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Risk-taking in adversarial games:
What can 1 billion online chess games tell us?

Cameron Holdaway
Department of Psychology
UC San Diego
choldawalucsd.edu

Abstract

Humans are social beings, and most of our decisions are influ-
enced by considerations of how others will respond. Whether
in poker or political negotiations, the riskiness of a decision is
often determined by the variance of the other party’s possible
responses. Such socially-contingent decisions can be framed
in terms of adversarial games, which differ from other risky
situations such as lotteries because the risk arises from uncer-
tainty about the opponent’s decisions, and not some indepen-
dent stochasticity in the world. We use chess as a lens through
which we can study human risk-taking behavior in adversarial
decision making. We develop a novel algorithm for calculat-
ing the riskiness of each move in a chess game, and apply it to
data from over 1 billion online chess games. We find that play-
ers not only exhibit state-dependent risk preferences, but also
change their risk-taking strategy depending on their opponent,
and that this effect differs in experts and novices.

Keywords: risk taking; adversarial games; chess

Introduction

Humans are social beings, who spend much of their time
making decisions based on how they think others will re-
spond. Political and business dealings often involve this ad-
versarial, game-theoretic flavor, where the quality of a deci-
sion depends on the other side’s response. Studying risk in
these adversarial games is interesting because the measure of
risk is explicitly defined in terms of possible opponent re-
sponses. This can be contrasted with taking risks in a lottery
game, in which the riskiness of a decision is based on some
irreducible stochasticity in the world, and not the response of
another person. While there are many studies of risk-taking
behavior, which factors influence risk preferences, and how
and when we choose to take risks, the adversarial aspect of
risk-taking remains relatively unexplored. There is reason
to suspect that risk preferences will differ when risk is aris-
ing from a sequentially-choosing adversary, because an ad-
versary’s choice seems more controllable. It seems like we
might trick an opponent, and thus out maneuver them. In-
deed, many biases evident in lottery choices (such as the gam-
bler’s or the hot-hand illusion) seem consistent with a mis-
taken belief that a sequentially-independent mechanical ran-
dom process is somewhat sequentially-dependent, and per-
haps non-stationary, as though it were generated more organ-
ically. Such biases suggest that even when playing against
an immovable randomness generator, people believe that it
might be swayed by prior outcomes in the sequence, like hu-
mans are (Brockbank & Vul, 2020). Thus, it seems all the
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more likely that people may treat risk generated from an un-
known adversary — one that truly is organic — differently
from a mechanical lottery process.

Risk-taking behavior and risk preferences have been
widely studied in a variety of fields and it has been shown
that taking risks goes beyond simply evaluating the prob-
abilities and expected values (Slovic, 2000; [Kahneman &
Tverskyl [2013). How one evaluates risks and chooses to
accept them can depend on many environmental and indi-
vidual factors, such as: expertise, current performance, and
past performance. Experts and lay-people not only perceive
risks differently (Bostrom, [1997), but may also behave dif-
ferently in risky situations. For example, expert helicopter
pilots exhibit a tendency for increased risk-taking in simu-
lations of adverse events over less experienced candidate pi-
lots (Thomson, Onkal, Avcioglu, & Goodwin,|[2004). Similar
changes in risk-taking can be seen within the same person de-
pending on circumstances and past performance. [Tversky and.
Kahneman| (1991)) propose a reference-dependent model of
decision making in which choices depend on a reference point
and the status quo. Similarly, prior gains or losses can af-
fect risk preferences, generating effects such as “playing with
house money”, wherein recent gains can lead to increased risk
taking (Thaler & Johnson, [1990). Though these effects have
been theorized or shown to hold in experiments where risk is
determined by the environment, there remain open questions
as to whether risk-taking behavior may be different when the
risk arises from the choices of another person.

In the laboratory setting, lotteries, in which subjects choose
between guaranteed and non-guaranteed payoffs, have been
by far the most popular procedure for studying risk pref-
erences (Kahneman & Tversky| 2013; Mata, Frey, Richter,
Schupp, & Hertwig, [2018)). While these lotteries come in
a variety of different forms (for a comprehensive review of
the many methods of this form see Harrison, Rutstrom, et al.
(2008). The crucial component is that subjects choose be-
tween a risky option with high variance of outcomes and a
safer option, and that the probabilities of payouts are gener-
ated from the world. These studies often have subjects choose
between payouts with fully-specified probabilities (Harrison
et al.,2008)), or be required to infer the payouts and probabili-
ties across repeated trials, as is the case in bandit tasks (Meyer,
& Shi, |1995)), or other decisions from experience (Hertwig &
Erev, 2009). The key difference between these settings and
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many human-to-human interactions is that the source of risk
comes entirely from stochasticity in the environment. In other
words, the participant’s choice is not dependent on possible
responses of another agent.

