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ABSTRACT OF THE DISSERTATION

Mathematical Models of

T-cell Population Dynamics

in Aging and Immune Disease

by

Stephanie Marissa Lewkiewicz

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2018

Professor Tom Chou, Chair

In this dissertation, we use birth-death-immigration systems of ordinary differential equa-

tions to study the dynamics of human naive T-cell populations in healthy aging and dis-

ease of the immune system. We derive a model that tracks both total cell counts and

counts of clones (groups of genetically identical cells) of a particular size; from the latter,

we compute the total clone count, or “diversity”, which provides a quantitative measure

of the extent to which the T-cell pool can cope with invading pathogens. We first formu-

late a nonautonomous model of T-cell birth and replenishment throughout an individual’s

lifetime, and use it to assess the relationship between the immune tissue damage, T-cell

loss and dysfunction, and weakened immune response all observed simultaneously in ag-

ing. We identify tissue loss in the thymus as a fundamental cause of diminished T-cell

counts, and also that diversity loss can only underlie weakened immune effectiveness in

aging if small clones are ineffective against pathogen. Using a short-time, autonomous

version of the same ODE, we then study changes to the T-cell pool during an instance of

acute thymic atrophy and recovery. We identify equilibrium solutions that arise at differ-

ent rates of T-cell production, and derive analytic approximations to the eigenvalues and

eigenvectors of the linearization around the equilibria. From the forms of the eigenvalues

and eigenvectors, we are able to estimate rates at which different size-segregated groups

of clones converge to equilibria–that is, “adjust” to the changing rate of T-cell produc-

tion. Finally, we formulate a total cell count model of populations of HIV-immune and

HIV-susceptible cells of the T-cell lineage in the bone marrow, thymus, and peripheral
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blood after transplant of HIV-immune bone marrow into an HIV-infected individual. We

show that independent of assumptions about the homeostatic mechanism in the periph-

ery, the ratio of HIV-immune to HIV-susceptible T-cells in each immune region should

asymptotically approach the ratio of HIV-immune to HIV-susceptible stem cells that re-

sults after bone marrow transplant with no infection present. We show that with virus

introduced into the system, the asymptotic ratio of HIV-immune to HIV-susceptible pe-

ripheral T-cells is highly sensitive to parameters affecting the body’s ability to clear the

virus.
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CHAPTER 1

Introduction

1.1 Biological Background

Essentially all living organisms rely on an immune system for protection against foreign

pathogens–the viruses, bacteria, fungi, and other microorganisms capable of causing harm

to our bodily tissues. The human immune system, like that of most other vertebrate

animals, is naturally divided into three major components: the skin, the innate immune

system, and the adaptive immune system. The skin provides an immediate physical

barrier to the outside world, acting as a first line of defense against invading pathogens.

A pathogen that manages to breach this barrier first encounters the innate immune

system, the agents of which are various cells and proteins only capable of distinguishing

“foreign” objects from “self” objects, indiscriminately destroying anything of the former

type. Almost all living things possess this type of immunity, and it is highly effective, as

most pathogens that enter an organism are destroyed by the innate immune system. The

few pathogens that manage to evade detection by the innate immune system are then

dealt with by the more sophisticated adaptive immune system. The agents of the adaptive

immune system, unlike those of the innate immune system, are tailored to respond to

the specific pathogen the system has detected. In this dissertation, we will study the

population dynamics of the most crucial component of the adaptive immune system: the

T-lymphocyte, or T-cell. T-cells are truly the linchpin of the adaptive immune system,

in the sense that they participate in the elimination of pathogen-infected cells and cancer

cells, and also direct the action of many other immune agents throughout the course of an

infection. We will construct and study ordinary differential equations models of human

T-cell population dynamics during healthy aging, acute disease of the thymus, and bone

marrow transplant treatment for HIV infection, each of which is associated with T-cell

loss and/or dysfunction. We begin now with general background information about the
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processes by which T-cells are made, compete to survive, and are destroyed, and the role

T-cells play in the immune response. Background information pertaining specifically to

T-cells in healthy aging (Chapter 2), acute thymic disease (Chapter 3), and bone marrow

transplant during HIV infection (Chapter 4), will be provided at the start of each chapter.

A pool of nearly 1012 T-cells circulates in a human’s peripheral bloodstream and lym-

phoid tissue at any given time. They circulate in a dormant state, awaiting stimulation

by “antigen”–small pieces of protein, potentially derived from pathogenic microorgan-

isms. Certain immune cells, referred to as antigen-presenting cells (APCs), consume

pathogen and digest them into such protein pieces. The antigen is then affixed to an

MHC molecule, and the antigen-MHC complex is transported to the surface of the APC,

which presents the antigen to T-cells in the ambient environment. If the antigen-MHC

complex on the APC binds to the T-cell receptor (TCR), a protein structure on the sur-

face of a nearby T-cell, the T-cell becomes activated. In a sense, the T-cell has become

alerted to the presence of pathogen in the organism, and enters an “effector” state. Once

activated, the T-cell begins a period of rapid proliferation, building up a large colony of

identical T-cells, which then work to clear the pathogen. It is important to note that not

all antigen-MHC complexes are capable of binding to any given T-cell receptor, because

the TCRs themselves are highly unique. Even though the thousands of TCRs on any

given T-cell are identical to one another, the common TCR present on a given cell is

unlikely to be detected on the surface of many other T-cells in the immune compartment

(if any at all). The number of distinct TCRs present on cells in an individual’s immune

compartment is referred to as the “T-cell richness”, and is one of many measures of the

“diversity” of the T-cell pool. The greater the T-cell pool’s diversity, the greater its

capacity to deal with a wide range of pathogens. (In this dissertation, the word diversity

refers specifically to richness, unless stated otherwise.)

T-cells originate from hematopoietic stem cells (HSCs) in the bone marrow. The

process of creating a new T-cell begins when an HSC divides into two daughter cells,

one of which commits to the T-cell lineage, thereby becoming a “T-cell progenitor” or

“precursor”, while the other retains the stem cell phenotype. Such T-cell precursors

migrate from the bone marrow into the thymus, a small organ located above the heart, to

begin the process of developing into a fully functioning T-cell. T-cells arrive in the thymus
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in an immature state, and much of the maturation process consists of the acquisition of

the TCR and other cell-surface molecules that allow it to communicate and interact

with its ambient environment. Distinct TCRs are generated during development in the

thymus through a process called recombination, during which genes that encode the TCR

are rearranged to produce highly variable protein structures (the α and β chains, or δ

and γ chains, which together constitute the TCR). Estimates indicate that ∼ 1015− 1020

distinct TCRs can be constructed via this process, creating a highly diverse T-cell pool.

Due to the small likelihood that recombination would by chance produce the same TCR

twice, it is assumed that repeat TCRs in the periphery result from cellular division–

or “proliferation”–which produces two identical daughter T-cells from one parent cell.

Indeed, maturing T-cells undergo proliferation at several stages during their development

in the thymus, and those released into the peripheral bloodstream undergo homeostatic

proliferation to maintain ideal cell counts. The thymic environment vets the TCRs of

developing T-cells for proper functionality. Stromal cells, which constitute the internal

architecture of the thymus, stimulate the TCRs of developing T-cells with “self-antigens”–

antigens derived not from a pathogen, but from the organism itself. A suitable TCR

should react strongly enough to a self-antigen to indicate an ability to function during

the immune response, but not so strongly that the TCR falsely identifies the self-antigen

as a foreign target. The 1 − 5% of T-cells maturing in the thymus that achieve this

delicate balance are exported from the thymus into the peripheral bloodstream. At the

time of export, a T-cell is said to be in a mature, but “naive”, state, in reference to the

fact that it has been deemed functionally competent, but has not yet been activated by

antigen. If a naive T-cell is activated and proliferates to form a clone of identical effector

cells, the infection is cleared and most of the cells in the clone die off, as they are no

longer needed. Several cells from the clonal lineage remain in the system, and evolve (or

“differentiate”) into what is called a memory T-cell. This type of cell exists to retain

a record of the encountered pathogen, so that the immune response may proceed more

efficiently should the pathogen ever invade the organism again. The human body hosts a

large pool of both naive and memory T-cells, and each population is subject to separate

and communal mechanisms of homeostatic regulation.
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1.2 Modeling Background

In this dissertation, we study the population dynamics of naive T-cells. Population

models are among the oldest and most canonical in mathematical biology, originat-

ing from the simple exponential ODE, x′(t) = λx(t), which assumes that populations

change at a rate proportional to the number of individuals present. Over time, they

evolved to capture further nuances, notably that of population regulation based on feed-

back mechanisms, as well as immigration of new individuals to–and emigration of ex-

istent individuals from–the population. We will consider birth-death-immigration mod-

els, which account for changes to the population due to immigration of new T-cells

from the thymus, and regulation-driven cellular proliferation and death in the periph-

eral blood and lymphatic tissue. T-cells have been modeled in this way for many

years [MPF96, MPF97]. Previous modeling efforts include analysis of data pertaining to

the thymic export rate of new T-cells [RP07, BTY09, HLC13], assessment of the relative

importance of homeostatic maintenance and thymic export in sustaining the T-cell pool

at different ages [BAC09, MKH03], and investigation of the influence of certain chemical

resources in T-cell survival [RCL13]. As in this previous work, we use single population

models to describe the total T-cell count, and also expand on the total cell count model

by deriving a system of ODEs that describes the dynamics of individual T-cell clones

or groups of clones. Such a model is advantageous when desiring to distinguish T-cell

clones with certain attributes, such as a particular level of responsiveness to activation

or suitability for survival, or those of a particular size [GKC15, DMM17]. We direct our

attention to the last attribute, studying a model that tracks the total number of T-cell

clones of a given size. As the size of a clone potentially correlates with its effectiveness in

the immune response, the behavior of size-segregated T-cell groups informs predictions

about immune effectiveness during disease. In this sense, we create a model that follows

the T-cell population on a macroscopic and microscopic level, as it responds to changes

induced by immune disease and throughout the course of human aging. For simplicity,

we treat the different T-cell subgroups (CD4 versus CD8 cells) as one unified population;

for modeling purposes, we regard the behavior of the average T-cell in a given context as

an average of the behaviors of a CD4 and CD8 cell in that context.
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The chapters in this thesis are more or less self-contained, so that they may be read

individually without reference to other chapters.
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CHAPTER 2

T-cell Populations in Healthy Aging

2.1 Introduction

Immunosenescence underlies poor health outcomes in the aging population, including

diminished vaccine efficacy ([PLM10, MD08, FE08]), increased susceptibility to disease

(including irregular presentation, intensified symptoms, longer recovery times, and in-

creased mortality) ([TMA12]), and a heightened risk of cancer ([GLC01]). The aging

of the human immune system is a highly degradative process, which originates from ex-

tensive fundamental changes to the size and functionality of immune cell pools, and the

structure of lymphatic tissues in which they develop and operate ([SRD13]).

Among the many changes associated with immunosenescence ([GE00]), the T-cell

compartment is arguably the most damaged ([WDB00, GHS07]). The T-cell pool is com-

prised of subpopulations of antigen-inexperienced naive cells and antigen-experienced

memory cells, the latter of which retain immunological record of previous infections.

The human immune compartment maintains ∼ 1012 T-cells in total, of which ∼ 1011

are naive ([JCM09, Tre74]). During aging, the population of naive T-cells declines in

overall size, while the population of memory T-cells undergoes extensive proliferation,

thereby reversing the balance of naive and memory T-cells that had persisted at younger

ages ([GE00, FVP00]). The expansion of memory T-cells further enhances immunologi-

cal memory of previously-encountered antigens, reinforcing existent immune protection.

Many memory T-cells, however, experience senescence, whereby the ability to proliferate

and function properly is lost. The remaining naive pool experiences loss of T-cell receptor

(TCR) “structural diversity” ([GLW07, GQO15])–the number of distinct TCR complexes

present across the entire naive pool. The diversity of T-cell clones, or “immunoclones”,

provides the extent of antigen specificity, with higher diversity corresponding to stronger

6



responsiveness to a larger number of pathogens. Unique TCR complexes are generated

during T-cell development in the thymus, via recombination of genes encoding the V

and J domains of the TCRα chain and the V, J, and D domains of the TCRβ chain,

along with additional insertion and deletion of nucleotide fragments ([Mur12]). Com-

binatorially, a possible Ω0 ∼ 1015 − 1020 unique TCR complexes may be assembled via

this rearrangement process ([LBA15]), but only Ω ∼ (0.05)×Ω0 of those rearrangements

are functionally viable ([Yat14]), as determined by positive and negative selection tests

in the thymus, which screen for appropriate reactivity to self-peptide/MHC molecules.

Each TCR is activated by at least one peptide fragment presented via MHC molecules

on the surface of an antigen-presenting cell, thus loss of naive TCR structural diversity

limits the number of new antigens to which the full naive T-cell pool can respond. Naive

cells are also suspected to suffer major functional deficiencies in aging, such as diminished

binding affinity and proliferative capacity after antigenic stimulation ([MAL13]). These

effects have mostly been studied using murine models to date ([AS14]), and are not yet

well understood in humans, thus beyond the scope of this thesis.

The total abundance of naive T-cells, which inhabit both blood and lymphatic tis-

sue, can be reliably estimated from measurements in small samples ([WP90, BAC09]).

Recently, Westera et al. [WHD15] estimated an ∼ 52% decrease in the size of the naive

T-cell population in aging. In contrast, accurate estimation of full-organism TCR struc-

tural diversity is currently impeded by experimental imprecision and the inability to

extrapolate small sample data to the full organism ([LBA15]). Experimentation typi-

cally entails DNA sequencing of the TCRα or–more commonly–β chain, in particular

the complimentarity-determining region 3 (CDR3), which is the site of TCR binding to

antigenic peptide and most significant source of diversity ([Mur12]).

Increasingly sophisticated deep sequencing methods have improved estimates of a

lower bound on TCR diversity, but its direct estimation remains a challenge due to

various experimental complications, such as the inability to detect rare clonotypes, se-

quencing errors, and inaccurate measurement of clonotype frequencies resulting from

inconsistencies in polymerase chain reaction (PCR) amplification ([LBA15]). Predicting

full-organism TCR diversity from a small sample is typically formulated as an “unseen

species problem”, and one of many canonical solutions of such a problem is employed
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in conjunction with experimental data ([Cha84, CL92, CC94]), but the true relationship

between sample and full diversity is fundamentally elusive.

Despite variations in experimental measurements of TCR diversity, its age-related loss

has been consistently observed. An early study conducted by Naylor et al. [NLV05] pre-

dicted a TCRβ chain diversity of ∼ 2×107 that persisted in donors through age 60, before

dropping by two orders of magnitude to ∼ 2 × 105 at age 70. More recently, Britanova

et al. [BPS14] collected samples from donors of all ages and observed an approximately

linear decrease in TCRβ CDR3 diversity from ∼ 7 × 106 in youth (6 − 25 years) to

∼ 2.4 × 106 in advanced age (61 − 66 years). Qi et al. [QLC14] obtained a particularly

high lower bound estimate of ∼ 108 unique TCRβ sequences in youth (20 − 35 years),

which declined two- to five-fold in advanced age (70− 85 years).

Note that only the TCRβ chain is sequenced in these experiments. Sequencing of

both the α and β chains together would potentially produce a more accurate measure of

TCR diversity, but the same experimental limitations preclude complete analysis. The

measurement of diversity is further complicated by the potentially complex relationship

between structural diversity and “functional diversity”–that is, the number of antigens to

which the T-cell pool is capable of responding. Due to the potential for crossreactivity,

in which one TCR might respond to many structurally similar peptide fragments, it is

possible that actual TCR diversity is much higher than structural diversity indicates. It

has been speculated that one TCR might respond to as many as 106 different peptide

epitopes ([Mas98]).

To obtain lifetime estimates of TCR structural diversity, and develop an informed

context for discussion of functional diversity, we introduce a mechanistic mathematical

model of the generation and replenishment of the lymphocyte pool from birth through

the end of life. Although experimental assessments of full-system information remain

challenging, measurements for the dynamics of each component related to the T-cell

population can be found throughout the literature. Our mathematical approach combines

the knowledge of these individual components to study their interplay, leading to an

understanding of the full-system dynamics. By extending previous model studies of total

cell counts ([MPF96, MPF97, RP07, BAC09, BTY09, HLC13, MKH03, RCL13]), our

multi-component formulation is able to efficiently track the total number of distinct T-
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cell clones, allowing for a full-system assessment of TCR structural diversity.

2.2 Mathematical Models and Analysis

We develop our mathematical model by first constructing the equation governing the total

population size of the naive T-cell pool in Sec. 2.2.1, through which we quantitatively

constrain the primary parameters of our model using experimental measurements found

in previous literature. The model that describes the evolution of immunoclones is derived

in Sec. 2.2.2, allowing us to define and estimate the diversity of the T-cell population in

Sec. 2.2.3. In Sec. 2.2.4, we derive a method for computing full-organism diversity from

the diversity measured in small samples.

2.2.1 Total T-cell Population Model

There are three fundamental immunological mechanisms that sustain the naive T-cell

pool: 1) export of mature naive T-cells from the thymus, 2) peripheral proliferation

(which is regulated by a mechanism separate from that which regulates memory cells),

and 3) cell removal from the naive pool due to death or phenotypic changes. These

basic mechanisms constitute a birth-death-immigration process described by the ordinary

differential equation,

dN(t)

dt
= γ(t) + pN(t)− µ(N)N(t), (2.1)

where N(t) denotes the total T-cell count, γ > 0 denotes the rate of thymic output, p > 0

denotes the rate of proliferation, and µ(N) > 0 denotes the rate of population-dependent

regulated cellular death or loss of naive phenotype.

While more complex feedback mechanisms have been proposed in the context of the

thymus ([MPF97]), other experiments have shown that thymic export is independent of

naive T-cell counts ([RP07, BBM98, Met63]), and it is well-established that the export

rate decays consistently throughout the human lifespan ([MKH03]). The lifelong decline

of the thymic export rate is caused by thymic involution, the degradation of the structural
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integrity and functional capacity of the thymus with age ([SKM85]). The age dependence

of the rate of thymic export of newly-trained T-cells is often approximated by an expo-

nentially decaying function, γ(t) = γ0e
−at, where γ0 > 0 is the maximum rate of thymic

output that arises in early years, and a > 0 is the rate of decrease in thymic output.

The immune systems of vertebrates maintain a healthy naive T-cell count through

complex homeostatic mechanisms, which include controlled production and distribution

of common gamma chain cytokines, particularly IL-7, to the naive pool ([FM05]). IL-7 is

secreted by stromal and endothelial cells in the thymus, bone marrow, and lymphatic tis-

sue, providing T-cells with necessary survival signals. In lymphoreplete conditions, com-

petition for this limited resource regulates population size ([BHS05, TDL01, VBM01]),

but in lymphopenic conditions, high levels of IL-7 resulting from low T-cell counts can

even stimulate cellular proliferation. While IL-7 concentration may be explicitly formu-

lated in a mathematical model of the peripheral T-cell population, as in the work of

Reynolds et al. [RCL13], most models incorporate IL-7 regulation implicitly in the form

of carrying capacity, assuming quick equilibration in a state of competition for IL-7 in the

presence of a given number of T-cells. Such simplification commonly leads to the depen-

dence on total cell counts of both cell proliferation and cell death rates, considering the

cytokine’s dual role under lymphoreplete and lymphopenic conditions described above.

Our model assumes cell-count dependence of the cell death rate only, focusing on scenar-

ios of healthy aging, i.e., lymphoreplete conditions. We thus assume an N -dependent cell

death rate of the form

µ(N) = µ0 +
µ1N

2

N2 +K2
, (2.2)

where the first term, µ0 > 0, is the basal rate of cellular death. The second one describes

the IL-7-mediated regulation of cell death, with µ1 > 0 representing the maximal increase

to the death rate as N →∞. The quantity K is analogous to a “carrying capacity” and

dictates the population at which signalling induced death starts to limit the population.

The constant rate of cellular proliferation under healthy conditions is supported by recent

studies of Westera et al. [WHD15], showing nearly identical naive proliferation rates in

youth and advanced age during moderate age-related non-lymphopenic loss of naive cells.

IL-7 induced proliferation can arise in unhealthy lymphopenic conditions typically found
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in severe disease of the immune system ([BMS14]), cytotoxic drug use ([Ger99]), radiation

treatment ([GEC15]), or other abnormal situations. These scenarios are, however, beyond

the scope of our analysis.

Our model has six adjustable parameters, γ0, a, p, µ0, µ1 and K. The first four

are biologically inherent to the mechanism of T-cell homeostasis, and have been mea-

sured experimentally in humans and rodents. The last two have to be constrained

via parameter sweeps to match relevant experimental observations. Fig. 2.1(a) illus-

trates four qualitatively distinct trajectories of N(t) that may arise from simulations

of the model in the presence of a decaying thymic export rate γ(t) (gray dash-dotted

curve). To non-dimensionalize Eqs. 2.1, 2.2, we use a−1 to rescale t and K to rescale N .

The qualitative behavior of our model is thus controlled by three independent param-

eters: γ0a
−1K−1, (p − µ0)a−1, and µ1 (p− µ0)−1. The black dashed curve arises when

µ1 (p− µ0)−1 < 1. In this case cell proliferation always exceeds cell death, leading to

unbounded expansion of the naive T-cell population. This scenario is unrealistic, except

perhaps during a period of lymphopenia. For µ1 (p− µ0)−1 ≥ 1, cell death is able to

balance cell proliferation at a homeostatic carrying capacity N = Nss(γ = 0), defined by

µ(Nss(γ = 0)) = p, as γ → 0. As illustrated by the green dotted curve, N(t) rises and

asymptotically converges towards Nss(γ = 0) provided that γ0a
−1K−1 � 1. We refer to

this parameter regime as “proliferation-driven”, given that the cell population is driven to

Nss(γ = 0) primarily by homeostatic proliferation. The model’s behavior makes a transi-

tion from proliferation-driven to “thymus-driven” if we increase γ0a
−1K−1. As shown by

the blue solid curve, N(t), driven by increased thymic export, overshoots and approaches

Nss(γ = 0) asymptotically from above as γ(t) → 0. Finally, the red dash-dotted curve

arises when (p − µ0)a−1 ≤ 0. In this case, cell death always exceeds cell proliferation

as γ(t) → 0, and N(t) → 0. As stated earlier, in this paper we focus on scenarios of

healthy aging (lymphoreplete) conditions, which immediately rules out the scenarios of

unbounded growth (black dashed curve) and complete collapse of the T-cell population

(the red dot-dashed curve), effectively constraining our parameters to the physiologically

reasonable values µ1 (p− µ0)−1 ≥ 1 and (p− µ0)a−1 > 0.

We can further quantitatively calibrate the parameter values using experimental mea-

surements in the literature. The constant peripheral proliferation rate p has been mea-
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sured by Westera et al. [WHD15] as 0.05% day−1, or equivalently p = 0.18 year−1. The

basal death rate µ0 can be estimated from the lifespan of T-cells. Based on data from

Vrisekoop et al. [VBB08], De Boer and Perelson [dP13] obtain an average naive CD4+

T-cell lifespan of ∼ 5 years and an average naive CD8+ lifespan of ∼ 7.6 years. Given

the normal CD4+:CD8+ ratio of 2:1, the average combined naive T-cell clearance rate is

µ0 = 1
5.9

year−1 = 0.17 year−1. Thymic involution with age can be quantified by measuring

the decrease in thymic epithelial volume ([Ste86]), based on which Murray et al. [MKH03]

showed that thymic output decreases by an average of 4.3% per year between ages 0 and

100, implying a decay factor of a = | ln(0.957)| ' 0.044. The rate of thymic export has re-

cently been measured in young adults (20−25 years old) at ∼ 1.6×107 trained cells daily,

or equivalently 5.8× 109 per year ([WHD15]). Assuming that this rate is γ(t) at t = 25

years, we can back-calculate γ0 = (5.8 × 109) ×
(

100
33.3

)
≈ 1.75 × 1010 cell exports/year.

Note that these values of p, µ0, and a satisfy the constraint (p− µ0) a−1 > 0 that prevents

the T-cell population from completely collapsing.

While direct experimental measurements of µ1 and K are not available in the litera-

ture, further inspection of Fig. 2.1(a) reveals that µ1 and K determine whether thymic

export or homeostatic proliferation dominates the evolution of N(t). Through the dimen-

sionless parameters, γ0a
−1K−1 and µ1 (p− µ0)−1, the time at which N(t) peaks and the

speed at which it declines from the peak vary with changes to the values of µ1 and K.

Recently, Westera et al. [WHD15] reported a 52% decrease in total naive T-cell counts

between young adults and elderly individuals, which we can use to quantitatively con-

strain µ1 and K. Let us define individuals of an age between t = 20 and 30 years as young

adults, and those between t = 70 and 80 as the elderly. Assuming that interpersonal het-

erogeneity unrelated to age averages out over large sample sizes in clinical data, we may

evaluate N̄y = 1
10

∫ 30

20
N(t)dt and N̄o = 1

10

∫ 80

70
N(t)dt as the average naive T-cell counts

in the young and the elderly, respectively, as illustrated by the shaded areas under the

thymus-domination curve in Fig. 2.1(a). The relative change in the naive T-cell count

between youth and advanced age can thus be evaluated as

∆(N̄) =
(N̄o − N̄y)

N̄y

. (2.3)
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Fig. 2.1(b) plots ∆(N̄) as a function of γ0a
−1K−1 and µ1 (p− µ0)−1, with a = 0.044 year−1

for converting the dimensionless time to years to compute N̄y and N̄o. When γ0a
−1K−1 .

1 and µ1 (p− µ0)−1 . 2, ∆(N̄) > 0. Note that the homeostatic carrying capacity when

γ(t) = 0 is Nss(γ = 0) = K (µ1(p− µ0)−1 − 1)
−1

. A small γ0a
−1K−1 value repre-

sents a relatively low thymic export rate, and the carrying capacity increases rapidly

as µ1 (p− µ0)−1 → 1, both of which make it challenging for thymic output to fill up the

T-cell pool to carrying capacity before γ(t) considerably decays before t ∼ a−1. As a

result, N(t) does not reach a peak value in youth and continues increasing into old age.

The ≈ 52% decrease in naive T-cell counts reported by Westera et al. [WHD15] is de-

picted by the black dotted curve. If we set µ1 (p− µ0)−1 = 4, our model can be calibrated

to reproduce this decrease in the cell count by choosing K = 1010 (γ0a
−1K−1 ' 41 with

γ0 = 1.8×1010 and a = 0.044). In contrast, K = 1012 yields γ0a
−1K−1 ' 0.41, leading to

an increase in the cell count (∆(N̄) ' 0.63). In between, K = 1011 results in a moderate

decrease in the cell count (∆(N̄) ' −0.33). For the rest of the paper, we fix K = 1010

and µ1 (p− µ0)−1 = 4, or equivalently µ1 = 0.04, given that p = 0.18 and µ0 = 0.17, so

that the age-related decline of N(t) in our model is consistent with the results of Westera

et al. [WHD15].

