypical 5 0.00 1.00 Binary
melancholic 5 0.00 1.00 Binary
At Level 1 exit
grseb 1 0.00 6.00 Continuous
qctot 1 0.00 27.00 Continuous
qstot 1 0.00 27.00 Continuous
hdtot 12 0.00 42.00 Continuous
ictot 13 0.00 74.00 Continuous

Table 3.4: Level 2 events by strategy received

Med-Sw Med-Aug any CT
Received 727 565 103

Success 257 (35%) 287 (51%) 53 (51%)
No Success 227 (32%) 132 (23%) 22 (21%)

Dropout 243 (33%) 146 (26%) 28 (27%)
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Table 3.5: Data Analysis Results: β0 = maxv`OR(v;ψ0)−minv`OR(v;ψ0), H0 : β0 = 0. Tn =
βn/SEn ∼ N(0,1), where ψn given by ∆-TMLE. Control FDR at 0.05 with Benjamini-Hochberg
procedure

P-value rejectNull βn ˆvarβn minv`OR(v;ψn) maxv`OR(v;ψn)

At Screening
hdtot 3.0e-01 0e+00 2.1e+00 4.2e+00 -6.0e-01 1.5e+00

anxious 1.0e+00 0e+00 9.7e-04 6.0e-02 -3.6e-01 -3.6e-01
atypical 9.2e-04 1e+00 8.9e-01 7.3e-02 -5.2e-01 3.7e-01

melancholic 7.7e-01 0e+00 7.1e-02 5.8e-02 -3.9e-01 -3.2e-01
At Level 1 exit

grseb 1.2e-04 1e+00 2.3e+00 3.7e-01 -7.8e-01 1.6e+00
qctot 2.5e-01 0e+00 1.6e+00 1.9e+00 -1.6e+00 1.9e-02
qstot 3.3e-02 0e+00 1.7e+00 6.5e-01 -1.9e+00 -1.4e-01
hdtot 1.4e-02 1e+00 2.3e+00 8.6e-01 -2.2e+00 9.2e-02
ictot 9.0e-02 0e+00 1.6e+00 8.7e-01 -1.3e+00 2.8e-01
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3.7 Summary
In this chapter, we studied causal effect modification by a counterfactual modifier. The
tools developed here are applicable in situations where the effect modifier is missing at
random, or where the effect modifier of interest is between a first and second line treat-
ment, and one is interested in effect modification of the second-line treatment by this
variable, had the first line treatment been at a given set value. In the context of miss-
ing effect modifier, the parameter of interest teaches us that one should avoid unneces-
sary assumptions on the type of missingness and should focus the efforts on extracting
this information from the data. We established the efficient influence curve (EIC) for the
corresponding marginal structural model parameters which provides the semiparametric
efficiency bound for all the asymptotically linear estimators. This efficient influence curve
is also doubly robust in that it remains an unbiased estimating function if either 1) the
outcome expectations and the modifier density, or 2) the intervention densities, are con-
sistently estimated. However, in applications with high-dimensional V , we saw that it
may be difficult to fully utilize the EIC without potentially compromising consistency.
To solve this problem, we presented a inverse-probability-missingness-weighted influence
curve (projected IC), which equals the EIC in a model where the missingness mechanism
(or more generally, the assignment of the modifier’s intervention) is known. Though not
fully efficient under the larger model, this projected IC is robust against misspecification of
the outcome models or the exposure mechanisms, whenever the missingness mechanism
is consistently estimated. We presented two TMLE estimators using the EIC and the pro-
jected IC which also inherit the corresponding robustness properties. We also described an
IPW estimator that is unbiased if the intervention probabilities are consistently estimated,
and a non-targeted G-computation estimator that is unbiased if the outcome expectations
and either the modifier density or the missingness mechanism are consistently estimated.
Under standard regularity and empirical process conditions, the TMLE and the IPW es-
timators are asymptotically linear, thereby allowing CLT-based standard error estimates.
Moreover, the TMLE estimator using the EIC will be semiparametric efficient if all the
components of the likelihood are consistently estimated.
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3.8 Chapter Appendix

Proof of remark 3.1
The first equality in the remark follows from definition of Ψ(P) and choice of mψ(a,v),
the third equality is trivial. We only show the second one.

∑
(a,v)∈A×V

h(a,v)φ(a,v)γv(P)
{

ηa,v(P)
γv(P)

−mΨ(P)(a,v)
}

=−EP ∑
(a,v)∈A×V

h(a,v)φ(a,v)
{

QV (v | ∆ = 1,W1)Q
a,1
t=0(v,W1)−ηa,v(P)

}
+EP ∑

(a,v)∈A×V

h(a,v)φ(a,v)QV (v | ∆ = 1,W1)
{

Qa,1
t=0(v,W1)−mΨ(P)(a,v)

}
The first line in the right-hand-side of the above equation is zero by definition of ηa,v(P).

Proof of lemma 3.1: Efficient score for Ψ(P) under M

In this appendix, we derive the efficient influence curve at P of the map Ψ : M → Rd .
For each P ∈M , let HP denote the Hilbert space of 1-dimensional mean zero measurable
functions of O with finite variance, endowed with the covariance inner product. For an
r ∈HP, define a 1-dimensional parametric submodel {Pr(α) : |α| < 1/‖r‖∞}, through P
at α = 0, given by dPr(α)

dP = 1+αr(O). Since we are working under a saturated model
M , this submodel is indeed contained in M . We shall consider the the class of all such
1-dimensional submodels indexed by HP.

For a given D ∈H d
P , we define the vector inner product EP (D× r) as the vector of

the component-wise inner products
(
EP
(
D j× r

)
: j = 1 . . .d

)
. We wish to how that D∗

satisfies
dΨ(Pr(α))

dα

∣∣∣∣
α=0

= M (Ψ(P),P)−1 EP (D∗× r) .

From definition of the maps Ψ, γv and ηa,v, and our choice of working model mψ(a,v),
we know that at each Pr(α)

0 = ∑
(a,v)∈A×V

γv(Pr(α))h(a,v)φ(a,v)
[

ηa,v(Pr(α))

γv(Pr(α))
−mΨ(Pr(α)) (a,v)

]
. (3.16)

We perform an implicit differentiation with respect α on the above equation, at α = 0, to
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obtain the equality

dΨ(Pr(α))

dα

∣∣∣∣
α=0
×

{
∑

(a,v)∈A×V

γv(P)h(a,v)φ(a,v)mΨ(P)(a,v)
[
1−mΨ(P)(a,v)

]
φ(a,v)>

}

= ∑
(a,v)∈A×V

h(a,v)φ(a,v)
{

dηa,v(Pr(α))

dα

∣∣∣∣
α=0
−
(

dγv(Pr(α))

dα

∣∣∣∣
α=0

)
mΨ(P)(a,v)

}
. (3.17)

Next, we proceed to express dγv(Pr(α))
dα

∣∣∣
α=0

and dηa,v(Pr(α))
dα

∣∣∣
α=0

as EP(Dγv×r) and EP(Dρa,v×
r), respectively, for some functions Dγv and Dηa,v belonging to the Hilbert space HP.

For convenience of indexing, for a given vector lK , we shall use the short hand ha,v
t =

(∆ = 1,V = v,Lt−1 = lt−1,At = at), for t = 1, . . . ,K, and ha,v
t = (∆ = 1,V = v) for t = 0.

From definition of Pr(α), it follows that

Pr(α)(W1) = P(W1)(1+αEP(r |W1)) ,

Pr(α)(v | ∆ = 1,W1) = P(v | ∆ = 1,W1)
1+αEP(r |V = v,∆ = 1,W1)

1+αEP(r | ∆ = 1,W1)
,

and Pr(α)(lt |W1,H
a,v
t ) = P(lt |W1,H

a,v
t )

1+αEP(r|lt ,Ha,v
t )

1+αEP(r|Ha,v
t )

.

Proposition 3.1. For a given v ∈ V , dγv(Pr(α))
dα

∣∣∣
α=0

= EP(Dγv× r), where

Dγv(P) =
I(∆ = 1)

g∆(1 |W1)

(
I(V = v)−QV (v | ∆ = 1,W1)

)
+QV (v | ∆ = 1,W1)− γv(P). (3.18)

Proof.

dγv(Pr(α))

dα

∣∣∣∣
α=0

= lim
α→0

γv(Pr(α))− γv(P)
α

= lim
α→0

1
α

∫
W1

{
P(W1)P(v | ∆ = 1,W1)α

EP(r | v,∆ = 1,W1)−EP(r | ∆ = 1,W1)+EP(r |W1)+αEP(r |W1)EP(r | v,∆ = 1,W1)

1+αEP(r | ∆ = 1,W1)

}
=
∫

W1

P(W1)P(v | ∆ = 1,W1){EP(rI(V = v) | ∆ = 1,W1)−EP(r | ∆ = 1,W1)+EP(r |W1)}

= EP

{(
I(∆ = 1

g∆(1 |W1)
(I(V = v)− p(V | ∆ = 1,W1))+QV (v | ∆ = 1,W1)

)
× r(O)

}
= EP

(
Dγv(P)× r(O)

)
.

In obtaining the last equality, we note that centering the left factor of the integrang by γv(P) does
not change the expression because EP(γv(P)r(O)) = γv(P)EP(r(O)) = 0 by definition of r. It is
straightforward to check that indeed EPD∗γv

(P) = 0. Moreover, under our saturated model D∗γv
(P)

is in fact in the tangent space. Therefore, it is indeed the efficient influence curve. This concludes
the proof of proposition 3.1.
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Proposition 3.2. For a given a ∈A , v ∈ V , dηa,v(Pr(α))
dα

∣∣∣
α=0

= EP(Dηa,v× r), where

Dηa,v(P)

≡ I(∆ = 1)
g∆(1 |W1)

I(V = v)
K

∑
t=1

Ca
t

{
Qa,1

t+1(Lt ,v,W1)−Qa,1
t (Lt−1,v,W1)

}
+

I(∆ = 1)
g∆(1 |W1)

I(V = v)
{

Qa,1
t=1(L0,v,W1)−Qa,1

t=0(v,W1)
}

+
I(∆ = 1)

g∆(1 |W1)
Qa,1

t=0(v,W1)
{

I(V = v)−QV (v | ∆ = 1,W1)
}

+QV (v | ∆ = 1,W1)Q
a,1
t=0(v,W1)−ηa,v(P). (3.19)

where with Ca
t = I(At=at)

∏
t
j=1 gA(a j|A j−1=a j−1,L j−1,V,∆=1,W1

Proof.

dηa,v(Pr(α))

dα

∣∣∣∣
α=0

= lim
α→0

ηa,v(Pr(α))−ηa,v(P)
α

= lim
α→0

1
α

∫
w1,l0,lK

yKP(W1)P(v | ∆ = 1,W1)
K

∏
j=0

P(l j | w1,h
a,v
j )α

×

{
∑

K
t=0 EP(r | lt ,w1,h

a,v
t )+EP(r | v,∆ = 1,W1)+EP(r |W1)

1+αM′P(w1, l0, lK)

−∑
K
t=0 EP(r | w1,h

a,v
t )−EP(r | ∆ = 1,W1)+αMP(w1, l0, lK)

1+αM′P(w1, l0, lK)

}

=
∫

w1,l0,lK
yKP(w1)P(v | ∆ = 1,w1)

K

∏
j=0

P(l j | w1,h
a,v
j )

×
{ K

∑
t=0

EP(r | lt ,w1,h
a,v
t )−

K

∑
t=0

EP(r | w1,h
a,v
t )+EP(r | v,∆ = 1,w1)

−EP(r | ∆ = 1,w1)+EP(r | w1)
}
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= EP

{
I(∆ = 1)

g∆(1 |W1)
I(V = v)

K

∑
t=0

I(At = at)

∏
t
j=1 gA(at | parents(at))

×
[
Qa,1

t+1(lt ,v,w1)−Qa,1
t (lt−1,v,w1)

]
× r(O)

}

+EP

{
I(∆ = 1)

g∆(1 |W1)
Qa,1

t=0(V = v,W1)
[
I(V = v)−QV (v | ∆ = 1,W1)

]
× r(O)

}
+EP

{
QV (v | ∆ = 1,W1)Q

a,1
t=0(V = v,W1)× r(O)

}
= EP(Dηa,v× r)

In the first equality, MP and M′P are shorthand for the remaining terms in the expansion of the
products. This concludes the proof of proposition 3.2

Now, we derive the efficient influence curve for Ψ at P ∈M . From proposition 3.1 and 3.2,
after some simplifications, we conclude that the right-hand-side of (3.17) can be written as

∑
(a,v)∈A×V

h(a,v)φ(a,v)
{

dηa,v(Pr(α))

dα

∣∣∣∣
α=0
−
(

dγv(Pr(α))

dα

∣∣∣∣
α=0

)
mΨ(P)(a,v)

}
= ∑

(a,v)∈A×V

h(a,v)φ(a,v)
{

EP(Dηa,v(P)× r)−EP(Dγv(P)× r)mΨ(P)(a,v)
}

= EP

{
∑

(a,v)∈A×V

h̃(a,v)
[
Dηa,v(P)−Dγv(P)mΨ(P)(a,v)

]
× r(O)

}
= EP {D∗(Q,g,Ψ(P))× r} ,

where

D∗(Q,g,ψ) =
I(∆ = 1)

g∆(1 |W1)
∑
a

h̃(a,V )
K

∑
t=1

Ca
t

{
Qa,1

t+1(Lt ,V,W1)−Qa,1
t (Lt−1,V,W1)

}
+

I(∆ = 1)
g∆(1 |W1)

∑
a

h̃(a,V )
{

Qa,1
t=1(L0,V,W1)−Qa,1

t=0(V,W1)
}

+
I(∆ = 1)

g∆(1 |W1)
∑

(a,v)∈A×V

{
h̃(a,V )

[
Qa,1

t=0(v,W1)−mψ(a,v)
]

×
(
I(V = v)−QV (v | ∆ = 1,W1)

)}
+ ∑

(a,v)∈A×V

h̃(a,V )QV (v | ∆ = 1,W1)
{

Qa,1
t=0(v,W1)−mψ(a,v)

}
.

To emphasize the role of P, we shall write D∗(Q,g,Ψ(P)) as D∗(P). To see that D∗(P) has zero
expectation, we first note that all but the last line are expressed as an expression times a centered
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function with respect to P, therefore they will have zero expectation under P; secondly, from remark
3.1, the last line also has zero expectation under P. Since we are operating under a saturated model,
each component of D∗(P) is in the tangent space, hence it is in fact the efficient influence curve.

To finish the proof of lemma 3.1, it suffices to see from (3.17) that the normalizing quantity is
given by the inverse of

∑
(a,v)∈A×V

γv(P)h(a,v)φ(a,v)mΨ(P)(a,v)
[
1−mΨ(P)(a,v)

]
φ(a,v)>

=
∫

W1

p(W1)∑
v,a

QV (v | ∆ = 1,W1)h(a,v)φ(a,v)mΨ(P)(a,v)
[
1−mΨ(P)(a,v)

]
φ(a,v)>

= P
{

I(∆ = 1)
g∆(1 |W1)

∑
a

h(a,v)φ(a,V )mΨ(P)(a,v)
[
1−mΨ(P)(a,v)

]
φ(a,V )>

}
= M (Ψ(P),P)

Proof of lemma 3.2: Robustness of D∗(P)
We first consider the case Q(P) = Q0. All but the last line in D∗(Q0,g(P),ψ0) are centered about
a component of Q0, therefore they will have expectation zero under P0. On the other hand, the last
line in P0D∗(Q0,g(P),ψ0) is

∫
w1

P0(w1)∑(a,v)∈A×V p0(v | ∆ = 1,w1)h̃(a,v)
{

ηa,v(Q0)
γv(Q0)

−mψ0(a,v)
}

,
which equals zero by definition of ψ0.

Next, we consider the case g(P)= g0. By telescoping the sums in (3.11) and applying definition
of Qa,1

t=0(P0), we obtain

P0D∗(Q(P),g0,ψ0)

= EP0

{
∑

(a,v)∈A×V

p0(V = v | (∆ = 1,W1)h̃(a,v)Qa,1
t=0(P0)(V = v,W1)

}

−EP0

{
∑

(a,v)∈A×V

p0(V = v | (∆ = 1,W1)h̃(a,v)mψ0(a,v)

}
,

which equals 0 by remark 3.1.

Proof of lemma 3.3
To see that D∆ is a score, up to a normalizing matrix, on the model where g∆ is known, we repeat
the steps in section 3.8, but this time we only consider the the class of 1-dimensional submodels
indexed by

RP =
{

r = r′−EP(r′ | ∆,W1)+EP(r′ |W1)−EP(r′) : r′ ∈HP
}
⊂HP.
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It is straight forward to verify that EP(r | ∆ = 1,W1) = 0 = EP(r |W1) for such r ∈ RP. Therefore,
Dγv(P) in this case becomes I(∆=1)

g∆(1|W1)
I(V = v)− γv(P) and

Dηa,v(P) =
I(∆ = 1)

g∆(1 |W1)
I(V = v)

K

∑
t=1

Ca
t

{
Qa,1

t+1(Lt ,v,W1)−Qa,1
t (Lt−1,v,W1)

}
+

I(∆ = 1)
g∆(1 |W1)

I(V = v)
{

Qa,1
t=1(L0,v,W1)−Qa,1

t=0(v,W1)
}

+
I(∆ = 1)

g∆(1 |W1)
I(V = v)Qa,1

t=0(v,W1)−ηa,v.

The rest is straightforward from equation (3.16).
To see that PD∆(Q,g,Ψ(P)) = 0, it suffices to show that PD∆

W (Q,g,Ψ(P)) = 0:

P
{

I(∆ = 1)
g∆(1 |W1)

∑
a

h(a,V )φ(a,V )
[
Qa,1

t=1(L0,V,W1)−mΨ(P)(a,V )
]}

= P
{

I(∆ = 1)
g∆(1 |W1)

∑
a

h(a,V )φ(a,V )
{

Qa,1
t=1(L0,V,W1)−Qa,1

t=0(V,W1)
}}

+P
{

I(∆ = 1)
g∆(1 |W1)

∑
a

h(a,V )φ(a,V )
[
Qa,1

t=0(V,W1)−mΨ(P)(a,V )
]}

.

