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supported metal clusters from extended metal surfaces. These
effects (and thus opportunities for tuning catalytic properties by
choice of the support) are most pronounced for the smallest
clusters, and may be negligible for large supported metal particles
for which only a small fraction of the metal atoms are bonded to the
support.

Purely geometric effects can also distinguish the catalytic activity
seen with small metal clusters from that seen with bulk metal or
larger supported particles, by limiting the structures that can bond
to a very small cluster and subsequently react on it. For example,
propylidyne is stable on Ir4/g-Al2O3 when treated in He or H2 at
temperatures up to 523 K (ref. 8), whereas propylidyne on extended
metal surfaces17,20 decomposes thermally under vacuum at 403±
433 K and is largely hydrogenated in the presence of H2 at room
temperature. This qualitative difference in reactivity is attributed to
the presence of neighbouring metal centres that facilitate reaction
on the extended surfaces, and the lack of such centres on isolated
Ir4 (ref. 8). Thus, propylidyne on Pt(111) undergoes catalytic
hydrogenation15 whereas propylidyne at saturation concentration
on Ir4/g-Al2O3 does not react, rendering the clusters almost inactive
for propene hydrogenation (Table 1). M
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Information about regional carbon sources and sinks can be
derived from variations in observed atmospheric CO2 concentra-
tions via inverse modelling with atmospheric tracer transport
models. A consensus has not yet been reached regarding the
size and distribution of regional carbon ¯uxes obtained using
this approach, partly owing to the use of several different atmos-
pheric transport models1±9. Here we report estimates of surface±
atmosphere CO2 ¯uxes from an intercomparison of atmospheric
CO2 inversion models (the TransCom 3 project), which includes
16 transport models and model variants. We ®nd an uptake of CO2
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in the southern extratropical ocean less than that estimated from
ocean measurements, a result that is not sensitive to transport
models or methodological approaches. We also ®nd a northern
land carbon sink that is distributed relatively evenly among the
continents of the Northern Hemisphere, but these results show
some sensitivity to transport differences among models, espe-
cially in how they respond to seasonal terrestrial exchange of CO2.
Overall, carbon ¯uxes integrated over latitudinal zones are
strongly constrained by observations in the middle to high
latitudes. Further signi®cant constraints to our understanding
of regional carbon ¯uxes will therefore require improvements in
transport models and expansion of the CO2 observation network
within the tropics.

We estimate annual average ¯uxes for the 1992±96 period using
each transport model and a common inversion set-up (see
Methods). Methodological choices for this `control' inversion
have been selected on the basis of knowledge gained from a wide
range of sensitivity tests (to be reported elsewhere). Performing the
inversion with multiple transport models gives mean estimated
¯uxes that are relatively insensitive to reasonable variations in the
set-upÐand estimated uncertainties that represent a more com-
plete estimate of the true uncertainty. The maximum number of
regions in our inversion and the spatial distributions of ¯uxes
within each region are ®xed, precluding sensitivity tests of these
inversion components.

Figure 1 shows the mean ¯ux estimates (left-hand cross in each
box) and two uncertainty measures for the control inversion. The
®rst uncertainty measure is the mean of the individual model ¯ux
uncertainties (circles) which we designate the `within-model' uncer-
tainty. For any region, this estimated ¯ux uncertainty must be
smaller than the prior ¯ux uncertainty (outer bounds of the boxes).
The magnitude of the decrease indicates the degree to which the
®nal ¯ux estimate is constrained by the measurements. Figure 1
shows that the northern land regions and Australia are better
constrained by the measurements than are the remaining land
regions. The Southern Ocean region is well constrained by the
atmospheric measurements, in part because it is treated as a single
large region. The Atlantic regions are constrained more by their
prior ¯ux uncertainties, which are relatively small due to better
coverage of ocean measurements in these regions.

The second uncertainty measure is the standard deviation of the
¯ux estimates over the ensemble of models (error bars in Fig. 1). We
call this the `between-model' uncertainty. This measure indicates
the degree to which transport model differences contribute to the
range of ¯ux estimates. Large between-model uncertainties are
found for northern Africa, tropical America, temperate Asia and
boreal Asia (all greater than 0.5 Gt C yr-1).

For most regions, the between-model uncertainties are of
similar or smaller magnitude than the within-model uncertain-
ties. This suggests that the choice of transport model is not the
critical determinant of the inferred ¯uxes. Comparing the uncer-
tainties between regions indicates where the inversion would
bene®t most from new observations, and where model improve-
ments are most needed. In this particular inversion, new measure-
ments would be most useful over tropical continents and in the
South America and South Atlantic regions, while the focus for
resolving transport differences would be the northern and tropical
land regions.