Note that there exist two intrinsic timescales in Eq. 2.1; thymic export decays at rate

a, while the homeostatic time scale is controlled by p, µ0, and µ1. If homeostasis is much

faster than thymic involution, the solution N(t) will quickly converge to the quasisteady-

state solution as γ(t) evolves. We compare these two solutions in Fig. 2.2(a), where

the quasisteady-state solution is obtained by solving for the steady-state solution, Nss,

of Eq. 2.1 with fixed γ(t) at each time t, and Nss(γ(t)) (black dashed curve) decreases

monotonically with age due to the continuous decline of γ(t). In contrast, N(t) (blue

solid curve) slowly rises from the initial condition N(1) = 1011 and does not approach

the quasisteady-state level until age ≈ 20 years. The trajectory of N(t) then overshoots

the declining Nss(γ(t)), reaches a peak value, and reverses course to follow Nss(γ(t)).

However, N(t) doesn’t catch up with Nss(γ(t)) before the latter reaches a steady-state

representing a very low cell count. That N(t) keeps lagging behind Nss(γ(t)) indicates

that the timescale on which the full model solution converges to the local steady-state

is slower than that on which the nonautonomous term γ(t) evolves. The results here
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suggest that steady-state solutions cannot adequately describe the temporal evolution of

the T-cell population in the biologically relevant range of parameter values that we have

implemented. It is necessary to numerically compute the time-dependent solutions of the

full nonautonomous equation.

Indeed, we find a disparity in the rates at which thymic export decays and the steady

state solutions evolve. The latter is provided by the inverse of the linearization of Eq. 2.1

around N = Nss(γ(t)). The eigenvalue takes the form λ1 = p0 − (µ0 + µ1((3N2
ssK

2 +

N4
ss)/((K

2 + N2
ss)

2)). Simulations in Fig. 2.2(b) show that for the biologically relevant

parameter values we have implemented, the cell-population evolution timescale, |λ1|−1

(red solid curve), is generally longer than the timescale of thymic involution (a−1 '

22.7 years for a = 0.044, as denoted by the horizontal black dotted line). Hence the

nonautonomous solutions N(t) are expected to lag behind the thymus-driven steady-state

solutions Nss. For N(t) to be reasonably well-approximated by Nss, the cell population

has to evolve much faster than thymic involution. This occurs when µ1 is very large (the

blue dash-dotted curve), and cell death is extremely sensitive to the cell population size.

2.2.2 Clonotype Abundance Distributions

We now wish to formulate a model that captures the behavior of individual clones. Assign

to each clone an index i, with i ∈ N. Assuming the same population dynamics for each

T-cell clonotype, the evolution of the expected cell count, ni(t), of the i-th clone may be

deduced from Eq. 2.1 and take the following generalized form,

dni
dt

=
γ(t)

Ω
+ pni − µ(N)ni, (2.4)

where γ(t)/Ω represents thymic export of naive T-cells of each TCR type (the total thymic

export rate divided by the total number of viable TCR combinations Ω), and N(t) =∑
i ni(t). Within the framework of these “neutral” models, basic qualitative behaviors

of T-cell population dynamics have been investigated, particularly for scale-invariant

properties that can be studied in a reduced system ([LCH16, DMW15]). Indeed, the

total number of T-cell clonotypes, Ω, in rodent or human bodies is prohibitively large for
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direct numerical simulation of the full system using Eq. 2.4. It is thus common to reduce

the full system to a more manageable size with the assumption that the phenomena under

investigation are scale-invariant. However, it is sometimes difficult to assert whether a

certain property really does not change in a re-scaled system, as nonlinear phenomena,

such as the Allee effects, often arise in population dynamics and cast doubt on the

scalability of the system. Moreover, some properties, such as the thymic export rate,

γ(t), are naturally scale dependent. It is not always clear how these quantities should

be re-scaled in a reduced system, and they have typically been omitted by simplification

arguments in previous models, which limits the applicability of these models.

To facilitate a more manageable full-system model, we consider a formulation that

tracks how the expected number of clones of a given size changes with time. By focusing

on the clone count rather than the count of cells of each distinct clonotype, we are

able to effectively reduce the number of tracked variables and thus the dimension of the

model. This representation was used by Ewens in population genetics [Ewe72], by Goyal

et al. [GKC15] in the context of hematopoietic stem cell population dynamics, and by

Desponds et al. in the context of T-cells [DMM17]. We define ĉk(t) to be the number of

clones represented by exactly k naive T-cells in the organism at time t:

ĉk(t) =
Ω∑
i=1

δni(t),k, (2.5)

where the Kronecker delta function, δx,y, satisfies δx,y = 1 when x = y and δx,y = 0

otherwise. By lumping clones of a common size into one single variable, ĉk, we can ef-

ficiently describe changes to the full system TCR diversity, albeit at the expense of the

ability to distinguish individual clonotypes ([MCB14, MW16]). Individual clone informa-

tion is lost, and ni(t) cannot be recovered from ĉk(t) after the transformation in Eq. 2.5.

Nonetheless, the amount of computation can be significantly reduced by truncating ĉk(t)

at a reasonably large k, as few large clones exist in realistic scenarios, and ĉk(t) for large k

is negligible. Letting c0(t) ≡ 〈ĉ0(t)〉 denote the expected number of all possible (thymus-

allowed) clonotypes unrepresented in the periphery at time t, and ck(t) ≡ 〈ĉk(t)〉 the

expected number of clones of size k at time t, a closed set of equations governing the
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evolution of ck(t) can be derived from Eq. 2.4 in the mean-field limit,

dck(t)

dt
=
γ(t)

Ω
[ck−1 − ck] + p [(k − 1)ck−1 − kck] + µ(N) [(k + 1)ck+1 − kck] , (2.6)

where N(t) =
∑∞

i ni(t) =
∑∞

`=1 `c`(t). The expected values ck(t) are also called species

abundances in the ecology literature. The number of unrepresented clones is c0 = Ω −∑∞
k=1 ck, and summing Eq. 2.6 multiplied by k over k = 1, 2, · · · recovers Eq. 2.1. The

mean-field assumption is articulated in terms such as µ(
∑

` `ĉ`)ĉk that involve higher-

order products of ĉk rather than correlations of products of ĉk.

We have found that this mean-field approximation breaks down only when γ/µ <

1/Ω� 1 (unpublished results). With this parameter relationship, the total population is

proliferation driven and the quasistatic configuration is N ∼ K and all ck ∼ 0 except cM ,

where M is the finite index at which the ODE system is truncated. Thus, we reasonably

assume that γ(t) > µ/Ω allowing the use of the mean-field equations 2.6.

In Eq. 2.6, the terms (γ(t)/Ω)ck, pkck, and µ(N)kck respectively represent the effects

of thymic export, homeostatic proliferation and cell death on a T-cell clone consisting

of k cells in the peripheral blood. Adding one cell via thymic export or homeostatic

proliferation moves one clone from the ck-compartment to the ck+1-compartment, while

the death of one cell shifts one clone from the ck-compartment to the ck−1-compartment.

Proliferation and thymic export thus reduce ck and increase ck+1, while death reduces ck

and increases ck−1.

In a healthy, aging adult, the TCR repertoire is mostly comprised of small clones,

and the probability of finding a clone of size k decreases as k increases. To solve Eq. 2.6

numerically, we thus truncate the model at a maximum clone size M � 1, beyond which

the probability of finding a clone is assumed negligible. For our implementation of the

truncation, please see Appendix 2.5. In Fig. 2.3(a) we examine the effect of changes to

M on solution behavior. We find that for M & 30, increases to M produce effectively no

change in c10(t) at t = 40 and 70, indicating that inclusion of clones of size larger than

30 has little effect on the solution for t . 70 years. For numerical simulations of Eq. 2.6

in this chapter, we set M = 200 to ensure minimal truncation errors.
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Fig. 2.3(b) shows the temporal evolution of ck(t) for k = 2, 19, and 59. As k increases,

the overall magnitude of ck(t) decreases, and the age at which ck(t) peaks increases. For

example, c2(t) peaks in the region t . 20 years, and there are many fewer clones of size

2 in old age than there are in youth. In contrast, c19(t) peaks around age 55, and the

number of clones of size 19 is roughly the same in old age as it was in youth, while the

number of clones of size 59 (c59(t)) keeps increasing into old age.

That ck(t) peaks earlier when k is smaller is expected, considering that new single-

cell clones are introduced into the peripheral circulation primarily by the thymus, which

starts to involute shortly after birth. When k is larger, thymic export has less of an

influence–and homeostatic proliferation more of an influence–on ck(t). Recalling that

the rate of thymic involution is faster than the time scale on which homeostasis drives

the clonal population towards equilibrium, the fast collapse of the rare clone population

leaves room for larger clones to expand.

To accompany the steady state Nss, we compute analogous fixed-γ0 steady state solu-

tions of the full system, css
k , in Appendix 2.6. The steady-states satisfy css

k → 0 as γ0 → 0

for all 1 ≤ k ≤ M . We show that despite the fact that css
k → 0 as γ0 → 0, Eq. 2.6

asymptotically yields a positive total cell count, with limγ0→0 limM→∞
∑M

k=1 kc
ss
k > 0,

indicating qualitative consistency with the positive, stable steady-state of Eq. 2.1. More-

over, we prove in Appendix 2.7 that solutions ck(t) of the full nonautonomous system

satisfy ck(t) → 0 for all 1 ≤ k ≤ M as t → ∞, independent of M . This result is com-

pletely independent of the assumed functional forms of the proliferation and death rates,

suggesting that manipulation of homeostatic regulatory mechanisms cannot prevent the

extinction of small T-cell clones caused by the decay of γ(t) to 0. We thus conclude that

TCR diversity cannot be preserved in the context of an involuting thymus.

2.2.3 Diversity of the Naive T-cell Repertoire

From the functions ck that track the number of clones consisting of k cells, we are able to

observe how TCR diversity changes over the course of a human lifespan. TCR structural

diversity, or “richness”, is the total number of distinct clones present in the immune com-

partment. To explore the nuances of the notion of TCR diversity, we define a “threshold”

TCR richness diversity,
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Rq(t) =
∑
k≥q

ck(t), (2.7)

where q ∈ N, and Rq(t) represents the number of clones of size at least q present in

the immune compartment at time t. There are several reasons to consider omitting

clones smaller than a minimal size threshold. The initiation of the adaptive immune

response requires physical contact between a T-cell and another immune cell capable

of activating it, and the likelihood of such a collision intuitively decreases with clone

size, suggesting the possibility that sufficiently small clones are unlikely to engage the

immune response. Moreover, when measuring TCR diversity in humans experimentally,

small clones are likely to evade detection during sampling. The ability to neglect small

clones in our diversity measure thus allows us to paint a more accurate picture of immune

responsiveness and experimental results.

As shown in Fig. 2.4(a), Rq(t) increases in youth, peaks in childhood or early adult-

hood, and declines afterwards. As q increases, the time t at which Rq(t) peaks in-

creases. This behavior is consistent with that of the individual functions ck(t), as shown

in Fig. 2.3(b).

To compare values of Rq(t) in youth and advanced age, we adopt the same mea-

sure used to study total cell counts. Defining R̄y(q) ≡ 1
10

∫ 30

20
Rq(t)dt, and R̄o(q) ≡

1
10

∫ 80

70
Rq(t)dt, we quantify the loss of richness by computing its relative change,

∆(R̄q) ≡
(R̄o(q)− R̄y(q))

R̄y(q)
. (2.8)

Using the same parameter values as in Fig. 2.4(a), we plot ∆(R̄q) with respect to µ1

in Fig. 2.4(b), and with respect to q in Fig. 2.4(c). In Fig. 2.4(b), ∆(R̄q) decreases

monotonically with increasing µ1, suggesting that an upregulated death rate exacerbates

the age-related loss of richness, with the impact more significant at larger q. Fig. 2.4(c)

shows that when K = 1010, ∆(R̄q) < 0 for q ≤ 4. The lifetime decrease in Rq for

small q generally agrees with the loss of diversity observed in recent experiments where

measurements were taken from individuals at many ages ([QLC14, BPS14]). For q = 5, 6,
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∆(R̄q) ≈ 0, and Rq is nearly unchanged between youth and advanced age. For q ≥ 7,

∆(R̄q) > 0, indicating that Rq actually increases with age. Generally, Rq(t) presents a

lifetime decrease for small q, and a lifetime increase for large q, in agreement with our

discussion of Fig. 2.3(b) and Fig. 2.4(a). This phenomenon indicates that loss of diversity

is primarily due to the extinction of rare clones, which is consistent with the observation

made by Naylor et al. [NLV05]. In contrast, the number of larger clones increases over

time, leading to the lifetime increase to Rq(t) at higher q.

Recent TCR-β sequencing studies have attempted to estimate the change in the naive

T-cell repertoire richness with age. Even though these studies produce estimates of TCR

diversity that differ from one another by up to several orders of magnitude, they all agree

that there is a dramatic loss of richness with age. For example, Britanova et al. [BPS14]

estimated a diversity of∼ 7×106 distinct clonotypes in youth (ages 6−25), and∼ 2.4×106

in aged individuals (ages 61 − 66), a roughly 66% decrease. Similar measurements were

also reported by Qi et al. [QLC14], in which a two-to-five-fold decline (i.e., a 50% –

80% drop) between youth (ages 20− 35) and advanced age (ages 70− 84) was observed.

These results are quantitatively consistent with our computation of ∆(R̄1) for K = 1010

– 1011.5 and 0.03 ≤ µ1 ≤ 0.05 in Fig. 2.4(d), whereas the decline of Rq for q ≥ 2 is not as

pronounced as that observed in these experiments.

2.2.4 Sampling Statistics

Considering that naive T-cell richness is often assessed via small blood samples, let us

next use the same framework to examine the relationship between the detected clone sizes

in small samples and the true clone sizes in the full organism. As before, denote by N

the total number of naive T-cells in the human’s immune compartment, and Y ≤ N the

number of cells collected during sampling from among the N total. We assume that the

N total cells consist of R distinct clones, which we number from 1 to R. In this section,

we denote by cNk the mean number of clones of size k from among the N total cells in the

full organism (denoted by ck in the previous simulations), and by cYk the mean number

of clones of size k in the sampling of Y cells taken from the N total cells. Then the

expectation of cYk , denoted by E[cYk ], is,
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E[cYk ] =
R∑
j=1

jP
(
cYk = j

)
, (2.9)

where P
(
cYk = j

)
represents the probability that there are precisely j clones of size k in

the sampling. Then E[cYk ] may be expressed explicitly in terms of the cNk as:

E[cYk ] =
R∑
l=k

1(
N
Y

)cNl ( lk
)(

N − l
Y − k

)
. (2.10)

(See Appendix 2.8 for the detailed proof.) The collection of expressions given by Eq. 2.10

for k = 1, 2, · · · , R, yields a linear system of equations solvable for cNk , using sam-

pled data for the quantities E[cYk ]. More specifically, if we define the vectors Ê :=

(E[cY1 ],E[cY2 ], · · · ,E[cYR], ) and E := (cN1 , c
N
2 , · · · , cNR ), Eq. 2.10 can be written as Ê = AE,

where A is a constant matrix that has non-zero elements only in the upper triangle, with

non-zero diagonal entry 1

(NY )

(
N−k
Y−k

)
in position (k, k). The equation can always be solved

uniquely for E given Ê. Thus the full size distribution E can be uniquely reconstructed

from the expected mean sample size distribution Ê measured experimentally, provided

that the latter can be reliably estimated through a sufficient number of repeated sam-

plings.

2.3 Discussion

We have formulated a model of lifetime human naive T-cell population dynamics, which

traces T-cell lineages on the level of individual clones. It accounts for exponentially

decaying lifetime thymic export, a constant rate of cellular proliferation, and variable

cellular death rate that adjusts to present cell counts and availability of survival resources.

It depicts the generation of the naive T-cell pool in early life via thymic export, and

long-term maintenance of the population via peripheral turnover after thymic export has

waned. Values of most of the model’s parameters can be found in previous literature,

while the few exceptions are obtained by fitting some basic results of the model, such
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as age-related T-cell loss, to previous experiments. Our analysis serves two important

purposes: to map the thymic machinery, identifying which components do and do not

contribute to age-related cellular loss, and then to interpret the nuanced role of that

cellular loss in immunosenescence.

First, we compare simulations of the nonautonomous N -ODE in Eq. 2.1 with

quasisteady-state solutions NSS(γ(t)), over the course of age-related thymic export ero-

sion. We find that the nonautonomous solution lags behind the changing quasisteady-

state solutions, suggesting that thymic export decays on a faster timescale than that

on which solutions of the frozen-coefficient autonomous ODE converge to steady-state.

Mathematically, this result reveals that the evolution of the T-cell population within the

human lifespan is a rather dynamical phenomenon, which may not be well-described by

quasistatic solutions, requiring evaluation of the fully nonautonomous system. Biologi-

cally, our results indicate that the loss of T-cell diversity is a delayed response to thymic

involution, and we may predict the health of the immune system by assessing the level

of thymic function.

We have found that if thymic export is assumed to decay exponentially to zero, then all

compartments ck(t) (with 1 ≤ k ≤M) deplete as t→∞, independent of essentially any

restrictive assumptions about the homeostatic mechanism in the periphery. Concretely,

for any choice of proliferation and death rates p(N), µ(N), that satisfy p(0), µ(0) > 0,

and with the choice γ(t) = γ0e
−at with γ0, a > 0, there exists a sufficiently small δ > 0

such that ck(t) → 0 as t → ∞ for all 1 ≤ k ≤ M , if
∑
|ck(1)| ≤ δ. Although this result

only ensures that trajectories ck(t) initialized sufficiently close to zero converge to zero,

simulation indicates that the basin of attraction to this “zero state” is actually quite large.

In fact, for the typical initial conditions used throughout this chapter, simulation suggests

convergence of all compartments ck to zero in infinite time. Although full depletion of

the ck compartments only occurs in infinite time, the drop in richness diversity observed

during the human lifespan corresponds to the initial phase of this asymptotic process.

Most importantly, we are able to identify the exponentially-diminishing thymic export

rate as a fundamental cause of age-related diversity loss, in the sense that the T-cell

pool cannot survive if the rate of thymic export decays to zero, independent of the

functional forms of the homeostatic rate coefficients p(N), µ(N). Even a particularly
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strong homeostatic mechanism (say, one with p(0) � µ(0)) cannot rescue a plunging

diversity. This, in turn, suggests that in searching for treatments of age-induced loss of

diversity, efforts should be directed at the thymus, in particular to maintaining thymic

productivity into advanced age.

Although peripheral division cannot salvage the T-cell population on a long time scale,

we suspect that a higher basal proliferation rate may at least delay the erosion of the T-cell

compartment, sustaining acceptable effectiveness of the immune system within the human

lifespan ([NLV05]). With that in mind, we use a modified form of our model to investigate

the feasibility of artificially increasing the basal proliferation rate to combat immune

dysfunction. For simplicity, we take the death rate to be constant (µ(N) = µ0 > 0), and

adopt a logistic growth rate, p(N, t) = p(t)(1 − N/K), in which a jump increase in the

proliferation rate is incorporated into p(t). We let p(t) = p0(1 + rH(t− T )), with p0 > 0

the early-life basal cellular proliferation rate, and H(t) the Heaviside function, with T the

age at which the proliferation rate increases. The constant r specifies the magnitude of

the increase to the proliferation rate. (Full simulation details are given in the caption of

Fig. 2.5.) In addition to modeling treatment with, for instance, a chemical agent to induce

heightened cellular proliferation, this formulation could also describe a natural increase

to the basal proliferation rate. We assumed a constant lifetime rate of proliferation, but

alternative research suggests that such an inherent proliferation rate increase may, in fact,

occur ([NLV05]). This alternate description of the homeostatic mechanism thus serves

the dual purpose of exploring an alternate model formulation, to which the perturbation

analysis outlined in Appendix 2.5 does not apply, and also to investigate manipulation of

the homeostatic mechanism as a treatment option. By varying r, simulation under these

alternate hypotheses indicates that increased basal proliferation rates do lead to notably

higher total cell counts (Fig. 2.5(a)), but have little effect on diversity (Fig. 2.5(b)).

These results further affirm that heightened peripheral proliferation is unlikely to rescue

the eroding naive T-cell diversity, despite the increased cell count. If diversity loss is the

main cause of immunosenescence (an idea still up for debate in the medical community),

peripheral proliferation may not be the sensible target of treatment.

Although artificial increases to the basal proliferation rate are unable to salvage the

declining diversity, it is possible that the increase they cause to the total cell count may
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itself boost immune health, considering that most of the clones extinguished as diversity

wanes are very small, and may not effectively participate in the immune response to

begin with. In this regard, the viability of treating immunosenescence by increasing

peripheral proliferation depends on the elucidation of the T-cell pool’s effectiveness clone

size–that is, the size a clone must have attained to effectively guarantee activation of

the clone when its cognate antigen infiltrates the organism. The effectiveness clone size

is intrinsically linked to true functional TCR diversity; if we can identify a threshold

integer q∗, such that clones of size at least q∗ are reliably activated in the presence of

their cognate antigen(s), but that smaller clones are not, then Rq∗(t) is naturally the

most useful measure of diversity, because it accounts for precisely those clones actively

participating in the adaptive immune mechanism. The larger the “correct” choice of q∗ is,

the more effective treatments that increase cellular proliferation in the periphery will be.

Moreover, an increase to the total cell count may also strengthen the immune response

despite the loss of TCR diversity if the degree of T-cell crossreactivity high enough that

each T-cell is capable of responding to a wide array of pathogens.

The effectiveness clone size is also significant to the question of whether diversity loss

is the driving factor in immunosenescence. Using the parameter values that we found in

the literature, Rq(t) decreases from youth to advanced age for q ≤ 4, stays nearly constant

for q = 5, 6, and increases for q ≥ 7. The extinction of small clones allows the surviving

clones to expand in size, causing the richness of large clones to increase into advanced age.

If the effectiveness clone size is large, the diversity of such “effective” clones may actually

increase with age, strengthening the immune response. We may conclude that either the

effectiveness clone size is low, or the weakened immune response in advanced age is caused

primarily by other mechanisms. For example, functional deficiencies acquired by naive

T-cells in aging are one possible alternative cause of the weakened immune response.

Such functional deficiencies have been studied heavily in mouse models, but research

in humans is still lacking ([AS14]). Diminished naive T-cell effector responsiveness and

proliferative capacity have been observed in aged mice ([MAL13]), and it is possible

that similar changes occur in humans. On the other hand, experiments on mice have

directly shown that loss of TCR diversity does have an actively detrimental effect on

immune responsiveness ([YAL08]), supporting the notion that loss of TCR diversity is a
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significant contributor to immunosenescence.

Our model illustrates the feasibility of several different scenarios, in which loss of

diversity contributes to immunosenescence on drastically different levels. There is clearly

a strong need to investigate the effects of both age-related structural diversity loss and

diminished T-cell functionality in human subjects in vivo, to better understand the causes

of immunosenescence. Moreover, our model indicates that the effectiveness clone size and

crossreactivity in vivo are valuable pieces of missing information, the elucidation of which

would allow for the identification of effective options to treat immunosenescence.

2.4 Summary and Conclusions

We have simulated the time evolution of the functions ck(t), which represent the number

of naive T-cell clones of size k present in a human’s immune compartment at time t. We

determined that under essentially any realistic assumptions about homeostatic prolifer-

ation and death, all clones deplete in infinite time if thymic export is assumed to decay

exponentially. This implicates thymic export as a fundamental cause of age-associated

diversity loss. We simulated our model under the assumption that a carrying capacity is

regulated by homeostatic proliferation and death through N -dependent rates. We found

that the manipulation of homeostatic proliferation and death rates to raise the carrying

capacity, and thus the total cell count, was unable to save falling diversity as an individual

ages. It affirms the vital role of thymic output in age-related diversity loss, and indicates

that boosting the proliferation rate is unlikely to be an effective solution. However, if

only large clones are sufficiently effective in the immune response, boosting proliferation

rates might raise average clone sizes and help to mitigate the effects of lost diversity. We

simulated “threshold richness diversity”, Rq(t), which counts the total number of clones

of size q or larger. We found that by increasing q, Rq(t) goes from presenting a lifetime

decrease to a lifetime increase. From this trend, we concluded that if only large clones

are effective, the effective richness would actually increase with age, suggesting that it is

important to identify the minimal effectiveness clone size in order to determine whether

the loss of TCR diversity is the primary mechanism driving the immune dysfunction

seen in advanced age. Lastly, we derived a one-to-one mapping between the full-sample
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diversity cNk of N cells and the expected measurement of diversity E[cYk ] in samples of Y

cells. Our formulation provides a rigorous method for accurately inferring the statistical

distribution of clonal sizes from small-sample measurements.

2.5 Appendix: Implementation of Numerical Truncation

The most straightforward way to truncate Eq. 2.6 at k = M is to neglect the exchange

terms between cM and cM+1, assuming that ck is negligible for k > M and essentially

imposing a “no-flux” boundary condition. This leads to the following equation for the

boundary term cM(t):

dcM(t)

dt
=
γ(t)

Ω
cM−1 + p(M − 1)cM−1 − µ(N)McM . (2.11)

This formulation, however, introduces a disparity between N(t) as the solution of Eq. 2.1,

and the conceptual definition N(t) =
∑M

k=1 kck(t), with which it should agree. An alter-

native implementation of the truncation that preserves the relation N(t) =
∑M

k=1 kck(t)

is:

dcM(t)

dt
=
γ(t)

Ω

(
cM−1 +

cM
M

)
+ p(M − 1)cM−1 + pcM − µ(N)McM , (2.12)

However, the truncation in Eq. 2.12 introduces an error in the number of clonotypes,

Ω =
∑M

k=0 ck–a quantity which had been preserved by Eq. 2.11. In the limit as M →

∞, the truncation errors for both implementations go to zero at ∼ 1/M , and the two

implementations become more or less equivalent. Assuming sufficiently large M , the

truncation errors can be negligible when γ(t) > 0, or have minimal cumulative effects

within the relatively short duration of the human lifespan, on which our investigations in

this paper have primarily focused.

In this paper, we use, for simplicity, Eq. 2.11 to numerically truncate Eq. 2.6. Note

that this choice may seem “natural” if one regards M as the carrying capacity, making
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it reasonable for the clones accounted for in the function cM to proliferate at rate zero.

However, the mechanism that governs the T-cell carrying capacity is quite sophisticated,

and its nuances cannot be described fully by merely eliminating the proliferation term in

the ODE for cM . Not only should the cM clones proliferate at rate zero, the proliferation

rates of the other ck should also depend on k. The k dependence may be weak for

small k, but as k → M , the proliferation rate should attenuate significantly. Such a

k-dependent proliferation rate would yield a natural truncation threshold at the carrying

capacity. However, this type of sophisticated k-dependence of the proliferation rate is

beyond the scope of this analysis. Our assumption here is simply that the truncation

errors introduced by Eq. 2.11 are numerically negligible and not biologically significant.