The first term in the right hand side of the equality is zero by definition of Qa,1
1 ; the second term is

zero by remark 3.1. There D∆ is a valid estimating function.
To see its robustness properties under g∆ = g∆(P0), first consider the case of Qa,1

t (P) =Qa,1
t (P0)

for t = 1, . . . ,K. Trivially, P0D∗t (Q,g) = 0 for each t ≥ 1 by definition of Qa,1
t . On the term D∆

W , we
have

P0

{
I(∆ = 1)

g∆(P0)(1 |W1)
∑
a

h̃(a,V )
[
Qa,1

t=1(P0)(L0,V,W1)−mψ0(a,V )
]}

= P0

{
∑
v

QV (P0)(v | ∆ = 1,W1)∑
a

h̃(a,V )
[
Qa,1

t=0(P0)(V = v,W1)−mψ0(a,V )
]}

= 0,

per definition of Qa,1
t=0 and ψ0.

Next, we consider the case of g(P) = g0. By telescoping the sums in (3.12) and applying
definition of Qa,1

t=0, we again obtain

P0D∆(Q,g0,ψ0) = P0

{
∑

(a,v)∈A×V

p0(V = v | (∆ = 1,W1)h̃(a,v)Qa,1
t=0(P0)(V = v,W1)

}

−P0

{
∑

(a,v)∈A×V

p0(V = v | (∆ = 1,W1)h̃(a,v)mψ0(a,v)

}
= 0,

This completes proof of lemma 3.3.
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Part III

Semiparametric Inference for Mediation
Analysis
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Chapter 4

Targeted Maximum Likelihood
Estimation of Natural Direct Effects

4.1 Introduction
The causal effect of an exposure (or treatment) on an outcome of interest is often times mediated
by intermediate variables (mediator). In many causal inference problems, one is interested in
the direct effect of such exposure on the outcome, not mediated by the effect of the intermediate
variables. Robins and Greenland (1992) and Pearl (2001) defined two types of direct effects under
the counterfactual framework. The controlled direct effect refers to the effect of the exposure on
the outcome under an idealized experiment where the mediator is set to a given constant value,
whereas the natural (or pure) direct effect pertains to an experiment where the mediator is set to
its would-be value under a reference (null) exposure level. The definition of these causal effects
are based on counterfactual outcomes that are not fully observed, therefore they are not always
identifiable from the observed data. Identifiability conditions are studied extensively in Robins and
Greenland (1992), Pearl (2001), Robins (2003), van der Laan and Petersen (2004), Petersen, Sinisi,
and van der Laan (2006), Hafeman and VanderWeele (2010), Imai, Keele, and Yamamoto (2010),
Robins and Richardson (2010), and Pearl (2011).

Prior to the formal frameworks developed by Robins and Greenland (1992) and Pearl (2001),
the social science literature had proposed the use of parametric linear structural equations in medi-
ation analysis (e.g. Baron and Kenny (1986)), where the outcome response and mediator response
are each modeled using linear main term regression on their parent nodes, and the direct and in-
direct effects are defined and estimated in terms of the coefficients in these regression equations.
The limited causal validity of this parameter due to its dependence on model specification (e.g. no-
interactions and linearity assumptions) is discussed in Kaufman, Maclehose, and Kaufman (2004).
The developments of Robins and Greenland (1992) and Pearl (2001), and the identifiability studies
that followed suit, address definition and identification of direct and indirect effects in causal mod-
els that do not put restrictions on the distribution of the observed data, allowing one to separate the
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identification problem from the estimation problem.
Several approaches to the estimation problem are available in the current literature. A likelihood-

based estimator approach (the g-computation formula) builds upon the identifiability results using a
substitution estimator plugging in maximum likelihood based estimates of the relevant components
of the data generating distribution. The natural direct effect can be identified as a function of the
marginal covariate distribution, the conditional mediator density, and the conditional mean outcome
(e.g. Robins and Greenland (1992), Pearl (2001), Robins (2003) and van der Laan and Petersen
(2004), Petersen et al. (2006)). When all of these components of the data generating distribution
are estimated consistently, the resulting g-computation estimate is unbiased and efficient. How-
ever, if either of these components is inconsistent, the effect estimate will be biased. VanderWeele
and Vansteelandt (2010) illustrated how this approach can be applied to the estimation of natural
direct effect odds ratio of rare outcomes. The use of (sequential) g-computation in structural nested
models for estimation of controlled direct effects is proposed in Vansteelandt (2009). A second
approach to causal effect estimation is based on the estimating equation methodology developed
by Robins (1999), Robins and Rotnitzky (2001) and van der Laan and Robins (2003b). Under this
approach, a score is expressed as a function of the parameter of interest ψ and a nuisance parameter
η (whenever such representation is possible); if the resulting estimating equation, as an equation
in the variable ψ , has a unique solution, the parameter estimate is given as the root to this equation.
For most parameters arising from causal inference, the efficient influence curve under a nonpara-
metric model is a robust estimating function (i.e. unbiased against mis-specification of specific
components of the likelihood), therefore the resulting effect estimate shares the same robustness
properties. In van der Laan and Petersen (2008), an application of this approach to a generalized
class of direct effects using marginal structural models was discussed. The parameter studied in
that work is a population mean of a subject-specific average controlled direct effect, averaged with
respect to a user-supplied conditional mediator density given null exposure and individual covari-
ates. If the supplied conditional mediator density is the true conditional mediator density of the
data generating process, then the parameter of van der Laan and Petersen (2008) evaluates to the
same value as the natural direct effect parameter. However, even in such case, these two parameters
are not the same maps on the model since the former is a map indexed by the supplied mediator
density and therefore is a function of the outcome expectation and marginal covariate distribution
alone. As a consequence, the efficient influence curve of the parameter of van der Laan and Pe-
tersen (2008) is not the same as the efficient influence curve of the natural direct effect parameter.
VanderWeele (2009) discussed more fully the use of marginal structural models with inverse prob-
ability weighting for estimation of the natural direct effect parameter. A third approach to causal
effect estimation is the targeted maximum likelihood framework of van der Laan and Rubin (2006)
and van der Laan and Rose (2011). For given estimators of relevant components of the likelihood
P, one iteratively maximizes the likelihood (or minimize a loss) along a least favorable submodel
through the initial estimators. The parameter estimate is given by evaluating the parameter map
at the final estimator of the likelihood, thus providing a substitution estimator of the parameter of
interest. By construction, the final estimate of the likelihood satisfies the efficient influence curve
equation in the variable P. Therefore, the effect estimate also shares the robustness properties of
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the efficient influence curve. In addition, the substitution principle incorporates global constraints
of the statistical model that do not affect the form of the efficient influence curve; this allows for
potential improvement in finite sample performance. van der Laan and Petersen (2008) also ap-
plied the targeted MLE procedure to their generalized class of direct effect parameters. Both the
estimating equation approach and the targeted MLE approach in van der Laan and Petersen (2008)
are robust (with respect to its parameter of interest) against mis-specification of the conditional
mean outcome or mis-specification of the treatment mechanism. However, since its parameter of
interest is indexed by the user-supplied conditional mediator density, if one is interested in the
natural direct effect, then the user-supplied conditional mediator density in the method of van der
Laan and Petersen (2008) must be correct. The use of propensity score matching in causal effect
estimation was introduced in Rosenbaum and Rubin (1983). Application of propensity score in
mediation analysis has also been proposed (e.g. Jo, Stuart, MacKinnon, and Vinokur (2011)).

Most recently, Tchetgen Tchetgen and Shpitser (2011a) derived the efficient influence curves
(under a nonparametric model) for the various natural effect parameters, and established their gen-
eral robustness properties and their implications on efficiency bounds. They also proposed semi-
parametric efficient, multiply robust estimators based on the estimating equation methodology us-
ing the efficient influence curve equation. We also refer the reader to that work for presentation of
a sensitivity analysis framework to assess the impact of the ignorability assumption of the mediator
variable on inference. In Tchetgen Tchetgen and Shpitser (2011b), the authors extended the theory
to the case where one specifies a parametric model for the natural direct (indirect) effect conditional
on a subset of baseline covariates.

In this chapter, we apply the targeted MLE framework of van der Laan and Rubin (2006) and
van der Laan and Rose (2011) to the estimation of the natural direct effect of a binary exposure. The
proposed estimator satisfies the efficient influence curve equation derived in Tchetgen Tchetgen
and Shpitser (2011a). However, we note that the robustness conditions in Tchetgen Tchetgen and
Shpitser (2011a) may be weakened (lemma 4.1), thereby placing less reliance on the estimation
of the mediator density. This weaker version of robustness conditions is of particular interest
when the mediator is high-dimensional, since it allows one to replace estimation of the conditional
mediator density with objects that are easier (or at least with more available tools) to estimate. More
precisely, the proposed estimator is asymptotically unbiased if either one of the following holds: i)
the conditional mean outcome given exposure, mediator, and confounders, and the mediated mean
outcome difference are consistently estimated; (ii) the exposure mechanism given confounders, and
the conditional mean outcome are consistently estimated; or (iii) the exposure mechanism and the
mediator density, or the exposure mechanism and the conditional distribution of the exposure given
confounders and mediator, are consistently estimated. If all three conditions hold, then the effect
estimate is asymptotically efficient. We also extend the results to the estimation of natural indirect
effects. In addition, we discuss in detail conditions needed to ensure asymptotic linearity of the
resulting estimator. These conditions should provide a guideline for situations where an influence
curve based variance estimate is realistic.

This chapter is organized as follows: In section 2 we define formally the natural direct causal
effect of a binary treatment on an outcome using the Non-Parametric Structural Equations Model
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framework of Pearl (2009), and summarize its identifiability conditions. Based on the identifia-
bility result, one may consider the natural direct effect parameter as a map from the model to the
parameter space. We study this map and its efficient influence curve in greater detail in section
2.3. Section 3 describes how to construct a targeted MLE estimator for the natural direct effect
of a binary treatment. Asymptotic properties of this estimator are summarized in section 4.3 and
proved in the Appendix A. The estimation procedure in section 3 focuses on the targeted estimation
of the conditional outcome expectation and the mediated mean outcome difference. An alternative
procedure focusing on the conditional outcome expectation and the conditional mediator density is
described in Appendix B. This alternative estimator shares the same asymptotic properties as the
one proposed in section 3. Section 4 describes in greater detail two alternative estimation method-
ologies: the estimation equation framework of Robins (1999), and the maximum likelihood based
g-computation framework. In section 5, we illustrate with simulations the robustness of the targeted
MLE estimator against model mis-specifications. Section 4.6 extends analogously the discussions
on identifiability, robustness, and estimation to the case of natural indirect effect. This chapter
concludes with a summary and a few remarks.

4.2 Natural Direct Effect of a Binary Treatment

Causal Parameter
Consider n i.i.d observations of O=(W,A,Z,Y ), where W represents baseline covariates, A a binary
treatment, Z represents a mediator of interest between the treatment and the outcome of interest Y .
Let P0 denote the distribution of O. We apply here the Non-Parametric Structural Equations Model
(NPSEM) of Pearl (2009) to encode the causal relations under consideration. The NPSEM on a
unit consists of a set of exogenous random variables U which are determined by factors outside
the model, a set of endogenous variables X which are determined by variables inside the system
(U ∪X), and a set of unspecified deterministic functions { fx : x ∈ X} which encode for each x ∈ X
the variables that have direct influence on x. More specifically, in the present situation the causal
relations are described by the NPSEM

W = fW (UW )

A = fA(W,UA)

Z = fZ(W,A,UZ)

Y = fY (W,A,Z,UY ),

where X = (W,A,Z,Y ) is the endogenous variable, and U = (UW ,UA,UZ,UY ) is the unobserved
exogenous variable. This model defines a random variable (U,X) on the unit of observation, we
denote its distribution by PU,X .

The counterfactual variables or potential outcomes in the Rubin Causal Model (Rubin (1978),
Rosenbaum and Rubin (1983) and Holland (1986)) can be represented as restrictions on the in-
put of the functions fx. For instance, the counterfactual Z(a) is defined as the random variable
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Z(a) ≡ fZ(W,A = a,UZ), and can be interpreted as the mediator variable that the unit would have
had if the exposure had been a. In particular, Z(a) is a random variable through UW and UZ . Sim-
ilarly, Y (a′,Z(a)) is the counterfactual outcome that results from setting Y (a′,Z(a)) ≡ fY (W,A =
a′,Z(a),UY ), and can be interpreted as the individual’s response if the exposure had been a′ while
the mediator variable had been identical to the one under exposure a. Y (a′,Z(a)) is a random
variable through UW , UZ and UY .

Under the NPSEM, a causal parameter of interest is defined as a function of the distribution
PU,X . More specifically, the natural direct causal effect is defined as

Ψ(PU,X) = E [Y (1,Z(0))−Y (0,Z(0))] .

This causal parameter can be interpreted from the following hypothetical experiment: one ran-
domly assigns each subject to treatment or control, while always setting the subject’s mediator
variable to its value under no treatment, and then takes the difference in mean outcome between
the treated and control cohort.

Identifiability
We will use the notation Z(A) to denote the unintervened Z = fZ(W,A,UZ), which is random
through UW ,UA,UZ . Similarly, the unintervened Y (A,Z(A)) is random through UW ,UA,UZ,UY .
Under experimental or observational studies, for each unit, the investigator only observes the out-
come and mediator response under the unit’s actual exposure. In other words, the observation is in
fact O = (W,A,Z(A),Y (A,Z(A)). Hence, the causal parameter Ψ(PU,X) is not always identifiable
from the observed data.

Conditions under which the natural direct effect (or natural effects in general) will be identi-
fiable were addressed extensively in Robins and Greenland (1992), Pearl (2001), Robins (2003),
Petersen et al. (2006), Imai et al. (2010), Robins and Richardson (2010) and Pearl (2011). In
particular, Pearl (2001) gave the following identifiability conditions: If randomization assumptions

A1. For all values (a,z), Y (a,z) given W is identifiable,

A2. For all values of a, Z(a) given W is identifiable,

and the conditional independence assumption

A3. For all a 6= a′,z, Y (a′,z) is independent of Z(a) given W

are satisfied, then the causal effect Ψ(PU,X) can be expressed as a function of the observed data
generating distribution P0:

Ψ(PU,X)
A1,A2,A3

= Ψ(P0)

≡ E

{
∑

z
[E(Y |W,A = 1,Z = z)−E(Y |W,A = 0,Z = z)] p(z|W,A = 0)

}
. (4.1)
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In the following sections, we will focus on the estimation of this statistical parameter.
Many of these previous authors have established that the randomization assumptions A1 and

A2 can be satisfied by requiring that (A,Z) is independent of Y (a,z), given W , and A is independent
of Z(a), given W . These can be ensured by measuring sufficient covariates to control for confound-
ing of the effects of treatment on outcome, treatment on mediator, and mediator on outcome. As a
result, the distributions of Y (a,z) and Z(a) will be identifiable within covariate stratum.

Petersen et al. (2006) showed that A3 can be weakened to a conditional mean independence

E(Y (1,z)−Y (0,z)|W ) = E(Y (1,z)−Y (0,z)|W,Z(0) = z).

Still, it was recognized in Pearl (2001) that the conditional counterfactual independence is in
general difficult to interpret. Imai et al. (2010) offered a stronger version of assumption A3 which
is more interpretable: Y (a′,z) is independent of Z given W and A = a. This new version implies
assumption A3, but the converse is not necessarily true. Robins and Richardson (2010) established
that in general condition A3 cannot be enforced by randomized experiments. In such cases, what
kind of causal interpretations can the statistical parameter in (4.1) still offer? Note that under the
randomization assumptions A1 and A2 alone, the statistical parameter (4.1) equals (e.g. Pearl
(2001), van der Laan and Petersen (2008)):

Ψ(P0)
A1,A2
= EP0

(
∑

z
E(Y (1,z)−Y (0,z)|W )P(Z(0) = z|W )

)
.

The quantity in the right hand side is the population mean of an average of subject-specific con-
trolled direct effect E(Y (1,z)−Y (0,z)|W ), weighted by P(Z(0) = z|W ). However, while this quan-
tity serves to provide a causal interpretation for the statistical parameter (4.1) in the absence of
condition A3, it is certainly not the natural direct causal effect; therefore one should be cautious
about putting it into the context of the traditional total effect decomposition.

The Natural Direct Effect Parameter
Let M denote a model containing the true data generating distribution P0. For any P ∈M , the
likelihood decomposes into

P(O) = PW (W )PA(A|W )PZ(Z|W,A)PY (Y |W,A,Z).

For later convenience, we adopt the notations g(A|W )≡PA(A|W ), QW (W )≡PW (W ), QZ(Z|W,A)≡
PZ(Z|W,A), and Q̄Y (W,A,Z) ≡ E(Y |W,A,Z). Moreover, let Q ≡ (QW ,QZ, Q̄Y ). The notations
Q(P0) and g(P0) are reserved for the corresponding components of the true data generating dis-
tribution P0. For a function f (O), we will use P f to denote the expectation of f (O) under the
probability distribution P ∈M . For instance, P0 f ≡ ∑o∈O f (o)dP0(o) denotes the expectation of
f under the true data generating distribution, while Pn f ≡ 1

n ∑
n
i=1 f (oi) denotes the empirical mean

of f .
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One may consider the natural direct effect parameter Ψ in (4.1) as a map

Ψ :M → R
P 7→Ψ(P) = Ψ(Q)≡ EP

[
EP
(
Q̄Y (W,1,Z)− Q̄Y (W,0,Z)|W,A = 0

)]
.