Regarding the model mean ¯ux estimates, two results deserve
attention. First, we ®nd consistency between the ocean ¯uxes
predicted in this study and those based on a global database10 of
CO2 partial pressure (pCO2

), except in the Southern Ocean where the
carbon uptake estimated here is roughly half that based on the pCO2

database. This shift in uptake from south to north is required to
match simultaneously large-scale concentration gradients (Fig. 2)
and growth rates.

The mismatch between atmospheric and ocean estimates of the

Southern Ocean ¯uxes had been noted a decade ago11. Our sensi-
tivity tests ®nd that the near-uniformity of observed concentration
in the Southern Hemisphere and the small uncertainty associated
with those measurements make this result robust to the choice of
observing network, prior ¯ux estimates, global ocean constraint,
and transport (see Fig. 2 in Supplementary Information). The
discrepancy also cannot be explained by a systematic bias in
transport models, as the north±south transport has been investi-
gated in a recent intercomparison12 where successful simulations of
the observed meridional gradient in SF6 suggested reasonable
veracity in gross interhemispheric transport.

One possible reconciliation between the pCO2
database and the

inverse result presented here is suggested by recent ocean measure-
ments taken during January and August 2000 in the Indian
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Antarctic sector of the Southern Ocean13. The pCO2
values south of

508 S showed seasonal variations that require CO2 uptake in
summer and emission in winter. If the seasonality exhibited in
this campaign is true for other parts of the Southern Ocean, this
would result in a reduction of the Southern Ocean ¯ux uptake in the
database, which is currently determined predominantly by summer
measurements. This seasonality-driven explanation is also consis-
tent with forthcoming results from the second stage of the Trans-
Com 3 comparison in which we estimate seasonal cycles (K.R.G.
et al., manuscript in preparation).

Second, we ®nd carbon uptake over the continents of the North-
ern Hemisphere to be distributed relatively evenly across North
America, Europe and Asia, in contrast to the distribution found in
an earlier, widely cited inverse study2. We ®nd a temperate North
American sink approximately 60% of that found in the earlier study,
a small boreal North American source rather than small uptake, and
a large sink for Eurasia rather than an approximately neutral ¯ux.
Estimated uncertainties are moderate (0.4±0.7 Gt C yr-1), indicat-
ing that regional partitioning remains dif®cult, but the ¯ux differ-
ences between the two studies lie at the edge of (or outside) the
uncertainty ranges.

Although previous studies have challenged the possibility of a
large North American sink3±7, little systematic exploration has been
performed as to how such a result was achieved. The differences are
not due to the choice of transport model, because the two models
used in the earlier study are included here and lie in the middle of
our range. Extensive sensitivity tests (see Tables 3 and 4 in Supple-
mentary Information) indicate that the Eurasian ¯ux estimate is

very sensitive to the pattern of background ¯uxes used in the
inversion, especially that representing the seasonal terrestrial bio-
sphere. The difference in North American uptake results from a
combination of methodological choices as well as differences in
time period and observational stations used.

There are three methodological differences that together appear
to be critical. First, recent work14 suggests that the larger the region
size in an inversion, the greater the potential for producing biased
¯ux estimates. Second, the potential bias can be reduced by
increasing the data uncertainty for sites in regions with spatially
heterogeneous ¯uxes. The earlier study2 inverted for larger regions
than used here, and used relatively small (0.6 p.p.m.), spatially
invariant uncertainties compared to the generally larger, variable
uncertainties used in this study. The third factor is the uncertainty
assigned to prior estimates of ocean ¯uxes, which were zero in the
earlier study. Thus the ¯ux adjustment required to match the
atmospheric data was applied only to land regions. Together these
three factors suggest that the earlier study had greater potential for
biased and more sensitive ¯ux estimates than the control results
presented here.

Although transport uncertainties do not overwhelm our ¯ux
estimates, one factor appears to be responsible for a signi®cant
portion of the model spread; the `recti®er' produced by the
covariance between the seasonal biospheric background ¯ux and
atmospheric transport15. The effect of the recti®er can be seen by
performing the inversion without the background biospheric ¯uxes
(Fig. 1, right-hand symbols within each box). The between-model
uncertainty is reduced for almost all regions, and in some regions
there are substantial changes to the estimated ¯uxes. An increase of
1.1 Gt C yr-1 in boreal Asia changes it from a moderate sink to a
moderate source, because recti®cation produces the strongest con-
centrations downwind of this region in many of the models. Sink
strengths increase by 0.35±0.55 Gt C yr-1 for temperate North
America, temperate Asia and northern Africa, to maintain the
required global source. Measurements indicating the strength of
the covariance effect in nature are needed to assess this aspect of
model transport.