2.6 Appendix: Steady States of the Autonomous Equations

If we fix γ(t) = γ0, Eqs. 2.1, 2.6, and 2.11 become autonomous and admit the following

steady state solution,

css
1 = γ0

[
γ0

Ω

M∑
i=1

1

i!µ(Nss)i−1

(
i−1∏
j=1

[γ0

Ω
+ jp

])
+ µ(Nss)

]−1

, (2.13)

css
k =

css
1

k!µ(Nss)k−1

(
k−1∏
n=1

[γ0

Ω
+ np

])
, (2.14)

where Nss is the total population at steady state, given by the unique positive root of

the cubic,

c(N ; γ0) = (p0 − (µ0 + µ1))N3 + γ0N
2 + (p0 − µ0)K2N + γ0K

2. (2.15)

Taking γ0 = 0, c(N ; 0) has three real roots, N = 0, ±
√

((p− µ0)K2)/(µ0 + µ1 − p).

The positive steady state solution, which we denote by Nss(0), is stable, and the zero

solution unstable, under the parameter restrictions described in Section 2.2.1. We now

demonstrate that even though Eqs. 2.13, 2.14 indicate that each css
k → 0 as γ0 → 0, the
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quantity limM→∞
∑M

k=1 kc
ss
k converges to a positive value qualitatively consistent with

Nss(0) as γ0 → 0.

Proposition 2.6.1. The steady state solutions cssk , as given in Eqs. 2.13, 2.14, satisfy,

lim
γ0→0

lim
M→∞

M∑
k=1

kcssk > 0.

Proof. We seek to derive upper and lower bounds, U(γ0), L(γ0), which satisfy,

L(γ0) ≤ lim
M→∞

M∑
k=1

kcss
k ≤ U(γ0),

for γ0 > 0, and limγ0→0 U(γ0) ≥ limγ0→0 L(γ0) > 0. We first establish two small results,

which will be used later on:

Proposition 2.6.2. For µ = µ(Nss(γ0)), limγ0→0
dµ
dγ0

> 0.

Proof. Recalling that µ = µ(Nss(γ0)) = µ0 + µ1(Nss(γ0)2/(Nss(γ0)2 +K2)), we have:

dµ

dγ0

=
dµ

dNss

dNss

dγ0

=
2µ1K

2Nss

(N2
ss +K2)2

[
−(N2

ss +K2)

3(p0 − (µ0 + µ1))N2
ss + 2γ0Nss + (p0 − µ0)K2

]
=

−2µ1K
2Nss

(N2
ss +K2) [3(p0 − (µ0 + µ1))N2

ss + 2γ0Nss + (p0 − µ0)K2]

where we computed the derivative dNss

dγ0
implicitly from the expression c(Nss(γ0); γ0) = 0.

From the explicit form Nss(0) =
√

(p0 − µ0)K2/((µ0 + µ1)− p0), we have:
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lim
γ0−→0

dµ

dγ0

=
−2µ1K

2NSS(0)

(NSS(0)2 +K2) [3(p0 − (µ0 + µ1))NSS(0)2 + (p0 − µ0)K2]

=
−2µ1K

2NSS(0)

(NSS(0)2 +K2) [−2(p0 − µ0)K2]

> 0

Proposition 2.6.3. For f(p/µ(Nss(γ0)); γ0) = γ0

pΩ

(
1− p

µ(Nss(γ0))

)−γ0
pΩ
−1

, we have

limγ0→0 f(p/µ(Nss(γ0)); γ0) > 0.

Proof. We write the function f(p/µ(Nss(γ0)); γ0) as a product of two functions as follows:

f(p/µ(Nss(γ0)); γ0) =
γ0

pΩ

(
1− p

µ(Nss(γ0))

)−γ0
pΩ
−1

=

(
1− p

µ(Nss(γ0))

)−γ0
pΩ

· γ0

pΩ

(
1− p

µ(Nss(γ0))

)−1

:= A(γ0) ·B(γ0)

We define A0 := limγ0→0A(γ0) and B0 := limγ0→0B(γ0), and compute A0 and B0:
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ln(A0) = lim
γ0−→0

−γ0

pΩ
ln

(
1− p

µ(Nss(γ0))

)

=
−1

pΩ
lim
γ0−→0

ln
(

1− p
µ(Nss(γ0))

)
γ−1

0

=
−1

pΩ
lim
γ0−→0

(
1− p

µ(Nss(γ0))

)−1
d

dγ0

(
− p
µ(Nss(γ0))

)
−γ−2

0

=
1

pΩ
lim
γ0−→0

γ2
0

[
1− p

µ(Nss(γ0))

]−1 [
pµ(Nss(γ0))−2 dµ

dγ0

]
=

1

pΩ
lim
γ0−→0

[
γ2

0p
dµ
dγ0

µ(Nss(γ0))2 − pµ(Nss(γ0))

]

=
1

Ω
lim
γ0−→0

2γ0
dµ
dγ0

+ γ2
0

d2µ
dγ2

0

(2µ− p) dµ
dγ0


=

1

Ω

2γ0 limγ0→0
dµ
dγ0

+ γ2
0 limγ0→0

d2µ
dγ2

0

p limγ0→0
dµ
dγ0

 ,

where we used that µ(Nss(γ0))→ p as γ0 → 0. From Proposition 2.6.2, limγ0−→0
dµ
dγ0

> 0,

and a similar computation shows that limγ0→0
d2µ
dγ2

0
∈ R. Thus, ln(A0) ∈ R, and A0 > 0.

Now,

B0 = lim
γ0→0

γ0

pΩ

(
1− p

µ(Nss(γ0))

)−1

= lim
γ0→0

(γ0/pΩ)(
1− p

µ(Nss(γ0))

)
= lim

γ0→0

(1/pΩ)

pµ(Nss(γ0))−2 dµ
dγ0

= lim
γ0→0

µ(Nss(γ0))2

p2Ω dµ
dγ0

> 0.

Thus, limγ0→0
γ0

pΩ

(
1− p

µ(Nss)

)−γ0
pΩ
−1

= A0B0 > 0.
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We now resume the proof of Proposition 2.6.1. We first derive upper and lower bounds

on the term css
1 , to simplify calculations. From the nonnegativity of the parameters and

coefficient functions, and the form in Eq. 2.13, css
1 ≤ γ0/µ0, independent of M . To derive

an M -independent lower bound on css
1 , we observe that the sum in the denominator of

Eq. 2.13 satisfies,

γ0

Ω

M∑
i=1

1

i!µ(Nss(γ0))i−1

(
i−1∏
j=1

[γ0

Ω
+ jp

])

≤
M∑
i=1

1

(i− 1)!µ(Nss(γ0))i−1

(
i−1∏
j=0

[γ0

Ω
+ jp

])

= p
M∑
i=1

1

(i− 1)!

(
i−1∏
j=0

[
γ0

pΩ
+ j

])(
p

µ(Nss(γ0))

)i−1

and that the sum on the right above is the M -th Taylor polynomial, SM,γ0 , for the function

f(x; γ0) = γ0

pΩ
(1− x)

−γ0
pΩ
−1 expanded around x = 0 and evaluated at x = p

µ(Nss(γ0))
. The

function f(x; γ0) is analytic in x away from x = 1, and in particular, the SM,γ0 increase

monotonically to f(p/µ(Nss(γ0)); γ0). It follows that,

1

p

M∑
i=1

1

i!µ(Nss(γ0))i−1

(
i−1∏
j=0

[γ0

Ω
+ jp

])
≤ SM,γ0 ≤ f

(
p

µ(Nss(γ0))
; γ0

)
:= fγ0

and thus that css
1 ≥ γ0/(pfγ0 + µ0 + µ1). After using the css

1 bounds in the expression for

css
k , we have:

pΩ

pfγ0 + µ0 + µ1

SM,γ0 ≤
M∑
k=1

kcss
k ≤

pΩ

µ0

SM,γ0

−→ lim
M→∞

pΩ

pfγ0 + µ0 + µ1

SM,γ0 ≤ lim
M→∞

M∑
k=1

kcss
k ≤ lim

M→∞

pΩ

µ0

SM,γ0

−→ pΩ

pfγ0 + µ0 + µ1

fγ0 ≤ lim
M→∞

M∑
k=1

kcss
k ≤

pΩ

µ0

fγ0
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Now we let L(γ0) = pΩ
pfγ0+µ0+µ1

fγ0 and U(γ0) = pΩ
µ0
fγ0 . From Proposition 2.6.3,

limγ0→0 fγ0 > 0, so limγ0→0 L(γ0), limγ0→0 U(γ0) > 0, and Proposition 2.6.1 follows.

2.7 Appendix: Convergence and Stability of ck when γ(t)→ 0

In this section we will prove that solutions ck to our ODE system initialized sufficiently

close to
−→
0 converge to

−→
0 as t → ∞. Denote by (P) the “perturbed” ODE system

given by Eqs. 2.6, 2.11, with γ(t) = γ0e
−at, and by (U) the “unperturbed” ODE system

resulting from the alternate choice γ(t) ≡ 0. For the sake of generality, we omit previous

assumptions about the forms of the functions p(N), µ(N), except that p(0), µ(0) > 0.

Additionally, in this section, we replace the term N that appears in the ODEs with∑
k≥1 kck, and thus do not explicitly include Eq. 2.1 in our analysis, as in Appendix 2.6.

(Note that the N −
∑

k≥1 kck → 0 as M →∞, validating the substitution). We begin by

noting that the unperturbed system (U) has steady-state cUk (t) ≡ 0 for k ≥ 1. To analyze

the stability of this steady state, we consider the linearization of (U) around this steady

state, which is represented by the M ×M matrix we call LU (LU = (lij)1≤i,j≤M). The

components lij of LU are given explicitly by:

lij =



−j(p(0) + µ(0)), if i = j ≤M − 1

−Mµ(0), if i = j = M

jµ(0), if i = j − 1; 2 ≤ j ≤M

jp(0), if i = j + 1; 1 ≤ j ≤M − 1

0, otherwise


(2.16)

Although the matrix is tridiagonal, it is high-dimensional, and thus its eigenvalues cannot

be computed analytically. However, we may nevertheless demonstrate that all eigenvalues

possess strictly negative real part, indicating that the zero solution is asymptotically

stable. To do this, we use Gershgorin’s circle theorem to show that if there exists an

eigenvalue λ ∈ C satisfying Re(λ) ≥ 0, then λ = 0. We then verify that λ = 0 is never
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an eigenvalue of LU, by directly demonstrating that LU has linearly independent rows.

Proposition 2.7.1. All eigenvalues λ ∈ C of the matrix LU satisfy Re(λ) < 0, so that

the zero-solution of (U) is asymptotically stable.

Proof. We first apply Gershgorin’s circle theorem to the columns of the matrix LU to

conclude that all eigenvalues λ ∈ C of the truncated system (finite M) are contained

within the following union of disks:

{λ ∈ C : |λ+ (M − 1)(p(0) + µ(0))| ≤ (M − 1)(p(0) + µ(0))}⋃
{λ ∈ C : |λ+Mµ(0)| ≤Mµ(0)},

where we have used the fact that {λ ∈ C : |λ+D| ≤ D} ⊂ {λ ∈ C : |λ+(D+ε)| ≤ D+ε}

for D, ε > 0. Given the assumption that p(0), µ(0) > 0, each of these disks is tangent to

the line Re(λ) = 0 at λ = 0, and otherwise lies entirely in the half plane Re(λ) < 0. Thus,

LU can only possess an eigenvalue λ satisfying Re(λ) = 0 if λ = 0 is itself an eigenvalue.

We next verify that λ = 0 is never an eigenvalue of LU directly, by establishing the linear

independence of the rows of LU.

Denote by (LU)i the i-th row of the matrix LU, and assume that there exist scalars

a1, a2, . . . , aM , such that
∑M

i=1 ai(LU)i = 0. By directly comparing the M -th compo-

nents of the vectors on either side of the expression
∑M

i=1 ai(LU)i = 0, we find that

aM−1Mµ(0)−aMMµ(0) = 0, so that aM−1 = aM . From this, it then follows from inspec-

tion of the M−1-st components of the aforementioned expression that aM−2(M−1)µ(0)−

aM(M − 1)(p(0) + µ(0)) + aM(M − 1)p(0) = 0, which implies that aM−2 = aM−1 = aM .

Continuing inductively, we arrive at the conclusion that aj = a1 for all j ≥ 2, from which

it follows that if a1 6= 0, then
∑M

i=1(LU)i = 0. However, we conclude by direct comparison

of the first components on either side of the expression
∑M

i=1(LU)i = 0 that −µ(0) = 0,

contradicting the assumption that µ(0) > 0. Thus, aj = 0 for all k ≥ 1, and the rows of

LU are linearly independent, implying that λ = 0 is not an eigenvalue. Thus, we conclude

that all eigenvalues λ of the matrix LU satisfy Re(λ) < 0, and the zero-solution of (U) is

asymptotically stable.
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We next proceed to demonstrate that the uniform asymptotic stability of the zero-

solution (cUk (t) ≡ 0 for k ≥ 1) of the unperturbed system (U) confers a similar notion of

“stability” on the perturbed system (P). In particular, the uniform asymptotic stability

of the system (U), in conjunction with the exponential decay of the function γ(t), implies

that solutions of the perturbed system (P) also converge to zero in magnitude, in a

sense to be made more precise later on. Let us describe the ODEs more compactly

by writing (U) as dc/dt = f (c), where c ≡ (c1, c2, . . . , cM). The autonomous function

f (c) consists of terms accounting for cellular proliferation and death. We express (P)

as dc/dt = f (c) + g (t, c), where the nonautonomous function g (t, c) consists of terms

accounting for thymic export. We appeal to results of Strauss and Yorke in [SY67], in

particular their Theorem 4.6, which we invoke to prove that the solution of the perturbed

system, cP (t), satisfies cP (t) → 0 if the unperturbed and perturbed systems, (U) and

(P), satisfy the following conditions:

1. The zero solution (cU(t) ≡ 0) of the unperturbed system (U) is uniformly asymp-

totically stable.

2. The autonomous term f(c) is C1.

3. There exists r > 0 such that if |c| ≤ r, then |g(t, c)| ≤ η(t) for all t ≥ 0 where

G(t) :=
∫ t+1

t
η(s)ds→ 0 as t→∞. (Here, we use the norm |c| =

∑M
i=1 |ci|.)

We now verify Conditions 1–3 above. Condition 1 follows immediately from the previous

discussion in Proposition 2.7.1, and the fact that for an autonomous system, asymptotic

stability and uniform asymptotic stability are equivalent. Condition 2 is trivial. To verify

Condition 3, we must construct a suitable function η(t), from the function g(t, c):
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|g(t, c)| =

∣∣∣∣∣γ0e
−at

Ω

(
Ω−

M∑
j=1

cj − c1

)∣∣∣∣∣+
M−2∑
j=2

∣∣∣∣γ0e
−at

Ω
(cj − cj+1)

∣∣∣∣+

∣∣∣∣γ0e
−at

Ω
cM−1

∣∣∣∣ (2.17)

≤ γ0e
−at

Ω

(
|Ω|+

(
M∑
i=1

|ci|

)
+ |c1|

)
+

M−2∑
j=2

γ0e
−at

Ω
(|cj|+ |cj+1|) +

γ0e
−at

Ω
|cM−1|

(2.18)

≤ γ0e
−at

Ω

(
Ω + 3

M−1∑
i=1

|ci|

)
(2.19)

≤ γ0e
−at

Ω
(Ω + 3|c|) (2.20)

= γ0e
−at
(

1 +
3

Ω
|c|
)

(2.21)

Thus, |g(t, c)| ≤ γ0e
−at (1 + 3

Ω
|c|
)
, and for a given choice of r > 0, we may define

ηr(t) := γ0e
−at (1 + 3r

Ω

)
. From the exponential form of ηr(t), it is clear that

limt→∞
∫ t+1

t
ηr(s)ds = 0. Moreover, not only does there exist a single choice of r > 0 that

produces a suitable ηr(t), but any choice of r produces a suitable ηr(t).

From Theorem 4.6 in ([SY67]), we may conclude that for any T0 ≥ 0, there exists

a δ0 > 0 such that if t0 ≥ T0 and |cP (t0)| ≤ δ0, then the solution of the perturbed

problem, cP (t), passing through (t0, c
P (t0)) converges to zero in magnitude as t → ∞.

Moreover, the proof of convergence holds for any sufficiently smooth function γ(t) that

satisfies γ(t) → 0 as t → ∞. Given Eq. 2.6 truncated at an arbitrarily large threshold

M , all ck decline with the decaying thymic export rate as t → ∞. While the total

cell count is preserved as ck(t) → 0 due to the proliferative mechanism driving all cells

past the truncation threshold and out of the finite system through truncation errors, the

mean-field approximation breaks down at the limit γ(t)/µ → 1/Ω � 1, and Eq. 2.6 no

longer accurately describes the real biology. Nonetheless, our analysis here describes the

decline of the number of T-cell clones with decaying γ(t) as t→∞, before the mean-field

approximation breaks down.
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2.8 Appendix: Computation of Expected Sample Clonal Size

Distribution

In this section, we detail the derivation of Eq. 2.10, the explicit expression for E[cYk ]. We

begin with Eq. 2.9,

E[ck] =
R∑
j=1

jP
(
cYk = j

)
. (2.22)

Each term P
(
cYk = j

)
in Eq. 2.22 can itself be expanded as a sum over all the ways to

choose the j clones that are of size k. For a sample containing exactly Z clones of size k,

we introduce the following Z-tuple notation, for Z ∈ N:

IZ := {~iZ = (i1, i2, . . . , iZ) : ij ∈ {1, 2, . . . , R}, ij < ij+1 for all j}, (2.23)

where ~iZ lists the indices of all the sample clones consisting of precisely k cells. Addi-

tionally, let yi denote the size of the i-th ordered sample clone, so that yi1 = yi2 = · · · =

yiZ = k, but no other sample clone consists of k cells. Note that in ~iZ , clones are listed in

numerical order, due to the assumption that ij < ij+1, in order to avoid repetition (e.g.,

in I2, (i1, i2) should be indistinct from (i2, i1), and this pair should not be counted twice,

as the significance is in which clone numbers are listed at all, and not the order in which

they are written.) With this, let P (~iZ , k) denote the probability that there are precisely

Z clones of size k in the sample, and that their clone numbers are listed in the vector ~iZ .

Additionally, for s ∈ N, denote by IZ,s ⊂ IZ the collection of all ~iZ ∈ IZ such that iz∗ = s

for some z∗ ∈ {1, 2, · · · , Z}. Essentially, we are imposing the assumption that the s-th

clone specifically belongs somewhere in the list ~iZ,s. Explicitly, we may write IZ,s as:

IZ,s = { ~iZ,s = (i1, . . . , iz∗−1, iz∗ = s, iz∗+1, . . . , iZ) : ij ∈ {1, 2, . . . , R}, ij < ij+1 for all j }.

(2.24)
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We define P ( ~iZ,s, k) to be the probability that there are precisely Z clones of size k, with

clone numbers listed in ~iZ,s, recalling that the s-th clone is in the list. We may further

simplify Eq. 2.22 with this notation, rearranging sums by strategically regrouping clone

size distributions that share a common size k clone.

E[ck] =
R∑
j=1

jP (cYk = j), (2.25)

=
R∑
j=1

j

∑
~ij∈Ij

P (~ij, k)

 , (2.26)

=
R∑
s=1

 R∑
j=1

∑
~ij,s∈Ij,s

P ( ~ij,s, k)

 , (2.27)

=
R∑
s=1

P (ys = k), (2.28)

The terms of the final sum in Eq. 2.28 give the probability that the s-th clone is of size

k, independent of any other information about the sampling. This probability is easy to

compute, and given by:

P (ys = k) =
1(
N
Y

)(ns
k

)(
N − ns
Y − k

)
. (2.29)

Inserting Eq. 2.29 into Eq. 2.28, we obtain a simple expression for the expected sample

clone size distribution:

E[ck] =
R∑
s=1

1(
N
Y

)(ns
k

)(
N − ns
Y − k

)
. (2.30)

We can further simplify Eq. 2.30 by recognizing that the term
(
ns
k

)
is nonzero only if

ns ≥ k. We can thus rewrite Eq. 2.30 in terms of the true clone size distribution {cNl }Rl=1

as:
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E[ck] =
R∑
l=k

1(
N
Y

)cNl ( lk
)(

N − l
Y − k

)
. (2.31)
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Figure 2.1: Qualitative behavior of the total T-cell population model (Eqs. 2.1,
2.2) (a) The total T-cell population N(t) as a function of time (in years) for four qual-
itatively distinct scenarios. Unbounded growth arises when µ1 (p− µ0)−1 < 1, and the
T-cell population collapses when (p − µ0)a−1 < 0. Outside of these two regimes, N(t)
converges asymptotically to a positive steady state as γ(t)→ 0. If γ0a

−1K−1 � 1, N(t)
is driven primarily by homeostatic proliferation and increases monotonically towards the
constant plateau. Increasing γ0a

−1K−1 leads to a transition from the proliferation-driven
scenario to the thymus-driven scenario, in which N(t) reaches a peak value before con-
verging to the steady state. The decaying thymic export rate γ(t) is plotted alongside
the N(t) curves as a reference. To quantify the decrease in cell counts with age, we define
N̄y as the average of N(t) between ages 20 and 30, and N̄o as the average between 70 and
80–then ∆

(
N̄
)

=
(
N̄o − N̄y

)
/N̄y is the relative change in cell counts. The parameter

values used are γ0 = 1.8×1010, a = 0.044, and K = 1010, with p = 0.022, µ0 = 0.017, and
µ1 = 0.004 in the unbounded growth scenario, p = 0.17, µ0 = 0.18, and µ1 = 0.04 in the
collapse scenario, p = 0.18, µ0 = 0.17, and µ1 = 0.01001 in the homeostasis-driven sce-
nario, and p = 0.18, µ0 = 0.17, and µ1 = 0.04 in the thymus-driven case. The initial value
is N(1) = 1011 at t = 1 year. (b) ∆

(
N̄
)

as a function of γ0a
−1K−1 and µ1 (p− µ0)−1.

When γ0a
−1K−1 and µ1 (p− µ0)−1 are small, N(t) is driven primarily by proliferation

and keeps increasing well into old age, leading to positive ∆(N̄) values. Conversely, for
large γ0a

−1K−1 and µ1 (p− µ0)−1, thymic export dominates and N(t) peaks in youth,
resulting in a negative ∆(N̄). The black dotted curve corresponds to ∆(N̄) = −52%, as
previously reported by Westera et al. in human adults. Fixing µ1 (p− µ0)−1 = 4, we are
able to reproduce this curve by setting γ0a

−1K−1 ' 41 (corresponding to K = 1010 for
our choice of parameter values). The value of ∆(N̄) increases with decreasing γ0a

−1K−1

and become positive when γ0a
−1K−1 . 1. Here, we fixed (p−µ0)a−1 = 0.2 and a = 0.044.
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Figure 2.2: Comparison of thymic export and cell population evolution time
scales (a) The discrepancy between N(t) and Nss. Nss declines monotonically with the
exponentially decaying thymic export, and approaches a small positive value as γ(t) →
0. The solution N(t) evolves towards Nss but never catches up with it, due to the
slower evolution time scale. (b) Comparison of timescales of thymic atrophy and cell
population evolution. Thymic atrophy is the faster mechanism for most choices of the
system’s parameters. Increasing µ1 shortens the time scale of clone evolution, indicating
that steady-state solutions can be reasonable approximations to the fully time-dependent
solution at very large µ1 and very small p − µ0. Here, varying Nss within the range
[1010, 1012] yields almost identical results, and the values of γ0 and K, chosen within the
reasonable parameter regime, do not affect the results significantly. Parameter values
used are γ0 = 1.8 × 1010, a = 0.044, p = 0.18, µ0 = 0.17, K = 1010, Ω = 1016. For (a)
µ1 = 0.04, and the initial condition is N(1) = 1011.
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Figure 2.3: Simulation of ck, effect of truncation (a) Effect of numerical truncation.
We plot c10(40) and c10(70) as functions of M for 10 ≤ M ≤ 100. Compartment sizes
are effectively fixed when M & 30. (b) Temporal evolution of ck(t). We plot c2(t), c19(t),
and c59(t). Each ck(t) curve rises to a peak value and subsequently decreases. As k
increases, ck(t) decreases in magnitude, and the time at which it reaches its peak value
also increases. Parameter values: γ0 = 1.8 × 1010, a = 0.044, p = 0.18, µ0 = 0.17,
µ1 = 0.04, K = 1010, Ω = 1016. Initial values c1(1) = 1011, c0(1) = Ω − 1011, ck(1) = 0
for all k ≥ 2
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later times as q increases. (b) ∆(R̄q(t)) for varying q, µ1. Higher µ1 correspond to more
severe loss of T-cell clones in advanced age. (c) ∆(R̄q) for varying q, K. Small values of
q result in a lifetime decrease to Rq, but larger values result in a lifetime increase. This
is due to the fact that Rq peaks at later times as q increases. (d) ∆(R̄1) for varying µ1,
K. Initial values c0(1) = Ω − 1011, c1(1) = 1011 ck(1) = 0 for k ≥ 2. Parameter values,
when not varying: Ω = 1016, K = 1010, p0 = 0.18, µ0 = 0.17, µ1 = 0.04, a = 0.044,
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Figure 2.5: Simulation of N and R1 with rise in proliferation rate Simulation of
Eq. 2.6 with exponentially decaying thymic export, and peripheral homeostasis described
by time-varying logistic growth. We use the thymic export rate γ(t) = γ0e

−at, peripheral
death rate µ(N) = µ0 > 0, and peripheral proliferation rate p(N, t) = p(t)(1 − (N/K)),
with p(t) = p0(1+rH(t−T )). Here, H(t) represents the Heaviside function with jump at
t = 0. The constant r determines the magnitude of the increase to the basal proliferation
rate, and T represents the time at which the jump occurs. We take the jump to occur
at varying ages. (a) ∆(N̄) with jump at ages T = 30 and 70, for varying r. (Curve
corresponding to T = 50 is omitted due to close similarity to T = 30 curve.) Raising
the basal proliferation rate diminishes cellular loss in advanced age, with sufficiently
high values of r producing a lifetime increase in total cell counts. The positive steady
state solution of the autonomous total cell ODE, dN/dt = γ0 + p0(1 − N/K) − µ0N , is
given by N∗ = (K/2)(1− µ0/p0 +

√
(1− µ0/p0)2 + 4γ0/Kp0), and can be seen to satisfy

∂N∗/∂p0 > 0 if γ0 < Kµ0, suggesting that increases to the basal proliferation rate are
likely to increase the total cell count. (b) ∆(R̄1) with T = 30, 50, and 70, for varying
r. Increases to the basal proliferation rate do mitigate diversity loss, but the effect is
minor and potentially insignificant. Increases to the basal proliferation rate increase ck+1

due to a decrease in ck, preserving additional diversity, but lifetime diversity loss is still
observed, even when proliferation rates are high enough to generate a lifetime increase
to the total cell count. Fixed parameter values: γ0 = 1.8 × 1010, a = 0.044, p0 = 0.18,
µ0 = 0.17, K0 = 3 × 1011, Ω = 1016. Initial values: c0(1) = Ω − 1011, c1(1) = 1011

ck(1) = 0 for k ≥ 1. Eq. 2.6 is truncated at k = 200.
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CHAPTER 3

T-cell Populations During Acute Thymic Atrophy

and Other Diseased States of the Immune System

3.1 Introduction

The thymus, a small organ located above the heart in humans, is a crucial component of

the primary lymphoid architecture, as the site of T-cell development [Mur12, GNV10].