We refer to the inner expectation above as the (null level) mediated mean outcome difference, and
denote it by the map P 7→ Q̄Z(P), where

Q̄Z(P)(W )≡ EP
(

Q̄Y (W,1,Z)− Q̄Y (W,0,Z)
∣∣W,A = 0

)
. (4.2)

This way, Ψ(P) = EP
(
Q̄Z(P)(W )

)
. The parameter of interest (4.1) is this map evaluated at the

true data generating distribution: ψ0 ≡Ψ(P0).

Efficient Influence Curve

Under a nonparametric model M , for any P ∈M , the efficient influence curve (EIC) of Ψ at P, as
derived in Tchetgen Tchetgen and Shpitser (2011a), is given by:

D∗(Q,g,Ψ(Q)) =

{
I(A = 1)
g(1|W )

QZ(Z|W,0)
QZ(Z|W,1)

− I(A = 0)
g(0|W )

}(
Y − Q̄Y (W,A,Z)

)
+

I(A = 0)
g(0|W )

{
Q̄Y (W,1,Z)− Q̄Y (W,0,Z)−EP

(
Q̄Y (W,1,Z)− Q̄Y (W,0,Z)|W,0

)}
+EP

(
Q̄Y (W,1,Z)− Q̄Y (W,0,Z)|W,0

)
−Ψ(Q)

= D∗Y +D∗Z +D∗W .

Note that the components D∗Y , D∗Z , D∗W are respectively the projection of D∗ onto the tangent
subspaces corresponding to the components P(Y |W,A,Z), P(Z|W,A), P(W ) of the likelihood.

This efficient influence curve for a nonparametric model can also be derived by first consid-
ering Ψ(P) as a function of P = (P f : f ∈ F ), where F is a class of indicator functions F =
{I(w,a,z,y), I(w,a,z), I(w,a), I(w) : w ∈ W ,a ∈ A ,z ∈ Z ,y ∈ Y }. For any given ”vector” h =
(h( f ) : f ∈F ), one can consider a directional derivative d

dε
Ψ(P+εh)|ε=0. The efficient influence

curve is given by the directional derivative applied to the direction of h = ( f (O)−P f : f ∈F ). In
other words, it is given by ∑ f∈F

∂Ψ(P)
∂P f ( f (O)−P f ). A more detailed exposition can be found in

van der Laan and Rose (2011).

Robustness of the efficient influence curve

The general robustness conditions of the EIC were given in Tchetgen Tchetgen and Shpitser
(2011a): (i) the mediator density QZ(Z|W,A) and the conditional mean outcome Q̄Y (W,A,Z) are
both correct; (ii) the conditional mean outcome and the exposure mechanism g(A|W ) are both cor-
rect; or (iii) the exposure mechanism and the mediator density are both correct. We note below that
conditions (i) and (iii) may be weakened to accommodate difficulties in estimation of the mediator
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density. In fact, the estimation of QZ may be replaced by estimation of a conditional probability of
treatment. This is particularly appealing when Z is high dimensional. We summarize these in the
following lemma and its subsequent remarks. The proof of this lemma is straightforward from the
form of the efficient influence curve, and we refer the interested reader to the Appendix.

Lemma 4.1 (Robustness of the efficient influence curve).
Suppose there exists constants 1 > δ ,δ ′ > 0 such that g(A = 1|W )< 1−δ and QZ(Z|W,1)<

1−δ ′ a.e. over the support of W and Z. The efficient influence curve is a robust estimating function
for the parameter at P0, in the sense that

P0D∗ (Q,g,ψ0) = 0,

if either of the following holds:

(i) The conditional mean outcome Q̄Y = E(Y |W,A,Z), and the mediated mean outcome differ-
ence Q̄Z(P) = EP(Q̄Y (W,1,Z)− Q̄Y (W,0,Z)|W,0) are correct.

(ii) The exposure mechanism g(A|W ), and the conditional mean outcome are correct.

(iii) The exposure mechanism and conditional mediator density QZ(Z|W,A), or the exposure
mechanism and the conditional distribution of treatment given mediator and covariates
γ(A,W,Z)≡ p(A|W,Z), are correct.

Condition (i) follows from the fact that, given Q̄Y , we only need a conditional expectation of
Q̄Y (W,1,Z)− Q̄Y (W,0,Z) under QZ(Z|W,0). Therefore, consistent estimation of QZ(P0) per se is
not necessary to obtain consistent estimator of Q̄Z(P0), as long as one has a consistent estimator
Q̄Y

n of Q̄Y (P0) and an optimal procedure to regress the difference Q̄Y
n (W,1,Z)− Q̄Y

n (W,0,Z) on W
among the control observations. Condition (iii) is a consequence of the fact when g is correct,
dependence on consistent estimation of QZ is only through QZ(Z|W,0)

QZ(Z|W,1) , which can be consistently
estimated using either QZ or combining ratios of g(A|W ) and p(A|W,Z).

When Z is high-dimensional, few tools are available to estimate the conditional mediator den-
sity QZ(Z|W,A). On the other hand, there is abundant literature addressing estimation of con-
ditional means. This can be used to estimate Q̄Z(P), and conditional probabilities γ(A|W,Z) of
a categorical A. Lemma 4.1 implies in particular that estimation of QZ(P0) may be replaced by
estimations of g(P0), γ(P0), and the conditional expectation Q̄Z(P0),

4.3 Targeted Maximum Likelihood Estimation for the
Natural Direct Effect of a Binary Treatment

In general, under the framework of van der Laan and Rubin (2006) the construction of a targeted
MLE (TMLE) estimator of a parameter of interest Ψ(P0) = Ψ(Q(P0)) calls for two sets of ingredi-
ents. For each component Q j(P) of Q(P), one defines a uniformly bounded (w.r.t. the supremum
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norm) loss function L j : Q j→L ∞(K) satisfying

Q j,0 = argmin
Q j

P0L j(Q j),

where L ∞(K) is the class of functions of O with bounded supremum norm over a set of K con-
taining the support of O under P0. Given the loss function L j, one defines a one-dimensional
parametric working submodel {Q j(P)(ε j) : ε j} ⊂M passing through Q j(P) at ε j = 0 with score
D∗j(P) at ε j = 0 that satisfies

〈 d
dε j

L j (Q j(P)(ε j)) |ε j=0〉 ⊃ 〈D∗j(P)〉,

where 〈h〉 denotes the linear span of a vector h. These result in a least favorable parametric
submodel Q(ε) through Q. For given initial estimator (Qn, ĝ) of (Q(P0),g(P0)), the fluctuation
parameter ε is fitted to minimize the empirical risk of Qn(ε), providing an updated estimator Qn(ε̂).
This updating process is repeated until ε̂ ≈ 0. The final estimator Q∗n of Q(P0) is then used to
obtain a substitution estimator Ψ(Q∗n) of Ψ(Q(P0)). By its construction, the estimator Q∗n satisfies
the efficient influence curve equation PnD∗(Q∗n, ĝ,Ψ(Q∗n)) = 0.

To specialize to the natural direct effect, we first note that the parameter of interest and the
components D∗Z and D∗W of the efficient influence curve depend on QZ only through the mediated
mean outcome difference Q̄Z(P) as defined in (4.2). Secondly, the empirical marginal distribution
QW

n of W is a consistent estimator of QW (P0) that readily solves the equation PnD∗W (Q̄Z(P),QW
n )= 0

for any Q̄Z(P). Hence, the proposed estimator will focus on targeted estimation of Q̄Y (P0)(W,A,Z),
and Q̄Z(P0)(W ).

An alternative targeted estimation to the one proposed above is to targetedly estimate the condi-
tional mediator density QZ(P0) instead of the mediated mean outcome difference Q̄Z(P0). We refer
the interested reader to Appendix B for this alternative approach. The key difference between the
proposed and the alternative targeting procedures lies in that the former defines a loss function and
parametric working submodel for the mediated mean outcome difference Q̄Z(P), whereas the latter
defines a loss function and parametric working submodel for the conditional mediator density QZ

and then estimates the mediated mean outcome difference Q̄Z(P0) by plugging in the targeted medi-
ator density and the targeted Q̄Y . We note that the bias variance trade-off in the proposed targeting
procedure is more optimal over the alternative procedure for estimating the ultimate component of
interest, which is the mediated mean outcome difference.

Construction of the Targeted MLE
Loss functions and parametric working submodels

Suppose for now that Y is binary or continuous and bounded. In the latter case, without loss of
generality we may assume that Y is bounded in (0,1). We consider the minus-loglikelihood loss
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function for Q̄Y :

LY (Q̄Y )(O) =− log
(

Q̄Y (W,A,Z)Y (1− Q̄Y (W,A,Z))(1−Y )
)
. (4.3)

Under this loss function, consider the logistic working submodel

Q̄Y (ε)≡ expit
(
logit(Q̄Y )+ εCY

)
,

where CY (QZ,g)(O) =
{

I(A=1)
g(1|W )

QZ(Z|W,0)
QZ(Z|W,1) −

I(A=0)
g(0|W )

}
. Note that this submodel Q̄Y (ε) depends on the

components QZ and g, but we suppress that in the notation. This submodel satisfies

d
dε

LY
(
Q̄Y (ε)

)
|ε=0= D∗Y (Q̄

Y ,QZ,g). (4.4)

For a given Q̄Y , the difference Q̄Y (W,Z)≡ Q̄Y (W,1,Z)− Q̄Y (W,0,Z) is also bounded. Without
loss of generality, we may also assume it is bounded between (0,1). Let the loss function for Q̄Z

be

LZ(Q̄Z)(O) =

− I(A = 0) log
(
(Q̄Z(W ))Q̄Y (W,Z)(1− Q̄Z(W ))1−Q̄Y (W,Z)

)
.

Under this loss function, the logistic working submodel

Q̄Z(ε)≡ expit
(
logit

(
Q̄Z)+ εCZ

)
,

with CZ(g)(O) = 1
g(0|W ) , satisfies

d
dε

LZ
(
Q̄Z(P)(ε)

)
|ε=0= D∗Z(Q̄

Z(P), Q̄Y ,g). (4.5)

The dependence of Q̄Z(P)(ε) on g is again suppressed in our notation.
Note that linear transformations onto the unit interval may be needed in order to use the loss

functions LY and LZ . However, since the parameter of interest and the components of the efficient
influence curve are linear in Q̄Y and Q̄Z(P), the necessary linear transformations and their inverse
maps do not affect the properties of the estimators.

In settings where Y is not bounded, one may instead use the squared error loss functions

LY (Q̄Y )(O) =
(
Y − Q̄Y (W,A,Z)

)2
,

and
LZ(Q̄Z)(O) = I(A = 0)

(
Q̄Y (W,Z)− Q̄Z(W )

)2
;

and corresponding parametric working submodels

Q̄Y (ε) = Q̄Y + εCY
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and
Q̄Z(ε) = Q̄Z + εCZ.

However, compared to the minus loglikelihood losses, this choice of loss functions and the cor-
responding parametric working submodels may result in estimators that are more sensitive to near
positivity violations (Gruber and van der Laan (2010), Gruber and van der Laan (2011)). There-
fore, in such situations it would be more sensible to bound Y by the range of the observed data, and
apply the minus loglikelihood losses above.

Implementation

Let Pn denote the empirical distribution of n i.d.d observations of O. Let gn, Q̄Y
n and QZ

n , be initial
estimators of g(P0), Q̄Y (P0) and QZ(P0), respectively. Let εY

n ≡ argminε PnLY
(
Q̄Y

n (ε)
)

be the opti-
mal ε which minimizes the empirical risk. We are reminded that, though not shown in the notation,
the estimators (QZ

n ,gn) are used in constructing Q̄Y
n (ε). The update

Q̄Y,∗
n ≡ Q̄Y

n (ε
Y
n ) (4.6)

is the targeted MLE estimator of Q̄Y (P0).
Next, we obtain an initial estimator Q̄Z

n of Q̄Z(P0), with respect to the targeted expectant
Q̄Y,∗

n (W,1,Z)− Q̄Y,∗
n (W,0,Z), either using the density-based approach, which uses the density esti-

mate QZ
n to obtain the conditional mean outcome difference, or using a regression-based approach,

which regresses the difference Q̄Y
n (W,1,Z)− Q̄Y

n (W,0,Z) on W among control observations. The
optimal ε is given by εZ

n = argminε PnLZ
(
Q̄Z

n (ε)
)
. We are reminded that, though not shown in the

notation, the estimator gn is used in constructing Q̄Z
n (ε). The update

Q̄Z,∗
n ≡ Q̄Z

n (ε
Z
n ) (4.7)

is the targeted MLE estimator of Q̄Z(P0). The targeted MLE estimator of ψ0 = EP0

(
Q̄Z(P0)(W )

)
is thus given by

ψ
∗
n ≡

1
n

n

∑
i=1

Q̄Z,∗
n (Wi). (4.8)

Let Q∗n ≡
(

Q̄Y,∗
n , Q̄Z,∗

n ,QZ
n ,Q

W
n

)
, where QW

n is the empirical distribution of W . It follows from
(4.4) and (4.5) that PnD∗(Q∗n,gn) = 0. From this stems the asymptotic properties of ψ∗n we describe
in section 4.3.

Remark 4.1 (implementation). When Z is high-dimensional, and A is categorical, consistent esti-
mation of γ(A,W,Z)= p(A|W,Z) may be more attainable than consistent estimation of QZ(Z|W,A).
In such case, instead of using an estimator of QZ to estimate the ratio QZ(Z|W,0)/QZ(Z|W,1) in
the targeting step of Q̄Y , one can use an estimator γn(A=0|W,Z)

gn(A=0|W )
gn(A=1|W )

γn(A=1|W,Z) . By the same reason, one
should use a regression-based approach to obtain the initial estimate Q̄Z

n . This way, estimation of
QZ may be avoided if one has available optimal estimators gn and γn(A|W,Z), and a regression-
based estimator Q̄Z

n . From lemma 4.1, we see that this still allows for robust estimation.
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Statistical Inference for TMLE
Since the proposed targeted MLE estimator satisfies the efficient influence curve equation, lemma
4.1 implies in particular that the estimator is asymptotically unbiased if either of the following
is true: (i) The conditional outcome expectation Q̄Y,∗

n and the mediated mean outcome difference
Q̄Z,∗

n are consistent; (ii) the treatment mechanism gn and the conditional outcome expectation Q̄Y,∗
n

are consistent; (iii) the treatment mechanism gn and the conditional mediator density QZ
n (Z|W,A),

or the treatment mechanism and γn(A|W,Z), are consistent. These properties are illustrated in the
simulations section below.

Under certain regularity conditions, an estimator that satisfies a given estimating equation
will be asymptotically linear with influence curve given by the estimating function (e.g. Bickel
et al. (1997), van der Vaart (1998a), van der Laan and Robins (2003b), Tsiatis (2006), Kosorok
(2008)). In this case, the central limit theorem implies that one can obtain an asymptotic vari-
ance estimate of the said estimator using the variance estimate of its influence curve. In par-
ticular, the asymptotic variance of

√
n(ψ∗n −ψ0) can be estimated by the sample variance Σ∗n ≡

V̂ar(D∗(Q∗n,gn)). We can construct asymptotically conservative confidence intervals of level (1−
α) as

[
ψ∗n ±ξ1−α/2(Σ

∗
n/n)1/2

]
, where ξ1−α/2 is the (1−α/2)-quantile of the standard normal dis-

tribution.

4.4 Some Existing Estimation Methodologies
In this section, we describe how the estimating equation and the g-computation approaches can be
applied to the natural direct effect of a binary exposure, and contrast their theoretical properties
with those of the proposed targeted estimator.

Estimating Equation Estimator
Under the estimating equation (EE) based approach (Robins (1999), Robins and Rotnitzky (2001),
van der Laan and Robins (2003b)), one may use the efficient influence curve D∗(P) under a non-
parametric model as an estimating function of ψ , if i) D∗(P) can be expressed as a function of ψ

and some nuisance parameter η , i.e. D∗(P) = D(ψ(P),η(P)), for some function D, and ii) the
solution to the resulting equation in the variable ψ is unique. When these requirements hold, an
estimate of the parameter is given by the root of the resulting estimating equation, i.e. ψn is defined
as the solution to the equation PnD∗(ηn,ψn) = 0.

An estimator of the natural direct effect under this framework is provided in Tchetgen Tchetgen
and Shpitser (2011a). For given estimators Q̄Y

n , QZ
n , gn, and a density-based estimator Q̄Z

n for
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Q̄Z(P0), the EE estimator for the natural direct effect is given by

ψ
EE
n ≡ 1

n

n

∑
i=1

{(
I(Ai = 1)
gn(1|Wi)

QZ
n (Zi|Wi,0)

QZ
n (Zi|Wi,1)

− I(Ai = 0)
gn(0|Wi)

)(
Yi− Q̄Y

n (Wi,Ai,Zi)
)

+
I(Ai = 0)
gn(0|Wi)

(
Q̄Y

n (Wi,1,Zi)− Q̄Y
n (Wi,0,Zi)− Q̄Z

n
)

+ Q̄Z
n

}

We remind the reader again that in the present chapter, Q̄Z
n may not need to use QZ

n , but will surely
make use of Q̄Y

n .
For Qn ≡

(
Q̄Y

n ,Q
Z
n , Q̄

Z
n
)
, this EE estimator solves the efficient influence curve equation

PnD∗
(
Qn,gn,ψ

EE
n
)
= 0.

Therefore, the ψEE
n estimator and the proposed TMLE estimator share the same asymptotic proper-

ties that are inherited from the efficient influence curve. By the same token, they are both sensitive
to extreme values of the treatment model, such as in the case of near positivity violations. This
was demonstrated in Kang and Schafer (2007). Indeed, in the case of natural direct effect, when
gn(Ai|Wi) is small for some observations, the estimated D∗Y component of the efficient influence
curve will be large; this problem is exacerbated if Ai = 0, in which case the estimated D∗Z is also
large. Consequently, the EE estimator may yield estimates that are out of the bounds of the param-
eter, since constraints such as bounds of the parameter are not reflected in the functional form of
the efficient influence curve. The proposed targeted estimator using a logistic working submodel
(introduced in Gruber and van der Laan (2010)) aims to provide more stable estimates through
the combination of a unit linear transformation, which implicitly estimates the boundary of the
parameter domain, and the virtue of the substitution principle.