One way to reduce the large uncertainties in our full calculation is
to aggregate our regions after performing the inversion. Figure 3
shows the ¯ux estimates for the land and ocean separately in the
southern extratropics, tropics, northern extratropics and for the
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globe as a whole. Within-model uncertainties are reduced relative to
simply summing from constituent regions, because much of the
uncertainty occurs at the scale of the original regions. There is also a
reduction in the between-model uncertainty for this aggregation, as
some of the model spread involves details of regional transport. At
this larger scale, the decrease in the sink in the Southern Ocean and
the enhanced sinks over the Northern Hemisphere appear more
signi®cant. The uncertainty on the tropical land region is large; lack
of atmospheric data in this region means that inversion methods
cannot reliably comment on the extent to which sources due to
tropical land-use change are balanced by enhanced growth.

This ®rst stage of the TransCom 3 intercomparison has explored
many aspects of annual mean inversions more comprehensively
than previous work. By incorporating a range of transport models,
the ¯uxes and their uncertainties represent progress towards more
robust inverse estimates of regional carbon exchange. Carbon
exchange with the ocean is well constrained in this study and, in
the case of the Southern Ocean region, is different from ¯uxes
suggested by pCO2

measurements. This result is consistent across the
16 transport models used here, and is insensitive to many aspects of
the inversion set-up. Flux estimates in the northern extratropical
land regions are reasonably robust as zonal means, but are dif®cult
to distinguish in the longitudinal direction, and can be biased owing
to key methodological aspects of the inversion construction. Sea-
sonal exchange with the terrestrial biosphere is responsible for much
of the model spread over these regions. Realistic characterization of
this aspect of model transport is essential if this uncertainty is to be
reduced in the future.

Flux estimates in the tropical land regions remain very uncertain,
owing to few CO2 observations and the limited in¯uence of
extratropical observations on the tropical land ¯ux estimates.
New observations that can be represented by global-scale transport
models are needed in these regions. Future TransCom analysis will
focus on the effect of transport model differences on ¯ux estimates
at seasonal and interannual timescales. M

Methods
We use a bayesian synthesis inversion formalism16 that speci®es prior estimates of both the
¯uxes and their uncertainty, and optimizes with respect to atmospheric observations that
are also uncertain. We estimate ¯uxes for 11 land and 11 ocean regions (see Supplementary
Information) as differences from `background' ¯uxes that are run separately through each
transport model and represent fossil-fuel emissions17,18, seasonally varying air±sea gas
exchange10 and an annually balanced, seasonally varying ¯ux due to terrestrial photo-
synthesis and respiration19. The use of seasonally varying background ¯uxes allows the
annual mean inversion to include contributions to annual mean concentrations due to the
covariance of atmospheric transport and seasonal ¯uxes.

We invert 5-year mean measurements for 1992±96 at 76 sites taken from the
GLOBALVIEW-2000 data set20 (see Supplementary Information). GLOBALVIEW is a data
product that interpolates CO2 measurements to a common time interval. Gaps in the data
are ®lled by extrapolation from marine boundary layer measurements. We have chosen to
use sites where the extrapolated data accounts for less than 30% of the 1992±96 period.
The measurements are weighted inversely by the degree to which the predicted concen-
trations are required by the inverse process to match the observations, which we refer to as
'data uncertainty'. In addition to measurement precision, this uncertainty incorporates the
inability of coarse-grid models to adequately represent discrete measurements. The
relative uncertainty of one site to another was based on the mean residual standard
deviations for 1992±96 from GLOBALVIEW. The absolute magnitudes were chosen to
produce a mean square normalized residual out of the inversion of about 1.0, ensuring that
the estimated ¯uxes were optimized to the data only to an appropriate level commensurate
with our ability to model them. A minimum uncertainty was also speci®ed. This gave
uncertainties ranging from 0.25 p.p.m. for remote, `clean air' sites to 2.2 p.p.m. for
continental, `noisy' sites (Fig. 2).

The 11 land basis region boundaries were constructed to enclose vegetation of similar
seasonal structure and carbon exchange based on vegetation classi®cation21. Ocean basis
regions were chosen to approximate circulation features such as gyres and upwelling
regions. Unit emissions of 1 Gt C yr-1 were speci®ed from each region. Subregional-scale
variations in emissions rates were prescribed for land regions according to simulated net
primary production from the CASA model21. This assumes that carbon ¯uxes follow the
distribution of vegetation productivity. Emissions from ocean regions were prescribed as
spatially uniform, except that sea-ice was masked out using seasonally varying fractional
ice cover distributions22. The inversion requires prior ¯ux and uncertainty estimates. Our
choices have been guided by ocean and terrestrial ¯ux models and observations10,19, and are
shown in Fig. 1 (also see Table 2 in Supplementary Information). The land region prior

¯ux estimates incorporate recent inventory estimates23±30. Where more than one estimate
for a given region was considered, a mid-point of the estimate spread was used. The prior
¯ux uncertainty was chosen to be large enough to encompass all estimates. Prior ¯ux
uncertainties re¯ect one standard deviation.