The many different T-cell subpopulations together guide and assist the action of other im-

mune agents during infection [AJL02], regulate the immune response [Cor09], and retain

memory of encountered pathogens [FYR14]. As such, the thymus supplies the immune

compartment with its most essential source of direction, support, and regulation. T-cells

are produced when lymphocyte progenitors derived from hematopoietic stem cells in the

bone marrow migrate to the thymus and begin a process of role selection, maturation, and

vetting, before being exported to the peripheral blood [Tak06]. The most significant event

during thymocyte development is the rearrangement of the α and β chains of the T-cell

receptor (TCR) [BSA02]. The particular rearrangement a T-cell undergoes determines

its antigen specificity; a naive T-cell in the peripheral pool is activated when its TCR is

bound by a cognate antigen, a pathogen-derived peptide fragment capable of stimulating

that particular TCR [Mas98]. The total number of distinct TCRs present across the full

T-cell pool is the “TCR diversity” [NSM04], and this quantifies the breadth of the pool’s

antigen responsiveness [LBA15].

TCR rearrangement occurs in the thymic cortex, which is populated with both thy-

mocyte progenitors and thymic epithelial cells (TECs), the latter of which participate

in T-cell maturation by stimulating progenitors to differentiate and proliferate, and con-

ducting positive selection of rearranged TCRs capable of successful interaction with self-

peptide:self-MHC molecules [Tak06]. Thymocytes also undergo negative selection to elim-
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inate cells that react too strongly to self antigens presented by resident macrophages and

dendritic cells. The small number of T-cells that survive this process are deemed safe

and functionally competent, and thus exported to the peripheral blood to participate in

the immune mechanism.

The thymus is known to experience both chronic and acute forms of atrophy [CVD16],

resulting from both normal biological processes and the presence of disease or stress.

The most universal form of thymic atrophy is age-related involution, the process by

which productive thymic tissue is gradually replaced with nonproductive fat [SKM85].

Involution begins at puberty and continues indefinitely, and the resulting decline in T-

cell production has been implicated as a likely source of immune dysfunction in the

elderly [GE00, GHS07, SAM09]. Acute atrophy can occur under a plethora of condi-

tions associated with a state of disease or stress [GS08, DL12, Sel36], including viral,

bacterial, and fungal infection [Sav06, WHL94, GFN85], malnutrition [SDV07], cancer

treatment [MFB95], bone marrow transplant [SWS95], alcoholism [ASR86], psychologi-

cal stress, and pregnancy [ZSK07, TDR99, RTB96]. Each condition facilitates thymic

atrophy in (at least) one of several ways, among them by reducing thymic cellular-

ity [CVD16], decreasing thymocyte proliferation and increasing apoptosis [ALV00], in-

stigating premature export of underdeveloped thymocytes [CSA06], and inducing mor-

phological changes to TECs and the thymic microenvironment [SMK93]. Such distur-

bances may consequently alter the size and composition of the peripheral T-cell pool.

Decreased lymphocyte prevalence in the periphery during acute involution has been doc-

umented [GSC03, BSR89, JJU01, FJB14], and Salmonella, which infects the thymus

itself, has been shown to disrupt positive and negative selection, producing a skewed

TCR repertoire [LAG15]. The size of the peripheral pool may also be reduced for reasons

other than interruption to thymic function. Radiation and chemotherapy drugs, such as

temozolmide, used to treat cancer can be highly lymphotoxic, producing a lymphopenic

state referred to as “treatment-related lymphopenia” (TRL). [YKG13, MGL16, CYB13]

Viral infections, particularly HIV, and autoimmune disorders can induce lymphopenia by

increasing peripheral cellular death and redistributing cells to inappropriate tissues, in

addition to affecting production in the thymus. [Lon12]

The activation of the hypothalamic-pituitary-adrenal axis by stress stimuli and subse-
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quent release of glucocorticoids, which are known to induce apoptosis in double-positive

thymocytes [PML04] and inhibit their differentiation [ALV00], is likely a major underlying

catalyst of this acute involution [DL12, KHC02]. Evidence suggests further that gluco-

corticoid release is actually necessary to affect thymic atrophy [ALV00, Sel36]. Several

other chemical agents have been observed to participate in thymic atrophy, notably sex

hormones [DL12], which have been shown to weaken thymocyte proliferation [ZSK07] and

induce apoptosis [PMI00], and the IL-6 cytokine family, which is demonstrably thymosup-

pressive [GS08]. Despite this apparent sensitivity to stress, the thymus is highly plastic,

and generally recovers in size and functionality after removal of the stressor [CVD16].

Studies of the thymus during and after chemotherapy treatment in cancer patients indi-

cate a return of thymic volume and productivity during recovery from treatment [MFB95].

A recuperating thymus may even surpass its pre-treatment volume, in a phenomenon

known as “thymic rebound” [CZG87, CHC80]. Such thymic recovery has also been seen

after infection [DCW01] and traumatic injury [GGL72]. However, recovery is demon-

strably age-dependent, with thymi of older patients reconstituting the naive T-cell com-

partment more weakly than those of younger patients [MFB95]. Although acute thymic

atrophy has been observed extensively in humans, much has yet to be learned about it,

and clear treatment protocol is lacking [CVD16].

To this end, we present a mechanistic mathematical model of fluctuations in the size

and diversity of the peripheral naive T-cell compartment in response to various immuno-

logically diseased conditions. We study how this pool’s size and composition adjust to

changes in the intensity of thymic cell production, and how it reconstitutes from lym-

phopenic states induced by a combination of cellular destruction, undesirable redistribu-

tion, and/or diminished production. We compartmentalize the peripheral T-cell pool by

grouping clones–collections of T-cells with the same TCR–according to the number of

cells of which they consist. We then use a high-dimensional autonomous ODE system

to follow the time evolution of the number of clones in each compartment. We assume

that the size of the peripheral naive T-cell pool is dictated by rates of thymic export of

new T-cells, along with homeostatic proliferation and death mechanisms. We assume a

piecewise constant rate of thymic export, as the atrophy/recovery cycle is known to be a

rapid process, and that the proliferative and death processes are subject to homeostatic
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regulation based on the total T-cell pool size. We derive analytic approximations to the

dominant eigenvalues and eigenvectors of the system linearized around its equilibria in

both the presence and the absence of thymic activity. From this, we assess the rates of

convergence of different T-cell compartments to equilibria that result from a changing

thymic export rate. We then compare the linearized and fully nonlinear models, and

study several special cases. We also compute explicit representations of solutions in an

infinite-dimensional extension of our model.

3.2 Mathematical Model and Analysis

Letting N(t) denote the total naive T-cell count in a human’s immune compartment, we

begin with the canonical ODE model for dynamics of a single population,

dN

dt
= γ + p(N)N − µ(N)N, (3.1)

where γ ≥ 0 represents the rate of export of naive T-cells from the thymus, and

p(N), µ(N) ≥ 0 are N -dependent (that is, regulation-dependent) rates of proliferation

and death of naive T-cells in the peripheral bloodstream. We take p(N) to be non-

increasing in N , and µ(N) to be non-decreasing in N , as the proliferation rate should

decrease and the death rate should increase as cell counts increase. We assume that

p(0) > µ(0), as the lymphopenic proliferation rate would be higher than the lymphopenic

death rate [BHS05, TDL01, VBM01, FM05]. We also assume that when a healthy,

homeostatic cell count, N∗, is achieved, that p(N∗) − µ(N∗) < 0, to prevent continued

exponential growth of the population. In order to compute the peripheral naive T-cell

diversity, we couple this ODE in the total cell count with a system of ODEs that describes

the time evolution of the size-segregated subpopulations of the peripheral naive T-cell

pool. Let ck(t) denote the number of clones of size k at time t ≥ 0. We then assert that

the functions ck(t) for k ≥ 1 evolve according to the following system of ODEs:
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dc1

dt
=
γ

Ω

[
Ω−

M∑
i=1

ci − c1

]
− p(N)c1 + µ(N) [2c2 − c1] , (3.2)

dck
dt

=
γ

Ω
[ck−1 − ck] + p(N) [(k − 1)ck−1 − kck] + µ(N) [(k + 1)ck+1 − kck] , (3.3)

dcM
dt

=
γ

Ω
cM−1 + p(N)(M − 1)cM−1 − µ(N)McM , (3.4)

where k = 2, 3, · · · ,M − 1 in Eq. 3.3, and the index M in Eq. 3.4 is the hypothetical

maximum size a clone can achieve. We take M to be finite, in accordance with evidence

of intraclonal competition that restricts clone sizes and preserves a balanced TCR diver-

sity [HMK06]. Each of the ODEs in Eqs. 3.2, 3.3, 3.4 describes how ck changes due to the

effects of thymic export of new cells, and proliferation and death in the periphery. The

constant Ω > 0 denotes the total number of clonotypes that can potentially be assembled

in and exported from the thymus.

In Eq. 3.3, the term γ
Ω

represents the rate at which cells of a given clonotype are

exported to the periphery from the thymus, and thus γ
Ω
ck represents the export rate of

cells of clonotypes already represented by size-k clones in the periphery. As the addition

of a new cell to a clone transfers the clone from the size-k compartment to the size-(k+1)

compartment, this is equivalent to the rate at which clones move from ck to ck+1 due to

thymic export. Similarly, γ
Ω
ck−1 in Eq. 3.3 provides the rate at which clones move from

ck−1 to ck due to thymic export. We assume that clones can only move among adjacent

compartments, so that the expression γ
Ω

[ck−1 − ck] in Eq. 3.3 fully accounts for changes to

ck due to thymic export. Also in Eq. 3.3, the term p(N)kck denotes the rate at which cells

in size-k clones proliferate, which in turn corresponds to the rate at which clones move

from ck to ck+1 due to peripheral proliferation. Analogously, p(N)(k−1)ck−1 denotes the

rate at which cells enter ck from ck−1 due to proliferation, so that p(N) [(k − 1)ck−1 − kck]

accounts for changes to ck due to proliferation. The death term in Eq. 3.3, given by

µ(N) [(k + 1)ck+1 − kck] is defined analogously. In Eqs. 3.2 and 3.4, we modify Eq. 3.3

to account for appropriate “boundary conditions”. In Eq. 3.2, the term
[
Ω−

∑M
i=1 ci

]
gives the number of clonotypes unrepresented in the periphery, so that γ

Ω

[
Ω−

∑M
i=1 ci

]
provides the rate at which new clones enter the periphery from the thymus. Eq. 3.2 also
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retains the terms from Eq. 3.3 that account for loss of clones in c1 due to thymic export,

proliferation, and death, and the addition of clones into c1 due to death of cells in c2.

Finally, Eq. 3.4 retains terms accounting for the introduction of clones into cM via thymic

export to and proliferation within clones in cM−1, as well as loss of clones from cM due

to cellular death. This represents the imposition of a “boundary condition” that allows

clones to achieve, but not surpass, size M .

We now consider the relationship between the ODE in Eq. 3.1 and those in Eqs. 3.2–

3.4. Since N(t) represents the total cell count, it should be the case conceptually that

N(t) =
∑M

k=1 kck(t). Summing Eqs. 3.2, 3.4, and 3.3 for k = 2, · · · ,M − 1, we find that,

d
(∑M

k=1 kck

)
dt

= γ + p(N)

(
M∑
k=1

kck

)
+ µ(N)

(
M∑
k=1

kck

)
−
(
p(N)McM +

γ0

Ω
cM

)
,

(3.5)

so that the ODE satisfied by N(t) (Eq. 3.1) and that satisfied by
∑M

k=1 kck(t) (Eq. 3.5)

differ by a factor of
(
p(N)McM + γ0

Ω
cM
)
, and thus N(t) 6=

∑M
k=1 kck. Thus, a small mass

of size M or larger clones, which are accounted for in Eq. 3.1, are not accounted for

fully in Eqs. 3.2, 3.3, 3.4. However, large clones are quite rare, and thus contribute such

a small portion of the total cell count that we regard Eq. 3.1 and Eqs. 3.2, 3.3, 3.4 as

sufficiently consistent for our purposes.

We use this basic ODE system to formulate models of different single-stage and multi-

stage cycles of thymic disease and recovery. As we are studying how thymic disease affects

total cell counts, the parameter most crucial to our investigation is γ, the thymic export

rate. To represent healthy thymic function, we take γ = γ0, where γ0 is the normal level of

thymic export in an adult of a given age. To represent diminished thymic activity during

atrophy, we take γ � γ0, or even γ = 0, depending on the severity of the atrophy. As the

thymus is highly plastic, the changes in γ throughout the process of atrophy and recovery

tend to be rapid. With this in mind, we model such cycles of disease with a piecewise

ODE system. Specifically, let us observe a human’s response to disease-induced changes

in thymic activity over some time interval I = [t0, tS+1]. We assume that this individual’s
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thymic export rate undergoes S abrupt changes, at times t1, t2, · · · , tS, where t0 < t1 <

t2 < . . . < tS < tS+1. Letting Ii = [ti, ti+1], so that I =
⋃S
i=0 Ii, we assume that γ = γi ≥

0, on Ii. If the initial condition {ck(t0)}Mk=1 represents the size of each ck compartment

at the start of the process, we then let {cik(t)}Mk=1 represent the solution of the ODE

in Eqs. 3.1-3.4, on Ii, with γ = γi and initial condition {cik(ti)}Mk=1 = {ci−1
k (ti)}Mk=1, for

i = 1, 2, · · · , S. Thus, the solution {cik(t)}Mk=1 represents the time evolution of the ck

compartments after a transition to a thymic activity level γi. This is the most general

description of our model; in practice, we will mostly take S = 0, 1. Further descriptions of

the piecewise ODE formulation specific to certain disease patterns and particular initial

conditions are included in the relevant sections below.

3.3 Solution Analysis in the Case γ > 0 (functioning thymus)

We begin by studying the behavior of solutions of our ODE model under the assumption

of a strictly positive thymic export rate, γ. We conduct analysis of equilibrium solutions

of Eqs. 3.1-3.4 and their stability, and also compute an explicit solution in the infinite

dimensional case that arises when M →∞. At the beginning of sections 3.3.1 and 3.3.2

below, as well as in sections 3.4.1, 3.4.2, and 3.5, we focus on solutions over one individual

interval in the piecewise formulation described in section 3.2 above. For simplicity when

doing this, we omit the i notation that distinguishes the different subintervals, writing γ

instead of γi, etc. When the discussion returns to the full piecewise ODE, the i notation

is reintroduced.

3.3.1 Analytic Solution of the Infinite Dimensional System

We begin by computing analytic expressions for the solutions ck of Eqs. 3.1-3.4. If we

take M →∞ and consider instead the infinite dimensional system, the ck compartments

can be obtained through a generating function, defined as:

Q(z, t) ≡
∞∑
k=0

ck(t)z
k, (3.6)

with z ∈ R to be determined later. Note that ∂kQ/∂zk
∣∣
z=0

= k!ck. The solution Q(z, t)
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allows us to solve for every ck with k ≥ 0. In addition, ∂Q/∂z|z=1 =
∑∞

k=0 kck = N , and

the total cell number can also be recovered from the generating function.

In order to derive an explicit form for Q(z, t), we assume that an explicit solution

N = N(t) of Eq. 3.1 can be found, so that we may write p and µ as functions of t

(p = p(t), µ = µ(t)). By substituting Eqs. 3.2, 3.3 for dck/dt, the time derivative of Q

can be expressed as

∂Q

∂t
=

∞∑
k=0

dck
dt
zk

= (z − 1)(p(t)z − µ(t))
∂Q

∂z
+
γ

Ω
(z − 1)Q. (3.7)

The above partial differential equation can be solved analytically using the method of

characteristics. The characteristic curves are defined by

dz

dt
= −(z − 1)(p(t)z − µ(t)). (3.8)

Along a particular characteristic curve z(t), the value of Q evolves via the following

equation:

dQ

dt
=
γ

Ω
(z(t)− 1)Q. (3.9)

Eq. 3.8 leads to the following expression for z(t)

z0 = 1− z(t)− 1

(z(t)− 1)B(t)− A(t)
, (3.10)

where

A(t) ≡ exp

(
−
∫ t

0

(p(s)− µ(s)) ds

)
, (3.11)

B(t) ≡
∫ t

0

p(s)A(s)ds, (3.12)
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and z0 = z(0). The generating function Q(z(t), t) is then:

Q(z(t), t) =
∞∑
k=0

ck(0)zk0 exp

(∫ t

0

γ

Ω
(z(s)− 1)ds

)
. (3.13)

A particularly interesting scenario is that of a depleted T-cell pool being repopulated

after blood transfusion. In such a scenario, the initial conditions are c0(0) = Ω, while

ck(0) = 0 for all k ≥ 1, and Eq. 3.13 is subsequently simplified to

Q(z(t), t) = Ω exp

(∫ t

0

γ

Ω
(z(s)− 1)ds

)
. (3.14)

To compute ck(t1) at time t1 > 0, we take the k-th order derivative of Eq. 3.14 with

respect to z(t) and obtain

ck(t1) =

k−1∏
i=0

(γ + ip(t1))

k! (µ(t1)− p(t1)z(t1))k
exp

(∫ t1

0

γ

Ω
(z(s)− 1)ds

)
. (3.15)

In Eq. 3.15 the characteristic z(t) is chosen such that z(t1) = 0. Note that for another

time point t2 6= t1, a different characteristic curve will be selected. Moreover, N(t1) can

be evaluated by taking the first order derivative of Eq. 3.14 with respect to z(t) and

selecting the characteristic satisfying z(t1) = 1.

3.3.2 Equilibrium Solution and Linearization

Returning to the truncated formulation (finite M), we now study the equilibrium solution

that results when taking γ > 0 in Eqs. 3.1-3.4. Denote such a generic equilibrium solution

by {c∗k(γ)}Mk=1, N∗(γ). For a given N∗(γ), the c∗k(γ) have the form,

51



c∗1(γ) = γ

[
γ

Ω

(
M∑
i=1

1

i!µ(N∗(γ))i−1

(
i−1∏
j=1

[ γ
Ω

+ jp(N∗(γ))
]))

+ µ(N∗(γ))

]−1

, (3.16)

c∗k(γ) =
c∗1(γ)

k!µ(N∗(γ))k−1

(
k−1∏
n=1

[ γ
Ω

+ np(N∗(γ))
])

. (3.17)

In the discussion below, we will write N∗(γ) as N∗ and c∗k(γ) as c∗k for simplicity, un-

less desiring to emphasize the γ-dependence. To identify the stability of this equilib-

rium solution–and to identify the rates of convergence of solutions to equilibria un-

der the linearized model later on–we consider the linearization of the system around

this generic equilibrium solution, represented by the (M + 1) × (M + 1) matrix LS

(LS = (sij)1≤i,j≤M+1), with component sij given by:



−
(

2γ
Ω

)
− (p(N∗) + µ(N∗)), if i = j = 1

−
(
γ
Ω

)
+ 2µ(N∗), if i = 1, j = 2

−
(
γ
Ω

)
, if i = 1; 3 ≤ j ≤M

−
(
γ
Ω

)
− i(p(N∗) + µ(N∗)), if i = j; 2 ≤ j ≤M − 1

−M(p(N∗) + µ(N∗)), if i = j = M

− γ
Ω

+ ip(N∗), if i = j + 1; 1 ≤ j ≤M − 1

(i+ 1)µ(N∗), if i = j − 1, 2 ≤ j ≤M

p′(N∗)[(j − 1)c∗j−1 − jc∗j ] + µ′(N∗)[(j + 1)c∗j+1 − jc∗j ], if i = M + 1; 1 ≤ j ≤M − 1

p′(N∗)(M − 1)c∗M−1 − µ′(N∗)Mc∗M , if i = M + 1; j = M

p′(N∗)N∗ + p(N∗)− µ′(N∗)N∗ − µ(N∗), if i = j = M + 1

0, otherwise.


(3.18)

For clarity, an example of the matrix LS with M = 4 is given below:
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

−2γ
Ω
− (p(N∗) + µ(N∗)) − γ

Ω
+ 2µ(N∗) − γ

Ω
− γ

Ω
−p′(N∗)c∗1

γ
Ω

+ p(N∗) − γ
Ω
− 2(p(N∗) + µ(N∗)) 3µ(N∗) 0 p′(N∗)[c∗1 − 2c∗2] + µ′(N∗)[3c∗3 − 2c∗2]

0 γ
Ω

+ 2p(N∗) − γ
Ω
− 3(p(N∗) + µ(N∗)) 4µ(N∗) p′(N∗)[2c∗2 − 3c∗3] + µ′(N∗)[4c∗4 − 3c∗3]

0 0 γ
Ω

+ 3p(N∗) −4µ(N∗) 3p′(N∗)c∗3 − 4µ(N∗)c∗4

0 0 0 0 p′(N∗)N∗ + p(N∗)− µ′(N∗)N∗ − µ(N∗)



We now apply a simplifying assumption to the matrix LS to analytically compute its

eigenvalues more readily. In general, γ
Ω
∼ 10−8 − 10−6, and p(N∗), µ(N∗) ∼ 10−1 (when

rates are measured in the unit year−1), so that γ
Ω
� p(N∗), µ(N∗). We thus omit the

terms consisting of multiples of the quantity γ
Ω

from the matrix LS, resulting in the new

matrix, LS̃, (LS̃ = (s̃ij)1≤i,j≤M+1), with the component s̃ij given by:



−i(p(N∗) + µ(N∗)), if i = j ≤M − 1

−Mµ(N∗), if i = j = M

(i+ 1)µ(N∗), if i = j − 1; 2 ≤ j ≤M

ip(N∗), if i = j + 1; 1 ≤ j ≤M − 1

p′(N∗)[(j − 1)c∗j−1 − jc∗j ] + µ′(N∗)[(j + 1)c∗j+1 − jc∗j ], if i = M + 1; j ≤M − 1

p′(N∗)(M − 1)c∗M−1 − µ′(N∗)Mc∗M , if i = M + 1, j = M

p′(N∗)N∗ + p(N∗)− µ′(N∗)N∗ − µ(N∗), if i = j = M + 1

0, otherwise


(3.19)

Again for clarity, we include an example of the matrix LS̃ described in Eq. 3.19, with

M = 4:
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

−(p(N∗) + µ(N∗)) 2µ(N∗) 0 0 −p′(N∗)c∗1

p(N∗) −2(p(N∗) + µ(N∗)) 3µ(N∗) 0 p′(N∗)[c∗1 − 2c∗2] + µ′(N∗)[3c∗3 − 2c∗2]

0 2p(N∗) −3(p(N∗) + µ(N∗)) 4µ(N∗) p′(N∗)[2c∗2 − 3c∗3] + µ′(N∗)[4c∗4 − 3c∗3]

0 0 3p(N∗) −4µ(N∗) 3p′(N∗)c∗3 − 4µ(N∗)c∗4

0 0 0 0 p′(N∗)N∗ + p(N∗)− µ′(N∗)N∗ − µ(N∗)



Simulation confirms that the eigenvalues of the new matrix LS̃ given by Eq. 3.19 are

essentially identical to those of the original matrix LS, validating our assumption that

the term γ
Ω

may be neglected in LS. Note that this assumption does not cause us to omit

the constant γ from the linearization matrix LS entirely, as the steady state values N∗,

c∗k depend on γ. Denote by λSk for k = 1, 2, · · · ,M + 1 the eigenvalues of LS̃, and note

that that the entry s̃(M+1,M+1) = dN
dt
|N=N∗ = p′(N∗)N∗+p(N∗)−µ′(N∗)N∗−µ(N∗) is an

eigenvalue. We denote this eigenvalue by λSM+1. We assume that N∗ is the homeostatic

population level that results at thymic export rate γ > 0, so that N∗ represents an

asymptotically stable equilibrium solution of Eq. 3.1. With that said, we assume that

λSM+1 < 0. The eigenvalues λS1 , · · · , λSM are those of the (M + 1)× (M + 1) minor of LS̃.

(In section 2.7, it was shown that the eigenvalues of LS̃ all have strictly negative real part.

Although the proof does not apply to the analogous minor of LS, numerical computation

indicates that this is also true of the eigenvalues of LS.) Denote by yk = (y1
k, · · · , yMk , 0)

the eigenvector corresponding to λSk . We now derive an analytic approximation, λ̃Sk , to

λSk , and an approximation, ỹk, to yk, for k = 1, · · · ,M . For each k = 1, · · · ,M , we let

λ̃Sk = k(p(N∗)−µ(N∗)), and produce an eigenvector ỹk that satisfies ||(LS̃− λ̃Sk I)ỹk|| → 0

as M → ∞, so that at large M , the residual quantity in the eigenvalue equation is

“small”. (Numerical simulation verifies that at large M , λ̃Sk ≈ λSk and ỹk ≈ yk for small

k.) We make this precise in the following Proposition:

Proposition 3.3.1. If p(N∗)−µ(N∗) < 0, the eigenvalues {λSk}k=1,...,M of the matrix LS̃

are well approximated by the terms λ̃Sk = k(p(N∗)− µ(N∗)), in the sense that there exist

vectors ỹk such that ||(LS̃ − λ̃Sk I)ỹk|| −→ 0 as M −→∞.

Proof. We begin by assuming that the terms λ̃Sk = k(p(N∗)−µ(N∗)) are themselves eigen-
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values of LS̃, and search for their corresponding eigenvectors, ỹk = (ỹ1
k, ỹ

2
k, · · · , ỹMk , 0).

Choosing ỹ1
k = 1, we then choose ỹik for i = 2, . . . ,M inductively so as to force the i-th

component of the residual vector, which we denote by [(LS̃ − λ̃Sk I)ỹk]i, to equal zero for

i = 1, 2, · · · ,M − 1. We then verify that [(LS̃ − λ̃Sk I)ỹk]M −→ 0 as M −→∞, so that for

M � 1, ||(LS̃−λ̃Sk I)ỹk|| ≈ 0, where ||·|| is any p-norm. (Trivially, [(LS̃−λ̃Sk I)ỹk]M+1 = 0.)