G-computation Estimator
The sensitivity to near positivity violation of the TMLE estimator and the ψEE

n estimator stems from
the use of inverse probability weightings in the efficient influence curve. A g-computation approach
based on the identifiability result in (4.1) avoids this inverse weighting. More specifically, for Q̄Y

n
and QZ

n likelihood based estimators of the outcome expectation and mediator density, respectively,
consider a g-computation estimator given by:

ψ
Gcomp
n =

1
n

n

∑
i=1

(
Q̄Y

n (Wi,1,Zi)− Q̄Y
n (Wi,0,Zi)

)
QZ

n (Zi|Wi,0).

This estimator can be similarly defined using a regression-based Q̄Z
n as ψ

Gcomp
n = 1

n ∑
n
i=1 Q̄Z

n (Wi).
Unlike the robust TMLE and ψEE

n estimators, the consistency of the g-computation estimator relies
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on correct specification of both the outcome expectation, and mediator density (or the regression
procedure for the mediated mean outcome difference). In the case of these likelihood-based esti-
mates being correct, the resulting ψ

Gcomp
n is more efficient than the two robust estimators. However,

even though this g-computation estimator does not use inverse probability weighting explicitly, it
can still be affected by data sparsity, since the quality of the mean outcome estimate (even under
the correct specification) is sensitive to the overlap between the empirical covariate distribution of
the treated cohort and the empirical covariate distribution of the control cohort.

4.5 Simulation Study
In this section we evaluate the performance of the TMLE estimator, the EE estimator, and the
Gcomp estimator under model mis-specification and data sparsity. From lemma 4.1, one expects
to see that, in the absence of positivity violations, the TMLE and EE estimator are robust against
model mis-specifications.

Simulation Schemes
The following three data generating schemes are used. The mediator variable Z is discrete with
three categories: Z ∈ {0,1,2}. Each scheme has a version with a binary outcome Y and a version
with a continuous and bounded outcome Y . Simulations 2 and 3 differ from simulation 1 in their
mediator density and treatment mechanism, respectively.

1. Simulation 1: no positivity violations.

W ∼U(0,2)

P(A = 1 |W ) = expit
(
−1+2W −0.08W 2)

p(Z = 0) = expit(−0.2+0.5A+0.3A×W +0.7W −1.5W 2),

p(Z = 1|Z 6= 0) = expit(−0.2+0.4A+ .8A×W +0.4W −2.5W 2)

Y ∼ Bern
(

expit(−2+A−W +W 2 +Z +0.8A×W −A×W 2

−0.5A×Z +0.7A×Z2)
)

The treatment probability gA(A = 1|w) is bounded in (0.26,0.94); the mediator density
QZ(z|A = 1,w) is bounded in (0.0005,0.9753) for any z and w, whereas the ratio QZ(z|A =
0,w)/QZ(z|A = 1,w) is bounded in (0.13,2.02).

The parameters of interest are ψ0 = 0.2585079. The semiparametric efficiency bounds is
var(D∗(P0))≈ 1.157.
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2. Simulation 2: larger effect of treatment on the distribution of mediator.

p(Z = 0) = expit(−2−2A−0.5A×W +3W −W 2),

p(Z = 1|Z 6= 0) = expit(1−4A−A×W +W +W 2).

Distributions for W,A,Y are the same as simulation 1. The mediator density QZ(z|w,A =
1) ranges in (0.017,0.081) for Z = 0, ranges in (0.046,0.697) for Z = 1 and ranges in
(0.256,0.936) for Z = 2. The ratio QZ(z|w,A=0)

QZ(z|w,A=1) ranges in (6.583,10.543) for Z = 0, ranges in
(0.717,13.826) for Z = 1 and ranges in (0.0018,0.253) for Z = 2.

The parameters of interest are ψ0 = 0.12556476 for the binary version, and the semipara-
metric efficiency bounds are var(D∗(P0))≈ 3.721905.

3. Simulation 3: near positivity violation the treatment mechanism.

A ∼ Bern
(
expit(−2−3W +5W 2)

)
.

Distributions for W,Z,Y are the same as simulation 1, therefore the values of the parameters
of interest also remain the same. The treatment mechanism is bounded in gA(A = 1|W ) ∈
(0.0794,0.999994). Moreover, gA(A = 1|W )> 0.99 for W > 1.5.

Estimators
For each data generating distribution, initial maximum likelihood based estimators of the outcome
expectation Q̄Y (P0), treatment mechanism g(P0) and mediator density QZ(P0) are obtained accord-
ing to each of the three cases of model mis-specification in lemma 4.1, as well as the case where
all models are correct. The model mis-specifications considered are as follows:

• Mis-specified outcome model is Y ∼ A+W +Z +A×Z, with binomial family (with logit
link).

• Mis-specified mediator density is multinomial with p(Z = 0|A,W )∼A and p(Z = 1|A,W,Z 6=
0)∼ A, both from a binomial family with logit link.

• Mis-specified treatment mechanism is A ∼ W 2 for simulations 1 and 2, and A ∼ W for
simulation 3, both from a binomial family with logit link.

The estimators ψ
Gcomp
n and ψEE

n are implemented using the density based estimators as de-
scribed in section 4.4.

The TMLE estimator ψ∗n are constructed using these initial estimators under logistic working
submodels. We consider two implementations of TMLE which differ in their initial estimator of
the mediated mean outcome difference Q̄Z,∗(P0). In TMLE 1, the initial estimator Q̄Z

n is given by a
plug-in estimator using QZ

n and Q̄Y,∗
n . In TMLE 2, the initial estimator Q̄Z

n is obtained by performing
a main term parametric regression (Q̄Y,∗

n (W,1,Z)−Q̄Y,∗
n (W,0,Z))∼W among the observations with
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A = 0. With the data generating distributions under consideration, this initial estimator in TMLE 2
is incorrect regardless of the consistency of Q̄Y

n . However, from lemma 4.1, we expect TMLE 2 to
be consistent in the cases (ii) and (iii) of lemma 1, in the absence of positivity violation.

Results
For each data generating distribution, 1000 samples of each size n = 500 and n = 5000 are gener-
ated. Bias, variance and means squared errors (MSE) for each sample size are estimated over the
1000 samples.

Simulation 1: No positivity violation

Recall that the parameters of interest are ψ0 = 0.2585079, and the semiparametric efficiency bound
is var(D∗(P0)) ≈ 1.157. Therefore, var(D∗(P0))/n ≈ 2.314e− 03 and 2.314e− 04 for n = 500
and 5000, respectively.The results are detailed in table 4.1. When the outcome expectation and
the mediator density are correctly specified, the robust estimators TMLE and EE provide little
advantage over the Gcomp estimator in terms of bias or efficiency. However, when either the
outcome expectation or the mediator density are mis-specified, TMLE and EE using a correct
treatment mechanism provide substantial bias correction so that MSE is reducing at rate 1/n. The
two robust estimators behave similarly. Moreover, as predicted by lemma 4.1, TMLE 2, which
utilizes a mis-specified initial estimator of the mediated mean outcome difference, behaves as well
as TMLE 1 when the treatment mechanism is correct.

Simulation 2: Larger effect of treatment on mediator

Under this simulation scheme, the parameters of interest are ψ0 = 0.12556476 and the efficiency
bounds is var(D∗(P0)) ≈ 3.721905. Therefore, var(D∗(P0)/n are approximately 7.444e− 03 and
7.444e−04 for n = 500 and 5000, respectively. In this simulation, the treatment has a moderately
larger effect on the mediator distribution. Compared to simulation 1, this simulation scheme has a
larger ratio of QZ(z|0,w)/QZ(z|1,w) for categories of Z = 0,1 over a region of the sample space
of W (details are explained previously). Results are in table 4.2. We see that in this case all
estimators behave as expected as in the previous simulation. When implemented using the correct
treatment mechanism, they provide bias reduction over g-computation estimator in the cases when
either the mediator density or the outcome model are mis-specified. When the outcome model and
mediator density are both correct, then Gcomp is consistent. In this case the TMLE and EE are also
consistent but less efficient. In all cases, TMLE and EE behave similarly. We observe again that
when the treatment mechanism is correct, TMLE 2, which utilizes a mis-specified initial estimator
of the mediated mean outcome difference, behaves as well as TMLE 1.
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Table 4.1: Simulation 1: no positivity violations

Bias Var MSE
n 500 5000 500 5000 500 5000
all correct
Gcomp 6.35e-04 5.84e-04 2.45e-03 2.26e-04 2.45e-03 2.26e-04
TMLE1 2.39e-04 5.22e-04 2.499e-03 2.29e-04 2.5e-03 2.29e-04
TMLE2 3.10e-04 5.65e-04 2.525e-03 2.29e-04 2.53e-03 2.3e-04
EE 2.01e-04 5.23e-04 2.50e-03 2.29e-04 2.50e-03 2.29e-04
g misspec.
TMLE 4.45e-04 4.69e-04 2.63e-03 2.37e-04 2.63e-03 2.38e-04
EE 7.29e-04 4.58e-04 2.75e-03 2.45e-04 2.75e-03 2.45e-04
QZ misspec.
Gcomp 4.26e-02 4.08e-02 3.02e-03 2.77e-04 4.8e-03 1.94e-03
TMLE1 2.2e-04 5.69e-04 2.48e-03 2.28e-04 2.48e-03 2.28e-04
TMLE2 2.00e-04 6.2e-04 2.49e-03 2.29e-04 2.49e-03 2.29e-04
EE 2.71e-04 5.47e-04 2.49e-03 2.29e-04 2.49e-03 2.29e-04
Q̄Y misspec.
Gcomp 2.83e-02 2.83e-02 2.43e-03 2.26e-04 3.24e-03 1.02e-03
TMLE1 2.07e-04 5.45e-04 2.5e-03 2.29e-04 2.5e-03 2.29e-04
TMLE2 4.05e-04 5.66e-04 2.5e-03 2.3e-04 2.5e-03 2.3e-04
EE 3.72e-04 5.49e-04 2.5e-03 2.29e-04 2.5e-03 2.29e-04

Simulation 3: Near positivity violation.

The parameters of interest are the same as in simulation 1: ψ0 = 0.2585079. Treatment probabili-
ties are bounded in (0.0794,0.999994), with treatment probability > 0.99 for W > 1.5. Estimators
using a truncated version of the correct treatment mechanism with an a-priori specified bound of
(0.025, 0.975) were also considered.

The results are in table 4.3. When the treatment model values are extreme, the robustness
results of lemma 4.1 no longer apply. We observe here that the MSE of TMLE and EE in the case
of mis-specification of outcome model or mediator density cease to reduce at a rate proportional to
sample size. However, when both of the outcome model and mediator density are correct, TMLE
and EE with an incorrect treatment mechanism (either through truncation or incorrect modeling)
yield MSE that are proportional to sample size. This last result is predicted by the robustness result
(i) of lemma 4.1 since the mis-specified treatment models is bounded away from 1. We observe
also that in this simulation scheme, TMLE 2 is less favorable than TMLE 1 across all cases. This
may suggest that under data sparsity, the use of plug-in estimator for the mediated mean outcome
difference is more beneficial than considerations such as the rate at which it is estimated. We
observe an increase in MSE (driven by the increase in variance) as one moves away from the use
of substitution principle (with TMLE 1 being the one which uses substitution estimators in all its
steps, TMLE 2 which does not use substitution estimator in the initial estimate of the mediated
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Table 4.2: Simulation 2: larger effect of treatment on mediator

Bias Var MSE
n 500 5000 500 5000 500 5000
all correct
Gcomp 1.99e-03 3.46e-04 6.09e-03 5.7e-04 6.09e-03 5.74e-04
TMLE1 5.46e-03 5.82e-04 8.7e-03 7.87e-04 8.7e-03 7.88e-04
TMLE2 5.23e-03 5.03e-04 8.73e-03 7.89e-04 8.76e-03 7.89e-04
EE 6.05e-03 5.69e-04 8.97e-03 7.86e-04 9.01e-03 7.87e-04
g misspec.
TMLE 5.12e-03 6.55e-04 8.08e-03 7.34e-04 8.10e-03 7.3e-04
EE 5.1e-03 6.74e-04 8.3e-03 7.69e-04 8.36e-03 7.7e-04
QZ misspec.
Gcomp 1.20e-02 1.31e-02 5.91e-03 5.67e-04 6.05e-03 7.38e-04
TMLE1 3.0e-03 4.96e-04 6.23e-03 5.81e-04 6.2e-03 5.81e-04
TMLE2 2.85e-03 4.20e-04 6.25e-03 5.83e-04 6.25e-03 5.84e-04
EE 2.89e-03 4.71e-04 6.19e-03 5.79e-04 6.20e-03 5.79e-04
Q̄Y misspec.
Gcomp 8.81e-03 1.35e-02 5.74e-03 5.82e-04 5.81e-03 7.65e-04
TMLE1 7.60e-03 5.84e-04 8.90e-03 7.96e-04 8.96e-03 7.96e-04
TMLE2 7.8e-03 6.20e-04 8.90e-03 7.95e-04 8.96e-03 7.95e-04
EE 6.8e-03 5.09e-04 8.9e-03 7.92e-04 8.98e-03 7.9e-04

mean outcome difference but uses substitution in the final effect estimate, and EE which does not
use substitution at all). This may suggest that in the case of positivity violation, when strict bounds
exist on the parameter, the degree at which each step of the estimation procedure respects the
bounds affects the stability of the resulting estimate. Nonetheless, rigorous analysis is needed to
provide more valid insights.

In this simulation, we observe that TMLE and EE behave differently in some cases. We first
consider the version with binary outcome. Since the parameter is an average of probability differ-
ences, for a given dataset one would like the effect estimates to be bounded between −1 and 1.
However, when using a correctly specified treatment mechanism, the EE estimator exhibits esti-
mates that are out of bound (of magnitude larger than 3 in some cases, and of magnitude 11 and
14 in one dataset). The bias, variance and mse of each estimator are detailed in table 4.3. When
outcome model and mediator density are correct, the Gcomp is still consistent despite the positiv-
ity violation. Nonetheless, the effect of data-sparsity on g-comp is apparent when comparing this
Gcomp estimator with its counterpart in the case of no positivity violation (table 4.1). On the other
hand, under correct outcome model and mediator density, TMLE and EE have poor variance when
implemented with an untruncated correct treatment mechanism. However, their performances are
improved when implemented with a truncated or mis-specified treatment. We also observe that in
the case of all models correct, TMLE and EE have a different bias-variance trade-off, with TMLE
having smaller variance but larger bias, with respect to EE (which has a larger variance but smaller
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bias). This difference in relative bias and variance is also present in the case of mis-specified me-
diator density but correct outcome and treatment: we observe that using the untruncated correct
treatment, TMLE has larger bias and smaller variance than EE; but when the truncated treatment
mechanism is used, the two robust estimators behave similarly and provide bias reduction over
the Gcomp estimator. When the outcome model is mis-specified, TMLE and EE provide similar
bias reduction over g-computation estimator; but TMLE has a smaller variance than EE when the
untruncated treatment mechanism is used, while the opposite is true with the truncated treatment
mechanism.

Table 4.3: Simulation 3: Binary outcome, positivity violations in p(A|W )

Bias Var MSE
n 500 5000 500 5000 500 5000
all correct
Gcomp 2.35e-02 2.02e-03 1.09e-02 1.145e-03 1.15e-02 1.15e-03
TMLE1 5.68e-02 3.59e-02 3.45e-02 1.56e-02 3.77e-02 1.69e-02
TMLE2 4.66e-02 7.51e-02 5.92e-02 2.51e-02 6.1e-02 3.08e-02
EE 1.85e-02 3.1e-04 4.69e-02 4.82e-02 4.73e-02 4.82e-02
g truncated
TMLE 2.59e-02 2.09e-03 1.56e-02 1.59e-03 1.62e-02 1.6e-03
EE 2.39e-02 1.82e-03 1.24e-02 1.25e-03 1.29e-02 1.25e-03
g misspec.
TMLE 2.32e-02 2.79e-03 1.34e-02 1.38e-03 1.39e-02 1.39e-03
EE 2.64e-02 2.22e-03 1.84e-02 1.57e-03 1.91e-02 1.58e-03
QZ misspec.
Gcomp 5.02e-02 5.85e-02 1.06e-02 1.36e-03 1.32e-02 4.77e-03
TMLE1 1.43e-01 1.13e-01 1.77e-02 6.66e-03 3.83e-02 1.9e-02
TMLE2 4.66e-02 7.7e-02 5.4e-02 2.11e-02 5.66e-02 2.7e-02
EE 5.42e-03 7.11e-03 1.77e-01 5.2e-02 1.77e-01 5.24e-02
QZ misspec.,
g truncated
TMLE 3.36e-02 1.66e-02 1.53e-02 1.8e-03 1.64e-02 2.07e-03
EE 2.89e-02 3.71e-02 1.39e-02 1.61e-03 1.48e-02 2.98e-03
Q̄Y misspec.
Gcomp 8.2e-02 8.26e-02 4.27e-03 4.56e-04 1.1e-02 7.28e-03
TMLE1 4.86e-02 9.41e-03 3.56e-02 1.59e-02 3.79e-02 1.59e-02
TMLE2 1.09e-03 6.62e-02 6.19e-02 2.85e-02 6.19e-02 3.29e-02
EE 3.79e-02 1.16e-02 2.74e-01 1.15e-01 2.75e-01 1.15e-01
Q̄Y misspec. ,
g truncated
TMLE1 6.25e-02 5.5e-02 1.37e-02 1.3e-03 1.76e-02 4.40e-03
EE 7.36e-02 7.08e-02 6.20e-03 6.23e-04 1.16e-02 5.64e-03
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4.6 Extension to Natural Indirect Effect
In this section, we extend the above discussions in an analogous fashion to address the natural
indirect effect.