Behavioral game theory, however, does seek to study these
types of human-human interactions in which decision makers
interact, and uncertainty arises from the indeterminacy of an
opponent’s choice. Unlike lotteries or bandits, the quality of
one’s decision depends upon the decisions made by the other
party. Behavioral game theory instead studies decisions in
terms of optima and equilibria (Osborne et al., 2004), where a
quality move is one with high expected value given the possi-
ble choices of the opponent. However, these studies are rarely
focused on the risk-taking aspect of decision making, pre-
ferring instead to emphasize move quality with respect to an
equilibrium or the expected value. Finally, while behavioral
games can be immensely useful in generating customized
models of local settings, the simplifications they impose on
decision making may not generalize to more complex, highly
strategic, or highly incentivized domains (Camerer, [1991).

One promising domain in which we can study adversarial
risk taking is chess. Chess is a popular lens through which
research can study a variety of cognitive processes because
the well-defined environment and rules provide a tractable,
yet sufficiently complex model to study perception, memory,
problem solving and risk taking. Furthermore, chess uses the
ELO rating system which is a precise, zero-sum measure of
player skill ranging from novices (ELO < 1200) to experts
(ELO > 2200). Additionally, algorithms such as Stockfish
(Stockfish: Strong open source chess engine, n.d.) allow for
objective evaluations of move quality and positional advan-
tage that would be difficult or impossible to define in many
other naturalistic settings. Finally, chess is a popular game,
with game data widely available at massive scales not attain-
able in a laboratory setting, which allows for analyses across
cultures(Chassy & Gobetl |2015), genders (Gerdes & Grins-
markl, |2010), ages (Charness}, |1981), and skill levels (Chassy
& Gobetl 2020). The combination of well-specified eval-
uation algorithms with difficult, highly strategic game play
makes chess an attractive middle ground between naturalistic,
adversarial situations and controlled laboratory experiments.

A measure of risk in adversarial games needs to take into
account how opponents respond to a particular action, rather
than an a priori evaluation of that action. Indeed, classic mea-
sures of risk in chess rely on the distribution of outcomes
observed from professional chess games. In particular, risk
in chess has previously been measured based only on the first
few moves: whether the opening move choice (Chassy & Go-
bet, [2015)) or the first few moves yielded a relatively high rate
of draws (Dreber, Gerdes, Gransmark, & Littlel 2013 Gerdes
& Gransmark, [2010) at the end of the game. The logic of this
measure is that a risky opening is one that reduces the prob-
ability of draws while increasing the probability of wins as
well as losses. This measure may be useful for evaluating
the strategy of a professional chess player who picks among
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a number of well-studied openings, however, it is predicated
on a risk assessment arising from a forecast of a full game
trajectory. This measure falls short of our goals in two ways.
First, we want to apply a measure of risk to multiple individ-
ual moves in a game, so as to enable the analysis of risk seek-
ing behavior as it varies with changes in game state. Second,
we want a measure of risk that would represent an organic
online calculation — such as may be undertaken by amateur
players — rather than a strategy chosen based on a priori
study of eventual game outcomes by an expert.

To this end, we propose a new algorithm to measure risk
in chess that can be evaluated at each individual board-state,
providing a measure of risk for each move not available
through current measures. Specifically we measure risk of
a given move as the variance of expected outcomes after the
opponents immediate response. This 1-step lookahead vari-
ance is consistent with measures of risk from economics and
finance that define risk as the variance around an expected
value (Rothschild & Stiglitz, |1970; |Damodaran, 2007). The
1-step lookahead measure is not only better aligned with how
amateurs evaluate the outcomes of their moves, but also nat-
urally varies from move to move. We applied this mea-
sure of risk to over 1.3 billion online chess games across
all skill levels, ranging from novices (ELO < 1200) to mas-
ters (ELO > 2200). We present evidence that: (i) risk-taking
strategies depend on the skill of the player and change de-
pending on the skill of their opponent, (ii) players are more
risk averse when games are close, and (iii) players are more
risk-seeking following a blunder.

Methods
Measure of Riskiness

To measure the relationship between current decisions and fu-
ture outcomes present in the real world, our measure of risk
is defined in terms of the opponent’s probable responses to
a given decision. Specifically, to measure risk of any given
move, each possible subsequent board state needs to be eval-
uated for quality, i.e., whether the resulting position is ad-
vantageous for the player, as well as tabulated for frequency,
i.e., how often that response is played. With the probability
or weight (w;) and quality (x;) of possible subsequent game
states, we can evaluate the riskiness of a move in terms of the
weighted variance of possible outcomes,

o’ = W 3 wi(x; — u*)?