We first note that the components ỹ1
k, · · · , ỹMk of the approximate eigenvector ỹk cor-

responding to eigenvalue λ̃Sk are defined by the recurrence relation,

iỹik =

[
(i+ (k − 1))

(
p(N∗)

µ(N∗)

)
+ (i− (k + 1))

]
ỹi−1
k − [i− 2]

(
p(N∗)

µ(N∗)

)
ỹi−2
k . (3.20)

The solution of this recurrence relation is then,

ỹik =
k∑

n=1

[∏n−1
j=1 (i− j)

] [∏k−n
j=1 (i+ j)

]
k(−1)n−1(n− 1)!(k − n)!

(
p(N∗)

µ(N∗)

)i−n
, (3.21)

where we let
∏0

j=1(i ± j) = 1, whenever such a term appears in the above sum. (This

is verified in Appendix 3.7.) As previously mentioned, [(LS̃ − λ̃Sk I)ỹk]i = 0 for i =

1, 2, · · · ,M − 1. We now compute [(LS̃ − λ̃Sk I)ỹk]M , obtaining,

[(LS̃ − λ̃
S
k I)ỹk]M = (M − 1)p(N∗)ỹM−1

k −Mµ(N∗)ỹMk (3.22)

= p(N∗)
k∑

n=1

[∏n−1
j=0 (M − 1− j)

] [∏k−n
j=1 (M − 1 + j)

]
k(−1)n−1(n− 1)!(k − n)!

(
p(N∗)

µ(N∗)

)M−1−n

(3.23)

− µ(N∗)
k∑

n=1

[∏n−1
j=0 (M − j)

] [∏k−n
j=1 (M + j)

]
k(−1)n−1(n− 1)!(k − n)!

(
p(N∗)

µ(N∗)

)M−n
. (3.24)

Each term in the sum above has the form pk(M)aM , where pk(M) is a polynomial of
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degree k in the variable M , and a = p(N∗)/µ(N∗). Recalling that p(N∗)/µ(N∗) < 1,

then limM−→∞ pk(M)aM = 0, so that at large values of M , [(LS̃ − λ̃Sk I)ỹk]M ≈ 0. This

demonstrates that λ̃Sk may be regarded as an approximation to the true eigenvalue λSk ,

assuming that the eigenvalues of LS̃ are stable under small perturbations.
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Figure 3.1: Eigenvalues and eigenvectors of LS̃, γ > 0 (a) Numerically computed
eigenvalue spectrum of the matrix LS̃, with p(N∗) = 0.12, µ(N∗) = 0.17, and M = 500.
Dots identify the locations of the eigenvalues λS1 (red), λS100 (blue), λS200 (black). (b)
First 100 components (ỹ1

k, · · · , ỹ100
k ) of the eigenvectors with indices k = 1, 100, 200,

the eigenvalues corresponding to which are marked on the spectral curve in (a). (c)
Comparison of true eigenvalues (λSk ) and approximate eigenvalues (λ̃Sk ) for k = 1, · · · , 100.
Approximation is strong for k . 50. (d) (top) Comparison of ỹj50 and yj50 for j = 1, · · · , 40,
showing that the approximation is strong. (bottom) Comparison of ỹj200 and yj200 for
j = 1, · · · , 100, showing that the accuracy of the approximation breaks down, but the
qualitative behavior of yj200 is captured in ỹj200.

The solutions ỹik, as functions of i for fixed k, are characterized by short bursts of

oscillatory behavior, as shown in Fig. 3.1, which depicts numerical computations of true

and approximate eigenvalues and eigenvectors of LS̃. Fig. 3.1(a) presents a sample plot of

the eigenvalue spectrum λSk in the case M = 500; on the spectral curve, several eigenval-

ues are marked, the first 100 components of which are plotted in Fig. 3.1(b). As discussed

previously, all eigenvalues are negative. The eigenvector plots in Fig. 3.1(b) indicate that

as k increases, the period of oscillatory “mass” occurs at increasingly large values of j,

so that the oscillatory “mass” of the eigenvector appears to shift down along the vector

itself. Fig. 3.1(c) presents a comparison of the true eigenvalue spectrum (λSk ) and the
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approximate eigenvalue spectrum (λ̃Sk ) of the matrix LS̃. The eigenvalue approximation

is very strong for 1 . k . (0.1)M , and this remains true as M varies. The quantities

λ̃Sk = k(p(N∗) − µ(N∗)) over-approximate the λSk for k & (0.1)M . Fig. 3.1(d) depicts a

comparison of yk and ỹk for two values of k, one below the threshold (0.1)M (k = 50,

top) and one above the threshold (k = 200, bottom). As expected, the eigenvector

approximate is quite accurate precisely when the corresponding eigenvalue approxima-

tion is accurate. Even for k & (0.1)M , the approximate eigenvectors ỹk present an

appearance similar to that of the ỹk for smaller k. The diminished accuracy of the eigen-

value/eigenvector pairs at higher k (for fixed M) is attributable to the slower convergence

of [(LS̃ − λ̃Sk I)ỹk]M to 0 as M →∞ for larger k, which is immediately apparent from the

form in Eqs. 3.23, 3.24. For a system of a fixed dimension M , increasing µ(N∗) relative

to p(N∗) causes the approximate eigenvalues λ̃Sk to become increasingly valid at larger k,

clearly due to the quicker convergence of the residual quantity ||(LS̃− λ̃Sk I)ỹk|| to 0 when

(p(N∗)/µ(N∗))� 1, as indicated by Eq. 3.21. Increases to µ(N∗) relative to p(N∗) also

cause an intensified dampening of the oscillations in the eigenvector ỹk at lower compo-

nents j, which creates the illusion of the oscillatory mass shifting to the left as µ(N∗)

increases for fixed p(N∗), as in Fig. 3.2(right). At the same time, the entire eigenvalue

spectrum becomes more negative as µ(N∗) increases, as indicated in Fig. 3.2(left), so

that increases to the death rate at homeostatic levels indicate much faster convergence

to equilibrium of all ck compartments.
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Figure 3.2: Eigenvalues and eigenvectors of LS̃, γ > 0, varying µ (left) Numerically
computed eigenvalues, λSk , for k = 1, · · · , 100, when µ(N∗) = 0.16 and µ(N∗) = 0.6. In
both cases, p(N∗) = 0.15, M = 100. (right) Numerically computed eigenvectors x81.
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3.3.3 Behavior of the Linearized and Fully Nonlinear Systems

This section addresses the convergence behavior of solutions in the presence of a positive

thymic export rate γ > 0. This situation represents a functioning thymus, with the

possibility for many different levels of functionality, ranging from total health (high γ ∼

γ0) to dramatically diminished functionality (low γ). In this case, we determined that

for each equilibrium solution of Eq. 3.1, the system has an equilibrium solution given

by Eqs. 3.16, 3.17. If the equilibrium, N∗(γ), of Eq. 3.1 is stable, the corresponding

equilibrium c∗k(γ) will also be stable. (Physiologically typical forms of p(N), µ(N) tend to

result in one positive, stable equilibrium solution in Eq. 3.1.) Based on the eigenvalues and

eigenvectors of the approximate linearization, LS̃, of Eqs. 3.1-3.4 around this equilibrium,

we study the rates at which individual compartments converge to equilibrium under the

linearized model. If for some i, γi > 0, the solution {cik(t)}Mk=1, N i(t) satisfies cik(t) →

c∗k(γi), N
i(t) → N∗(γi). Based on the explicit solution of the linearized problem, we

naturally regard as the rate of convergence of a particular compartment cj to zero the

smallest k ∈ N for which |ỹjk| is particularly “large” compared to the other components

that lie outside the oscillatory “mass” of the eigenvector. According to our discussion in

section 3.3.2, cik(t) → c∗k at the rate p(N∗) − µ(N∗) if k ∼ 1, and cik(t) → c∗k at a rate

much faster than k(p(N∗) − µ(N∗)) if k is large. N i(t) → N∗ at the rate p′(N∗)N∗ +

p(N∗)− µ′(N∗)N∗ − µ(N∗).

In the fully nonlinear system, however, the linearized eigenvalues a priori only provide

rates of convergence of solution trajectories initialized near equilibrium. The accuracy

of the eigenvalues in providing convergence rates of solutions depends on the initial con-

ditions. If the initial conditions, cik(ti), N
i(ti), satisfy cik(ti) ∼ c∗k(γi), N

i(ti) ∼ N∗(γi),

then the solutions begin near the stable equilibrium, and the eigenvalues provide accurate

rates of convergence. If the initial conditions are far from equilibrium, the eigenvalues

may not provide accurate rates of convergence of the entire solution trajectory. When

trajectories are far from equilibrium at time ti, further information about the speed of

convergence can be discerned from the relationship between p(N∗(ti)) − µ(N∗(ti)) and

p(N∗(γi))−µ(N∗(γi))–that is, the disparity in proliferation and death rates at the starting

and terminal population levels. If these quantities differ significantly, solution trajectories

are generally characterised by a transient period of fast convergence, which carries the
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trajectory close enough to the stable equilibrium that convergence rates from then on are

those of the linearized eigenvalues. For example, assume that an abrupt drop in thymic

productivity occurs at ti, so that γi−1 � γi. If the person was in a state of immune health

prior to atrophy, the population level N∗(ti) will represent a normal homeostatic level and

satisfy p(N∗(ti))−µ(N∗(ti)) ∼ p(N∗(γi−1)−µ(N∗(γi−1)) < 0. We can expect the quantity

p(N∗(γi))−µ(N∗(γi)) to satisfy 0 > p(N∗(γi))−µ(N∗(γi)) > p(N∗(γi−1))−µ(N∗(γi−1)),

as a higher thymic export rate subsequently necessitates a higher level of regulation-

induced cellular death to maintain homeostatic balance. In this situation, the T-cell pool

will experience a brief transient period of higher cellular death, until the total cell count

falls to a level near N∗(γi), at which point convergence rates correspond to the linearized

eigenvalues.

3.4 Solution Analysis in the Case γ = 0 (full thymic cessation)

We now proceed to study solution behavior in the absence of thymic export (γ = 0). As

in section 3.3 above, we compute equilibrium solutions of the truncated system (finite

M) that arise when γ = 0, and identify the rates of convergence of the different ck(t)

to equilibrium under the linearized model. We also take M → ∞ and consider explicit

solutions of the infinite-dimensional system.

3.4.1 Analytic Solutions

We begin, as before, by taking M → ∞ and considering the generating function Q(z, t)

defined in Eq. 3.6, which was shown to satisfy the partial differential equation in Eq. 3.7.

Taking γ(t) = 0 in Eq. 3.13, the solution Q(z, t) may be written as,

Q(z, t) =
∞∑
k=0

ck(0)

[
1− z − 1

(z − 1)B(t)− A(t)

]k
. (3.25)

As stated earlier, the analytic solution ck(t) for k ≥ 0 is given by the k-th order deriva-

tive of Q with respect to z at z = 0. Utilizing the results previously derived in the

literature [Wan05], we can write
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ck(t) =

[
B(t)

A(t) +B(t)

]k ∞∑
i=0

ci(0)

·

 i∑
j=0

 i

j

 k + j − 1

k

(1− 1

B(t)

)i−j (
A(t)

B(t) (A(t) +B(t))

)j .(3.26)

Note that for depleted initial conditions c0(0) = Ω and ck(0) = 0 for k ≥ 1, Eq. 3.26

leads to c0(t) = Ω and ck(t) = 0 for k ≥ 1 at all times. Indeed, the T-cell pool is

expected to remain empty since there is no thymic export. We can also verify that

N(t) = A(t)−1
∑∞

k=0 kck(0), which is the same as the analytical solution obtained directly

from Eq. 3.1.

Fig 3.3(A) depicts a numerical computation of the solution, ck, of the

infinite-dimensional formulation, obtained from the generating function. We include

values of ck for k = 1, 2, · · · , 50 at times t = 30, 60, 90. As a function of k, the ck

present as linear on a logarithmic scale, as expected. To compare the infinite dimen-

sional system with the truncated system, we also compute solutions, yk, of the truncated

Eqs. 3.2, 3.3, 3.4 (not pictured). Fig. 3.3(B) depicts the relative error, |ck − yk|/ck. As

we see, the error is several orders of magnitude smaller than ck, yk themselves at each of

the times t = 30, 60, 90, indicating that the infinite- and finite- dimensional systems may

be used more or less interchangeably.

3.4.2 Equilibrium Solutions and Linearization

We now investigate the equilibrium solutions that arise when we take γ = 0 in

Eqs. 3.1-3.4. In this case, the system has 2 equilibrium solutions. Denoting generic

equilibrium solutions by {c∗k}Mk=1, N
∗, the unstable solution is c∗k = 0 for all k ≥ 1 and

N∗ = 0, and the asymptotically stable solution is c∗k = 0 for all k ≥ 1 and N∗ =

Ñ > 0, where Ñ satisfies p(Ñ) = µ(Ñ). To verify the stability of these solutions, we

consider the linearization of the system around this equilibrium, which is represented by

the (M + 1)× (M + 1) matrix we call LU (LU = (uij)1≤i,j≤M+1). The components uij of

LU are given explicitly by:
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Figure 3.3: Computation of ck from method of characteristics, comparison with
truncated system (A) Plots of ck for k = 1, 2, · · · , 50, at times t = 30, 60, 90. Solutions
ck were computed numerically from the analytic method described in 3.4.1, based on the
infinite-dimensional system. As a function of k, ck presents as linear on a logarithmic
scale. (B) Relative error, |ck−yk|/ck for k = 1, 2, · · · , 50, at times t = 30, 60, 90, where ck
denotes the solutions depicted in (A), and yk denotes the numerically computed solutions
of the truncated system in Eqs. 3.2, 3.3, 3.4. From (B), the disparity between the solutions
of the infinite dimensional systems (ck) and the finite dimensional truncated systems (yk)
is negligible, validating our decision to use them interchangeably. Coefficient functions:
p(N) = p0 > 0, µ(N) = µ0 +µ1(N2/(N2 +K2)). Parameter values: p0 = 0.18, µ0 = 0.17,
µ1 = 0.04, K = 1010, Ω = 1016, M = 100. Initial condition: c0(0) = 1016 − 1010,
c1(0) = 1010, ck(0) = 0 for k ≥ 2.



−j(p(N∗) + µ(N∗)), if i = j ≤M − 1

−Mµ(N∗), if i = j = M

jµ(N∗), if i = j − 1; 2 ≤ j ≤M

jp(N∗), if i = j + 1; 1 ≤ j ≤M − 1

p′(N∗)N∗ + p(N∗)− µ′(N∗)N∗ − µ(N∗), if i = j = M + 1

0. otherwise



(3.27)

For reference, an example of the matrix LU , with M = 4, is given below:
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

−(p(N∗) + µ(N∗)) 2µ(N∗) 0 0 0

p(N∗) −2(p(N∗) + µ(N∗)) 3µ(N∗) 0 0

0 2p(N∗) −3(p(N∗) + µ(N∗)) 4µ(N∗) 0

0 0 3p(N∗) −4µ(N∗) 0

0 0 0 0 p′(N∗)N∗ + p(N∗)− µ′(N∗)N∗ − µ(N∗)



As before, u(M+1),(M+1) = p′(N∗)N∗ + p(N∗) − µ′(N∗)N∗ − µ(N∗) is an eigenvalue with

eigenvector (0, . . . , 0, 1), and the remaining eigenvalues are those of the (M+1)×(M+1)

minor of LU . As before, all eigenvalues of the (M + 1) × (M + 1) minor have neg-

ative real part, and the stability of an equilibrium solution depends on the sign of

u(M+1),(M+1). If N∗ = 0, then u(M+1),(M+1) = p(0) − µ(0) > 0, as described pre-

viously, and the equilibrium c∗k = 0, N∗ = 0 is unstable. On the other hand, if

N∗ = Ñ with p(Ñ) = µ(Ñ), then N∗ represents a positive, homeostatic cell count,

and u(M+1),(M+1) = (p′(N∗)− µ′(N∗))N∗ < 0, as p(N), µ(N) are assumed to be non-

increasing and non-decreasing, respectively. Therefore, we have that c∗k = 0, N∗ = Ñ is

a stable equilibrium solution.

If γ = 0, the solution {ck(t)}Mk=1, N(t), will diverge away from the equilibrium c∗k = 0,

N∗ = 0 and towards the equilibrium c∗k = 0, N∗ = Ñ . In this instance, the pool of

small clones is eradicated due to lack of thymic productivity, and the high lymphopenic

proliferation rate pushes existent clones past the truncation threshold M , where they

are no longer accounted for in the ck functions but are accounted for in N , causing

N(t) → N∗ despite the fact that ck(t) → 0 for all k. As before, we wish to explore

further the rates at which individual functions ck diverge from the unstable and towards

the stable equilibrium under the linearized and fully nonlinear models. To this end, we

study the eigenvalues of the linearization matrix, LU , evaluated at the two equilibria.

We begin by considering the eigenvalues of LU evaluated at the unstable equilibrium.

In this case, we assume p(0) > µ(0), as described earlier. Without thymic export, new

clones are not generated in the periphery, and existent clones expand due to the high

proliferation rate. Under Eqs. 3.2, 3.3, 3.4, this manifests as clones quickly expanding
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beyond the small-k compartments and getting “caught” at the boundary at size M , be-

fore depleting due to the slow death-induced passage of single cell clones through the

boundary at k = 1. Under Eq. 3.1, this manifests as the total cell population reaching

a natural homeostatic level through peripheral maintenance alone. To investigate the

rates at which these processes occur under the linearized model, we derive approxima-

tions to the dominant eigenvalues of LU . Denote the true eigenvalues of LU under the

assumption that p(0) > µ(0) by λUk for k = 0, 1, · · ·M , with corresponding eigenvectors

zk = (zMk , z
M−1
k , · · · , z1

k, z
0
k). Assign to the eigenvalue u(M+1),(M+1) = p(0)−µ(0) the label

λMk , and to its eigenvector (0, . . . , 0, 1) the label zM . It remains to find approximations to

the other M eigenvalues of LU , which are precisely the eigenvalues of the (M+1)×(M+1)

minor. For i = 0, 1, . . . ,M − 1, denote the approximation to the eigenvalue λUk by λ̃Uk ,

and the approximation to the eigenvector zk by z̃k = (z̃Mk , z̃
M−1
k , · · · , z̃1

k, 0). We begin

by establishing that the eigenvalue of smallest magnitude, λU0 , is well approximated by

λ̃U0 = 0.

Proposition 3.4.1. The eigenvalue of LU of smallest magnitude, λU0 , is well approxi-

mated by λ̃U0 = 0, in the sense that there exists a vector z̃0 = (z̃M0 , z̃
M−1
0 , · · · , z̃2

0 , z̃
1
0 , 0)

such that ||(LU − λ̃U0 I)z̃0|| −→ 0 as M −→∞.

Proof. (Note: The components of z̃0 are written above in “descending” order for no-

tational convenience, as this reflects the order in which they will be chosen recursively

below. The i-th component from the left of z̃0, denoted explicitly by z̃M−i+1
0 , still corre-

sponds to the function ci.) We begin by considering the matrix (LU − λ̃U0 I) = LU and

searching for an appropriate eigenvector, z̃0. We define z̃1
0 = 1, and once again choose

the components z̃i0 inductively via a three-term recurrence relation so as to force the

i-th component of (LU − λ̃U0 I)z̃0, which we denote as before by [(LU − λ̃U0 I)z̃0]i, to sat-

isfy [(LU − λ̃U0 I)z̃0]i = 0 for i = 2, 3, · · · ,M + 1. While [(LU − λ̃U0 I)z̃0]1 6= 0, we show

that [(LU − λ̃U0 I)z̃0]1 −→ 0 as M −→ ∞, so that z̃0 may be regarded formally as an

“approximate” eigenvector corresponding to the approximate eigenvalue λ̃U0 .

Defining z̃1
0 = 1 and z̃2

0 = Mµ(0)
(M−1)p(0)

, we let z̃0 be defined by solutions to the recurrence

relation,
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z̃i+2
0 =

(
(M − i)(µ(0) + p(0))

(M − (i+ 1))p(0)

)
z̃i+1

0 −
(

(M − (i− 1))

M − (i+ 1)

)(
µ(0)

p(0)

)
z̃i0, (3.28)

for i = 1, 2, · · · ,M − 2. It may be verified directly that the solution to this recurrence

relation is given by,

z̃i0 =

(
M

M − (i− 1)

)(
µ(0)

p(0)

)i−1

. (3.29)

By construction of the recurrence relation, [(LU − λ̃A0 I)z̃0]i = 0 for i = 2, 3, · · · ,M . The

first component, [(LU − λ̃A0 I)z̃0]1, satisfies,

[(LU − λ̃A0 I)z̃0]1 = −µ(0)M

(
µ(0)

p(0)

)M−1

−→ 0 (3.30)

as M −→ ∞. Thus, when M � 1, ||(LU − λ̃U0 I)z̃0|| ≈ 0, and we may conclude that

λ̃U0 = 0 and z̃0 are suitable approximations to λU0 and z0, respectively.

Recalling that all eigenvalues of LU have negative real parts, the true eigenvalue λU0

has a negative real part of very small magnitude. We now identify which entries in the

eigenvector z0, as approximated by z̃0, are particularly large in magnitude in comparison

with the others. Recalling that the i-th component of z̃0 is given by z̃i0 = (M/(M −

(i − 1)))(µ(0)/p(0))i−1, the z̃i0 decay nearly exponentially in i, so that components of

z̃0 corresponding to the compartments of very large clones are preserved by this slow

eigenvalue, in agreement with the described “build up” of clones at the boundary k = M

when γ = 0.

The eigenvalue λU1 of second smallest magnitude is well separated from λU0 , and it
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encodes information about the movement of smaller size clones. Similar analysis of an

approximating eigenvalue λ̃U1 and eigenvector z̃1 to λU1 and z1 indicate that compartments

containing small clones empty much more rapidly than those containing very large clones,

as clones race to the boundary at k = M . In particular, all but the compartments of

very large clones that had been preserved by the slow eigenvalue λU0 empty at nearly the

same rate, λU1 ≈ λ̃U1 = (µ(0)− p(0)).

Proposition 3.4.2. In the case p(0) > µ(0), the matrix LU has an eigenvalue λU1 which

is well approximated by λ̃U1 = (µ(0)− p(0)), in the sense that there exists a vector z̃1 such

that ||(LU − λ̃U1 I)z̃1|| −→ 0 as M −→∞.

Proof. First define z̃1
1 = 1, and z̃2

1 =
(
M+1
M−1

) (µ(0)
p(0)

)
− 1

M−1
. Then for i = 1, 2, · · · ,M − 2,

let z̃i+2
0 be given by the solutions to the following recurrence relation:

z̃i+2
1 = z̃i+1

1 +

(
M − (i− 1)

M − (i+ 1)

)(
µ(0)

p(0)

)(
z̃i+1

1 − z̃i1
)
. (3.31)

(It is worth nothing that if we were to instead choose z̃1
1 = z̃2

1 , then the recurrence relation

in Eq. 3.31 would have a constant solution, z̃i1 = z̃1
1 for all i = 1, 2, · · · ,M . Although

z̃1
1 6= z̃2

1 for our purposes, solutions of the recurrence relation do converge rapidly to

constants, as will be discussed later.)

By construction, [(LU − λ̃U1 I)z̃1]i = 0 for i = 2, 3, · · · ,M + 1. Additionally, [(LU −

λ̃U1 I)z̃1]1 = 2µ(0)(z̃M1 − z̃M−1
1 ). To show that [(LU − λ̃U1 I)z̃1]1 −→ 0 as M −→∞, we use

Eq. 3.31 to derive an explicit bound on the quantity 2µ(0)(z̃M1 − z̃M−1
1 ).
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|z̃i+2
1 − z̃i+1

1 | =
(
M − (i− 1)

M − (i+ 1)

)(
µ(0)

p(0)

)
|z̃i+1

1 − z̃i1|

=

(
M − (i− 1)

M − (i+ 1)

)(
M − (i− 2)

M − i

)(
µ(0)

p(0)

)2

|z̃i1 − z̃i−1
1 |

=

(
M − (i− 2)

M − (i+ 1)

)(
M − (i− 3)

M − i

)(
µ(0)

p(0)

)3

|z̃i−1
1 − z̃i−2

1 |

= · · ·

=

(
M − (i− (j − 1))

M − (i+ 1)

)(
M − (i− j)
M − i

)(
µ(0)

p(0)

)j
|z̃i+2−j

1 − z̃i+1−j
1 |

= · · ·

=

(
M − 1

M − (i+ 1)

)(
M

M − i

)(
µ(0)

p(0)

)i
|z̃2

1 − z̃1
1 |. (3.32)

Taking i = M − 2 in the above relation, we find that,

|[(LU − λ̃U1 I)z̃1]1| = 2µ(0)|z̃M1 − z̃M−1
1 |

= µ(0) (M(M − 1))

(
µ(0)

p(0)

)M−2

|z̃2
1 − z̃1

1 |

−→ 0

as M −→∞. Thus, for M � 1, ||(LU − λ̃U1 I)z̃1|| ≈ 0, and we find that z̃1 is “almost” an

eigenvector of LU corresponding to the approximate eigenvalue λ̃U1 .

We now wish to identify which of the ck compartments empty at the rate determined

by the second approximate eigenvalue, λ̃U1 . As it turns out, the eigenvector z̃1 corre-

sponding to this eigenvalue is “nearly” constant, and thus all compartments empty at

essentially the same rate. We see this by identifying that even though we are only con-

cerned with a finite number (M) of terms of the sequence generated by the recurrence

relation in Eq. 3.31, as the index M becomes infinitely large, the sequence {zi1}Mi=1 ex-

hibits “Cauchy-like” behavior, mimicking “convergence” to a limiting value. We make
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this more precise in the following Proposition:

Proposition 3.4.3. Let z̃1 be an approximate eigenvector of LU corresponding to ap-

proximate eigenvalue λ̃U1 , where z̃1 is generated by the recurrence relation in Eq. 3.31.

Then at large M , the components of z̃1 exhibit “Cauchy-like” behavior: for any ε > 0 and

0 < c < 1, we may choose M ∈ N such that |z̃m1 − z̃n1 | < ε for all cM ≤ m ≤ M and

cM ≤ n ≤M .