In the context of natural effects, the total effect of A on Y can be decomposed into natural
indirect and direct effects (Robins and Greenland (1992), Pearl (2001), Robins (2003)):

E(Y (1)−Y (0))

= [E(Y (1,Z(1))−E(Y (1,Z(0))]+ [E(Y (1,Z(0))−E(Y (0,Z(0))],

where Y (a) ≡ fY (W,A = a,Z = Z(a),UY ) on the NPSEM. This decomposition formalizes the
concept that the total effect of the exposure on the outcome is a combination of its indirect ef-
fect through a mediator Z, and its direct effect not mediated by Z. The quantity E(Y (1,Z(1))−
E(Y (1,Z(0)) is referred to as the additive natural indirect effect. Its identification is studied in
the same body of literature ( Robins and Greenland (1992), Pearl (2001), Robins (2003), Petersen
et al. (2006), Hafeman and VanderWeele (2010), Imai et al. (2010), Robins and Richardson (2010)
and Pearl (2011)). More specifically, under the same conditions as those in section 4.2, the natural
indirect effect can be identified as

E(Y (1,Z(1))−E(Y (1,Z(0))
A1,A2,A3

= ΨNIE(P0)

≡ EP0

(
∑

z
Q̄Y (W,A = 1,z)

[
QZ(z|W,A = 1)−QZ(z|W,A = 0)

])
. (4.9)

The results of Robins and Richardson (2010) thus have the same implications on the difficulty
of identifying the natural indirect effect in real experiments, due to the conditional counterfactual
independence assumption A3. In such cases, what kind of causal interpretation can the statistical
parameter (4.9) still offer? If assumption A3 fails but randomization assumptions A1 and A2 hold,
the statistical parameter in (4.9) equals

ΨNIE(P0)
A1,A2
= EP0

{
∑

z
E(Y (1,z)|W ) [p(Z(1) = z|W )− p(Z(0) = z|W )]

}
.

The interpretation of the right hand side is not as intuitive as in the natural direct effect case. But
since p(Z(1) = z|W )− p(Z(0) = z|W ) measures the effect of A on Z, at its face value this alterna-
tive effect parameter can be viewed as weighting the different outcomes E(Y (1,z)|W ) under z by
these effect measures. However, we remind the reader again that this alternative causal parameter
only serves to provide a causal interpretation for the statistical parameter (4.9) and one should be
cautious about putting it into the context of the traditional total effect decomposition.

The parameter ΨNIE(P) is also a function of Q alone. To extend the discussions above to the
natural indirect effect parameter (4.9), we now consider the mediated mean outcome map P 7→
Q̄Z

NIE(P), where Q̄Z
NIE(P)(W,A)≡ EP

(
Q̄Y (W,A = 1,Z)|W,A

)
. Let Q≡

(
Q̄Y , Q̄Z

NIE ,Q
W ,QZ

)
. This

way, the parameter can be regarded as ΨNIE(P) = ΨNIE (Q).



CHAPTER 4. TMLE FOR NATURAL DIRECT EFFECTS 126

The efficient influence curve for this parameter (derived inTchetgen Tchetgen and Shpitser
(2011a)) is given by

D∗NIE(Q,g,ΨNIE(Q))

=
I(A = 1)
g(1|W )

{
Y − Q̄Z

NIE(P)(W,1)− QZ(Z|W,0)
QZ(Z|W,1)

(
Y − Q̄Y (W,1,Z)

)}
− I(A = 0)

g(0|W )

(
Q̄Y (W,1,Z)− Q̄Z

NIE(P)(W,0)
)

+ Q̄Z
NIE(P)(W,1)− Q̄Z

NIE(P)(W,0)−ΨNIE(Q). (4.10)

The robustness conditions of Tchetgen Tchetgen and Shpitser (2011a) apply to both natural direct
and indirect effects. By the same reasoning (and analogous proof) as that of lemma 1, we note again
that conditions (i) and (iii) may be weakened to: (i) the conditional mean outcome Q̄Y (W,A,Z)
and the mediated outcome map Q̄Z

NIE(P)(W,A) are both correct; (iii) the exposure mechanism
and mediator density, or the exposure mechanism and the conditional distribution p(A|W,Z), are
correct. Therefore, in situations where Z is high dimensional, similar practical implications as those
discussed in remarks following lemma 1 apply. However, note that a regression-based estimation
procedure for Q̄Z

NIE(P0) now regresses Q̄Y (W,1,Z) on W,A.
Since the parameter (4.9) is given by

ΨNIE(P) = EP

(
Q̄Z

NIE(W,1)− Q̄Z
NIE(W,0)

)
, (4.11)

the targeted MLE only needs to focus on estimation of the components QW (P0), Q̄Y (P0) and
Q̄Z

NIE(P0) of the likelihood. We first rewrite the efficient influence curve in (4.10) as

D∗NIE(Q,g,ΨNIE(Q))

=
I(A = 1)
g(1|W )

(
1− QZ(Z|W,0)

QZ(Z|W,1)

)(
Y − Q̄Y (W,A,Z)

)
+

2A−1
g(A|W )

{
Q̄Y (W,1,Z))− Q̄Z

NIE(P)(W,A)
}

+ Q̄Z
NIE(P)(W,1)− Q̄Z

NIE(P)(W,0)−ΨNIE(Q)

≡ D∗NIE,Y +D∗NIE,Z +D∗NIE,W .

The reader may have readily noted the parallel between D∗NIE,Z +D∗NIE,W and the efficient influence
curve for the familiar additive marginal treatment effect; this is because the indirect effect can
viewed as an additive marginal effect of the treatment on Q̄Y (W,A = 1,Z) through its effect on Z,
as seen in (4.11). In fact, as we will see shortly, the second part of the implementation of TMLE is
very similar to the well-known case of additive marginal effects.

Without loss of generality, we assume that Y is bounded in the unit interval. Under the log-
likelihood loss function of (4.3), the least favorable submodel for Q̄Y (W,A,Z) through a given
initial estimator Q̄Y

n is now given by

Q̄Y
n (ε)≡ expit

(
logit(Q̄Y

n )+ εCY
)
,
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where CY ≡ I(A=1)
gn(1|W )

(
1− QZ

n (Z|W,0)
QZ

n (Z|W,1)

)
. Note that the dependence of Q̄Y

n (ε) on QZ
n and gn are sup-

pressed in the notation. The targeted MLE of Q̄Y (P0) is Q̄Y,∗
n ≡ Q̄Y

n (ε
Y
n ) and is similarly defined as

in section 4.3.
Next, consider an estimating Q̄Z

NIE,n for Q̄Z
NIE(P0), with respect to the updated expectant Q̄Y,∗

n ;
it can be a density-based or regressed-based estimator. We use the log-likelihood loss

LZ(Q̄Z
NIE)(O)

=− log
{

Q̄Z
NIE(W,A)Q̄Y,∗

n (W,1,Z) (1− Q̄Z
NIE(W,A)

)1−Q̄Y,∗
n (W,1,Z)

}
.

The least favorable submodel through the initial estimator Q̄Z
NIE,n is given by

Q̄Z
NIE,n(ε) = expit

(
logit

(
Q̄Z

NIE,n
)
+ εCZ

)
,

where CZ = 2A−1
gn(A|W ) . The dependence of the submodel on gn is also suppressed in the notation.

In a similar fashion as section 4.3, we obtain the targeted MLE Q̄Z,∗
NIE,n ≡ Q̄Z

NIE,n(ε
Z
n ). Finally, the

targeted MLE of the parameter ΨNIE(P0) is given by

ψ
∗
NIE,n ≡

1
n

n

∑
i=1

(
Q̄Z,∗

NIE,n(Wi,1)− Q̄Z,∗
NIE,n(Wi,0)

)
.

We remind the reader again that the role of the ratio of QZ in CY may be replaced by ratios of
g(A|W ) and p(A|W,Z).

The resulting estimator satisfies the efficient influence curve equation, and therefore is asymp-
totically unbiased if (i) the conditional mean outcome Q̄Y and the mediated outcome map Q̄Z

NIE(P)
are both correct; (ii) the conditional mean outcome and the exposure mechanism g(A|W ) are cor-
rect; (iii) the exposure mechanism and mediator density QZ(Z|W,A), or the exposure mechanism
and the conditional distribution p(A|W,Z), are correct. An estimating equation estimator ψEE

NIE,n
is also discussed in Tchetgen Tchetgen and Shpitser (2011a). As mentioned in section 4.4, ψ∗NIE,n
and ψEE

NIE,n will inherit the same robustness properties from the efficient influence curve, since both
satisfy the efficient influence curve equation.

4.7 Summary
In this chapter, we applied the targeted maximum likelihood framework of van der Laan and Rubin
(2006) and van der Laan and Rose (2011) to construct a semiparametric efficient, multiply robust,
plug-in estimator for the natural direct effect of a binary treatment. This estimator has the property
that it satisfies the efficient influence curve equation (derived in Tchetgen Tchetgen and Shpitser
(2011a)), and hence also inherits its robustness properties. We noted that the robustness condi-
tions in Tchetgen Tchetgen and Shpitser (2011a) may be weakened (lemma 1), thereby placing
less reliance on the estimation of the mediator density. More precisely, the proposed estimator is
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asymptotically unbiased if either one of the following holds: i) the conditional mean outcome given
exposure, mediator, and confounders, and the mediated mean outcome difference are consistently
estimated; (ii) the exposure mechanism given confounders, and the conditional mean outcome are
consistently estimated; or (iii) the exposure mechanism and the mediator density, or the exposure
mechanism and the conditional distribution of the exposure given confounders and mediator, are
consistently estimated. If all three conditions hold, then the effect estimate is asymptotically effi-
cient. We also extended our results analogously to the case of natural indirect effect.

In applications, the components that are difficult to estimate are often times the conditional
mean outcome and/or the mediator density. For a high-dimensional Z, few tools are available to
estimate the conditional mediator density QZ . On the other hand, there is abundant literature ad-
dressing estimation of conditional means. This can be used to estimate the mediated mean outcome
difference Q̄Z(P) ≡ EP(Q̄Y (W,1,Z)− Q̄Y (W,0,Z)|W,A = 0), and the conditional distributions of
a categorical A. Lemma 1 implies that estimation of the mediator density may be replaced by
estimations of g(A|W ), p(A|W,Z), and the conditional expectation Q̄Z(P).

We have also described general conditions for the estimator to be asymptotically linear. More
specifically, 1) estimators of each component must converge to their respective limits at a rea-
sonable speed, and 2) if there is a component that is not consistently estimated, the consistent
estimators of the remaining components must meet stricter asymptotic linearity conditions. These
conditions provide a guideline for situations where influence curve based variance estimates are
realistic.

Estimators that use the efficient influence curve are robust, but are generally sensitive to prac-
tical positivity violations. We refer to Petersen, Porter, S.Gruber, Wang, and van der Laan (2010)
for methods of diagnosing and responding to violations of the positivity assumption. The substi-
tution principle and the logistic working submodels in the targeted estimation procedure aim to
provide more stable estimates in such situations. However, identification of the parameter depends
ultimately on the information available in a given finite sample. A way to improve finite sample ro-
bustness is the Collaborative TMLE (C-TMLE) of van der Laan and Gruber (2010), where, instead
of estimating the true treatment mechanism, for a given initial estimator of the Q component one
estimates a conditional distribution of the treatment, conditioned only on confounders that explain
the residual bias of the estimator of Q. We aim to investigate applications of C-TMLE to the effect
mediation problem.
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4.8 Chapter Appendix
Proof of lemma 4.1

Let Q̄Z be a map Q 7→ Q̄Z(Q), where Q̄Z(Q) is a function from W to R. Note that Q̄Z(Q) may or
may not make use of the density QZ , but it surely uses Q̄Y . Then

P0D∗(Q̄Y , Q̄Z,g,ψ0)

= P0

{
g0(1|W )

g(1|W ) ∑
z

QZ(P0)(z|W,1)
QZ(z|W,0)
QZ(z|W,1)

(
Q̄Y

0 (W,1,z)− Q̄Y (W,1,z)
)}

(4.12)

−P0

{
g0(0|W )

g(0|W ) ∑
z

QZ(P0)(z|W,0)
(
Q̄Y

0 (W,0,z)− Q̄Y (W,0,z)
)}

(4.13)

+P0

{
g0(0|W )

g(0|W ) ∑
z

QZ(P0)(z|W,0)
(

Q̄Y (W,1,z)− Q̄Y (W,0,z)
)}

(4.14)

−P0

{g0(0|W )

g(0|W )
Q̄Z(W )

}
(4.15)

+P0

{
Q̄Z(W )

}
−ψ0 (4.16)

(i) is trivial. Suppose now that (ii) holds. Then (4.12) and (4.13) are each exactly 0. The expression
in (4.15) equals P0Q̄Z(W ), and the expression in (4.14) equals ψ0. Therefore the mean is zero.

Suppose that (iii) holds. Then, rearranging (4.12) and (4.13) we rewrite the above expectation
as

P0D∗(Q,g,ψ0) = P0

{
∑

z
QZ(P0)(z|W,0)

(
Q̄Y

0 (W,1,z)− Q̄Y
0 (W,0,z)

)}

− P0

{
∑

z
QZ(P0)(z|W,0)

(
Q̄Y (W,1,z)− Q̄Y (W,0,z)

)}

+ P0

{
∑

z
QZ(P0)(z|W,0)

(
Q̄Y (W,1,z)− Q̄Y (W,0,z)

)}
− P0Q̄Z(W )+P0Q̄Z(W )−ψ0

= 0
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Chapter 5

Targeted Maximum Likelihood
Estimation for Longitudinal Mediation
Analysis

5.1 Introduction
An exposure often acts on an outcome of interest directly, and/or indirectly through the mediation
of some intermediate variables. Identifying and quantifying these two types of effects contribute
to further understanding of the underlying causal mechanism. Much of the existing literature on
causal mediation is focused on applications in non-longitudinal settings. Causal mediation in a
longitudinal setting, by contrast, has received relatively little attention. In this work, we study the
effect of a time-varying exposure mediated by a time-varying intermediate variable. More specif-
ically, consider a study where baseline covariates, time-varying treatment, time-varying mediator,
time-varying covariates, and an outcome process are observed on subjects that are followed over
time. The treatment of interest is influenced by past covariates and mediator, and affects future
covariates and mediator. Right censoring, if present, occurs in response to past covariates and
treatment. We also allow the outcome to be a time-to-event (say survival) process, in which case,
at each time we record whether death has occurred.

The subtlety of longitudinal mediation analysis is best illustrated in the survival setting. Sup-
pose we are interested in the effect of the treatment on the time till death (failure time), and the
mediator lies on the causal pathway between these two — the risk of one dying at a given time
depends on the mediator history, which is also affected by the treatment. Therefore, the treatment
can act on the failure time directly, and/or indirectly through its effect on the mediator. The goal
of mediation analysis is to quantify these two types of treatment effects on the failure time. The
challenge in this setting lies in that the outcome of interest is a process (the event process) that
happens jointly with the mediator process. In other words, the mediators are also affected by the
death process in the sense that they take on default values after death occurs.
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One way to assess the direct effect of the treatment on failure time is to compare the distribu-
tions of the failure times under different treatments regimens while the mediators are fixed to some
common pre-specified values. This is known as the controlled direct effect (e.g. Pearl (2001)).
Its analysis is very similar to that of a time-dependent deterministic treatment in a non-mediation
setting; we refer the reader to existing literature on this topic (e.g. Robins (1997b), Hernan et al.
(2000), Stitelman, Gruttola, Wester, and van der Laan (2011)). Controlled direct effects are of in-
terest if the treatment effect under one particular mediator value constitutes a meaningful scientific
question. If that is not the case, one may ask a different direct effect question: what would be the
effect of treatment on failure time if the treatment had no effect on the mediator (i.e. the mediator
takes its value as if treatment were absent)? One way to rigorously formulate this question is using
the so-called natural direct effect parameter (Robins and Greenland (1992), Pearl (2001)). The
natural direct effect has a complementary natural indirect effect; together they provide a decompo-
sition of the overall effect of the treatment on the outcome. In this paper, we focus on the natural
direct and indirect effects.

In the case of a time-independent mediator that is measured before the onset of the event pro-
cess (and censoring process), the definition of natural effects and their identifiability (e.g. Lange
and Hansen (2011), Tchetgen Tchetgen (2011)) can be extended from the formulations in non-
longitudinal setting (e.g. Robins and Greenland (1992), Pearl (2001), Robins (2003), Petersen
et al. (2006), Imai et al. (2010)). For inference of these parameters, the use of additive hazard
models for the outcome and linear models for the mediator are proposed in Lange and Hansen
(2011); the use of accelerated failure time and proportional hazard models are studied in Tein and
MacKinnon (2003) and VanderWeele (2011); robust estimators for the natural direct and indirect
effects under proportional hazards models and additive hazards models, as well as sensitivity anal-
ysis techniques for assessing the impact of the violation of the mediator’s ignorability assumption,
are developed in Tchetgen Tchetgen (2011). A more complex variation of this setting is when there
is a confounder (the recanting witness covariate, Avin, Shpitser, and Pearl (2005)) of the mediator–
outcome relation that is affected by the treatment of interest. Robins and Richardson (2010) show
that with additional conditions regarding independence (or deterministic dependence) of the coun-
terfactual recanting witness under various treatment levels, the resulting mediation parameters can
be identified. Tchetgen Tchetgen and VanderWeele (2012) show that these additional conditions
can be avoided in some special cases of binary recanting witness, or under additional parametric
assumptions on the mediator–recanting witness relation.