The inversion is run separately for 16 transport models or model variants. The models
used (and the initials of the modellers) are CSU general circulation model (K.R.G.,
A.S.D.), Goddard Institute for Space Studies off-line modelÐUCB (I.Y.F., J.J.), UCI-CTM
with GISS-II' ®elds (M.P., B.C.P., 3 model variants), Japan Meteorological AgencyÐ
CDTM (T.M.), MATCH/CCM3 winds (L.B.), MATCH/NCEP winds (Y.H.C.), MATCH/
MACCM2 winds (R.M.L.), NIES (S.M.), National Institute for Resources and
Environment (S.T.), Recherche en Prevision Numerique (C.W.Y.), SKYHI (S.F.), TM2
(P.B., P.C., P.P.), TM3 (M.H.), GCTM (D.B.). The inversion produces estimated ¯uxes and
their uncertainties for each region individually and for some groups of regions in addition
to a background concentration. Here our analysis focuses on ¯uxes and uncertainties
that are averaged across models. We also specify two measures of uncertainty as
described in the main text. We show the `between' model uncertainty as a one standard
deviation con®dence interval for meaningful comparison with the within model
uncertainty. The obvious alternative, showing a full range, would also produce a
con®dence interval that would widen as more models were included. Inspection of the
individual ¯ux estimates showed them to be close to normally distributed about the
mean ¯ux for most regions.
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Aerobic, anoxygenic, phototrophic bacteria containing bacterio-
chlorophyll a (Bchla) require oxygen for both growth and Bchla
synthesis1±6. Recent reports suggest that these bacteria are widely
distributed in marine plankton, and that they may account for up
to 5% of surface ocean photosynthetic electron transport7 and
11% of the total microbial community8. Known planktonic
anoxygenic phototrophs belong to only a few restricted groups
within the Proteobacteria a-subclass. Here we report genomic
analyses of the photosynthetic gene content and operon organiza-
tion in naturally occurring marine bacteria. These photosynthetic
gene clusters included some that most closely resembled those of
Proteobacteria from the b-subclass, which have never before been
observed in marine environments. Furthermore, these photosyn-
thetic genes were broadly distributed in marine plankton, and
actively expressed in neritic bacterioplankton assemblages, indi-
cating that the newly identi®ed phototrophs were photosyntheti-
cally competent. Our data demonstrate that planktonic bacterial
assemblages are not simply composed of one uniform, widespread
class of anoxygenic phototrophs, as previously proposed8; rather,
these assemblages contain multiple, distantly related, photo-
synthetically active bacterial groups, including some unrelated
to known and cultivated types.

Most of the genes required for the formation of bacteriochloro-
phyll-containing photosystems in aerobic, anoxygenic, photo-
trophic (AAP) bacteria are clustered in a contiguous, 45-kilobase
(kb) chromosomal region (superoperon)6. These include bch and crt
genes coding for the enzymes of the bacteriochlorophyll and
carotenoid biosynthetic pathways, and the puf genes coding for
the subunits of the light-harvesting complex (pufB and pufA) and
the reaction centre complex (pufL and pufM). To better describe the
nature and diversity of planktonic, anoxygenic, photosynthetic
bacteria, we screened a surface-water bacterial arti®cial chromo-

² Present addresses: Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel

(O.B.); Nara Institute of Science and Technology, Takayama, Ikoma 630-0101, Japan (T.H.).
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Figure 1 Phylogenetic relationships of pufM gene (a) and rRNA (b) sequences of AAP

bacteria. a, b, Evolutionary distances for the pufM genes (a) were determined from an

alignment of 600 nucleotide positions, and for rRNA genes (b) from an alignment of 860

nucleotide sequence positions. Evolutionary relationships were determined by neighbour-

joining analysis (see Methods). The green non-sulphur bacterium Chloro¯exus

aurantiacus was used as an outgroup. pufM genes that were ampli®ed by PCR in this

study are indicated by the env pre®x, with `m' indicating Monterey, and HOT indicating

Hawaii ocean time series. Cultivated aerobes are marked in light blue, bacteria cultured

from sea water are marked with an asterisk, and environmental cDNAs are marked in red.

Photosynthetic a-, b- and g-proteobacterial groups are indicated by the vertical bars to

the right of the tree. Bootstrap values greater than 50% are indicated above the branches.

The scale bar represents number of substitutions per site.
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