Proof. Recalling the bound on |z̃i+2
1 − z̃i+1

1 | obtained in Eq. 3.32, we find,

|z̃m1 − z̃n1 | =

∣∣∣∣∣
m−1∑
i=n

(
z̃i+1

1 − z̃i1
)∣∣∣∣∣

≤
m−1∑
i=n

|z̃i+1
1 − z̃i1|

=
m−1∑
i=n

(
M − 1

M − i

)(
M

M − (i− 1)

)(
µ(0)

p(0)

)i−1

|z̃2
1 − z̃1

1 |

≤M(M − 1)|z̃2
1 − z̃1

1 |
m−1∑
i=n

(
µ(0)

p(0)

)i−1

= M(M − 1)|z̃2
1 − z̃1

1 |
(
µ(0)

p(0)

)n−1
(
m−n−1∑
j=0

(
µ(0)

p(0)

)j)

= M(M − 1)|z̃2
1 − z̃1

1 |
(
µ(0)

p(0)

)n−1

1−
(
µ(0)
p(0)

)m−n
1− µ(0)

p(0)


≤ M(M − 1)|z̃2

1 − z̃1
1 |(

1− µ(0)
p(0)

) (
µ(0)

p(0)

)n−1

=
|z̃2

1 − z̃1
1 |
(
µ(0)
p(0)

)−1(
1− µ(0)

p(0)

) [
M(M − 1)

(
µ(0)

p(0)

)n]

≤
|z̃2

1 − z̃1
1 |
(
µ(0)
p(0)

)−1(
1− µ(0)

p(0)

) [
M(M − 1)

(
µ(0)

p(0)

)cM]

Recalling that M(M − 1)
(
µ(0)
p(0)

)cM
−→ 0 as M −→ ∞, we may choose M large enough

that,
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M(M − 1)

(
µ(0)

p(0)

)cM
≤ ε

 |z̃2
1 − z̃1

1 |
(
µ(0)
p(0)

)−1(
1− µ(0)

p(0)

)

−1

, (3.33)

allowing us to conclude that |z̃m1 − z̃n1 | < ε for all M ≥ m,n ≥ cM .

By taking 0 < c, ε � 1, we find that “most” components of z̃1 are within an ε-

distance of each other, so that the eigenvector is nearly constant. (The constancy breaks

down at the components representing large-k compartments.) With this, we are able to

classify the rates at which clones of all sizes are lost from the pool. As the eigenvector

corresponding to the second smallest magnitude eigenvalue, λA1 ≈ λ̃A1 , is nearly constant,

all clones except the very largest mentioned previously are lost from the pool at nearly

the same rate, on a time scale ∼ |µ(0)− p(0)|−1.
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Figure 3.4: Eigenvalues and eigenvectors of LS̃, γ = 0 (a) Numerically computed
eigenvalue spectrum of the matrix LU , with p(N∗) = 0.17, µ(N∗) = 0.12, and M =
500. Dots identify the locations of the eigenvalues λU1 (red), λU6 (blue), λU21 (black).
(b) First 30 components (z500

k , · · · , z470
k ) of the eigenvectors with indices k = 1, 6, 21, the

eigenvalues corresponding to which are marked on the spectral curve in (a). (Note that the
eigenvectors were defined in a “reverse-order”, so that z500

k corresponds to compartment
c1, z495

k to compartment c6, and z480
k to compartment c21 (generally: zM−j+1

k corresponds
to compartment cj).

The remaining eigenvalues λU2 , · · · , λUM−1 are not treated analytically, but numerical

computation indicates that a similar general approximation to the k-th eigenvalue, λ̃Uk ,

may be made, taking the form λ̃Uk = k(µ(0) − p(0)). The true eigenvalues, λUk , are

depicted in Fig. 3.4(a) (Comparison of the true and approximate spectra is omitted, as

the result is similar to that depicted in Fig. 3.1(c). That is, λUk ≈ k(µ(0) − p(0)) if
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k . (0.1)M .). The oscillatory behavior observed in the approximate eigenvectors in the

case p(N∗) < µ(N∗) of section 3.3 is absent here; although the subsequent approximate

eigenvectors z̃2, · · · , z̃M−1 do not share the Cauchy-like behavior of z̃1, the components

corresponding to ck for small k do not vary much in magnitude, and are thus interpreted

as being nearly constant themselves (Fig. 3.4(b).) Thus, we conclude that for small

k, the functions ck all have quite similar dynamics, essentially converging at the rate

|µ(0) − p(0)|, while for large k, the ck converge very slowly, at a rate governed by the

dominant, near-zero eigenvalue λU0 .

We now consider the stable equilibrium solution, c∗k = 0 for k ≥ 1, N∗ = Ñ > 0. In

this case, the linearization around this equilibrium may be expressed as p(N∗)LU ′ , where

LU ′ = (u′ij)1≤i,j≤M+1 is the (M + 1)× (M + 1) matrix with component u′ij given by,



−2j, if i = j ≤M − 1

−M, if i = j = M

j, if i = j − 1; 2 ≤ j ≤M

j, if i = j + 1; 1 ≤ j ≤M − 1

p′(N∗)N∗+p(N∗)−µ′(N∗)N∗−µ(N∗)
p(N∗)

, if i = j = M + 1

0. otherwise



(3.34)

For reference, an example of the matrix LU ′ , with M = 4, is given below:
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

−2 2 0 0 0

1 −4 3 0 0

0 2 −6 4 0

0 0 3 −4 0

0 0 0 0 p′(N∗)N∗+p(N∗)−µ′(N∗)N∗−µ(N∗)
p(N∗)



(3.35)

Denote by λU
′

k for k = 1, 2, · · · ,M,M + 1 the eigenvalues of the matrix LU ′ evaluated

at the stable equilibrium solution, and xk = (x1
k, x

2
k, · · · , xMk , xM+1

k ) their corresponding

eigenvectors. As before, let λU
′

M+1 = p′(N∗)N∗+p(N∗)−µ′(N∗)N∗−µ(N∗)
p(N∗)

< 0. Then the remain-

ing eigenvalues λU
′

1 , · · · , λU
′

M are those of the (M + 1) × (M + 1) minor of LU ′ , which

are independent of the parameters of the system except M . (Of course, the eigenvalues

of p(N∗)LU ′ are then p(N∗)λU
′

k for k = 1, · · · ,M + 1.) These eigenvalues and eigenvec-

tors are not treated analytically. The analysis conducted in section 3.3 does not apply,

as it relied on the assumption p(N∗) < µ(N∗), which no longer holds. However, nu-

merical computation indicates that in the case p(N∗) = µ(N∗), which applies here, the

eigenvalue spectrum and associated eigenvectors qualitatively resemble the λSk , yk studied

analytically in section 3.3. Thus, the convergence of solutions cik(t), N
i(t) to this stable

equilibrium is similar to that of solutions to the stable equilibrium that arises when γ > 0:

for small k, ck converges at the rate given by the dominant eigenvalue, and for larger k,

ck converges at a rate much faster than that given by the dominant eigenvalue.

3.4.3 Behavior of the Linearized and Fully Nonlinear Systems

We now interpret these results in the context of the particular diseased states to which

they naturally apply. We first identified an unstable equilibrium solution, c∗k = 0, N∗ = 0,

and studied the linearization of the system around this equilibrium. Under the linearized

model, if γi = 0 for some i, the eigenvalue/eigenvectors pairs suggest that solutions
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diverge away from this equilibrium, with cik for small k evolving at a rate ∼ λU1 = (µ(0)−

p(0)), and cik for k ∼ M evolving at the very slow rate given by the small-magnitude

eigenvalue, λU0 . N i(t) evolves at the rate (p(0) − µ(0)). This situation represents the

start of the repopulation of the T-cell pool from a small number of existent cells via

peripheral proliferation in a highly pathological state involving both complete thymic

inactivity (e.g. thymectomy or total functional cessation) and near full lymphopenia

(as may result from treatment regimens for cancer, etc.). We then identified a stable

equilibrium solution, c∗k = 0, N∗ = Ñ > 0. As Ñ is asymptotically stable, N i(t) → Ñ

after diverging from N∗ = 0. Under the linearized model, the eigenvalue/eigenvector

pairs predict that cik(t) → 0 slowly for small k, and cik(t) → 0 much more quickly for

large k. Simply put, when diverging away from the zero state, ck travels quickly for small

k and very slowly for large k, and when converging towards the stable equilibrium, ck

travels quickly for large k and slowly for small k.

As before, the validity of the eigenvalues in providing accurate convergence rates of

cik, N
i to and from equilibria depends on the initial condition cik(ti) in the full nonlinear

model. If the human is in a state of immune health for t < ti, so that γi−1 > 0 and

the initial conditions cik(ti), N
i(ti) > 0 satisfy cik(ti) ∼ c∗k(γi−1), N i(ti) ∼ N∗(γi−1), we

expect that p(N i(ti)) < µ(N i(ti)). The higher rate of death than proliferation at ti may

cause a transient period of quick collapse, with N i(t) decreasing to Ñ . As N i(t) → Ñ ,

convergence occurs at the rates dictated by the linearized eigenvalues. If γi−1 > 0 but

cik(ti), N
i(ti) ∼ 0, so that the thymus is functioning to some extent but the T-cell pool has

been eradicated, trajectories first diverge away from the unstable zero equilibrium at rates

given by the linearized eigenvalues. As p(N i(ti)) − µ(N i(ti)) → p(Ñ) − µ(Ñ) = 0, the

motion of trajectories transitions from being dictated by the eigenvalues of the unstable

equilibrium to those of the stable equilibrium.

3.5 Special Cases and Simulations

Using the approximate rates of convergence provided by linearization, we can now study

the time scale of the T-cell pool’s adjustment to a new export rate. While some T-cell

clones will expand and attain a large size, most are small. Thus, in both the cases of
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thymic atrophy and recovery, we take as a proxy for the rate at which the full T-cell

pool converges to equilibrium the eigenvalue that dictates the rate of convergence of

c1, typically given by the quantity p(N∗) − µ(N∗) (this tends to also be the dominant

eigenvalue). In this section, we study several specific models arising from canonical choices

of p and µ, and compute the changing convergence rate as gamma varies.

3.5.1 The Logistic Model

We begin with the canonical logistic growth model, taking p(N) = p0(1−N/K), µ(N) =

µ0, where p0, µ0 > 0 are basal rates of cellular proliferation and death, respectively, and

K > 0 is an inherent carrying capacity. Under this model, Eq. 3.1 has a positive steady

state, N∗, given by,

N∗ =

(
K

2p0

)(
(p0 − µ0) +

√
(p0 − µ0)2 +

4γp0

K

)
. (3.36)

In this case, p(N∗)−µ(N∗) = p0

(
1− N∗

K

)
−µ0 =

(
1
2

) (
(p0 − µ0)−

√
(p0 − µ0)2 + 4γp0

K

)
<

0, so that the assumption p(N∗) < µ(N∗) always applies. Moreover,

λ̃SM+1 = −
√

(p0 − µ0)2 + 4γp0

K
, so it is clear that 0 > λ̃S1 > λ̃SM+1, and λ̃S1 is the dominant

eigenvalue. Then,

|p(N∗)− µ(N∗)| =
(

1

2

)(
−(p0 − µ0) +

√
(p0 − µ0)2 +

4γp0

K

)
. (3.37)

In Fig. 3.5, the quantity λ̃S1 is plotted against γ for several different combinations of

p0, µ0, showing the unboundedness of the convergence rate as γ increases. Within this

physiological range of γ values, the dependence of λ̃S1 on γ presents as linear on a loglog

plot, indicating a power law relationship. Indeed, the power law is described in detail in

the caption of Fig. 3.5.
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Figure 3.5: Dominant eigenvalue, λ̃S1 , of LS̃, plotted against γ, Case 1 In (a),
p0 = 0.18, µ0 = 0.17. In (b), p0 = 0.018, µ0 = 0.017. In (c), p0 = 0.0018, µ0 = 0.0017.
There is an approximate power law relationship between λ̃S1 and γ within this range of
parameter values. In (A), for example, the best fit line to the curve K = 107 is given by
log(λ̃S1 ) = (2.673× 10−11) log(γ) + 5.594, with R2 = 0.8904. The curve K = 109 is fitted
by log(λ̃S1 ) = (2.672 × 10−12) log(γ) + 0.558, with R2 = 0.8905, and the curve K = 1011

is fitted by log(λ̃S1 ) = (2.67× 10−13) log(γ) + 0.05478, with R2 = 0.8911.

3.5.2 Constant Proliferation, Varying Death

Let us now assume that p(N) = p0 > 0 and µ(N) = µ0 + µ1N2

K2+N2 , with µ0, µ1 > 0,

in the ODEs given by Eqs. 3.1-3.4. (This form was used in Chapter 2.) We make the

assumptions that p0 > µ0 and p0 − (µ0 + µ1) < 0, so that the action of the proliferation-

death mechanism results in net cellular birth at low cell counts and net cellular death at

high cell counts. Explicitly, Eq. 3.1 has the form,

dN

dt
= γ + p0N −

(
µ0 + µ1

(
N2

K2 +N2

))
N. (3.38)

The steady states of this ODE are given by the roots of the following cubic, which we

denote by c(N),

c(N) = (p0 − (µ0 + µ1))N3 + γ0N
2 + (p0 − µ0)K2N + γK2. (3.39)

Note first that c(0) = γK2 > 0, and the highest order coefficient satisfies (p0 − (µ0 + µ1)) <

0 by assumption, so that c(N) −→ −∞ as N −→∞, and c(N) has at least one positive,
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real root. From Descartes’ rules of signs, the polynomial has at most one positive real

root, so we may conclude that it has precisely one positive real root. This root corre-

sponds to the only physically relevant stable fixed point of dN
dt

. By regarding this root,

N∗, as the intersection of the line γ+(p0−µ0)N and the rational expression µ1

(
N3

K2+N2

)
,

we see that N∗ →∞ as γ → 0.
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Figure 3.6: Dominant eigenvalue, λ̃S1 , of LS̃, plotted against γ, Case 2. In (a),
p0 = 0.18, µ0 = 0.17, and µ1 = 0.004. In (b), p0 = 0.018, µ0 = 0.017, and µ1 = 0.004.
In (c), p0 = 0.0018, µ0 = 0.0017, and µ1 = 0.0004. The relationship between λ̃S1 and γ
follows a power law for low values of γ, before reaching a plateau for high values of γ. In
(A), the best fit line to the curve K = 107 over the power law region (∼ γ ∈ [101, 2.2×104])
is given by log(λ̃S1 ) = (1.492× 10−7) log(γ) + 1.972× 10−5, with R2 = 0.9979. The curve
K = 109 over the power law region (∼ γ ∈ [101, 2.1×106]) is fitted by log(λ̃S1 ) = (1.505×
10−9) log(γ) + 1.039× 10−5, with R2 = 0.998, and the curve K = 1011 over the power law
region (∼ γ ∈ [101, 2.2× 108]) is fitted by log(λ̃S1 ) = (1.502× 10−11) log(γ) + 7.6× 10−6,
with R2 = 0.998.

We also verify that the eigenvalues λ̃S1 , λ̃
S
M+1 satisfy 0 > λ̃S1 > λ̃SM+1, so that λ̃S1 is, in

fact, the dominant eigenvalue. We first check that 0 > λ̃S1 . Recalling that λ̃S1 = p(N∗)−

µ(N∗) = p0 −
(
µ0 + µ1

(
(N∗)2

(K2+(N∗)2)

))
, we see after some simple algebraic manipulation

that the condition λ̃S1 < 0 is equivalent to

N∗ >

(
(p0 − µ0)K2

|p0 − (µ0 + µ1)|

) 1
2

:= N. (3.40)

But c(N) = γ(p0−µ0)K2

|p0−(µ0+µ1)| + γK2 > 0. That c(N) > 0 and c(N) −→ −∞ as N −→ ∞,

along with the fact that c(N) has only one real positive root indicates that N∗ does, in

fact, satisfy Cond. 3.40, so that λ̃S1 < 0. It is easily verified that −µ′(N∗)N∗ < 0, and

consequently that λ̃S1 > λ̃SM+1.
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From the fact that N∗ →∞ as γ →∞, we have that |p(N∗)−µ(N∗)| → p0−(µ0 +µ1)

as γ → ∞. This limiting behavior is reflected in the eventual plateau seen in Fig. 3.6,

which plots the quantity λ̃S1 in this case. Before the plateau occurs, γ and λ̃S1 are again

related by a power law. The transition from power law to plateau occurs at a “threshold”

value, γ∗, of γ, at which the rate of T-cell adjustment becomes sensitive to a changing

thymic export rate. If, for some i, γi−1, γi ≥ γ∗, λ̃S1 is unaffected by the transition from

thymic export rate γi−1 to thymic export rate γi–that is, the T-cell pool adjusts to the

new thymic export rate γi as quickly as it had adjusted to the previous thymic export

rate γi−1. If, however, (γi − γ∗)(γi−1 − γ∗) < 0, then a dramatic shift in the adjustment

rate will occur. Thus, parameter choices that result in a low threshold value γ∗ might

correspond to physiological conditions under which an instance of acute thymic atrophy

actually does not affect T-cell adjustment rates. Likewise, a high threshold value of γ∗

indicates potential sensitivity of adjustment rates to the changing level of thymic export,

with adjustment rates obeying a power law dependence on γ.

3.5.3 Regulation of Proliferation and Death

We conclude with an example in which both peripheral proliferation and death are subject

to homeostatic regulation. We adapt forms used by Murray et al. in [MKH03], taking

p(N) = p0K/(K+N) and µ(N) = µ0(1+µ1N/(K+N)). The constants p0, µ0, µ1, K > 0

play the same fundamental roles as in the previous examples. The positive equilibrium

solution of Eq. 3.1 under this assumption is given by,

N∗ =
γ + (p0 − µ0)K +

√
(γ + (p0 − µ0)K)2 + 4µ0(1 + µ1)γK

2µ0(1 + µ1)
, (3.41)

which leads to a dominant eigenvalue λ̃S1 given by,
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λ̃S1 = p(N∗)− µ(N∗) (3.42)

=

µ0(1 + µ1)
(
−γ + (p0 − µ0)K −

√
(γ + (p0 − µ0)K)2 + 4µ0(1 + µ1)γK

)
(p0 + µ0)K + 2µ0µ1K + γ +

√
(γ + (p0 − µ0)K)2 + 4µ0(1 + µ1)γK

 .
(3.43)

It is easily verified that p′(N∗)N∗ − µ′(N∗)N∗ < 0 so that 0 > λ̃S1 > λ̃SM+1, so that λ̃S1 is,

in fact, the dominant eigenvalue. The relationship between γ and λ̃S1 depicted in Fig. 3.7

is similar to that in Fig. 3.6.
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Figure 3.7: Dominant eigenvalue, λ̃S1 , of LS̃, plotted against γ, case 3 In (a),
p0 = 0.18, µ0 = 0.17, and µ1 = 0.004. In (b), p0 = 0.018, µ0 = 0.017, and µ1 = 0.004. In
(c), p0 = 0.0018, µ0 = 0.0017, and µ1 = 0.0004. In this case, the power law relationship
from Fig. 3.5 and the power law/plateau relationship from Fig. 3.6 break down somewhat,
although the qualitative appearance of the curves resembles those of Fig. 3.6.

3.6 Discussion and Conclusions

In this chapter, we formulated a model of how the naive T-cell pool adjusts to changes

in the rate of thymic export of new T-cells during a cycle of stress-induced atrophy and

recovery, and how it may be reconstituted following an instance of severe lymphopenia

induced by a state of immune disease, or treatments such as chemotherapy. In section 3.3,

we found that our ODE system admitted one stable equilibrium solution when γ > 0.

From an analysis of the eigenvalues and eigenvectors of the system linearized around

this stable equilibrium, we found that for small k, ck converges to equilibrium at a rate
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given by the dominant eigenvalue, λS1 = (p(N∗) − µ(N∗)). For larger k, ck converges

to equilibrium much faster than k(p(N∗) − µ(N∗)). In section 3.4, we found that the

system admits one unstable and one stable equilibrium solution when γ = 0, so that

other solutions converge away from the unstable and towards the stable solution. From

a similar eigenvalue and eigenvector analysis, we find that the largest clones move away

from the unstable solution very slowly, at a rate given by the near-zero eigenvalue, while

the smaller clones tend to travel at the same speed, given predominantly by the eigenvalue

λU1 = (µ(0)− p(0)).

In section 3.5, we take the dominant eigenvalue that arises when γ > 0 as a proxy for

the rate of convergence of the smallest (most common, significant) clones to equilibrium.

We compute the dominant eigenvalue as a function of γ for three choices of the functions

p(N), µ(N). In section 3.5.1, we test the logistic model, which assumes a constant rate of

proliferation and an N -dependent death rate. From the explicit form of λ̃S1 in Eq. 3.37,

p(N∗)− µ(N∗)→∞ as γ →∞ for fixed values of the other parameters, which produces

the power-law relationship between γ and λ̃S1 depicted in Fig. 3.5. In section 3.5.2, we

assume a constant rate of cellular proliferation with an N -dependent death rate, and in

section 3.5.3, we test a formulation with N -dependent rates of both cellular proliferation

and death. In both of these formulations, which differ from the logistic formulation in

that regulation is incorporated into p(N), µ(N) via Hill functions, γ and λ̃S1 are related by

a power law for low γ, before reaching a plateau at higher γ. As the latter formulations

are typically used in realistic representations of homeostatic mechanisms, we expect these

to be more physiological than the logistic case. That is, jumps in the thymic export rate

that either cross the threshold value of γ, or occur between two values of γ both in the

power-law region, can be expected to produce changes in both the equilibrium values of

ck and also the convergence rates. If a jump in γ occurs between two values of γ that are

both in the plateau region, the equilibrium values shift, but the convergence rates stay

the same.

3.7 Appendix: Solution of Recurrence Relation

We verify that Expression 3.21, which we remind the reader was given explicitly by,

77



yik =
k∑

n=1

[∏n−1
j=1 (i− j)

] [∏k−n
j=1 (i+ j)

]
k(−1)n−1(n− 1)!(k − n)!

(
p(N∗)

µ(N∗)

)i−n
, (3.44)

is the solution to Relation 3.20, given by,

iyik =

[
(i+ (k − 1))

(
p(N∗)

µ(N∗)

)
+ (i− (k + 1))

]
yi−1
k − [i− 2]

(
p(N∗)

µ(N∗)

)
yi−2
k . (3.45)

In what follows, we write p(N∗) as p, and µ(N∗) as µ for simplicity. Inserting Expres-

sion 3.21 into the right side of Relation 3.20, we have,
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CHAPTER 4

T-cell Populations During HIV Infection and

Treatment

4.1 Introduction

In this section, we formulate a model of HIV infection and treatment with bone marrow

transplant therapy. This treatment involves transplanting into an HIV-infected individual

bone marrow possessing a natural immunity to the HIV virus. After transplant, the thy-

mus would begin to populate with T-cell precursors descended from these HIV-immune

stem cells, which possess the same inherent immunity. After maturing into fully func-

tioning T-cells in the thymus, cells from this lineage would exit the thymus and populate

the peripheral bloodstream. Ideally, this treatment would lead to a reconstitution of the

peripheral T-cell pool sufficient to adequately limit viral loads and restore immune func-

tion. However, bone marrow transplant carries with it a risk of graft versus host disease,

with the risk increasing as the amount of transplanted tissue increases. As such, we seek

to identify the minimum amount of tissue that can be transplanted and still produce

an HIV-immune T-cell pool large enough to limit viral loads and adequately preserve

immune health.

To realistically model the course of HIV infection and treatment, we develop a piece-

wise ODE system that describes the changing populations of infected and uninfected

T-cells and virus particles during the three qualitatively different stages of infection and

treatment. The first stage (Stage 1) is that of health (before infection with HIV), during

which we identify healthy equilibrium counts of T-cell progenitors in the bone marrow,

developing T-cells in the thymus, and mature T-cells in the periphery. The second stage

(Stage 2) begins at the onset of infection, after which we model the depletion of healthy

lymphocytes in the thymus and periphery by, and subsequent immune response to, the
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HIV virus. The third and final stage (Stage 3) begins at the start of treatment, when

the infected individual’s bone marrow is ablated and partially replaced with HIV-immune

stem cells. During this stage, we observe the repoulation of the bone marrow, thymus, and

periphery with (“protected”) cells immune to HIV, along with the adjustment of the viral

load and HIV-vulnerable (“unprotected”) cell populations to the new cell populations.

4.2 Mathematical Model and Analysis

We begin by considering a simple model that accounts for “free-spread” of the virus–that

is, infection of healthy CD4 T-cells by virions passing freely through the blood and lymph

system. We assume that the bone marrow, thymus, and secondary lymphoid tissues and

peripheral blood operate under a homeostatic mechanism to reestablish equilibrium T-cell

counts whenever some type of foreign infection disturbs immune cell levels.

We now introduce notation. Let t denote the independent time variable, and assume

that the observation of the population of the immune system with T-cells begins at t = 0.

Let t1 > 0 denote the time at which HIV infection occurs, so that Stage 1 (as described

above) occurs over the time period [0, t1]. Analogously, let t2 > t1 denote the time at

which infection is identified and treatment first administered, so that Stage 2 occurs

over the time period [t1, t2]. Finally, let t3 > t2 denote the time at which we end our

observation of the success of the treatment, so that Stage 3 occurs over the time period

[t2, t3].

4.2.1 Stage 1: Population of Lymphoid Tissues with T-cells Before HIV

Infection

Denote by x(t) the total number of T-cell progenitors in the bone marrow, by y(t) the

total number of developing T-cells in the thymus, and by z(t) the total number of mature

T-cells in the periphery. The time evolution of these cell populations is given by the

following system of ODEs:
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

ẋ(t) = αu+ p

(
1− x

KBM

)
x− βx if t ∈ [0, t1] (4.1a)

ẏ(t) = βx+ q

(
1− y

KT

)
y − γy if t ∈ [0, t1] (4.1b)

ż(t) = γy + r

(
1− z

KP

)
z if t ∈ [0, t1] (4.1c)

In Eq. 4.1a above, the constant u denotes the total number of stem cells in the bone

marrow, and the constant α (units time−1, or “cells per capita per unit time”) denotes the

per-capita rate at which stem cells produce T-cell precursors that travel from the bone

marrow to the thymus, so that αu denotes the rate at which T-cell precursors are produced

from stem cells in the bone marrow. The coefficient function p
(

1− x
KBM

)
(units time−1

or “cells per capita per unit time”) represents the per-capita rate of cellular division in

the bone marrow, with KBM a bone marrow carrying capacity parameter, and p a rate

parameter. Note that if x > KBM , this coefficient function is negative, and represents

a death rate. The term p
(

1− x
KBM

)
x then represents the rate at which stem cells are

created in the bone marrow via cellular division. Finally, the constant β (units time−1 or

“cells per capita per unit time”) denotes the per-capita T-cell precursor emigration rate

from the bone marrow, so that βx denotes the rate at which T-cell precursors are lost in

the bone marrow due to emigration to the thymus.

