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Prediction of burr formation during face
milling using an artificial neural network
with optimized cutting conditions
S H Lee* and D A Dornfeld

Department of Mechanical Engineering, Hanyang University, Ansan, Republic of Korea
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Abstract: Burrs formed during facemilling operations are difficult to characterize because there
are several parameters with complex interactions that affect the cutting process. In this paper, a
combined artificial intelligence and optimization approach is introduced to predict burr types
formed during face milling. The Taguchi method was selected for the optimization and an
artificial neural network (ANN) was constructed for the machining of aluminium alloy 6061-T6.
For the training of the ANN, the input was non-dimensionalized using the optimized results
from the Taguchi method. The resulting ANN output was in agreement with experimental
results, validating the proposed scheme.

Keywords: face milling, burr, optimization, cutting parameters, Taguchi method, ANOVA, ANN

1 INTRODUCTION

Burrs are defined as undesirable projections of mater-
ials beyond the edge of the workpiece arising because
of plastic deformation during machining [1]. Burrs can
cause many problems during inspection, assembly,
and automated manufacturing of precision compo-
nents. Therefore, it is desirable for precision parts to
be burr free.

In general, there are two ways to deal with trouble-
some burrs. One option is deburring. As mentioned
by Gillespie [2], burr removal processes are often
costly, accounting for up to 30 per cent of the total
cost of precision machining parts. Also, deburring
processes are hard to generalize because they vary
according to manufacturing circumstances. The
other choice is burr planning with parameter optim-
ization [3–6], which not only prevents the formation
of burrs or minimizes their negative influences, but
also predicts the types and locations of burrs by
designing and analysing manufacturing proces-
ses and parameters. For this approach, a careful

investigation of process parameters and their inter-
actions is necessary.

When conducting burr research in areas such as
burr planning and burr removal, relevant burr for-
mation mechanism(s) need to be understood. Since
theoretical approaches are usually not available,
researchers have concentrated on experimental stud-
ies to identify the effects of machining parameters on
burr formation [7–12].

Among these, Chern [9] investigated exit burrs dur-
ing face milling on aluminium (Fig. 1). He observed
four different types of burr with variations in depth
of cut and in-plane exit angle: knife-edge, curl, wave,
and secondary. The first three types of burr are prim-
ary burrs that have to be removed. The secondary
burrs are relatively small burrs that remain after the
main portions of the larger primary burrs are cut off.
They typically do not pose a problem and therefore
do not require deburring.

Several practical applications have demonstrated
the need for an optimized set of specific machining
parameters. Experimental studies have shown that
burrs can be minimized or controlled when adequate
machining parameters are selected; however, the
results of these studies tend to be limited to certain
process parameters, such as range and materials,
owing to the complicated interactions among para-
meters. Recently, the Taguchi method, a widely
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used systematic optimization application in the
design and analysis of experiments, has been suc-
cessfully introduced in various manufacturing areas
including burr formation [3, 13].

In addition to parameter optimization, attention
has focused on online prediction and classification
methods for burrs generated during the manufac-
turing process. Tseng and Chiou [14] tried to pre-
dict burr height by using an artificial neural network
(ANN). Although they used the Taguchi method for
training selected input and output samples for ‘micro-
adjustment’, their method has inherent problems
including the lack of experimental and theoretical
verification of parameter selection and the lack of
explicit connectivity between the Taguchi method
and the ANN. Moreover, it is conceivable that burr
height is inappropriate as an absolute measure for
the burr formation characteristics of a machined part.

In this study, cutting parameter optimization is
performed with respect to burr minimization in face
milling, and a subsequent burr-type prediction
scheme based on the optimal results is proposed.
The Taguchi method was used for the optimization
of the experimental parameters for minimum burr
heights. For the Taguchi method, parameters based
on experimental and theoretical investigations and
their ranges were used. After examining performance
characteristics in more detail by employing analysis
of variance (ANOVA), the optimized results were
used to normalize the input vectors of an ANN. The
final step of this research was to construct an ANN
for the burr-type prediction, as burr types are more
effective than simple dimensions including burr

heights for the evaluation of edge finishing quality
and suitability of deburring [15, 16].