In the case of a time-dependent mediator, the probability of the mediator process having a
given non-degenerate length would depend on the failure time. This interdependency between the
event process and the mediator process poses a challenge when extending the results from the time-
independent mediator setting. Firstly, the event history affects both the current mediator (taking a
non-degenerate value) and the current event indicator, but it is part of the outcome of interest and
thus is not a recanting witness covariate. More specifically, the treatment affects a current mediator
both directly and indirectly through its effect on the event history. In asking what is the effect
of a given treatment level on the event process not mediated by the mediator process, one must
specify how the paths from treatment to mediator should be blocked. If one blocks all paths from
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treatment to mediators (both the direct paths of treatment to mediator and the paths through event
history), then the parameters defined would be a direct generalization of the definition of mediation
formula and natural effects in time-independent mediator settings (by regarding event history as a
recanting witness). However, this generalization would yield parameters that are not interpretable
for the purpose of effect mediation in this survival setting, since the relation of treatment and event
process (outcome of interest) is also altered. In this light, the definition of mediation formula and
natural effects should be based on blocking only those paths from the treatment to mediator that
are not through survival history (these would be an extension of the path-specific effects discussed
in Pearl (2001), Avin et al. (2005), Robins and Richardson (2010)). The direct effect question these
parameters would address is: what is the effect of treatment on the survival time, if the treatment
had no effect on the mediator process other than through survival history?

Having specified the effects of interest, the second challenge arises in formulating these as
parameters in a causal framework. Under the traditional definition of mediation parameters in
a non-longitudinal setting (e.g. Robins and Greenland (1992), Pearl (2001), Avin et al. (2005),
Robins and Richardson (2010)), the mediator is regarded as intermediate counterfactual outcome.
In extending this definition to our effects of interest in the current setting, the time-varying medi-
ators become intermediate counterfactual outcomes under a different treatment level than that of
their parent counterfactual survival history. The identifiability conditions for this setting is studied
in Shpitser (2013). However, these conditions may prove difficult to satisfy for the purpose of a
survival study. We further discuss extending the existing one-time point concepts to the longitu-
dinal setting in appendix A.2. As an alternative, we propose to adopt a stochastic interventions
(SI) perspective to causal mediation, introduced by Didelez et al. (2006). Under this formulation,
the mediators are regarded as intervention variables, onto which a given counterfactual distribution
is enforced. The natural effects can be defined analogously to the ideas in Pearl (2001) and Avin
et al. (2005). In particular, they also allow for a total effect decomposition and an interpretation of
the natural direct effect as a weighted average of controlled direct effects. Importantly, however,
one should note that even though these SI-based parameters and their non-SI-based counterparts
in Shpitser (2013) all identify to the same statistical parameters, they are formally different causal
parameters defined under different formulations (but aim to answer the same type of mediation
questions).

The natural direct and indirect effects in this setting can all be defined in terms of the cor-
responding version of the mediation functional; we develop a general semiparametric inference
framework for this parameter. More specifically, we will derive the efficient influence curves under
a locally saturated semiparametric model, and establish their robustness properties. The variances
of these functions provide local efficiency bounds, and their robustness properties give information
on the types of model mis-specifications that would still allow for unbiased estimation of the param-
eters. Applying the targeted maximum likelihood methodology (van der Laan and Rose (2011)),
we will use these efficient influence curves to construct multiply robust and efficient estimators.

This paper proceeds as follows. Firstly, we establish the definition and determine the identifia-
bility conditions for the parameters of interest. Thereafter, we derive the efficient influence curves
of the parameters under a locally saturated semiparametric model, and present the non-targeted
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substitution G-computation estimator, the inverse probability weighted (IPW) estimator, and the
TMLE estimator for these parameters.

5.2 Data and Parameters of Interest
Consider the data structure O = (L0,(At ,Zt ,Lt) : t = 1, . . .τ) ∼ P0, where L0 = encodes baseline
baseline covariates, At encodes the time-varying exposure, and possibly a censoring indicator, Zt

denotes the time-varying mediators, and Lt are the time-varying covariates and includes the out-
come variable Yt ⊂ Lt . Without loss of generality, we may assume that it is bounded between 0 and
1. The data consists of n i.i.d. copies of O.

From here on, for any 1≤ t ≤ τ and a time-dependent variable V , we will use the boldface Vt

to denote the vector (V1, . . . ,Vt), use Vs,t to denote the vector (Vs, . . . ,Vt). When referring to the
entire vector Vτ , we will also use the shorthand V. Degenerate indices such as V−1 signify the
empty set.

The following Non-Parametric Structural Equations Model (NPSEM, Pearl (2009)) encodes
the time-ordering assumption on the variables:

L0 = f (UL0),

At = fAt (L0,At−1,Zt−1,Lt−1,UAt ),

Zt = fZt (L0,At ,Zt−1,Lt−1,UZt ),

Lt = fLt (L0,At ,Zt ,Lt−1,ULt ).

This model assumes that each observed variable X is a deterministic function fX of other observed
variables, referred to as parents of X and denoted as Pa(X), and unobserved exogenous factors UX .
This model defines a distribution PO,U on the unit.

The observed data structure is generated from the above NPSEM without any intervention, and
the likelihood of O∼ P0 can be factored according to that time-ordering:

p0(O) = p0(L0)

×
τ

∏
t=1

(
p0(At | L0,At−1,Zt−1,Lt−1)p0(Zt | L0,At ,Zt−1,Lt−1)p0(Lt | L0,At ,Zt ,Lt−1)

)
.

In the case of a survival outcome or if censoring exists, Zt and Lt are assigned a default value with
probability 1 after censoring or death

Counterfactual outcome
To define the pertinent counterfactual failure time, we propose to use a stochastic interventions
(SI) perspective introduced by Didelez et al. (2006). Stochastic interventions (a.k.a stochastic poli-
cies, random interventions, randomized dynamic strategies; e.g. Dawid and Didelez (2010), Pearl
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(2009), Tian (2008), Robins and Richardson (2010), Diaz and van der Laan (2011)) are general-
izations of the traditional static interventions or dynamic regimes where, instead of assigning a
deterministic value, one assigns a probability distribution to an intervention variable. Using the
non-longitudinal setting as background, Didelez et al. (2006) illustrate how the notions of various
direct and indirect effects can be formulated as sequential treatment problems by regarding the
mediator as an intervention variable (receiving either a deterministic or stochastic intervention).
Though their approach was based on a non-counterfactual causal framework (e.g. Dawid and
Didelez (2010)), the essence of their idea remains the same, and is easily generalizable to survival
settings.

Let a and a′ be two possible treatment levels. Let Z(a′) denote the resulting mediator variable
in an ideal experiment that sets A = a′, and let pZ(a′) denote the conditional probability of this
variable. Consider the following ideal experiment. At baseline, we measure the covariates L0.
At each time t ≥ 1, censoring (if applicable) is prevented, and we intervene to set At = at ; given
history (`0,zt−1, `t−1), intervene to set Zt be distributed according to pZ(a′) (Zt | `0,zt−1, `t−1), this
way, we draw Zt(a′) = zt ; given (`0,at ,zt , `t−1), measure Lt . At the end of the experiment, we
denote the final outcome as Yτ(a,Z(a′)). The difference between this ideal experiment and other
ways to extend the mediation formulation from one-time-point setting are discussed in appendix
A.2.

Even if one can carry out an intervention on the mediator (separately from the intervention
on the treatment), the SI formulation formally requires the external specification of the function
pZ(a′)(zt | `0,zt−1, `t−1), which is the conditional distribution of the counterfactual variable Z(a′).
If this conditional distribution is not known, it needs to be ascertained using a separate controlled
experiment. Therefore, aside from causal assumptions needed to identify the distribution of the
outcome of interest Yτ(a,Z(a′)) in the main experiment, additional assumptions are needed to
identify pZ(a′) as a function of the data generating distribution. We discuss these in the next section.

Mediation Formula, Natural Direct and Indirect Effects
For concreteness suppose one is interested in the effect of a binary treatment. We refer to the
difference E (Yτ(1)−Yτ(1,Z(0))) as the natural indirect effect (NIE) and E (Yτ(1,Z(0))−Yτ(0))
as the natural direct effect (NDE), where Yτ(a) is the traditional counterfactual outcome under
treatment A = a. Together, these provide a decomposition of the overall effect E(Yτ(1)−Yτ(0)).
The identification and estimation of these two effects can be approached through the so-called
mediation formula (Pearl (2011)):

Ψ
a,a′(PO,U)≡ E(Yτ(a,Z(a′)). (5.1)

It is important to note that while the definition of these parameters are analogous to those in Robins
and Greenland (1992), Pearl (2001), Pearl (2011) and Avin et al. (2005), they are ultimately not
the same definitions since the mediator variables are conceptualized differently. In this respect,
the parameters defined here aim to provide an alternative formulation to questions that arise in
mediation analysis in the current survival setting.
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The identifiability of these parameters is a consequence of established results regarding stochas-
tic interventions (e.g. Dawid and Didelez (2010), Pearl (2009), Robins and Richardson (2010)).
Under the sequential randomization assumption (Robins (1986)) and established results on iden-
tification of stochastic interventions (e.g. Dawid and Didelez (2010), Didelez et al. (2006), Pearl
(2009), Robins and Richardson (2010)), if the following hold:

• (L,Z)t,τ(a′)⊥ At | Lt−1,At−1 = a′t−1,Zt−1 = zt−1.

• Lt,τ(a,z)⊥ (At ,Zt) | Lt−1,At−1 = at−1,Zt−1 = zt−1,

then E(Yτ(a,Z(a′))) identifies to

Ψ
a,a′(P0) = ∑

l,z
yτ p0(`0)

τ

∏
t=1

p0(zt | a′t ,zt−1, lt−1)p0(`t | at ,zt , lt−1). (5.2)

Consequently, the natural direct and indirect effects are respectively identified to

NDE = E (Yτ(1,Z(0))−Yτ(0)) = Ψ
1,0(P0)−Ψ

0,0(P0) (5.3)

NIE = E (Yτ(1)−Yτ(1,Z(0))) = Ψ
1,1(P0)−Ψ

1,0(P0). (5.4)

Therefore, we will approach estimation of the natural effects through estimation of this mediation
functional.

The rest of this chapter is devoted to the statistical inference of Ψa,a′(P0). But before we
proceed, we shall agree on the following notation.

Notations
Let M denote a locally saturated semiparametric model containing the true data generating distri-
bution P0.

We use Pn to denote the empirical distribution of n i.i.d. copies of O ∼ P0. Given a function
O 7→ f (O), Pn f denotes the empirical mean Pn f ≡ 1

n ∑
n
i=1 f (Oi). More general for any P ∈M ,

P f ≡ EP f (O).
For a generic P ∈M , denote the marginal distribution of L0 as QL0(P)≡ P(L0), denote condi-

tional distribution of Lt as QL(P)(Lt | At ,Zt ,Lt−1)≡ P(Lt | At ,Zt ,Lt−1), and denote the mediator
density as QZ(Zt | At ,Zt−1,Lt−1)≡ P(Zt | At ,Zt−1,Lt−1). Following an important observation by
Bang and Robins (2005), we define recursively the following functionals:

Q̄Z
τ+1 ≡ Yτ

Q̄L,a,a′
t (P)(Lt−1,Zt)≡ EP

[
Q̄Z,a,a′

t+1 (P)(Lt ,Zt)
∣∣∣At = at ,Zt ,Lt−1

]
Q̄Z,a,a′

t (P)(Lt−1,Zt−1)≡ EP

[
Q̄L,a,a′

t (P)(Lt−1,Zt)
∣∣∣At = a′t ,Zt−1,Lt−1

]
. (5.5)
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It is easy to see that
Ψ

a,a′(P0) = EP0

[
Q̄Z,a,a′

t=1 (L0)
]
. (5.6)

Let Q̄L,a,a′(P)≡
(

Q̄L,a,a′
t (P) : 1≤ t ≤ τ

)
and Q̄Z,a,a′(P)≡

(
Q̄Z,a,a′

t (P) : 1≤ t ≤ τ

)
.

For a generic P ∈M , we will sometimes simply write QL, QZ , Q̄L,a,a′ and Q̄Z,a,a′ ; for the true
P0, we will sometimes write QL

0 , QZ
0 , Q̄L,a,a′

0 and Q̄Z,a,a′
0 in place of QL(P0), QZ(P0), Q̄L,a,a′(P0)

and Q̄Z,a,a′(P0), respectively. Let Q ≡
(

QL0 ,QL,QZ, Q̄Z,a,a′ , Q̄L,a,a′
)

. We will also denote g(At |
At−1,Zt−1,Lt−1)≡ p(At |At−1,Zt−1,Lt−1) and g(At |Zt−1,Lt−1)≡∏

t
k=1 g(Ak |Ak−1,Zk−1,Lk−1).

For our purposes, the couple (Q,g) readily specifies a distribution P ∈M , so sometimes we may
abuse notation and write P = (Q,g). At the data generating distribution P0, we adopt the subscripts
Q0 and g0.

5.3 Efficient Influence Curve
In this section, we develop a general semiparametric inference framework for these parameters. In
particular, we derive the Efficient Influence Curves (EIC) of (5.2), (5.3) and (5.4) under a (locally
saturated) semiparametric model, and establish their robustness properties. For a given pathwise-
differentiable parameter Ψ, under certain regularity conditions, the variance of the EIC of Ψ is a
generalized Cramer-Rao lower bound for the variances of the influence curves of asymptotically
linear estimators of Ψ. Therefore, the variance of the EIC provides an efficiency bound for the
regular and asymptotically linear (RAL) estimators of Ψ. Moreover, under a locally saturated
model, the influence curve of any RAL estimator is in fact the EIC. We refer the reader to Bickel
et al. (1997) for general theory of efficient semiparametric inference.

The mediation formula in (5.2) can be considered as the value at P0 of the map P 7→Ψa,a′(P)≡
EP0

[
Q̄Z,a,a′

t=1 (L0)
]

on M . In particular, this map depends on P through Q, i.e. Ψa,a′(P) = Ψa,a′(Q).
Similarly, the natural direct effect in (5.3) and the natural indirect effect in (5.4) are, respectively,
the values at P0 of the maps P 7→ ΨNDE(P) = Ψ1,0(P)−Ψ0,0(P) and P 7→ ΨNIE(P) = Ψ1,1(P)−
Ψ1,0(P).

For 1 ≤ t ≤ τ , s ≤ t, define the functionals at each P ∈M : γ1,s,t(P)(As,Zt ,Lt−1) ≡ P(As |
As−1,Zt ,Lt−1) and γ2,s,t(P)(As,Zt ,Lt) ≡ P(As | As−1,Zt ,Lt). We shall write γs,t =

(
γ1,s,t ,γ2,s,t

)
and γ = (γs,t : 1≤ t ≤ τ,s≤ t). Note that these conditional probabilities of As differ from the
exposure (and possibly censoring) probabilities encoded by g in that the γs are not conditioning
on parents of As. In particular, they are not orthogonal to Q or g. However, as we shall see in the
following lemma, they offer an alternative to obtain robust estimators that are more suitable to real
life settings where Lt and/or Zt may be high dimensional.

Theorem 5.1 (Efficient Influence Curve).
Let Ψa,a′ : M →R be defined as above. Suppose at P∈M the conditional probabilities of QL,

QZ and g are all bounded away from 0 and 1. The Efficient influence curve of Ψa,a′ at P is given by
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D∗,a,a
′
(P)≡ D∗,a,a

′
(Q,g,Ψa,a′(Q,g)), with

D∗,a,a
′
(Q,g,ψa,a′)≡ DL0,a,a′(Q,g,ψa,a′)+

τ

∑
t≡1

(
DL,a,a′

t (Q,g)+DZ,a,a′
t (Q,g)

)
, (5.7)

where

DL,a,a′
t (Q,g)≡CL,a,a′

t

{
Q̄Z,a,a′

t+1 (Lt ,Zt)− Q̄L,a,a′
t (Lt−1,Zt)

}
DZ,a,a′

t (Q,g)≡CZ,a,a′
t

{
Q̄L,a,a′

t (Lt−1,Zt)− Q̄Z,a,a′
t (Lt−1,Zt−1)

}
DL0,a,a′(Q,g,ψa,a′)≡ Q̄Z,a,a′

1 (L0)−ψ
a,a′ ,

with

CL,a,a′
t ≡ I(At ≡ at)

∏
t
j≡1 g(a j | a j−1,Z j−1),L j−1

t

∏
j≡1

QZ(Z j | a′j,Z j−1,L j−1)

QZ(Z j | a j,Z j−1,L j−1)

=
I(At ≡ at)

∏
t
j≡1 g(a j | a j−1,Z j−1),L j−1

×
t

∏
j≡1

j

∏
s=1

γ1,s, j(a′s,Z j,L j−1)

γ1,s, j(as,Z j,L j−1)
×

g(a j | a j−1,Z j−1,L j−1)

g(a′j | a′j−1,Z j−1,L j−1)

j−1

∏
s=1

γ2,s, j−1(as,Z j−1,L j−1)

γ2,s, j−1(a′s,Z j−1,L j−1)
, (5.8)

and

CZ,a,a′
t ≡ I(At ≡ a′t)

∏
t
j≡1 g(a′j | a′j−1,Z j−1,L j−1)

t−1

∏
j≡1

QL(L j | a j,Z j,L j−1)

QL(L j | a′j,Z j,L j−1)

=
I(At ≡ a′t)

∏
t
j≡1 g(a′j | a′j−1,Z j−1,L j−1)

t−1

∏
j≡1

j

∏
s=1

γ2,s, j(as,Z j,L j)

γ2,s, j(a′s,Z j,L j)
×

j

∏
s=1

γ1,s, j(a′s,Z j,L j−1)

γ1,s, j(as,Z j,L j−1)
. (5.9)

Moreover, D∗,a,a
′
(P) is a multiply robust estimating function of Ψa,a′(P) in the sense that if one

of the following holds:

R1. Q is correctly specified;

R2. g, Q̄L,a,a′ , and either QL or γ are correctly specified;

R3. g, Q̄Z,a,a′ , and either QZ or γ are correctly specified;

then P0D∗,a,a
′
(Q,g) = 0 implies Ψa,a′(Q) = Ψa,a′(Q0).