V12 A = iXi—H ),
where V| is the sum of the weights (w;), V5 is the sum of the
squared weights, and u* is the weighted average of game state
qualities (x;). This formulation of weighted variance cor-
rects for the uncertainty arising from potentially undersam-
pling groups of responses (i.e. from not having certain possi-
ble moves included in the dataset) (Statistics, |n.d.), however
given the scale of the data, using a frequency weighted vari-
ance yields very similar results. Intuitively, risky moves are
those that result in a high variance among possible opponent
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Figure 1: A representation of the move graph. The root node represents the starting board position, with each subsequent board
state represented with its own node. Each node stores: the empirical count of times it was played in the dataset, an evaluation
of the board state using the Stockfish algorithm, and o, the standard deviation of possible response moves, weighted by their

empirical frequencies.

responses; i.e. moves that could either greatly strengthen or
weaken the player’s position. Inversely, moves with low vari-
ance amongst outcomes, are correspondingly less risky. This
method not only leverages classical definitions of riskiness
as a measure of variance, but also utilizes the rich empirical
distributions of actual past games.

To calculate a weighted variance of possible outcomes,
we need to accurately measure the value of each subsequent
game state for the player as well as the probability of the op-
ponent choosing that state. To evaluate the quality of a given
board state, we rely on the Stockfish evaluation engine which
uses advanced alpha-beta pruning search to evaluate a partic-
ular board state (Stockfish: Strong open source chess engine,
In.d)). Since play based on these board-state evaluations al-
lows Stockfish to achieve super-human chess performance,
we take them to be the "ground truth" evaluation of the qual-
ity of a position. These board state evaluations allow for a
measure of game state quality relative to the player (i.e. are
they in an advantageous or trailing position) for each state
represented in our game-state graph.

To get the probability of each of the possible game states
following a particular move, we compute the empirical dis-
tribution across all 1-step future states from historical games.
However, to be effective, this method requires a volume of
data not previously used in other chess research. Chess has
an estimated branching factor of around 35, which means in
any given game state a player has approximately 35 legal
moves. Each move in turn leads to myriad possible coun-
termoves, and the number of possible game-states blows up
exponentially, requiring increasingly large amounts of data to
have meaningful empirical counts for each board state only
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a few moves into the game. To address this, we used the
lichess.com online chess database and big data parsing tech-
niques to extract all games played on the site between January
2013 and June 2020. The resulting dataset is several orders
of magnitude larger than other recent large-scale studies of
human decision making via chess, and dwarfs the amount of
data accessible in a traditional lab setting.
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Figure 2: The number of games in the dataset as a function of
the game depth (number of moves) represented in the graph.
This does not reflect the complete game depth because we
retain only game states that had occurred in at least 500 out
of the 1.3 billion total games.

Data Collection

We collected 1,337,825,050 classical and Blitz chess games

from the open source lichess.org database (lichess.org openl
databasel n.d)). These games were read in as .pgn files and

parsed to extract pertinent information, such as player ELO



rating, timing data, and the list of moves played. The parsed
move sequences were then parsed into a directed acyclic
graph with nodes representing unique board states. A given
board state was included in the graph if it had been observed
in at least 500 games. This constraint yielded a total of
904,563 nodes, or possible game states. Each node consisted
of a unique board state, its empirical frequency (number of
games in which it appeared), and Stockfish evaluation. We
then traverse the graph and calculate the risk of a given move
in terms of the variance of game-state evaluations of its im-
mediate "children" (subsequent game states).

Results

With our move graph built and risk calculated for each board
state, we can begin to answer questions about how player
characteristics and game dynamics affect risk preference. Of
particular interest is how decision making changes in this ad-
versarial setting, where each decision (move) is made in con-
sideration of opponent responses, and the current world state.
We focus on three key questions 1) Are there expertise ef-
fects in risk preference? 2) Are there state-dependent effects
in risk-taking? and 3) Do people take more risk following a
mistake?

Experts take less risk

Previous research has suggested that experts and novices per-
ceive risk differently, suggesting that while experts have more
accurate perceptions of risk [1997), they may be
prone to be more risk seeking in skill-based tasks
[2004). These results however have not been shown
in adversarial games. In fact, a recent study of risk-taking
in chess showed the opposite effect; that players with higher
ELO ratings played less risky opening moves (i.e., moves that
had higher draw percentages), than amateurs
[bet, [2020). This analysis however was limited only to the
opening move, so we are interested in whether this effect
holds over the course of the game, where the complex dy-
namics could conceivably influence this result. We grouped
players into ELO bins ranging from novices (ELO <1100) to
experts (ELO >2100). Figure 3] shows the mean risk taken
(log standard deviation) by player ELO. Since ELO is a rat-
ing of player skill we see a clear decrease in risk taking by
stronger players [F(9,984600) = 704.3, p < 0.001].