2 TAGUCHI METHOD AND PARAMETER DESIGN

In order to evaluate all the effects of several para-
meters on performance (e.g. cutting parameters on
burr heights), a specially designed experimental pro-
cess, or design of experiment is needed. One viable
approach is the Taguchi method, which evaluates the
performance of the parameters in terms of variation.

The first step in the Taguchi method is the selection
of design parameters and their levels. The selection
process should be such that the parameters efficiently
reflect the effects of physical experimental conditions
on characteristic values. In addition, the range of
parameter levels should be selected to be as wide as
possible to ensure stability in parameter design [17].

Once the parameters are chosen, the next step is
parameter design. The goal of parameter design is
to improve quality without controlling or eliminating
the causes of variation and to make the product
robust against noise factors. In parameter design,
robustness can be achieved by reducing the effects
of the noise terms through the selection of different
design alternatives or by varying the levels of the
design parameters for component parts or system
elements. Use of an orthogonal array is a widely fol-
lowed approach in parameter design. An orthogonal
array is used to make process improvement decisions
with the minimum amount of experimental data, e.g.
utilizing a fractional–factorial approach whenever
there are several parameters involved. This array
indicates a way of conducting the minimal number
of experiments that will ultimately yield the full set
of variables affecting the output performance.

In parameter design, the index for stability can
be expressed in terms of the loss function and the
signal-to-noise (S/N) ratio. The loss function is used
to indicate the degree of characteristic value devi-
ation from the nominal values. The S/N ratio is a
transformation of the repetition data (loss function)
and a measure of the variation present. In the design
process, a higher S/N ratio is more desirable. A higher
S/N ratio implies that characteristic values are close
to the nominal outputs in the presence of noise.
Three types of S/N ratio are used, depending on
the type of characteristic: the nominal the better,
the lower the better, and the higher the better. Since
this study concerns the minimization of burrs, a
lower S/N ratio is better. The loss function and cor-
responding S/N ratio can be expressed as

Loss function ¼ 1

n

Xn
k¼1

y2ij ð1Þ

machined
surface

(a) knife-type burr (b) curl-type burr

machined
surface

burr
height

burr
height

(d) edge breakout(c) wave-type burr

machined
surface

machined
surface

burrburr
height

(e) secondary burr

machined
surface workpiece

(f) burr size characteristics

burr height

burr
height

burr
thickness

Fig. 1 Exit burr types [9]
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S=Nratio ¼ �10 log
1

n

Xn
k¼1

y2ij

 !
ð2Þ

where n denotes the number of repeated experi-
ments and yij is the jth experimental value in the ith
experiment.

ANOVA can be used to identify the significant con-
trol factors that increase the average value of the S/N
ratio and subsequently to reduce variations [18]. The
purpose of ANOVA is to show the significance of each
selected parameter to the characteristic value. The
total sum ST of the squared deviations can be
expressed as

ST ¼
Xn
j¼1

ðhj � hmÞ2 ð3Þ

where n is the number of experiments in the ortho-
gonal array, hj is the jth S/N ratio, and hm is the
mean value of the S/N ratio. The squared deviation
ST can be decomposed into two components: the
sum Si of squared deviations due to each parameter
and the sum S« of the squared errors. The percent
contribution r is the percentage of each parameter
deviation in the total sum ST. In addition, the F
value, which is the ratio of Si to S«, is used to
indicate quantitatively the significance of each
parameter compared with the error terms. From the
results of ANOVA, a parameter that has very low F
and r values is insignificant to the characteristic
value and can be regarded as an error term with the
consideration of other factors such as economical
efficiency and workability. The parameter design
procedure based on the Taguchi method is
summarized in Fig. 2.

A well-designed set of optimized parameter values
from the Taguchi method can ensure optimized
performance characteristics and reliable reproduc-
tion of the desired characteristic values with a min-
imal range of variation.

3 EXPERIMENTS

3.1 Materials, machine tool, and measurement

Aluminium alloy 6061-T6, an easy-to-machine
material which is frequently used in burr research,
is selected for the experiments (Table 1).