Proof. See appendix A1.
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From the robustness statement, we see that even though γs,t is not orthogonal with Q and
g, it has very profound implications in the practicality of the robustness properties of the EIC.
Specifically, while the functionals g and Q̄L,a,a′ and Q̄Z,a,a′ can be estimated using a variety of
regression techniques, estimation of the conditional densities QL and QZ is very challenging when
L and Z are high-dimensional. Statements R2 and R3 allows one to replace estimation of the
conditional densities with estimation of γs,t , which are conditional probabilities of binary variables.
This way, we have traded off estimating QZ and QL, which are orthogonal components to g, with
estimating easier functionals γs,t , which are not compatible with the time-ordering decomposition
of the likelihood but are estimable from the data nonetheless. In a sense, this is a tradeoff between
elegance and practicality.

It is easy to note that if a = a′, then (5.7) equals the efficient influence curve for the overall
treatment effect of a time varying exposure (see e.g. van der Laan and Gruber (2012)). The EICs
of both the NDE and NIE can be derived from (5.7) by a simple application of the delta method.
We state them in a corollary without proof.

Corollary 5.1. Suppose the conditions in theorem 5.1 hold for a,a′ ∈ {0,1}. The efficient influence
curve of the natural direct effect is given by

D∗,NDE(P)(O) = D∗,1,0(P)−D∗,0,0(P),

and the efficient influence curve of the natural indirect effect is given by

D∗,NIE(P)(O) = D∗,1,1(P)−D∗,1,0(P).

Moreover, D∗,NDE and D∗NIE satisfy the same robustness condition in theorem 5.1 for a = 0,1
and a′ = 0,1.

The variances VarP0(D
∗,a,a′(P0)), VarP0(D

∗,NDE(P0)), and VarP0(D
∗,NIE(P0)) are generalized

Cramer-Rao lower bounds for the asymptotic variances of the RAL estimators of Ψa,a′(P0), ΨNDE(P0),
and ΨNIE(P0), respectively.

Estimators which satisfy the EIC equations will also inherit their robustness properties. We
will present four estimators in the next section, two of which are robust and locally efficient.

5.4 Estimators
In this section, we develop the G-computation, IPW and TMLE estimators for the mediation func-
tional (5.2); the estimators for the natural direct and indirect effects can be obtained by taking the
corresponding differences.

The G-computation and the IPW (inverse probability-of-treatment weighted) estimators are
consistent only if the estimates of all the relevant components of P0 are consistent. On the other
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hand, TMLE (targeted maximum likelihood) estimator satisfy the efficient influence curve equa-
tion, and hence remain unbiased under the model mis-specifications described in theorem 5.1;
under appropriate regularity conditions, it will be asymptotically efficient (e.g. Bickel et al. (1997),
van der Laan and Robins (2003b), van der Laan and Rose (2011)).

Let gn and Qn denote the estimators of g0 and Q0, respectively. In Qn, Q̄L,a,a′
n and Q̄Z,a,a′

n may be
density-based estimators that are obtained by plugging in the density estimates QL

n and QZ
n into the

definition of the expectations, or they may be regression-based estimators that are obtained using
the relations in (5.5). We will use the latter approach here.

Non-targeted substitution G-computation Estimator
The identification formula in (5.2) which defines that statistical estimand is generally known as the
G-computation formula (Robins (1986)). Readily, it delivers a non-targeted substitution estimator
(as opposed to the targeted substitution estimator that is TMLE), which is generally known as the
G-computation estimator. Rewriting it in terms of Q̄L,a,a′ and Q̄Z,a,a′ , as in (5.6), we can obtain a
non-targeted substitution estimator Ψa,a′(Qn) of Ψa,a′(Q0), through non-targeted estimates Q̄L,a,a′

n

and Q̄Z,a,a′
n .

To estimate the marginal distribution QL0(P0), we can use the empirical distribution of L0,
denoted QL0

n . To estimate the conditional means Q̄L,a,a′(P0) and Q̄Z,a,a′(P0), we can use the fol-
lowing algorithm, which exploits the relations in (5.5), with available regression techniques in the
literature.

1. Initiate Q̄Z,a,a′
τ+1 ≡ Yτ .

2. At each t = τ, . . .1, in decreasing order, we have obtained estimators Q̄Z,a,a′
t+1,n from a previous

step. We obtain Q̄Z,a,a′
t,n and Q̄L,a,a′

t,n , in that order, as follows:

a) Regress Q̄Z,a,a′
t+1,n(Lt ,Zt) on observed values At ,Zt ,Lt−1 among observations that re-

mained uncensored at time t, and evaluate the fitted function at the observed values
Zt ,Lt−1 and the intervened values At = at for these uncensored observations. This
results in the estimates Q̄L,a,a′

t,n (Lt−1,Zt).

b) Regress the newly minted Q̄L,a,a′
t,n (Lt−1,Zt) on At ,Zt−1,Lt−1 among observations that

remained uncensored at time t, and evaluate the fitted function at the observed values
Zt−1,Lt−1 and the intervened values At = a′t for these uncensored observations. This
results in the estimates Q̄Z,a,a′

t,n (Lt−1,Zt−1).

3. After running the algorithm in step (2) sequentially from t = τ down to t = 1, we have
Q̄Z,a,a′

t=1,n(L0) for each of the n observations.

The G-computation estimator is given by

ψ
Gcomp,a,a′
n ≡Ψ

a,a′(Qn) =
1
n

n

∑
i=1

Q̄Z,a,a′
t=1,n(L0,i) (5.10)
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Consistency of ψ
Gcomp,a,a′
n relies on consistency of Qn. Correct specification of Q0 under a finite

dimensional parametric model is possible only in limited applications. Alternatively, we may use
machine learning algorithms, such as Super Learner. This option is more enticing, especially when
used with the regression-based approach, since there are more data-adaptive techniques available
to estimate the conditional mean of a binary variable via regression. However, theoretical results
on the asymptotic behavior, such as a central limit theorem, of the resulting estimator Ψa,a′(Qn)
are not available. Moreover, a non-targeted estimator Qn of Q0 is obtained by minimizing a global
loss function for Q0, not for Ψa,a′(Q0). This means, in particular, that the bias-variance tradeoff
in Qn is optimized for the high-dimensional nuisance parameter Q0, instead of a much lower-
dimensional parameter of interest Ψa,a′(Q0). The proposed targeted estimator in section 5.4 aims
to address these two issues by providing a substitution estimator that is asymptotically linear (under
appropriate regularity conditions), and optimizes the bias-variance tradeoff of Qn towards Ψ(Q0)
via an updating step.

Inverse Probability Weighted Estimator
Instead of estimating the condition expectations Q̄L,a,a′ and Q̄Z,a,a′ , one may wish to employ the
researcher’s knowledge about the treatment assignment and mediation densities. To this end, con-
sider the following function:

DIPW,a,a′(g,QZ)≡ I(Aτ = aτ)

∏
τ
j=1 g(a j | L j−1,Z j−1,a j−1)

τ

∏
j=1

QZ(Z j | a′j,Z j−1,L j−1)

QZ(Z j | a j,Z j−1,L j−1)
Yτ . (5.11)

It is easy to note that P0DIPW,a,a′(g0,QZ
0 ) = Ψa,a′(P0). Therefore, given estimators gn and QZ

n , the
Inverse Probability Weighted (IPW) Estimator of Ψa,a′(P0) is given by

ψ
IPW,a,a′
n ≡ PnDIPW,a,a′(gn,QZ

n ). (5.12)

Consistency of ψ
IPW,a,a′
n relies on consistency of g and QZ . As noted in previously, if Z is

high dimensional, we may replace estimation of the densities QZ with estimation of the conditional
probabilities γs,t of As given As−1, Zt and Lt or Lt−1. This way, using (5.8), we can rewrite

DIPW,a,a′(g,QZ) = DIPW,a,a′(g,γ)

=
I(Aτ = aτ)

∏
τ
j=1 g(a j | L j−1,Z j−1,a j−1)

×

{
τ

∏
j=1

j

∏
s=1

γ1,s, j(a′s,Z j,L j−1)

γ1,s, j(as,Z j,L j−1)
×

g(a j | a j−1,Z j−1,L j−1)

g(a′j | a′j−1,Z j−1,L j−1)

j−1

∏
s=1

γ2,s, j−1(as,Z j−1,L j−1)

γ2,s, j−1(a′s,Z j−1,L j−1)
Yτ

}
,

(5.13)
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and obtain an IPW estimator as ψ
IPW,a,a′
n = PnDIPW,a,a′(gn,γn).

The asymptotic theory of the IPW estimator is well understood in the literature. We refer the
reader to Robins (1999) and van der Laan and Robins (2003b). In particular, it is an asymptot-
ically linear estimator with influence curve DIPW,a.a′ . Consequently, the asymptotic variance of
√

n
(

ψ
IPW,a,a′
n −Ψa,a′(P0)

)
can be estimated by the sample variance V̂arDIPW,a.a′(gn,QZ

n ), or its
alternative version in (5.13).

Due to its inverse weighting by treatment and censoring probabilities, this estimator is particu-
larly sensitive to near positivity violations. In particular, if the outcome of interest has a bounded
range, the IPW estimator is not guaranteed to stay within this range when the inverse weights be-
come large. Substitution estimators like G-computation and TMLE slightly mitigate this problem
by incorporating global information in the parameter map, however, but the effect of near positivity
violations still takes form of poor smoothing in these estimators.

Targeted Maximum Likelihood Estimator
To maximize finite sample gain and provide more stable estimates in the presence of near positiv-
ity violations, one can make use of the substitution principle. The targeted maximum likelihood
estimation (TMLE, van der Laan and Rubin (2006)) provides a substitution-based estimator which
also satisfies the EIC equation, thereby remaining unbiased under model mis-specifications.

In a glimpse, our strategy consists of targetedly updating given initial estimators Qn of Q0 by
minimizing a pre-specified loss along a least favorable (with respect to Ψa,a′(P0)) submodel through
Qn, then we obtain a substitution estimator of the parameter by evaluating Ψa,a′(Q∗n). A byproduct
of this updating procedure is that the gn and Q∗n satisfy PnD∗,a,a

′
(Q∗n,gn) = 0.

More specifically, in light of (5.6), we only need to update Q̄L,a,a′ and Q̄Z,a,a′ . From the recur-
sive relations in (5.5), we will use for Q̄L,a,a′

t and Q̄Z,a,a′
t the loss functions

L(Q̄L,a,a′
t ) =−

{
Q̄Z,a,a′

t+1 log
(

Q̄L,a,a′
t

)
+(1− Q̄Z,a,a′

t+1 ) log
(

1− Q̄L,a,a′
t

)}
, and

L(Q̄Z,a,a′
t ) =−

{
Q̄L,a,a′

t log
(

Q̄Z,a,a′
t

)
+(1− Q̄L,a,a′

t ) log
(

1− Q̄L,a,a′
t

)}
. (5.14)

We suppressed in the notation the indexing by the functionals at the next time point. The cor-
responding least favorable submodels through Q̄L,a,a′

t and Q̄Z,a,a′
t , respectively, are parametrized

as
{

Q̄L,a,a′
t (ε) : ε ∈ R

}
and

{
Q̄Z,a,a′

t (ε) : ε ∈ R
}

, and they ought to satisfy the score conditions

∂L
(

Q̄L,a,a′
t (ε)

)
∂ε

|ε=0= DL,a,a′
t (Q,g) and

∂L
(

Q̄Z,a,a′
t (ε)

)
∂ε

|ε=0= DZ,a,a′
t (Q,g). In particular, we may use the

corresponding least favorable submodels

Q̄L,a,a′
t (ε) = expit

(
logit Q̄L,a,a′

t + εCL,a,a′
t

)
, and

Q̄Z,a,a′
t (ε) = expit

(
logit Q̄Z,a,a′

t + εCZ,a,a′
t

)
. (5.15)
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We are now ready to describe the TMLE algorithm, which will targetedly estimate Q̄L,a,a′
t and

Q̄Z,a,a′
t sequentially in order of decreasing t.

1. Obtain initial estimators gn and either the densities (QZ
n ,Q

L
n) or the predictions γn defined in

section 5.3. These will be used to obtain estimates CZ,a,a′
t,n and CL,a,a′

t,n , see (5.8) and (5.9). Let
QL0

n be the empirical distribution of baseline covariates L0.

2. Initiate Q̂∗,Z,a,a
′

τ+1,n = Yτ .

3. At each t = τ, . . .1, in decreasing order, we have obtained targeted estimator Q̄∗,Z,a,a
′

t+1,n from a

previous step. We obtain targeted estimator Q̄∗,Z,a,a
′

t,n and Q̄∗,L,a,a
′

t,n , in that order, as follows:

a) Obtain initial estimator Q̄L,a,a′
t,n by regressing Q̄∗,Z,a,a

′

t+1,n (Lt ,Zt) on observed values At ,Zt ,Lt−1
among observations that remained uncensored at time t, and evaluate the fitted func-
tion at the observed values Zt ,Lt−1 and the intervened values At = at for these uncen-
sored observations. This results in the estimates Q̄L,a,a′

t,n (Lt−1,Zt). Update this estimate
using Q̄∗,L,a,a

′

t,n ≡ Q̄L,a,a′
t,n (εL

t,n), where

ε
L
t,n ≡ argmin

ε
PnL
(

Q̄L,a,a′
t,n (ε)

)
.

This optimal fluctuation amount can obtained by a weighted logistic regression of the
expectant Q̄∗,Z,a,a

′

t+1,n (Lt ,Zt) onto CL,a,a′
t,n with offset logit

(
Q̄L,a,a′

t,n (Lt−1,Zt)
)

.

b) Next, obtain an initial estimator Q̄Z,a,a′
t,n by regressing the newly minted targeted es-

timate Q̄∗,L,a,a
′

t,n (Lt−1,Zt) on At ,Zt−1,Lt−1 among observations that remained uncen-
sored at time t, and evaluate the fitted function at the observed values Zt−1,Lt−1 and
the intervened values At = a′t for these uncensored observations. This results in the es-
timates Q̄Z,a,a′

t,n (Lt−1,Zt−1). Update this estimate using Q̄∗,Z,a,a
′

t,n ≡ Q̄Z,a,a′
t,n (εZ

t,n), where

ε
Z
t,n ≡ argmin

ε
PnL
(

Q̄Z,a,a′
t,n (ε)

)
.

This optimal fluctuation can obtained by a weighted logistic regression of the expec-
tant Q̄∗,L,a,a

′

t,n (Lt−1,Zt) onto CZ,a,a′
t,n with offset logit

(
Q̄Z,a,a′

t,n (Lt−1,Zt−1

)
.

4. After running the algorithm in step (3) sequentially from t = τ down to t = 1, we have
targeted estimates Q̄∗,Z,a,a

′

t=1,n (L0) for each of the n observations.

Let Q∗n ≡
(

QL0
n ,QZ

n ,Q
L
n , Q̄

∗,L,a,a′
n , Q̄∗,Z,a,a

′
n

)
. In case that one used γn instead of the densities QZ

n ,Q
L
n ,

the Q∗n will be defined accordingly. The TMLE estimator is given by

ψ
∗,a,a′
n ≡Ψ

a,a′(Q∗n) =
1
n

n

∑
i=1

Q̄∗,Z,a,a
′

t=1,n (L0,i) (5.16)
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By construction, this estimator satisfies PnD∗,a,a
′
(Q∗n,gn) = 0. Consequently, it inherits robustness

of EIC described in theorem 5.1. Under certain regularity conditions, it is efficient at P0, with
influence curve D∗(Q0,g0). In particular, the asymptotic variance of

√
n
(

ψ
∗,a,a′
n −Ψa,a′(P0)

)
can

be estimated using the sample variance V̂arD∗,a,a
′
(Q∗n,gn).

5.5 Simulation Study
In this section, we conduct a simulation study to evaluate the comparative performance of these
three estimators.

Consider the data structure O = (L0,A1,Z1,L1, . . . ,Aτ ,Zτ ,Lτ), with τ = 2. L0 encodes two
baseline covariates L1

0 and L2
0, At encodes a binary exposure AE

t and a censoring indicator AC
t , Zt

is a binary mediator of interest, Lt encodes two time varying covariates L1
t and L2

t , and a death
indicator Yt . These variable are distributed according to the following data generating distribution

L1
0 ∼ Bern(0.1);

L2
0 ∼ Bern(0.7);

AE
t ∼ Bern

(
expit

(
−0.7+2L1

0−0.5L2
0

+ I(t > 1)
(
−0.5AE

t−1 +0.1L1
t−1−0.2L2

t−1 +0.7AE
t−1×L1

0 +0.2AE
t−1×L1

t−1
)))

AC
t ∼ Bern

(
expit

(
1−0.1t +1.2L1

0−0.5L2
0−0.5AE

t +0.2AE
t ×L1

0

+ I(t > 1)
(
0.1L1

t−1−0.2L2
t−1−0.2AE

t ×L1
t−1
)))

Zt ∼ Bern
(

expit
(
−1+0.4t +1L1

0−0.1L2
0 +1.5AE

t −0.3AE
t ×L1

0 + I(t > 1)(−Zt−1)
))

L1
t ∼ Bern

(
expit

(
−1+0.4t +1L1

0−0.1L2
0 +1.5AE

t +Zt −0.3Zt ×AE
t + I(t > 1)

(
−L1

t−1
)))

L2
t ∼ Bern

(
expit

(
−2+0.2t +1L1

0−0.1L2
0−AE

t +2Zt −0.2AE
t ×L1

t −0.3Zt ×AE
t

+ I(t > 1)
(
L2

t−1)−0.4AE
t−1×L1

t
)))

Yt ∼ Bern
(

expit
(
−2+0.1t +2L1

0−0.7L2
0 +AE

t −2L1
t −0.1L2

T +0.4Zt −0.2AE
t ×L1

t −0.2AE
t ×L1

0

+0.5AE
t ×Zt + I(t > 1)

(
−1.5L1

t−1−0.3L2
t−1−0.4AE

t−1×L1
t

−0.4AE
t−1×L1

t−1 +0.4AE
t−1×Zt−1

)))
.

After either censoring or death, all subsequent variables take a default value. The target parameter
of interest is Ψ1,0(P0) = 0.192.