In Eqs. 4.1b, 4.1c terms are defined analogously. In Eq. 4.1b, the term βx represents

the rate at which T-cell precursors enter the thymus from the bone marrow. With KT

representing a thymic carrying capacity parameter, and q a thymic division rate param-

eter, the term q
(

1− y
KT

)
y represents the rate at which the T-cell precursor population

changes due to cellular division (or death) in the thymus. The constant γ denotes the

per-capita rate at which mature T-cells exit the thymus and enter the peripheral blood,

so that γy denotes the total rate at which mature T-cells exit the thymus. In Eq. 4.1c, the

term r
(
1− z

KP

)
z represents the rate at which the peripheral T-cell population changes

due to homeostatic cellular division and death, with r a rate parameter and KP a periph-

eral carrying capacity parameter. In the table below, we summarize quantities appearing

in our ODE.
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Quantity Description

x(t) Number of precursors in bone marrow

y(t) Number of progenitors in thymus

z(t) Number of T-lymphocytes in periphery

α Rate of division in bone marrow

β Rate of migration from bone marrow to thymus

γ Rate of migration from thymus to periphery

p Homeostatic parameter in bone marrow

q Homeostatic parameter in thymus

r Homeostatic parameter in periphery

KBM Carrying capacity in bone marrow

KT Carrying capacity in thymus

KP Carrying capacity in periphery

Table 4.1: Functions and Parameters defined in Stage 1

Denote equilibrium solutions of Eqs. 4.1a, 4.1b, 4.1c by x1, y1, z1. As the quanti-

ties x1, y1, and z1 represent T-cell population counts, the only relevant equilibria are

those satisfying x1, y1, z1 ≥ 0. The only physically relevant equilibrium solution of

Eqs. 4.1a, 4.1b, 4.1c is then:

x1 =
KBM

2p

(
p− β +

√
(p− β)2 +

4αup

KBM

)
, (4.2)

y1 =
KT

2q

(
q − γ +

√
(q − γ)2 +

4βx1q

KT

)
, (4.3)

z1 =
KP

2r

(
r +

√
r2 +

4ry1γ

KP

)
, (4.4)

where we note that z1 depends on y1, and y1 depends on x1, as expected. The linearization

of Eqs. 4.1a, 4.1b, 4.1c around the equilibrium given by Eqs. 4.2, 4.3, 4.4 is given by:

86




∂ẋ
∂x

∂ẋ
∂y

∂ẋ
∂z

∂ẏ
∂x

∂ẏ
∂y

∂ẏ
∂z

∂ż
∂x

∂ż
∂y

∂ż
∂z

 =


(p− β)− 2p

KBM
x1 0 0

β (q − γ)− 2q
KT
y1 0

0 γ r − 2r
KP
z1

 (4.5)

The linearization has eigenvalues λ1, λ2, and λ3 given by:

λ1 = (p− β)− 2p

KBM

x1 = −
√

(p− β)2 +
4αup

KBM

λ2 = (q − γ)− 2q

KT

y1 = −
√

(q − γ)2 +
4βx1q

KT

λ3 = r − 2r

KP

z1 = −
√
r2 +

4ry1γ

KP

As each eigenvalue is strictly negative for any combination of strictly positive param-

eters, our choice of (x1, y1, z1) is a stable equilibrium for Eqs. 4.1a, 4.1b, 4.1c.

4.2.2 Stage 2: Infection with HIV

The next piece of our ODE models Stage 2 of the infection and treatment process: that

after which HIV infection has occurred, and before treatment is administered. Denote

by V (t) the number of free virions in the system, by Y (t) the number of infected cells in

the thymus, and by Z(t) the number of infected cells in the periphery. The ODE system

we propose to describe Stage 2 is as follows:
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

ẋ(t) = αu+ p

(
1− x

KBM

)
x− βx if t ∈ (t1, t2] (4.6a)

ẏ(t) = βx+ q

(
1− y

KT

)
y − γy − λyV y if t ∈ (t1, t2] (4.6b)

ż(t) = γy + r

(
1− z

KP

)
z − λzV z if t ∈ (t1, t2] (4.6c)

Ẏ (t) = λyV y − kyY if t ∈ (t1, t2] (4.6d)

Ż(t) = λzV z − kzZ if t ∈ (t1, t2] (4.6e)

V̇ (t) = cyY + czZ − ηV if t ∈ (t1, t2] (4.6f)

At time t1, we set the initial conditions (x(t1), y(t1), z(t1), Y (t1) = 0, Z(t1) = 0, V (t1) =

V0), where x(t1) ∼ x1, y(t1) ∼ y1, and z(t1) ∼ z1 are the values of the functions x(t),

y(t), and z(t) that resulted at the end of Stage 1 (that is, at t1, the moment of infection),

and V0 is the starting concentration of virus particles at the moment of infection.

All the quantities (functions and constants) that appear in Eqs. 4.6a–4.6f and already

appeared in Eqs. 4.1a–4.1c retain the same interpretation. The effects of viral infection are

incorporated into Eqs. 4.6b–4.6f only, as we assume HIV does not infect the bone marrow.

In Eq. 4.6b, V y is taken as a proxy for the number of potential “collisions” between virus

particles and healthy T-cells in the thymus, and λy represents the rate of infection per

collision (units time−1, or “infections per collision per unit time”), so that −λyV y (units

time−1) represents the rate at which healthy cells in the thymus are lost due to infection

resulting from collisions with virus particles. In Eq. 4.6c, −λzV z analogously represents

the rate at which healthy cells in the periphery are lost due to infection resulting from

collisions with virus particles. In Eq. 4.6d, the term λyV y indicates that cells lost from

the healthy cell pool due to infection in Eq. 4.6b are transferred to the infected cell pool.

The constant ky denotes the per-capita death rate of infected cells in the thymus (units

time−1), so that kyY represents the total rate at which infected cells die in the thymus.

In Eq. 4.6e, terms are defined analogously, with kz representing the per-capita death rate

of infected cells in the periphery. Finally, Eq. 4.6f accounts for changes to the total viral

load. The constants cy, cz denote the rates at which infected cells produce new virions

(units time−1, or “viruses per infected cell per unit time”) in the thymus and periphery,
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so that cyY, czZ represent the total rate at which new virions are produced by infected

cells in the thymus and periphery, respectively. The constant η represents the per-capita

rate (units time−1, or “virions cleared per virion per unit time”) of clearance of virions

by the immune system, so that ηV represents the total rate at which virions are cleared

by the immune system (units time−1).

Below is a table summarizing the new quantities appearing in Eqs. 4.6a–4.6f:

Quantity Description

Y (t) Density of infected cells in thymus

Z(t) Density of infected cells in periphery

V (t) Density of virus particles

λy Rate of infection in thymus

λz Rate of infection in periphery

η Rate of neutralization of viral particles

ky Rate of clearance of infected cells in thymus

kz Rate of clearance of infected cells in periphery

cy Rate of viral production in thymus

cz Rate of viral production in periphery

Table 4.2: Functions and parameters new to the Stage 2 ODEs.

The system in Eqs. 4.6a–4.6f presents two distinct equilibrium solutions, one of which

corresponds to the disease-free state. The disease-free equilibrium has the form:
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x2 =
KBM

2p

(
p− β +

√
(p− β)2 +

4αup

KBBM

)
y2 =

KT

2q

(
q − γ +

√
(q − γ)2 +

4βx2q

KT

)

z2 =
KP

2r

(
r +

√
r2 +

4ry2γ

KP

)
Y 2 = 0

Z2 = 0

V 2 = 0

As one can see, this equilibrium solution in Eqs. 4.7–4.7 essentially reverts to the

steady state solution from Stage 1 (Eqs. 4.2–4.4). To study its stability, we first compute

the linearization of Eqs. 4.6a–4.6f, evaluated at an arbitrary equilibrium solution:



∂ẋ
∂x

∂ẋ
∂y

∂ẋ
∂z

∂ẋ
∂Y

∂ẋ
∂Z

∂ẋ
∂V

∂ẏ
∂x

∂ẏ
∂y

∂ẏ
∂z

∂ẏ
∂Y

∂ẏ
∂Z

∂ẏ
∂V

∂ż
∂x

∂ż
∂y

∂ż
∂z

∂ż
∂Y

∂ż
∂Z

∂ż
∂V

∂Ẏ
∂x

∂Ẏ
∂y

∂Ẏ
∂z

∂Ẏ
∂Y

∂Ẏ
∂Z

∂Ẏ
∂V

∂Ż
∂x

∂Ż
∂y

∂Ż
∂z

∂Ż
∂Y

∂Ż
∂Z

∂Ż
∂V

∂V̇
∂x

∂V̇
∂y

∂V̇
∂z

∂V̇
∂Y

∂V̇
∂Z

∂V̇
∂V


(4.7)

=



(p− β)− 2p
KBM

x2 0 0 0 0 0

β (q − γ)− 2q
KT
y2 − λyV 2 0 0 0 −λyy2

0 γ r − 2r
KP
z2 − λzV 2 0 0 −λzz2

0 λyV 2 0 −ky 0 λyy2

0 0 λzV 2 0 −kz λzz2

0 0 0 cy cz −η


(4.8)

To study the linearization matrix at our particular disease-free equilibrium, we first insert
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the steady-state components Y 2 = 0, Z2 = 0, and V 2 = 0 into the linearization, leaving

the symbolic expressions for x2, y2, z2 at the moment, to keep the matrix simple:



(p− β)− 2p
KBM

x2 0 0 0 0 0

β (q − γ)− 2q
KBM

y2 0 0 0 λyy2

0 γ r − 2r
KP
z2 0 0 −λzz2

0 0 0 −ky 0 λyy2

0 0 0 0 −kz λzz2

0 0 0 cy cz −η



This matrix has eigenvalues λ1, · · · , λ6, and the first three are given explicitly by:

λ1 = (p− β)− 2p

KBM

x2 = −
√

(p− β)2 +
4αup

KBM

λ2 = (q − γ)− 2q

KT

y2 = −
√

(q − γ)2 +
4βx2q

KT

λ3 = r − 2r

KP

z2 = −
√
r2 +

4ry2γ

KT

The eigenvalues λ1, λ2, and λ3 are all strictly negative, so the disease-free state will be

unstable if at least one of the remaining eigenvalues (λ4, λ5, and λ6) is nonnegative. The

three remaining eigenvalues are given by the roots of the following cubic, which we denote

by a(λ):

a(λ) = −λ3 − (kz + η)λ2 + (−kykz − (kz + ky)η + czλzz2 + cyλyy2)λ (4.9)

+ (kyczλzz2 + kzcyλyy2 − kykzη) (4.10)

As a(λ) satisfies a(λ) −→ −∞ as λ −→ ∞, the condition a(0) > 0 is sufficient to guar-

antee the existence of a positive root of a, and thus a positive eigenvalue, and consequent
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instability of the disease-free equilibrium. In terms of the parameters of the system, this

amounts to the condition:

kyczλzz2 + kzcyλyy2 > kykzη. (4.11)

This condition is not necessary to produce a positive root, however, so we now consider

what happens when a(0) < 0. We first observe that because a(λ) −→∞ as λ −→ −∞, if

a(0) < 0, then a must have at least one negative root. From this observation (and basic

facts about polynomial roots), we can conclude that in the case a(0) < 0, a either has

three negative roots, one negative root and 2 positive roots, or one negative root and one

pair of complex conjugate roots.

As the coefficients of the third- and second-order terms in a are always negative, and

the constant term, a(0), is assumed to be negative, we draw further conclusions about

the roots by varying the sign of the coefficient of the first-order term in a. We begin by

assuming the first-order term is positive. This condition is given explicitly in terms of

the parameters of the system by:

czλzz2 + cyλyy2 > kykz + (kz + ky)η. (4.12)

If this condition is met, then a cannot have three negative roots. (If all roots of a were

negative, then the coefficient of each term in the cubic would have the same sign.) Thus,

a has either two positive real roots or a complex conjugate pair of roots. It can be

shown that if the other roots consist of a complex conjugate pair, then the real parts

of the roots must be positive. Regardless, if the coefficient of the first-order term in

the cubic a is positive, then a has two roots with positive real part. In particular, the

linearization matrix in Eq. 4.2.2 has two eigenvalues with positive real part, and the

disease-free equilibrium is unstable. In addition, Conds. 4.11, 4.12 above are likely to be

satisfied in any physically relevant situation, due to the large magnitude of the equilibria

y2 and z2, which appear on the left-hand side of Conds. 4.11, 4.12.
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Let’s now consider other possible equilibria of Eqs. 4.6a–4.6f, which correspond to persis-

tent infection. Given such equilibrium values of x2 and y2 to be computed momentarily,

it can be shown that equilibrium values z2, V 2, Y 2, and Z2 are defined in terms of them

as follows:

z2 =
kzη

czλz
− cyλykz
czλzky

y2 := A−By2

V 2 =
γy2

λz(A−By2)
+

r

λz
− r(A−By2)

λz

Y 2 =
λy
ky
y2

(
γy2

λz(A−By2)
+

r

λz
− r(A−By2)

λz

)
Z2 =

(A−By2)

kz

(
γy2

λz(A−By2)
+

r

λz
− r(A−By2)

λz

)

where we define the constants A := kzη
czλz

and B := cyλykz
czλzky

for simplicity. As we assume

the bone marrow itself is immune to infection by HIV, Eq. 4.6a is identical to Eq. 4.1a,

and the equilibrium component x2 is the same as x1:

x2 =
KBM

2p

(
p− β +

√
(p− β)2 +

4αup

KBM

)
(4.13)

The equilibrium components y2 are given implicitly as roots of the following cubic,

which we denote by b(y2):

b(y2) =

(
Bq

KT

+
λyrB

2

λzKP

)
y3

2 +

(
−B(q − γ)− qA

KT

− λyγ

λz
+
Bλyr

λz
− 2ABλyr

KPλz

)
y2

2

(4.14)

+

(
A(q − γ)−Bβx2 +

Aλyr

λz

(
A

KP

− 1

))
y2 + Aβx2 (4.15)

Numerical computations of the three roots for positive, reasonable parameter values gen-

erally produce three real roots, two of which are positive, and one of which is negative.

The table below includes a sample numerical computation of the roots of this cubic, with
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parameter values listed in the caption.

Root 1 Root 2 Root 3

−3.154570615148978x104 1.916591560167755x104 4.387979054981225x104

Table 4.3: Roots of b(y2) Parameter values: α = 1, β = 0.4, γ = 0.1, u = 2000,
p = q = r = 1, KBM = KT = KP = 100, 000, λy = λz = 0.0001, ky = kz = 0.6,
cy = cz = 0.2, and η = 0.7.

Each of the three choices of y2 coupled with the single choice of x2 produces a set of

equilibria (x2, y2, z2, Y 2, Z2, V 2). A state of productive infection occurs if each component

is positive. Our choice of x2 satisfies x2 > 0, and if we select from the three choices of y2

those satisfying y2 > 0, then as long as z2 and V 2 > 0, it follows that Y 2, Z2 > 0 as well.

We can impose the conditions z2, V 2 > 0 by first prescribing that z2 > 0, which can be

phrased in terms of the original parameters as:

z2 > 0 iff A−By2 > 0 iff
ηky
cyλy

> y2.

With this assumption that z2 = A−By2 > 0, we can guarantee that V 2 > 0 by imposing

the condition:

γy2 + r(A−By2)− r(A−By2)2

KP

> 0

This expression is quadratic in (A−By2) = z2. In particular, as the coefficient of the

highest order term is negative, the relation above is satisfied when (A−By2) lies between

the two roots of the quadratic. Those roots are given by

(A−By2) =
KP

2

(
1±

√
1 +

4γy2

rKP

)

Notice that, due to the nonnegativity of r, γ, y2, KP, one of these roots is negative and

the other positive. Earlier we saw that it was necessary to assume z2 > 0, so now we

make the additional assumption that z2 = A − By2 <
KP

2

(
1 +

√
1 + 4γy2

KP

)
. This leads
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to the constraint on y2 given by:

A

B
−
(
KP

2B

)(
1 +

√
1 +

4γy2

rKP

)
< y2 <

ηky
cyλy

,

which can be written in terms of the original parameters as,

ηky
cyλy

− KPczλzky
2cyλykz

(
1 +

√
1 +

4γy2

rKP

)
< y2 <

ηky
cyλy

.

Numerical simulations show that the small positive root y2 of the cubic b generally satisfies

the above relation, and so we look to this choice of y2 to produce an equilibrium solution

corresponding to a state of persistent infection, and study its stability numerically.

4.2.3 Stage 3: After Treatment

The final part of the piecewise ODE models Stage 3, treatment of the HIV infection with

bone marrow transplant. Denote by x∗(t) the number of HIV-immune T-cell precursors in

the bone marrow, by y∗(t) the number of developing HIV-immune T-cells in the thymus,

and by z∗(t) the number of mature HIV-immune T-cells in the periphery. Assuming

occasional infection of defective HIV-immune cells with the HIV virus, denote by Y ∗(t)

the total number of infected HIV-immune cells in the thymus, and by Z∗(t) the total

number of infected HIV-immune cells in the periphery. The ODE we propose to describe

Stage 3 is as follows:
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ẋ(t) = αu+ p

(
1− x+ x∗

KBM

)
x− βx if t ∈ [t2, t3] (4.16a)

ẏ(t) = βx+ q

(
1− y + y∗

KT

)
y − γy − λyV y if t ∈ [t2, t3] (4.16b)

ż(t) = γy + r

(
1− z + z∗

KP

)
z − λzV z if t ∈ [t2, t3] (4.16c)

ẋ∗(t) = αu∗ + p

(
1− x+ x∗

KBM

)
x∗ − βx∗ if t ∈ [t2, t3] (4.16d)

ẏ∗(t) = βx∗ + q

(
1− y + y∗

KT

)
y∗ − γy∗ − λy∗V y∗ if t ∈ [t2, t3] (4.16e)

ż∗(t) = γy∗ + r

(
1− z + z∗

KP

)
z∗ − λz∗V z∗ if t ∈ [t2, t3] (4.16f)

Ẏ (t) = λyV y − kyY if t ∈ [t2, t3] (4.16g)

Ż(t) = λzV z − kzZ if t ∈ [t2, t3] (4.16h)

Ẏ ∗(t) = λy∗V y
∗ − kyY ∗ if t ∈ [t2, t3] (4.16i)

Ż∗(t) = λz∗V z
∗ − kzZ∗ if t ∈ [t2, t3] (4.16j)

V̇ (t) = cyY + czZ + cy∗Y
∗ + cz∗Z

∗ − ηV if t ∈ [t2, t3] (4.16k)

(4.16l)

The dynamics of the HIV-immune and HIV-susceptible cell populations are coupled via

the logistic growth coefficients
(

1− x+x∗

KBM

)
in Eqs. 4.16a, 4.16d and the analogous terms

that appear in Eqs. 4.16b, 4.16c, 4.16e, 4.16f. These coefficient functions are “symmet-

ric” in x, x∗, y, y∗, z, z∗, to reflect the identical effect the homeostatic mechanism has on

protected and unprotected cell populations. Aside from the added representation of pro-

tected cell populations to the logistic growth coefficients, Eqs. 4.16a–4.16c are unchanged

from their forms in Eqs. 4.1a–4.1c and Eqs. 4.6a–4.6c.

Eqs. 4.16d–4.16f, 4.16i, 4.16j describe the time evolution of the new functions z∗, y∗,

z∗, Y ∗, Z∗. In Eq. 4.16d, the constant u∗ represents the total number of HIV-immune

stem cells in the bone marrow, and in Eqs. 4.16e, 4.16f, the constants λy∗ , λz∗ represent

the rates of infection of HIV-immune cells in the thymus and periphery, respectively. As

the immune system’s homeostatic mechanism operates on the protected and unprotected

T-cell populations in the same fashion, and HIV infection results from physical colli-
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sions between virions and either protected or unprotected cells (albeit at different rates),

Eqs. 4.16d–4.16f are formulated in direct analogue with Eqs. 4.16a–4.16c. Eqs. 4.16i, 4.16j

are also formulated in effigy of Eqs. 4.16g, 4.16h, under the assumption that protected

thymic and peripheral cells die at the same rates (ky, kz, respectively) as unprotected

cells. In Eq. 4.16k, we modify Eq. 4.6f to account for production of new virions from

infected protected cells in the thymus and periphery, with new virions produced from

infected protected thymic and peripheral cells at rates cy∗ , cz∗ , respectively.

In the table below, we introduce the new quantities that appear in Eqs. 4.16a–4.16k,

but did not appear in Eqs. 4.16a–4.16f.

Quantity Description

x∗(t) Number of protected cells in bone marrow

y∗(t) Number of protected cells in thymus

z∗(t) Number of protected cells in periphery

Y ∗(t) Number of infected protected cells in thymus

Z∗(t) Number of infected protected cells in periphery

u∗ Number of protected stem cells in bone marrow

λy∗ Rate of infection of protected cells in thymus

λz∗ Rate of infection of protected cells in periphery

cy∗ Rate of viral production (in protected cells) in thymus

cz∗ Rate of viral production (in protected cells) in periphery

Table 4.4: Functions and Parameters Introduced in Stage 3

We define the initial conditions of those functions that were defined in Stage 2–

(x(t), y(t), z(t), Y (t), Z(t), V (t))–to be the values that resulted at the end of Stage 2, at

time t2. We assign to the five new functions the initial conditions: (x∗(t2) = 0, y∗(t2) =

0, z∗(t2) = 0, Y ∗(t2) = 0, Z∗(t2) = 0), because we are introducing a new type of protected

cell not already be present in the tissues of the immune system.

We begin by analyzing the Stage 3 equilibrium corresponding to the disease-free state,

which is given below:
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x3 =
2αu√

(p− β)2 + 4pα(u+u∗)
KBM

− (p− β)
x∗3 =

2αu∗√
(p− β)2 + 4pα(u+u∗)

KBM
− (p− β)

y3 =
2βx3√

(q − γ)2 +
4qβ(x3+x∗3)

KT
− (q − γ)

y∗3 =
2βx∗3√

(q − γ)2 +
4qβ(x3+x∗3)

KT
− (q − γ)

z3 =
γy3√

r2 +
4rγ(y3+y∗3)

KP
− r

z∗3 =
γy∗3√

r2 +
4rγ(y3+y∗3)

KP
− r

Y 3 = 0 Z3 = 0 V 3 = 0 Y
∗
3 = 0 Z

∗
3 = 0

Due to the nonnegativity of the parameters, all eleven components of the equilibrium

solution above are nonnegative. To study the stability of this equilibrium solution, we

begin by computing the linearization of the system in Eqs. 4.16a–4.16k around an arbi-

trary point (x, x∗, y, y∗, z, z∗, Y, Z, Y ∗, Z∗, V ):
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                                                [(
p
−
β

)

−
p
(2
x

+
x
∗
)

k
B
M

]
0

0
−
p
x

K
B
M

0
0

0
0

0
0

(q
−
γ

)

β
−
q
(2
y
+
y
∗
)

K
T

0
0

−
q
y

K
T

0
0

0
0

0
−
λ
y
y

−
λ
y
V

r

0
γ

−
r
(2
z
+
z
∗
)

K
P

0
0

−
r
z

K
P

0
0

0
0

−
λ
z
z

−
λ
z
V

−
p
x
∗

K
B
M

0
0

(p
−
β

)
−

p
(2
x
∗
+
x

)
K

B
M

0
0

0
0

0
0

0

0
−
q
y
∗

K
T

0
β

(q
−
γ

)
−

q
(2
y
∗
+
y
)

K
T
−
λ
y
∗
V

0
0

0
0

0
−
λ
y
∗
y
∗

0
0

−
r
z
∗

K
P

0
γ

r
−

r
(2
z
∗
+
z
)

K
P

0
0

0
0

λ
z
∗
z∗

0
λ
y
V

0
0

0
0

−
k
y

0
0

0
λ
y
y

0
0

λ
z
V

0
0

0
0
−
k
z

0
0

λ
z
z

0
0

0
0

λ
y
∗
V

0
0

0
−
k
y

0
λ
y
∗
y
∗

0
0

0
0

0
λ
z
∗
V

0
0

0
−
k
z

λ
z
∗

0
0

0
0

0
0

c y
c z

c y
∗

c z
∗

−
η

                                                
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,

ta
k
in

g
Y

=
Z

=
Y
∗

=
Z
∗

=
V

=
0,

an
d

ta
k
in

g
x
→

x
3
,
y
→

y
3
,

z
→

z 3
,
x
∗
→

x
∗ 3
,
y
∗
→

y
∗ 3
,

an
d
z∗
→

z∗ 3
to

ke
ep

th
e

m
at

ri
x

si
m

p
le

.
W

e
ob

ta
in

:

                             (p
−
β

)
−

p
(2
x

3
+
x
∗ 3
)

K
B
M

0
0

−
p
x

3

K
B
M

0
0

0
0

0
0

0

β
(q
−
γ

)
−

q
(2
y

3
+
y
∗ 3
)

K
T

0
0

q
y

K
T

0
0

0
0

0
−
λ
y
y

3

0
γ

r
−

r
(2
z

3
+
z
∗ 3
)

K
P

0
0

−
r
z

K
P

0
0

0
0

−
λ
z
z 3

−
p
x
∗ 3

K
B
M

0
0

(p
−
β

)
−

p
(2
x
∗ 3
+
x

3
)

K
B
M

0
0

0
0

0
0

0

0
−
q
y
∗ 3

K
T

0
β

(q
−
γ

)
−

q
(2
y
∗ 3
+
y
)

K
T

0
0

0
0

0
−
λ
y
∗
y
∗ 3

0
0

−
r
z
∗ 3

K
P

0
γ

r
−

r
(2
z
∗ 3
+
z

3
)

K
P

0
0

0
0
−
λ
z
∗
z∗ 3

0
0

0
0

0
0

−
k
y

0
0

0
λ
y
y

3

0
0

0
0

0
0

0
−
k
z

0
0

λ
z
z 3

0
0

0
0

0
0

0
0
−
k
y

0
λ
y
∗
y
∗ 3

0
0

0
0

0
0

0
0

0
−
k
z

λ
z
∗
z∗ 3

0
0

0
0

0
0

c y
c z

c y
∗

c z
∗

−
η

                             
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If this matrix has eigenvalues λ1, λz, · · · , λ11, the first eight (λ1, λ2, · · · , λ8) are given by:

λ1 =
1

2

(p− β)−

√
(p− β)2 +

4αp(u+ u∗)

KBM

 λ2 = −

√
(p− β)2 +

4αp(u+ u∗)

KBM

λ3 =
1

2

(q − γ)−

√
(q − γ)2 +

4qβ(x3 + x∗3)

KT

 λ4 = −

√
(q − γ)2 +

4qβ(x3 + x∗3)

KT

λ5 =
1

2

r −√r2 +
4rγ(y3 + y∗3)

KP

 λ6 = −

√
r2 +

4rγ(y3 + y∗3)

KP

λ7 = −ky λ8 = −kz

All of these eigenvalues are negative, and the solution can only be unstable if one of the

three remaining eigenvalues is nonnegative. The remaining three eigenvalues, λ9, λ10, λ11,

are roots of the following cubic, which we denote by c(λ):

c(λ) = −λ3 − (ky + kz + η)λ2 + (C +D − kykz − ηkz − ηky)λ+ (Cky +Dkz − ηkykz)

(4.17)

In Eq. 4.17 above, C := cz∗λz∗z
∗
3 + czλzz3 and D := cy∗λy∗y

∗
3 + cyλyy3. The cubic

satisfies c(λ) −→ −∞ as λ −→∞, thus if c(0) > 0, there is guaranteed to be at least one

positive real root of c(λ), thus at least one positive eigenvalue. The condition c(0) > 0 is

given explicitly as:

(
cz∗3λz∗3z

∗
3 + czλzz3

)
ky +

(
cy∗3λy∗3y

∗
3 + cyλyy3

)
kz > ηkykz (4.18)

By the same reasoning used in the analysis of the disease-free steady state in Stage

2, if c(0) < 0, then c is guaranteed to have at least one negative real root. In particular,

if c(0) < 0, the cubic c possesses either three negative roots, one negative root and two
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positive roots, or one negative root and one pair of complex conjugate roots. In particular,

knowing that the coefficients of the third- and second-order terms in c are always negative

allows us to conclude that if, additionally, the first-order term is positive, then c has two

roots with positive real parts, and thus the disease-free steady-state is unstable. The

condition that the first-order term in c is positive is given explicitly in terms of the

parameters of the system by:

cz∗3λz∗3z
∗
3 + czλzz3 + cy∗3λy∗3y

∗
3 + cyλyy3 > ηky + ηkz + kykz (4.19)

Cond. 4.19 is likely to be satisfied in a physically realistic situation, because the terms

y3, y∗3, z3, and z∗3 are quite large in magnitude.