The experiments were carried out using a Shizuoka
sh-40-type vertical milling machine with 2.2 kW
(3 hp) main spindle motor on rectangularly shaped
workpieces (25mm · 25mm · 50mm) (Fig. 3). The
machine allows discrete variation in the spindle
speed (75–3600 r/min in 16 steps) and the table linear
velocity (15–720mm/min in 12 steps). The diameter
of the face milling cutter was 100mm, and Korloy
grade A30 carbide inserts were used for the alumi-
nium. The radial rake angle and axial rake angle
were 0̊ and 7̊ respectively. Figure 4 shows the prim-
ary and secondary burrs generated during the pre-
liminary experiments. For the measurement of burr

Parameter
Selection

Orthogonal Array
Selection

Experiment

S/N Ratio
Calculation/Analysis

Parameter Design

OptimizationExp. Verification 

ANOVA

Taguchi

Method

Fig. 2 Optimization using the Taguchi method

Table 1 Mechanical properties and recommended
machining ranges of aluminium alloy 6061-T6

Tensile strength (MPa) 310
Yield stress (MPa) 275
Fracture strain 0.50
Thermal conductivity (W/mK) 222
Recommended machining range*
Feed (mm/tooth) 0.1–0.4
Cutting speed (D¼ 100mm) (r/min) 1270–3185
Depth of cut (mm) 1–5

*Data from the tool company (http://korloy.com).

feed
direction

40 × 40 × 60

machined
surfaceburr height

Fig. 3 Schematic diagram of the experiment
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heights, an optical microscope with 0.005mm resolu-
tion was used. With the exception of both ends, aver-
age values along the workpiece edge were taken for
burr height estimation.

3.2 Selection of cutting parameters

Chern [9] derived an equation for the incremental
work done for the burr formation in orthogonal cut-
ting, which is

DWburr ¼
�
sbvt0
12

��
sinb0ðcotmþ 0:5 cotb0Þ
ðcosb0 � sinb0 cot�Þ

·
�
2þ 3 cotb0 � 3 cotðmþ b0Þ

��
DT

ð4Þ

where t0 is the depth of cut, b0 is the initial negative
deformation angle, F is the in-plane exit angle, v is
the cutting speed, m is the shear angle, s is the

Wave-type burr
 

Burr height 

Knife-type burr

Burr 

H=0.40~0.70mm 

(a) Primary (wave-type) burr (c) primary burr (side view)

 

Burr 

H=0.02~0.05mm
 

(d) Secondary burr (e) secondary burr (side view)

(b) primary (knife-type) burr

Fig. 4 Typical burrs generated during the experiments

Workpiece

Tool

Chip

A

B

C E

t0

α

β0

v µ
Φ

Negative 
deformation zone

(b) In-plane exit angle in face milling

(a) Burr-formation model [9]

Fig. 5 Burr formation model [9] and in-plane exit angle

Table 2 Selected machining parameters

Cutting variable Units

In-plane exit angle deg
Depth of cut mm
Feed rate mm/tooth
Cutting speed r/min

Table 3 Parameter ranges for preliminary experiments

Range

Parameter
Initial
conditions

Preliminary
experiment Decided

In-plane exit angle (deg) 90 30–150 30–150
Depth of cut (mm) 2.5 0.5–5.5 0.5–4.5
Feed rate (mm/tooth) 0.15 0.05–0.25 0.05–0.2
Cutting speed (r/min) 800 250–3600 300–1100

Table 4 Parameters and their levels

Parameter Level 1 Level 2 Level 3 Level 4

In-plane exit angle (deg) 30 70 110 150
Depth of cut (mm) 0.5 1.0 1.5 2.0
Feed rate (mm/tooth) 0.05 0.1 0.15 0.2
Cutting speed (r/min) 300 500 700 900
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maximum normal stress of the negative deforma-
tion zone (which is proportional to the yield stress
of the workpiece), b is the width of cut, and DT is
the elapsed time for the incremental tool move-
ment (Fig. 5(a)). Since the negative deformation angle
is dependent on the shear angle and the in-plane exit
angle [9], and the shear angle is determined by the
rake angle (a in Fig. 5(a)) and material properties [19],
it can be stated that

Burr formation�ðmaterials functionðv; t0;F; feedÞÞ ð5Þ

Therefore, for the multipoint cutting (face milling),
four cutting parameters (Table 2), which are critically
influential to burr generation and size, were selected.
Moreover, these parameters have been widely used
in previous research [8–12]. As illustrated in Fig. 5(b),
the in-plane exit angle during face milling is defined
as the angle between the cutting velocity and the exit
velocity of the cutter at the end of the workpiece.
As mentioned above, the in-plane exit angle is a
significant factor for determining burr sizes.