Correctly specified gn, QZ
n and QL

n are obtained using logistic regression on the parents of the
corresponding variables, whereas correctly specified Q̄Z,a,a′ and Q̄L,a,a′ are obtained using Super
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Learner with candidate estimators glm and neural net. the misspecified ones omit important
predictors. Their misspecified counterparts omit important predictors.

Results
We consider sample sizes n = 500 and n = 5000. Bias, variance and mean squared error (MSE)
for each sample size are estimated over the 500 datasets. In the table 5.1 below, legend for model
specifications are as follows:

Table 5.1: Bias, variance and MSE oer 500 simulations.

Bias Var MSE
n 500 5000 500 5000 500 5000

all correct IPW 0.0065 0.0008 0.0072 0.0013 0.0073 0.0013
Gcomp 0.0152 0.0136 0.0032 0.0003 0.0035 0.0005
TMLE 0.0377 0.0074 0.0246 0.0023 0.0260 0.0024

A misspec. IPW 0.0866 0.0889 0.0052 0.0004 0.0127 0.0083
TMLE 0.0077 0.0034 0.0041 0.0002 0.0042 0.0002

L misspec. Gcomp 0.0866 0.0921 0.0036 0.0007 0.0111 0.0092
TMLE 0.0243 0.0000 0.0216 0.0013 0.0221 0.0013

Z misspec. IPW 0.0074 0.0000 0.0130 0.0020 0.0131 0.0020
Gcomp 0.0029 0.0058 0.0059 0.0004 0.0059 0.0004
TMLE 0.0313 0.0027 0.0292 0.0034 0.0302 0.0034

As predicted by theory, under misspecified A or L components TMLE provides bias reduction
over misspecified IPW and Gcomp estimators. The variance of TMLE is also relatively smaller
or comparable to IPW and Gcomp, therefore the resulting MSE in these two cases is smaller for
TMLE. However, when Z is misspecified, TMLE can still provide bias reduction over Gcomp, but
the IPW estimator is relative insensitive to misspecification in Z, Moreover, the variance of TMLE
is larger for Gcomp and IPW, relative to the bias, resulting in larger MSE for the TMLE. When all
estimators are correct, there is no obvious gain from TMLE.s

5.6 Summary
In this chapter, we proposed to adopt the stochastic interventions (SI) approach of Didelez et al.
(2006), where the mediator is considered an intervention variable onto which a given distribu-
tion is enforced, to formulate parameters of interest in longitudinal mediation analysis with time
varying mediator and exposures. The second contribution of this chapter is a general semiparamet-
ric inference framework for the resulting effect parameters. More specifically, efficient influence
curves under a locally saturated semiparametric model are derived, and their robustness proper-
ties are established. In many applications where the mediator densities are difficult to estimate,
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regression-based estimators of these iterated expectations are viable alternatives to substitution-
based estimators that rely on consistent estimation of the mediator densities. We also developed
the G-computation, IPW and TMLE estimators for the mediational functional.

Under the SI formulation, the treatment of interest as well as the mediator variables are re-
garded as intervention variables. One can obtain a total effect decomposition and the subsequent
definition of natural direct and indirect effects that are analogous to those in Pearl (2001). The nat-
ural direct effect (NDE) under this formulation has an intrinsic interpretation as a weighted average
of controlled direct effects (CDE), since the CDE can be considered as a deterministic intervention
on the treatment and mediator variables. By regarding the mediator variables as intervention vari-
ables, the SI formulation requires external specification of a counterfactual mediator distribution. It
is important to note that causal mediation, under either SI or non-SI approaches, presupposes that
the mediator of interest is amenable to external manipulation. In applications where such manipu-
lations are not conceivable, we should be cautious that causal mediation can only offer answers to
purely mechanistic questions defined under hypothetical experiments.

5.7 Chapter Appendix

Appendix A.1: Proof of Theorem 5.1
For any P ∈M , we may factor the likelihood according to the time ordering:

p(O) = p(L0)

×
τ

∏
t=1

(
p(At | At−1,Zt−1,Lt−1)p(Zt | At ,Zt−1,Lt−1)p(Lt | At ,Zt ,Lt−1)

)
. (5.17)

For O j ∈ {L0,At ,Zt ,Lt : t = 1, . . . ,τ}, let PO j denote the conditional probability of PO j(O j | Pa(O j).
Let L2(P) denote the Hilbert space of mean zero functions of O, endowed with the covariance

operator. Consider a rich class of one-dimensional parametric submodels P(ε) that are generated
by only fluctuating PO j . Under our model, no restrictions are imposed on the conditional proba-
bilities PO j . As a result, given any function SO j ∈ L2(P) of (O j,Pa(O j)) with finite variance and
EP(SO j(O j,Pa(O j)) | Pa(O j)) = 0, the fluctuation PO j(ε) = (1+ εSO j(O j,Pa(O j)))PO j is a valid
one-dimensional submodel with score SO j . Therefore, the tangent subspaces corresponding to fluc-
tuations of each PO j are given by

T (PL0) = {SL0(L0) : EP(SL0) = 0}
T (PAt ) = {SAt (At ,At−1,Zt−1,Lt−1) : EP(SAt | At−1,Zt−1,Lt−1) = 0}
T (PZt ) = {SZt (Zt ,At ,Zt−1,Lt−1) : EP(SZt | At ,Zt−1,Lt−1) = 0}
T (PLt ) = {SLt (Lt ,At ,Zt ,Lt−1) : EP(SLt | At ,Zt ,Lt−1) = 0}.

Due to the factorization in (5.17), T (Pi) is orthogonal to T (PO j) for Oi 6=O j. Moreover, the tangent
space T (P), corresponding to fluctuations of the entire likelihood, is given by the orthogonal sum
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of these tangent subspaces, i.e. T (P) =
⊕

j T (PO j), and any score S(O)∈ T (P) can be decomposed
as ∑ j SO j(O).

Under this generous definition of the tangent subspaces, any function S(O) that has zero mean
and finite variance under P is contained in T (P). This implies in particular that any gradient for
the pathwise derivative of Ψa,a′(·) is contained in T (P), and is thus in fact the canonical gradient.
Therefore, it suffices to show that D∗,a,a

′
(·) in (5.7) is a gradient for the pathwise derivative of

Ψa,a′(·).
Indeed, for any S(O) = ∑ j SO j(O) ∈ T (P), let PS(ε) denote the fluctuation of P with score S.

Under appropriate regularity conditions, the pathwise derivative at P can be expressed as

d
dε

Ψ
a,a′(PS(ε)) |ε=0

=
d

dε

∣∣∣∣
ε=0

{
∑

l
∑
z

(
((1+ εSL0)PL0)(`0)

×
t0

∏
t=1

((1+ εSZt )PZt )
(
zt | `0,At = a′t ,zt−1, lt−1

)
((1+ εSLt )PLt )

(
`t | `0,At = a′t ,zt−1, lt−1

))}

= ∑
l

∑
z

(
QL0(`0)QZ(z | `0,A = a′, l)QL(l | `0,A = a,z)

τ

∑
t=1

SLt

)
(5.18)

+∑
l

∑
z

(
QL0(`0)QZ(z | `0,A = a′, l)QL(l | `0,A = a,z)

τ

∑
t=1

SZt

)
(5.19)

+∑
l

∑
z

(
QL0(`0)QZ(z | `0,A = a′, l)QL(l | `0,A = a,z)

)
SL0 , (5.20)

where QZ(z | `0,A = a′, l)≡∏
τ
t=1 QZ(zt | `0,At = a′t ,zt−1, lt−1), similarly for QL.

Note firstly that for every t = 1, . . . , t0,

EP

(
DL,a,a′

t (P)(O)SLt (Lt ,L0,At ,Zt ,Lt−1)
)

= ∑
l

∑
z

QL0(`0)QZ(z | `0,A = a′, l)QL(l | `0,A = a,z)SLt .

Therefore, (5.18) can be written as

EP

(
DL,a,a′

t (P)(O)
τ

∑
t=1

SLt (Lt ,L0,At ,Zt ,Lt−1)

)
.

Moreover, DL,a,a′(P)(O)∈ T (PLt |Pa(Lt)) by the definition of these tangent subspaces. It thus follows
from the orthogonal decomposition of T (P) that

EP

{
DL,a,a′

t (P)(O)×SLt (Lt ,L0,At ,Zt ,Lt−1)
}
= EP

{
DL,a,a′

t (P)

(
SL0 +

τ

∑
t=1

SAt +SZt +SLt

)}
.
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By similar arguments, (5.19) can be written as

EP

{
DZ,a,a′

t (P)(O)×SZt (Zt ,L0,At ,Zt−1,Lt−1)
}
= EP

{
DZ,a,a′

t (P)

(
SL0 +

τ

∑
t=1

SAt +SZt +SLt

)}
.

and (5.20) can be written as

EP

{
DL0,a,a′(P)(O)SL0(L0)

}
= EP

{
DL0,a,a′(P)

(
SL0 +

τ

∑
t=1

SAt +SZt +SLt

)}
.

Combining these results, one concludes that

d
dε

Ψ
a,a′(PS(ε)) |ε=0= EP

{(
DL0,a,a′(P)(O)+

τ

∑
t=1

DZ,a,a′
t (P)(O)+DL,a,a′

t (P)(O)

)
S(O)

}
Therefore, D∗,a,a

′
(P) = DL0,a,a′(P) + ∑

τ
t=1 DZ,a,a′

t (P) + DL,a,a′
t (P) is a gradient for the pathwise

derivative of Ψa,a′ at P. As discussed above, under the nonparametric model, D∗,a,a
′
(P) is in fact

the canonical gradient.
To rewrite the functions CL,a,a′

t in (5.8) and CZ,a,a′
t in (5.9), it suffices to note that

QZ(Z j | a′j,Z j−1,L j−1)

QZ(Z j | a j,Z j−1,L j−1)
=

p
(

a′j,Z j,L j−1

)
p
(

a′j,Z j−1,L j−1

) p(a j,Z j−1,L j−1)

p(a j,Z j,L j−1)

=
p
(

a′j,Z j,L j−1

)
p(a j,Z j,L j−1)

p(a j,Z j−1,L j−1)

p
(

a′j,Z j−1,L j−1

)
=

(
j

∏
s=1

p(a′s | a′s−1,Z j,L j−1)

p(as | as−1,Z j,L j−1)

p(Z j,L j−1)

p(Z j,L j−1)

)

×

(
g(a j | a j−1,Z j−1,L j−1)

g(a′j | a′j−1,Z j−1,L j−1)

j−1

∏
s=1

p(as | as−1,Z j−1,L j−1)

p(a′s | a′s−1,Z j−1,L j−1)

p(Z j−1,L j−1)

p(Z j−1,L j−1)

)

=
j

∏
s=1

γ1,s, j(a′s,Z j,L j−1)

γ1,s, j(as,Z j,L j−1)
×

g(a j | a j−1,Z j−1,L j−1)

g(a′j | a′j−1,Z j−1,L j−1)

j−1

∏
s=1

γ2,s, j−1(as,Z j−1,L j−1)

γ2,s, j−1(a′s,Z j−1,L j−1)
,

and

QL(L j | a j,Z j,L j−1)

QL(L j | a′j,Z j,L j−1)
=

p(a j,Z j,L j)

p(a j,Z j,L j−1)

p
(

a′j,Z j,L j−1

)
p
(

a′j,Z j,L j

) =
p(a j,Z j,L j)

p
(

a′j,Z j,L j

) p
(

a′j,Z j,L j−1

)
p(a j,Z j,L j−1)

=
j

∏
s=1

p(as | as−1,Z j,L j)

p(a′s | a′s−1,Z j,L j)

p(Z j,L j)

p(Z j,L j)
×

j

∏
s=1

p(a′s | a′s−1,Z j,L j−1)

p(as | as−1,Z j,L j−1)

p(Z j,L j−1)

p(Z j,L j−1)

=
j

∏
s=1

γ2,s, j(as,Z j,L j)

γ2,s, j(a′s,Z j,L j)
×

j

∏
s=1

γ1,s, j(a′s,Z j,L j−1)

γ1,s, j(as,Z j,L j−1)
.
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The first case of the robustness condition is trivial. In the second case, correct Q̄L,a,a′
t yields

P0DL,a,a′
t (P) = 0; correct g and the correct ratios QL(· | a, ·)/QL(· | a′, ·), either in terms of QL or

in terms of γ , produce a telescopic sum over t of DZ,a,a′
t , the ends of which cancel with DL0,a,a′ .

Similarly, in the third case, correct Q̄Z,a,a′
t yields P0DZt ,a,a′

t (P) = 0; the correct g and correct ratios
QZ(· | a′, ·)/QZ(· | a, ·) yield a telescopic sum over t of DZ,a,a′

t whose ends cancel with DL0,a,a′ .

Appendix A.2
In this appendix, we evaluate the various options to formulate the causal mediation problem in the
survival setting with time-dependent mediator, without regarding mediators as intervention vari-
ables. The first option is a simple extension of the traditional natural effects definition in the exist-
ing literature (e.g. van der Laan and Petersen (2004), VanderWeele (2010), Robins and Richardson
(2010), Tchetgen Tchetgen and VanderWeele (2012)), where all the paths from the treatment to
the mediators are blocked. We shall see that the resulting ideal experiment is not well-defined for
the purpose of mediating the effect on the event process. The second option leaves the paths from
treatment to mediator through survival history unblocked. However, the sufficient identifiability
conditions, while reasonable in other applications, may be too strong for survival study. As a re-
sult, we argue that a SI-based perspective of causal mediation offers an attractive alternative to
formulate the effect parameters.

We begin by reviewing the one time-point setting. Under the non-SI approach introduced
by Robins and Greenland (1992) and Pearl (2001), one defines a counterfactual event indicator
Y (a,Z(a′)) according to the following experiment

W = fW (UW )

Z(a′) = fZ(W,A = a′,UZ),

Y (a,Z(a′)) = fY (W,A = a,Z(a′),UY ). (5.21)

Y (a,Z(a′)) is the event indicator in an ideal experiment where A is set to a, and the intermediate
variable Z takes its value under the influence of A = a′. The identifiability conditions (Pearl (2001))
for P(Y (a,Z(a′)) = 0) are Y (a,z)⊥ (A,Z) |W , Y (a,z)⊥ Z(a′) |W , and Z(a′)⊥ A |W .
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A2.1: Blocking all paths from treatment to mediators

A direct extension of (5.21) is to conceptualize the mediator process as being defined entirely in a
world with A = a′. The hypothetical experiment generating the outcome is:

W = fW (UW )

A = a

Zt(a′) = fZt (W,A = a′,Zt−1(a′),Yt−1(a′),UZt ),

Yt(a′) = fYt (W,A = a′,Zt(a′),Yt−1(a′),UYt ),

Yt(a,Z(a′)) = fYt (W,A = a,Zt(a′),Yt−1(a,Z(a′)),UYt ). (5.22)

The experiment can be run by either drawing variables subsequently according to the order above,
or by first drawing (Z(a′),Y(a′)), and then draw Y(a,z) with the given realization of Z(a′) = z.
Either way, if one draws Yt(a′) = 1, i.e. event happens at time t under treatment A = a′, the next
mediator Zt+1(a′) is assigned the degenerate value at time t + 1. Then, drawing Yt+1(a,Z(a′)),
when the latest mediator has the degenerate value but Yt(a,Z(a′)) = 0, is not defined. One could
deterministically set Yt+1(a,Z(a′)) = 1 in this case and still obtain a well-defined survival time,
but this would allow the effect of treatment A = a′ on survival to influence the effect of treatment
A = a on survival, which is contrary to the purpose of mediating the effect of A = a on the survival
process.

In this light, well-defined mediation formulas and natural effects in the current setting should
not block the paths of treatment to mediator through the survival history. In other words, the direct
effect questions should be rephrased to ”what is the effect of treatment on survival, if treatment had
no other effect on the mediators other than through the survival history?”.

A2.2: Only blocking those paths from treatment to mediators that are not through
survival history

Due to the considerations above, we wish to define mediation effects where the paths from treat-
ment to mediator through the outcome process is left unblocked. These effects of interest are
extension of the path-specific effects discussed in Pearl (2001), Avin et al. (2005) and Robins and
Richardson (2010). Consider the following hypothetical experiment:

W = fW (UW )

A = a

Zt(a′,Y (a))≡ fZt (W,A = a′,Zt−1(a′,Y(a)),Yt−1(a,Z(a′)),UZt ),

Yt(a,Z(a′))≡ fYt (W,A = a,Zt−1(a′,Y(a)),Yt−1(a,Z(a′)),UYt ). (5.23)

Note the simplified notation for Zt(a′,Y (a)) and Yt(a,Z(a′)). For t = 2, Z2(a′,Y (a)) is in fact
Z2(a′,Y1(a,Z1(a′))), and Y2(a,Z(a′)) is in fact Y2(a,(Z2(a′,Y1(a,Z1(a′))),Z1(a′))). This experi-
ment differs from the (5.22) in that the event process affecting each mediator response is the out-
come process of interest. More specifically, under (5.23) the experiment first sets A = a; at each
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visit, given realization (W = w,A = a,Zt−1(a′,Y (a)) = zt−1,Yt−1(a,Z(a′)) = yt−1), it measures the
response Zt would have had if the treatment were A = a′ while the rest of the history remained the
same; then, with given realization (W = w,A = a,Zt(a′,a) = zt ,Yt−1(a,Z(a′)) = yt−1), it measures
the event indicator Yt .

The difference between the experiment in (5.23) and the SI-based experiment in the main text
lies in that under the SI formulation, one only needs to identify the distribution PZ(a′), which re-
mains in the real of experiment with intervention A′a. Under (5.23), the conditional probability
P(Zt(a′,Y (a)) |W,Zt−1(a′,Y (a)),Yt−1(a,Z(a′))) is part of a cross world process. Therefore, even
though the SI-based parameter would identify to the same statistical parameter (5.2), they are dif-
ferently formulated causal parameters.

In order to identify E(Yτ(a,Z(a′))) defined in (5.23), one would require that the death at a given
time t be independent of future potential mediators — this condition is too strong for the purpose
of effect mediation in a survival study.
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