4.2.4 Asymptotic Behavior in the Absence of Infection.

We now consider the asymptotic behavior of the quantities x∗

x
, y∗

y
, and z∗

z
, the ratios

of HIV-immune to HIV-susceptible cells in the bone marrow, thymus, and periphery,

respectively. We first imagine that the treatment is administered absent of infection, and

identify the proportions of protected and unprotected cells that naturally arise in each

compartment via the homeostatic mechanism after such a transplant takes place. In doing

so, we establish a basis of comparison for the protected and unprotected cell dynamics

when treatment is administered after infection takes place (and the viral presence disturbs

the balance of protected and unprotected cells).

We begin by modifying the ODE system in Eqs. 4.16a–4.16k to describe post-transplant

populations of protected and unprotected cells in the absence of HIV infection. To do so,

we omit Eqs. 4.16g–4.16k entirely, as well as the terms in Eqs. 4.16a–4.16f that contain

the viral load function, V .
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

ẋ(t) = αu+ p (x, x∗)x− βx (4.20a)

ẏ(t) = βx+ q (y, y∗) y − γy (4.20b)

ż(t) = γy + r (z, z∗) z (4.20c)

ẋ∗(t) = αu∗ + p (x, x∗)x∗ − βx∗ (4.20d)

ẏ∗(t) = βx∗ + q (y, y∗) y∗ − γy∗ (4.20e)

ż∗(t) = γy∗ + r (z, z∗) z∗ (4.20f)

In Eqs. 4.20a–4.20f, we replace the logistic terms used earlier with general growth/decay

coefficient functions, p(x, x∗), q(y, y∗), and r(z, z∗). Each of the functions p, q, r, may

assume either positive or negative values, indicating homeostasis-based growth or decay,

respectively. As we are no longer modeling the infection and treatment process described

earlier, we may take the ODEs in Eqs. 4.20a–4.20f to be defined for t ∈ [0,∞), with

initial conditions x(0), y(0), z(0) > 0, x∗(0), y∗(0), z∗(0) = 0.

We first introduce notation, under the assumption that each of the quantities x, x∗,

y, y∗, z, z∗ is bounded both above and away from zero. (This can be shown easily,

but the proof is tedious and uninteresting.) Define the constants mx,my,mz > 0, and

Mx,Mx∗ , · · ·Mz∗ > 0 to satisfy:

mx ≤ x ≤Mx 0 ≤ x∗ ≤Mx∗ (4.21)

my ≤ y ≤My 0 ≤ y∗ ≤My∗ (4.22)

mz ≤ z ≤Mz 0 ≤ z∗ ≤Mz∗ (4.23)

We are most interested in the asymptotic behavior of z∗

z
, which describes the ratio of

protected to unprotected cells. To do this, we first identify the asymptotic behavior of

x∗

x
and y∗

y
.

Proposition 4.2.1. Let x(t) and x∗(t) be solutions of the ODE system in Eq. 4.20a–

4.20f. Then either x∗(t)
x(t)

= u∗

u
for all t ≥ 0, or x∗(t)

x(t)
6= u∗

u
for all t ≥ 0. Additionally, under
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the physically intuitive assumptions that u, u∗, x(0) > 0, and x∗(0) = 0, we discern that

x∗(t)
x(t)
≤ u∗

u
for all t ≥ 0.

Proof. Consider Eqs. 4.20a, 4.20b:

ẋ = αu+ p(x, x∗)x− βx

ẋ∗ = αu∗ + p(x, x∗)x∗ − βx∗

By dividing the first by u and the second by u∗, we see that the functions x
u

and x∗

u∗

satisfy the system:

ẋ

u
= α + p(x, x∗)

(x
u

)
− β

(x
u

)
(4.24)

ẋ∗

u∗
= α + p(x, x∗)

(
x∗

u∗

)
− β

(
x∗

u∗

)
(4.25)

In particular, x
u

and x∗

u∗
satisfy the same ODE. But solutions to this ODE are unique,

so there exists no time t at which x(t)
u

= x∗(t)
u∗

, or, by simple rearrangement, x∗(t)
x(t)

= u∗

u
,

unless x(t)
u

= x∗(t)
u∗

for all t in the first place. By subtracting Eq. 4.25 from Eq. 4.24, we

find that the function xaux(t) := x/u− x∗/u∗ satisfies the ODE,

ẋaux = (p(x, x∗)− β)xaux, (4.26)

which has solution,

xaux(t) = xaux(0)e
∫ t
0 p(x(s),x∗(s))−βds =

x(0)

u
e
∫ t
0 p(x(s),x∗(s))−βds > 0. (4.27)

After rearranging the expression in Eq. 4.27, we have that x∗

x
≤ u∗

u
.

Proposition 4.2.2. Let x(t) and x∗(t) be defined by Eqs. 4.20a, 4.20b. Then the quantity
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∣∣x∗
x
− u∗

u

∣∣ decays to zero exponentially as t −→ ∞, at a rate directly proportional to au,

and inversely proportional to Mx.

Proof. We begin by computing d
dt

1
2

(
x∗

x
− u∗

u

)2
:

d

dt

1

2

(
x∗

x
− u∗

u

)2

=

(
x∗

x
− u∗

u

)
d

dt

(
x∗

x

)
=

(
x∗

x
− u∗

u

)(
xẋ∗ − x∗ẋ

x2

)
=

(
x∗

x
− u∗

u

)(
αxu∗ − αx∗u

x2

)
=

αu

x

(
x∗

x
− u∗

u

)(
u∗

u
− x∗

x

)
= −

(αu
x

)(x∗
x
− u∗

u

)2

≤ −
(
αu

Mx

)(
x∗

x
− u∗

u

)2

In the last line above, we used that x ≤ Mx. We have arrived at the Gronwall-type

differential inequality:

d

dt

(
x∗

x
− u∗

u

)2

≤ −
(

2αu

Mx

)(
x∗

x
− u∗

u

)2

,

which can be solved to obtain:

(
x∗(t)

x(t)
− u∗

u

)2

≤
(
x∗(0)

x(0)
− u∗

u

)2

e
−2αu
Mx

t.

Thus,
∣∣∣x∗(t)x(t)

− u∗

u

∣∣∣ −→ 0 as t −→ ∞, and in particular, x∗(t)
x(t)
−→ u∗

u
as t −→ ∞. We

obtain the following bound on the decay:

∣∣∣∣x∗(t)x(t)
− u∗

u

∣∣∣∣ ≤ ∣∣∣∣x∗(0)

x(0)
− u∗

u

∣∣∣∣ e−αuMx
t, (4.28)

which will be used in the next computation.
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We now show that y∗

y
−→ x∗

x
as t −→∞.

Proposition 4.2.3. Let x(t), x∗(t), y(t) and y∗(t) be defined by Eqs. 4.20a–4.20f. Then∣∣∣y∗y − x∗

x

∣∣∣ decays exponentially to 0 as t −→ ∞. From this and Proposition 4.2.2, it

follows that
∣∣∣y∗y − u∗

u

∣∣∣ −→ 0 as t −→ ∞. Additionally, under the assumptions that

u, u∗, x(0), y(0) > 0, and x∗(0), y∗(0) = 0, we deduce that y∗(t)
y(t)
≤ u∗

u
for t ≥ 0.

Proof. In analogue with the proof of Proposition 4.2.2, we begin by computing d
dt

1
2

(
y∗

y
− x∗

x

)2

.

d

dt

1

2

(
y∗

y
− x∗

x

)2

=

(
y∗

y
− x∗

x

)
d

dt

(
y∗

y
− x∗

x

)
=

(
y∗

y
− x∗

x

)(
β

(
x∗y − xy∗

y2

)
− α

(
xu∗ − ux∗

x2

))
=

(
y∗

y
− x∗

x

)((
βx

y

)(
x∗

x
− y∗

y

)
−
(αu
x

)(u∗
u
− x∗

x

))
= −βx

y

(
y∗

y
− x∗

x

)2

− αu

x

(
u∗

u
− x∗

x

)(
y∗

y
− x∗

x

)
≤ −βx

y

(
y∗

y
− x∗

x

)2

+
αu

x

∣∣∣∣u∗u − x∗

x

∣∣∣∣ ∣∣∣∣y∗y − x∗

x

∣∣∣∣
≤ −βx

y

(
y∗

y
− x∗

x

)2

+
αu

x

∣∣∣∣u∗u − x∗

x

∣∣∣∣ (∣∣∣∣y∗y
∣∣∣∣+

∣∣∣∣x∗x
∣∣∣∣)

≤ −βx
y

(
y∗

y
− x∗

x

)2

+
αu

x

∣∣∣∣x∗(0)

x(0)
− u∗

u

∣∣∣∣ e−αuMx
t

(∣∣∣∣y∗y
∣∣∣∣+

∣∣∣∣x∗x
∣∣∣∣)

≤ −βmx

My

(
y∗

y
− x∗

x

)2

+
αu

mx

∣∣∣∣x∗(0)

x(0)
− u∗

u

∣∣∣∣ e−αuMx
t

(
My∗

my

+
Mx∗

mx

)
.

The second-to-last inequality above comes from Eq. 4.28, and the last inequality comes

from Eqs. 4.21, 4.22. Now, for simplicity, define the constantR := αu
mx

∣∣∣x∗(0)
x(0)
− u∗

u

∣∣∣ ∣∣∣My∗

my
+ Mx∗

mx

∣∣∣,
and consolidate the computations above into the differential inequality:

d

dt

(
y∗

y
− x∗

x

)2

≤ −2βmx

My

(
y∗

y
− x∗

x

)2

+ 2Re
−αu
mx

t,

which can be solved to obtain the inequality,
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(
y∗

y
− x∗

x

)2

≤ e
−2βmx
My

t

(y∗(0)

y(0)
− x∗(0)

x(0)

)
− 2R(

2βmx
My
− αu

mx

)
+

2R(
2βmx
My
− αu

mx

)e−αumx
t,

(4.29)

from which it follows that
∣∣∣y∗y − x∗

x

∣∣∣ −→ 0 as t −→ ∞, and thus that y∗

y
−→ x∗

x
as

t −→∞. In conjunction with Proposition 4.3.2, this implies that y∗

y
−→ u∗

u
as t −→∞.

From Proposition 4.2.1, we know that under the assumptions u, u∗, x(0) > 0, and

x∗(0) = 0, x∗(t)
x(t)
≤ u∗

u
, or x∗(t)u ≤ x(t)u, for t ≥ 0. Multiply Eq. 4.20b by the constant

u∗, and Eq. 4.20e by the constant u to rewrite Eqs. 4.20b, 4.20e as:

d

dt
(u∗y) = βxu∗ + q(u∗y)− γ(u∗y), (4.30)

d

dt
(uy∗) = βx∗u+ q(uy∗)− γ(uy∗). (4.31)

By subtracting Eq. 4.31 from Eq. 4.30, the quantity yaux(t) := u∗y(t) − uy∗(t) satisfies

the ODE,

ẏaux = (q(y, y∗)− γ) yaux + β(xu∗ − x∗u), (4.32)

which can be solved to obtain,

yaux(t)e
−

∫ t
0 (q(y(s),y∗(s))−γ)ds = yaux(0) + β

∫ t

0

xaux(s)e
−

∫ s
0 (q(y(w),y∗(w))−γ)dwds. (4.33)

From the fact that xaux(t) ≥ 0, and yaux(0) = u∗y(0) > 0, we have yaux(t) ≥ 0.

We now simplify the bound in Eq. 4.29. Define the constants S, T,Q as such:
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S :=

(y∗(0)

y(0)
− x∗(0)

x(0)

)2

− 2R(
2βmx
My
− αu

mx

)


T :=
2R(

2βmx
My
− αu

mx

)
Q := min {2βmx

My

,
αu

mx

}

Then Eq. 4.29 may be modified and expressed more simply in terms of these constants

as follows:

(
y∗

y
− x∗

x

)2

≤ e
−2βmx
My

t

(y∗(0)

y(0)
− x∗(0)

x(0)

)
− 2R(

2βmx
My
− αu

mx

)
+

2R(
2βmx
My
− αu

mx

)e−αumx
t

= Se
−2βmx
My

t
+ Te

−αu
mx

t

≤ |S|e
−2βmx
My

t
+ |T |e

−αu
mx

t

≤ (|S|+ |T |) e−Qt

which can be simplified to:

∣∣∣∣y∗y − x∗

x

∣∣∣∣ ≤ (|S|+ |T |)
1
2 e
−Q
2
t (4.34)

We now proceed to the most essential result, that z∗

z
−→ u∗

u
as t −→∞.

Proposition 4.2.4. Let z(t), z∗(t), y(t), y∗(t), x(t), and x∗(t) be defined by Eqs. 4.20a–

4.20f. Then
∣∣∣ z∗z − y∗

y

∣∣∣ −→ 0 as t −→∞, and thus z∗

z
−→ u∗

u
as t −→∞. If, in addition,

u, u∗, x(0), y(0), z(0) > 0, and x∗(0), y∗(0), z∗(0) = 0, then z∗(t)
z(t)
≤ u∗

u
for all t ≥ 0.

Proof. We begin by computing d
dt

1
2

(
z∗

z
− y∗

y

)2

:
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d

dt

1

2

(
z∗

z
− y∗

y

)2

=

(
z∗

z
− y∗

y

)
d

dt

(
z∗

z
− y∗

y

)
=

(
z∗

z
− y∗

y

)((
zż∗ − z∗ż

z2

)
−
(
yẏ∗ − y∗ẏ

y2

))
=

(
z∗

z
− y∗

y

)((
γy∗z − γyz∗

z2

)
−
(
βx∗y − βxy∗

y2

))
=

(
z∗

z
− y∗

y

)((γy
z

)(y∗
y
− z∗

z

)
−
(
βx

y

)(
x∗

x
− y∗

y

))
= −

(γy
z

)(z∗
z
− y∗

y

)2

−
(
βx

y

)(
x∗

x
− y∗

y

)(
z∗

z
− y∗

y

)
≤ −

(γy
z

)(z∗
z
− y∗

y

)2

+
β|x|
|y|

∣∣∣∣x∗x − y∗

y

∣∣∣∣ (∣∣∣∣z∗z
∣∣∣∣+

∣∣∣∣y∗y
∣∣∣∣)

≤ −
(γy
z

)(z∗
z
− y∗

y

)2

+
β|x|
|y|

(|S|+ |T |)
1
2 e−

Q
2
t

(∣∣∣∣z∗z
∣∣∣∣+

∣∣∣∣y∗y
∣∣∣∣)

≤ −
(
γmy

Mz

)(
z∗

z
− y∗

y

)2

+

(
βMx

my

)
(|S|+ |T |)

1
2 e
−Q
2
t

(
Mz∗

mz

+
My∗

my

)

The second-to-last inequality follows from Eq. 4.34, and the very last inequality follows

from Eqs. 4.21, 4.22, 4.23. Rearranging terms in the derivation above, we obtain the

differential inequality:

d

dt

(
z∗

z
− y∗

y

)2

≤ −
(

2γmy

Mz

)(
z∗

z
− y∗

y

)2

+

(
2βMx

my

)
(|S|+ |T |)

1
2 e
−Q
2
t

(
Mz∗

mz

+
My∗

my

)
.

This can be solved to obtain the inequality:

(
z∗

z
− y∗

y

)2

≤ e
−2γmy
Mz

t

(
z∗(0)

z(0)
− y∗(0)

y(0)

)2

(4.35)

+

 2βMx

my

(
2γmy
Mz
−Q

)
 (|S|+ |T |)

(
Mz∗

mz

+
My∗

my

)(
e
−Q
2
t − e

−2γmy
Mz

t
)

(4.36)

from which it follows that
∣∣∣ z∗z − y∗

y

∣∣∣ −→ 0 as t −→ ∞. Thus, z∗

z
−→ y∗

y
as t −→ ∞, and
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in conjunction with Proposition 4.3.3, z∗

z
−→ u∗

u
as t −→∞.

In a process similar to that used to establish Eq. 4.33, we can show that zaux(t) :=

u∗z − uz∗ ≥ 0, from which it follows that z∗

z
≤ u∗

u
.

4.2.5 Asymptotic Behavior with Virus Present

We established in the previous section that if the bone marrow transplant were adminis-

tered in the absence of infection, the ratio of protected to unprotected cells that would

arise in the thymus and peripheral blood would equal the ratio of protected to unprotected

stem cells. We now consider how this ratio is disturbed by the presence of virus at the time

of transplant. Numerical simulation indicates that in general, limt→∞ z
∗(t)/z(t)� u∗/u

in the presence of virus, but that the behavior of z∗(t) and z(t) is highly sensitive to the

parameters of the system.

The presence of virus complicates the dynamical interactions between the HIV-immune

and HIV-susceptible cell populations. The presence of the HIV-immune cell pool con-

fers a certain degree of protection on the HIV-susceptible pool, as HIV-immune cells are

infected–and release new virions–only rarely, if ever. This may allow for growth of the

HIV-susceptible population. However, both cell populations are treated as one unified

pool by the homeostatic mechanism, and expansion of the HIV-immune cell pool leaves

less room for the HIV-susceptible pool to expand. To investigate this, we consider how

the asymptotic behavior of the functions z∗(t), z(t) varies as the parameter η, which

represents the viral clearance rate, changes. In Fig. 4.1, we plot the asymptotic values

of z(t), z∗(t), and z∗(t)/z(t) for different choices of u∗/u varying from u∗/u = 0.01 to

u∗/u = 1.04, with the sum u+u∗ (total stem cells) preserved. In Figs. 4.1(a)-(c), η = 0.3,

and in Figs. 4.1(d)-(f), η = 0.6. (All other parameter values are identical in Figs. 4.1(a)-

(f), as described in the caption.) When the viral clearance rate is low, z(t) decreases,

while z∗(t) and z∗(t)/z(t) increase, with increasing u∗/u, as shown in Figs. 4.1(a)-(c). In

this situation, the body eradicates virus less effectively, and the growing HIV-immune

cell population is less capable of protecting the susceptible cell population and allowing

it to expand, resulting in a decrease in z(t) as u∗/u increases. When the viral clearance

rate is high, however, z(t) and z∗(t) both increase with increasing u∗/u, while z∗(t)/z(t)
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decreases, as shown in Figs. 4.1(d)-(f). In this case, the body clears the virus more effec-

tively, and thus the added protected afforded by the presence of a growing HIV-immune

cell population allows for expansion of the HIV-susceptible cell pool. Future work on this

model will consist of investigations into sensitivity to other parameters.
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z
(t
)

25

35

45

(a)
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(t
)

3.5

4.5

5.5
×102

(d)

u∗/u
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z
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Figure 4.1: Simulation of Stage 3 with virus (a)-(c) Plots of z(3000), z∗(3000), and
z∗(3000)/z(3000), respectively, for varying u∗/u with η = 0.3. (d)-(f) Plots of z(3000),
z∗(3000), and z∗(3000)/z(3000), respectively, for varying u∗/u with η = 0.6. Other
parameter values: λy = λz = 10−4, λy∗ = λz∗ = 5 × 10−6, ky = kz = 0.6, cy = cz = 0.2,
α = 1, β = 0.4, γ = 0.1, u+u∗ = 2×103. Initial conditions were produced as described in
this chapter, by evaluating the full ODE system starting at t = 0, with initial conditions
x(0) = y(0) = z(0) = 0 at the start of Stage 1. We took t1 = 200, t2 = 500, and
t3 = 3000. Thus, initial conditions for Stage 3 were taken from the values that resulted
at t2.
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de Almeida, and Wilson Savino. “Altered thymocyte migration during ex-
perimental acute Trypanosoma cruzi infection: combined role of fibronectin
and the chemokines CXCL12 and CCL4.” European Journal of Immunology,
36(6):1486–1493, 2006.

[CVD16] Mohammed S. Chaudhry, Enrico Velardi, Jarrod A. Dudakov, and Mar-
cel R.M. van den Brink. “Thymus: The Next (Re)Generation.” Immunological
Reviews, 271(1):56–71, 2016.

[CYB13] Jian L. Campian, Xiaobu Ye, Malcolm Brock, and Stuart A. Grossman.
“Treatment-related Lymphopenia in Patients With Stage III Non-Small-Cell
Lung Cancer.” Cancer Investigation, 31(3):183–188, 2013.

[CZG87] Peter L. Choyke, Robert K. Zemon, Joseph E. Gootenberg, Jay N. Greenberg,
Frederic Hoffer, and Joseph A. Frank. “Thymic atrophy and regrowth in
response to chemotherapy: CT evaluation.” American Journal of Roentgenol-
ogy, 149(2):269–272, 1987.

[DCW01] D. E. DeFriend, J. M. Coote, M. P. Williams, and J. A. Copplestone. “Thymic
Enlargement in an Adult Following a Severe Infection.” Clinical Radiology,
56(4):331–333, 2001.

[DL12] James Dooley and Adrian Liston. “Molecular control over thymic involution:
From cytokines and microRNA to aging and adipose tissue.” European Jour-
nal of Immunology, 42(5):1073–1079, 2012.

[DMM17] Jonathan Desponds, Andreas Mayer, Thierry Mora, and Aleksandra M. Wal-
czak. “Population dynamics of immune repertoires.” ArXiv e-prints, 2017.

[DMW15] Jonathan Desponds, Thierry Mora, and Aleksandra Walczak. “Fluctuating
fitness shapes the clone-size distribution of immune repertoires.” Proceedings
of the National Academy of Sciences, 113(2):274–279, 2015.

113



[dP13] Rob J. de Boer and Alan S. Perelson. “Quantifying T lymphocyte turnover.”
Journal of Theoretical Biology, 327:45–87, 2013.

[Ewe72] W.J. Ewens. “The sampling theory of selectively neutral alleles.” Theoretical
Population Biology, 3(1):87–112, 1972.

[FE08] Douglas M. Fleming and Alex J. Elliot. “The impact of influenza on health
and health care utilisation of elderly people.” Vaccine, 32(1):S1–S9, 2008.

[FJB14] S. M. Falkenberg, C. Johnson, F.V. Bauermann, J. McGill, M.V. Palmer,
R.E. Sacco, and J.F. Ridpath. “Changes observed in the thymus and lymph
nodes 14 days after exposure to BVDV field strains of enhanced or typical
virulence in neonatal calves.” Veterinary Immunology or Immunopathology,
160(1–2):70–80, 2014.

[FM05] Terry J. Fry and Crystal L. Mackall. “The many faces of IL-7: from lym-
phopoesis to peripheral T cell maintenance.” The Journal of Immunology,
174(11):6571–6576, 2005.

[FVP00] Francesco F. Fagnoni, Rosanna Vescovini, Giovanni Passeri, Goivanni
Bologna, Mario Pedrazzoni, Giampaolo Lavagetto, Amos Casti, Claudio
Franceschi, Mario Passeri, and Paolo Sansoni. “Shortage of circulating naive
CD8+ T cells provides new insights on immunodeficiency in aging.” Blood,
95(9):2860–2868, 2000.

[FYR14] Donna L. Farber, Naomi A. Yudanin, and Nicholas P. Restifo. “Human mem-
ory T cells: generation, compartmentalization and homeostasis.” Nature Re-
views Immunology, 14(1):24–35, 2014.

[GE00] Amiela Globerson and Rita B. Effros. “Aging of Lymphocytes and Lympho-
cytes in the Aged.” Immunology Today, 21(10):515–521, 2000.

[GEC15] Stuart A. Grossman, Susannah Ellsworth, Jian Campian, Aaron T. Wild,
Joseph M. Herman, Dan Laheru, Malcolm Brock, Ani Balmanoukian, and
Xiaobu Ye. “Survival in patients with severe lymphopenia following treatment
with radiation and chemotherapy for newly diagnosed solid tumors.” Journal
of the National Comprehensive Cancer Network, 13(10):1225–1231, 2015.

[Ger99] Peter Gergely. “Drug-Induced Lymphopenia.” Drug Safety, 21(2):91–100,
1999.

[GFN85] WW Grody, S Fliegiel, and F Naeim. “Thymus involution in the ac-
quired immunodeficiency syndrome.” American Journal of Clinical Pathology,
84(1):85–95, 1985.

[GGL72] David W. Gelfand, Armond S. Goldman, Edward J. Law, Bruce G. Macmil-
lan, Duane Larson, Sally Abston, and J. Tracy Schreiber. “Thymic Hyper-
plasia in Children Recovering from Thermal Burns.” The Journal of Trauma,
12(9):813–817, 1972.

[GHS07] AL Gruver, LL Hudson, and JD Sempowski. “Immunosenescence of Aging.”
The Journal of Pathology, 211(2):144–156, 2007.

114



[GKC15] Sidhartha Goyal, Sanggu Kim, Irvin S Y Chen, and Tom Chou. “Mechanisms
of blood homeostasis: lineage tracking and a neutral model of cell populations
in rhesus macaques.” BMC Biology, 13(85):1–14, 2015.

[GLC01] Lia Ginaldi, Maria Francesca Loreto, Maria Pia Corsi, Marco Modesti, and
Massimo de Martinis. “Immunosenescence and Infectious Diseases.” Microbes
and Infection, 3(10):851–857, 2001.

[GLW07] Jörg J. Goronzy, Won-Woo Lee, and Cornelia M. Weyland. “Aging and T-cell
Diversity.” Experimental Gerontology, 42(5):400–406, 2007.

[GNV10] Jacy Gameiro, Patr̈ıcia Nagib, and Liana Verinaud. “The thymus microenvi-
ronment in regulating thymocyte differentiation.” Cell Adhesion and Migra-
tion, 4(3):382–390, 2010.

[GQO15] Jörg J. Goronzy, Qian Qi, Richard A. Olshen, and Cornelia M. Weyland.
“High-throughput sequencing insights into T-cell receptor diversity in aging.”
Genome Medicine, 7:1–3, 2015.

[GS08] Amanda L. Gruver and Gregory D. Sempowski. “Cytokines, leptin, and stress-
induced thymic atrophy.” Journal of Leukocyte Biology, 84(4):915–923, 2008.

[GSC03] Merica Glavina-Durdov, Oskar Springer, Vesna Ćapkun, Žana Saratlija-
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