3.3 Parameter levels and orthogonal arrays

Before moving on to the designed experiments, pre-
liminary experiments were performed to determine
practical machinable ranges and parameter levels.
Since the recommended number of levels in practice
is typically four to six [18], the initial degree of free-
dom for each parameter was selected as four. During
the experiments, one parameter value was varied
while the other parameter values remained fixed at
the initial conditions.

For the aluminium, experiments were performed
relatively thoroughly throughout all the ranges. By
varying the cutting speed, corresponding burr heights

were gradually reduced as the cutting speed increased.
The upper limit was selected as 1100 r/min because
only secondary burrs were formed when the cutting
speed was above that value. Feed rate experiments
had similar tendencies and, considering the recom-
mended feed per tooth value (Table 1), the upper limit
for the feed rate was selected. Moreover, most of the
determinedmachining ranges existed inside the recom-
mended machining ranges from the tool company.
Tables 3 and 4 show the decided parameter ranges
and their levels from the preliminary experiments.

As a result, the L16(4
4) standard orthogonal array

(four cutting parameters and four levels) was used
in this study. For the given orthogonal arrays, experi-
ments were repeated four times each to acquire a
reliable database.

4 OPTIMIZATION OF CUTTING PARAMETERS
AND BURR-TYPE PREDICTION

4.1 S/N ratios and ANOVA of
experimental results

Experimental results (Table 5) show that primaryburrs,
which were greater than 0.1mm in height (Fig. 3),

Table 5 L16 orthogonal array and experimental results

Parameters

Experiment
In-plane exit
angle (deg)

Depth of
cut (mm)

Feed rate
(mm/tooth)

Cutting speed
(r/min)

Burr
type

Average burr
height

S/N
ratio

1 1 1 1 1 Type 1 0.13 17.72
2 1 2 2 2 Type 1 0.06 24.43
3 1 3 3 3 Type 1 0.12 18.41
4 1 4 4 4 Type 1 0.15 16.47
5 2 1 2 3 Type 1 0.21 13.55
6 2 2 1 4 Type 1 0.08 21.93
7 2 3 4 1 Type 2 0.65 3.74
8 2 4 3 2 Type 1 0.43 7.33
9 3 1 3 4 Type 2 0.60 4.43
10 3 2 4 3 Type 1 0.17 15.39
11 3 3 1 2 Type 1 0.51 5.84
12 3 4 2 1 Type 2 0.72 2.85
13 4 1 4 2 Type 2 0.55 5.19
14 4 2 3 1 Type 2 1.04 �0.34
15 4 3 2 4 Type 2 0.90 0.91
16 4 4 1 3 Type 2 0.80 1.93

Table 6 Average S/N ratios for each parameter level

Average S/N ratio

Level
In-plane exit
angle (deg)

Depth of
cut (mm)

Cutting speed
(r/min)

Feed rate
(mm/tooth)

1 19.26 10.23 11.86 5.99
2 11.64 15.36 10.44 10.70
3 7.13 7.23 7.46 12.33
4 1.93 7.15 10.20 10.94

Prediction of burr formation during face milling 1709
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were predominantly formed with an average height of
0.45mm. Using equations (1) and (2), the average S/N
ratios hm were calculated as 9.99 dB. According to the
parameter design procedure, the S/N ratios for each
parameter level were computed as well (Table 6). The
largest calculated values of each parameter are the
optimal cutting conditions. The results also showed
the correlation between the level of in-plane exit angle
and the performance characteristic.

To studymore detailed performance characteristics,
ANOVA was performed. Table 7 shows the results of
ANOVA using the calculated S/N ratios from Table 6.
Consistent with the S/N ratio results, the in-plane
exit angle is the most influential parameter with an F
value of 21.2 and r value of 65.5 per cent. The second
most influential parameter is the depth of cut and the
other parameters are statistically insignificant because
their r values are less than 10 per cent. Table 8 shows
the selected optimal cutting parameters in this study.

In the final stage of the parameter design, the S/N
ratios were estimated and validated with the selected
optimal parameters. The estimated S/N ratio with the
optimum process levels (ĥ) can be calculated from
the equation

ĥ ¼ hm þ
Xq
i¼1

ðhi � hmÞ ð6Þ

where hm is the total mean of the S/N ratios, hi is
the mean of the S/N ratios for the optimum level,
and q is the number of process parameters. Table 9
shows the verification experiments that were
repeated at least four times with the selected opti-
mum conditions. Burr heights were reduced to the
point of being negligible in terms of the S/N ratio.
Moreover, the average value hm with optimum

conditions was improved by 20 dB compared with
the overall average value hm. Therefore the optim-
ized parameters reproduce secondary burrs with
minimal heights.

4.2 Artificial neural network and
non-dimensionalization

An ANN with a back-propagation algorithm was used
to predict burr types (type 1, secondary burrs; type 2,
primary burrs). Back propagation is a supervised
learning technique that compares the responses of
the output units with the desired response and re-
adjusts the weights in the network so that the next
time that the same input is presented to the network
the network’s response will be closer to the desired
response [20]. The learning algorithm has become
the most popular method [21], including in manu-
facturing applications [22, 23], because of its sim-
plicity and relative power. Figure 6 illustrates the

Table 7 ANOVA results

Parameter Degrees
of freedom Fi�1

Sum of
square Si

Mean square
Si/(Fi�1) F¼ Si/ Se r¼ (Si/ST · 100) (%)

In-plane exit angle (deg) 3 647.63 215.88 21.24 65.54
Depth of cut (mm) 3 178.14 59.38 5.84 18.03
Feed rate (mm/tooth) 3 40.59 13.53 1.33 4.11
Cutting speed (r/min) 3 91.35 30.45 3.00 9.24
« 3 30.49 10.16 3.09

Total 15 988.18 100

i, parameter; Fi, number of the parameter level.

Table 8 Optimal parameters

Parameter

In-plane exit angle 30̊
Depth of cut 1.0mm
Feed rate 0.05mm/tooth
Cutting speed 700 r/min

Table 9 Prediction of S/N ratio and experimental
verification

Average burr
height (mm)

Optimum burr
heights (mm) hm (dB) hm (dB) ĥ (dB)

0.44 0.030 10.0 30.1 30.9
0.031
0.024
0.034

Fig. 6 Architecture of the neural network
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architecture of the ANN with parameter-based (cut-
ting condition) input.

For the effective learning procedure and accurate
prediction results of the ANN, the parameter values
were non-dimensionalized. For comparison purposes,
three different types of input were generated for
the ANN.

1. Inputs with dimensions.
2. Non-dimensionalization with fixed direction

(tendentious non-dimensionalization). The non-
dimensionalizing factors for the level values of
each parameter started at 0 (for the first level) and
increased monotonically to 1 (or vice versa). The

Table 10 Tendentious non-dimensionalization

Parameter 1 2 3 4 5 6 7

In-plane exit angle (deg) Range 30 50 70 90 110 130 150
Dimensionless 0 0.17 0.33 0.5 0.66 0.83 1
Weight factor 0 0.17 0.33 0.5 0.66 0.83 1

Depth of cut (mm) Range 0.5 0.75 1.0 1.25 1.5 1.75 2
Dimensionless 0 0.17 0.33 0.5 0.66 0.83 1
Weight factor 0 0.05 0.09 0.14 0.18 0.23 0.28

Feed rate (mm/tooth) Range 0.05 0.075 0.1 0.125 0.15 0.175 0.2
Dimensionless 0 0.17 0.33 0.5 0.66 0.83 1
Weight factor 0 0.01 0.02 0.03 0.04 0.05 0.06

Cutting speed (r/min) Range 300 400 500 600 700 800 900
Dimensionless 1 0.83 0.66 0.5 0.33 0.17 0
Weight factor 0.14 0.11 0.09 0.07 0.04 0.02 0

Table 11 Real non-dimensionalization

Parameter 1 2 3 4 5 6 7

In-plane exit angle (deg) Range 30 50 70 90 110 130 150
Dimensionless 0 0.17 0.33 0.5 0.66 0.83 1
Weight factor 0 0.17 0.33 0.5 0.66 0.83 1

Depth of cut (mm) Range 0.5 0.75 1.0 1.25 1.5 1.75 2
Dimensionless 0 0.17 0.33 0.5 0.66 0.83 1
Weight factor 0.09 0.05 0 0.14 0.18 0.23 0.28

Feed rate (mm/tooth) Range 0.05 0.075 0.1 0.125 0.15 0.175 0.2
Dimensionless 0 0.17 0.33 0.83 1 0.5 0.66
Weight factor 0 0.01 0.02 0.05 0.06 0.03 0.04

Cutting speed (r/min) Range 300 400 500 600 700 800 900
Dimensionless 1 0.83 0.66 0.5 0 0.17 0.33
Weight factor 0.14 0.11 0.09 0.07 0 0.02 0.04

Table 12 Learning conditions for training the ANN

Input nodes Output node Learning conditions

1. In-plane exit angle Burr type (type 1 · type 2) 1. Number of input nodes, 4
2. Feed rate 2. Number of output nodes, 1
3. Depth of cut 3. Number of hidden layer nodes, 6
4. Cutting speed 4. Number of sample patterns, 8

5. Initial learning rate, 0.1
6. Error bound, 0.1

Table 13 Leaning dataset (with dimension)

Input parameters Desired
output

In-plane
exit angle
(deg/min)

Depth of
cut (mm)

Feed rate
(mm/tooth)

Cutting
speed
(r)

(burr type
(type 1¼ 0,
type 2¼ 1))

30 0.5 0.15 300 0
30 1.0 0.1 500 0
70 0.5 0.1 700 0
70 1.0 0.05 900 0
110 0.5 0.15 900 1
110 1.0 0.2 700 0
150 0.5 0.2 500 1
150 1.0 0.15 300 1

Prediction of burr formation during face milling 1711
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Table 14 Learning dataset (tendentious non-
dimensionalization)

Input parameters Desired
output

In-plane
exit angle
(deg)

Depth of
cut (mm)

Feed rate
(mm/tooth)

Cutting
speed
(r/min)

(burr type
(type 1¼ 0,
type 2¼ 1))

0 0 0 0.14 0
0 0.09 0.02 0.09 0
0.33 0 0.02 0.04 0
0.33 0.09 0 0 0
0.66 0 0.04 0 1
0.66 0.09 0.06 0.04 0
1 0 0.06 0.09 1
1 0.09 0.04 0.14 1

Table 15 Learning dataset (real non-dimensionalization)

Input parameters Desired
output

In-plane
exit angle
(deg)

Depth of
cut (mm)

Feed rate
(mm/tooth)

Cutting
speed
(r/min)

(burr type
(type 1¼ 0,
type 2¼ 1))

0 0.09 0 0.14 0
0 0 0.02 0.09 0
0.33 0.09 0.02 0 0
0.33 0 0 0.04 0
0.66 0.09 0.06 0.04 1
0.66 0 0.04 0 0
1 0.09 0.04 0.09 1
1 0 0.06 0.14 1

Table 16 ANN results (with dimensions)

Input parameters Output Real type

In-plane exit
angle (deg)

Depth of
cut (mm)

Feed rate
(mm/tooth)

Cutting
speed (r/min)

(burr type
(type 1 or type 2))

(burr type
(type 1¼ 0, type 2¼ 1))

30 1.5 0.15 700 0.0183 0
30 2.0 0.2 900 0.0178 0
70 1.5 0.2 300 0.6562 1
70 2.0 0.15 500 0.1366 0
110 1.5 0.05 500 0.2521 0
110 2.0 0.1 300 0.8991 1
150 1.5 0.1 900 0.9467 1
150 2.0 0.05 700 0.8872 1

Table 17 ANN results (tendentious non-dimensionalization)

Input parameters output Real type

In-plane exit
angle (deg)

Depth of
cut (mm)

Feed rate
(mm/tooth)

Cutting
speed (r/min)

(burr type
(type 1 or type 2))

(burr type
(type 1¼ 0, type 2¼ 1))

0 0.18 0.04 0.04 0.0002 0
0 0.28 0.06 0 0.0001 0
0.33 0.18 0.06 0.14 0.7656 1
0.33 0.28 0.04 0.09 0.1038 0
0.66 0.18 0 0.09 0.1081 0
0.66 0.28 0.02 0.14 0.9083 1
1 0.18 0.02 0 0.9984 1
1 0.28 0 0.04 0.9685 1

Table 18 ANN results (real non-dimensionalization)

Input parameters output Real type

In-plane exit
angle (deg)

Depth of
cut (mm)

Feed rate
(mm/tooth)

Cutting
speed (r/min)

(burr type
(type 1 or type 2))

(burr type
(type 1¼ 0, type 2¼ 1))

0 0.18 0.06 0 0.0001 0
0 0.28 0.04 0.04 0.0001 0
0.33 0.18 0.04 0.14 0.8489 1
0.33 0.28 0.06 0.09 0.0272 0
0.66 0.18 0 0.09 0.0833 0
0.66 0.28 0.02 0.14 0.9921 1
1 0.18 0.02 0.04 0.9992 1
1 0.28 0 0 0.9591 1
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ANOVA results were considered as weight factors.
Here, 0 means the smallest burr height (charac-
teristic of secondary burrs) and 1 is the largest
(characteristic of primary burrs) (Table 10).

3. Non-dimensionalization with optimized results
(real non-dimensionalization). Based on opti-
mized parameter level values and corresponding
ANOVA results, the non-dimensionalizing factors
and weight factors were assigned accordingly
(Table 11).

Table 12 shows the learning conditions of the
ANN and Tables 13, 14, and 15 show the learning
datasets. Among a total of 48 datasets selected, half
were used for learning and the rest were used for
the ANN prediction.

After the learning procedures, the input vectors
were fed into the ANNs and the burr-type predictions
were performed. The prediction results are averaged
values after four runs for each condition using differ-
ent random initial weights. The results are summar-
ized in Tables 16 to 19 and are also plotted against
experimental data in Fig. 7, which shows that the
dimensionless inputs, particularly the real dimen-
sionless inputs, produce more reliable results in pre-
dicting burr types than inputs with dimensions.

5 CONCLUSIONS

In order to predict burr types during face milling, a
combined artificial intelligence and optimization
approach was introduced. An ANN was constructed
for the machining of aluminium alloy 6061-T6.

For training the ANN, the input was non-dimensiona-
lized using the optimized results from the Taguchi
method. The conclusions are as follows.

1. With thorough parameter selection processes based
on experimental and theoretical investigations, the
cutting conditions for minimal burr heights can be
selected using the Taguchi method.

2. When predicting the burr types, a non-
dimensionalized input produces more reliable
results than an input with dimensions.

3. With the proposed scheme, a burr-type prediction
classifier can be constructed for specific recom-
mended machining ranges.
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APPENDIX

Notation

b width of cut
F ratio of Si to S«
Si sum of the squared deviations due to each

parameter
ST total sum of the squared deviations
S« sum of the squared errors
t0 depth of cut
v cutting speed

b0 initial negative deformation angle
DT elapsed time for the incremental tool

movement
DWburr incremental work done for the burr forma-

tion in orthogonal cutting
ĥ optimum process levels
hi mean of the signal-to-noise ratios for the

optimum level
hj jth signal-to-noise ratio
hm mean value of the signal-to-noise ratio
hm average value with optimum conditions
m shear angle
r percentage of each parameter deviation

from the total sum (ST)
s maximum normal stress in the negative

deformation zone
F in-plane exit angle
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