These expertise effects led us to investigate whether play-
ers exhibit a consistent risk-taking strategy in all games, or
whether they adapted to the strength of their opponent.

Opponent-dependent risk-preferences

A key difference between lotteries and adversarial games is
that the source of the risk is determined by the choices of
the other party and thus riskiness is opponent-dependent. To
explore whether players indeed exhibit differing risk pref-
erences depending on their opponent, we binned players
by their ELO and calculated the mean riskiness for each
player/opponent ELO combination. Figure[d]shows two main
effects: first, as reported above, stronger players are more
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Figure 3: Mean log risk taken by ELO group, with standard
error bars shown in black. The average risk across all groups
is shown in red.

risk-averse; and second, as the quality of their opponent in-
creases, players, regardless of strength, become increasingly
risk-averse. For players with the highest ELO ratings, their
behavior seems constant regardless of opponent’s rating.

These results suggest that players do change their risk-
taking strategy depending on who their opponent is. One
possible interpretation is that risk taking is an effort to fool
or outmaneuver an opponent (e.g., gambits) and that as the
opponent becomes stronger, these outmaneuvering attempts
decrease. One caveat is that there are likely to be complex
game dynamics that govern the risk decisions of players, es-
pecially in games among weaker players who may exhibit
“risky” behavior out of erratic incompetence rather than an
informed risk-seeking strategy. To further understand how
game states may influence risk preference we next explored
how the evaluation of the game state (whether a player is win-
ning or losing) influences their tolerance for risky play.

2100 -1700

2000 -1675
1900 -
-1650
1800 -

1700 - -1625

1600 - 1600

Opponent ELO

1500 -
1575
1400 -

1300 - - 1550

1200 - 1525

1200 1300 1400 1500 1600 1700 1800 1900 2000 2100
Player ELO

Figure 4: A heatmap of the mean log risk taken by players
binned by the player ELO and the ELO of their opponent.

State-dependent risk-preferences

How does risk-taking behavior change as a result of past
performance? These effects are commonly studied in ref-
erence to gambling behavior, and a variety of effects have
been observed that make potentially contradictory predictions

(Ayton & Fischer,[2004). For example, the “hot-hand” fallacy




predicts that riskiness increases after a series of successes
(Gilovich, Vallone, & Tversky, [1985)), and the “house money”
hypothesis similarly predicts increased risk when well in the
lead (Thaler & Johnson, [1990)). These can be contrasted with
the gambler’s fallacy which predicts that gamblers will be less
willing to bet after a big win and more willing to bet follow-
ing a string of losses since they are “due” to win (Clotfelter
& Cookl [1993). Finally the “break-even” hypothesis predicts
that players will become more risk averse as they get closer to
a neutral winning point (Tversky & Kahneman), |1974 Thaler|
& Johnson, |1990). A study of professional online poker play-
ers explored these competing hypotheses and showed that
players play consistent with a “break-even” strategy; taking
more risk following big losses and avoiding risk when they
approach their break-even point (Smith, Levere, & Kurtzman,
2009).

To determine whether this effect holds in chess, we cal-
culated the value of the game state prior to each move. A
positive game score suggests the player is in an advantageous
position, while a negative score suggests they are at a disad-
vantage. Figure [5] shows the mean log risk taken by game
score. The average risk taken by players is shown in blue and
the maximum risk they could have undertaken in their posi-
tion is shown in grey. While the maximum risk is fairly stable
across game scores, the U shaped blue area shows increased
risk-taking in games where the player is materially leading
or trailing, but relative risk aversion in close games. Essen-
tially the proportion of risk undertaken increases in winning
and losing positions despite similar maximum possible risks
in each position. These results are consistent with the “break-
even” findings in poker, with increased risk following losses
and risk aversion when scores are close. Interestingly, we
also find support for the “house money” hypothesis in which
risk-taking increases in winning positions.
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Figure 5: Mean log risk taken by players binned by current
game score is shown in blue with black standard error bars.
The maximum possible risk (as measured by greatest risk
taken in that position in the dataset) is shown in grey. Pos-
itive scores indicate the player is in a winning position before
making the move.
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Increased risk-taking following mistakes

We have shown that risk-taking behavior changes based on
the result of previous actions and the current world state, but
the previous results do not account for how one got into the
winning or losing position. One unique aspect of adversarial
games is that the game state is determined by the cunning
and mistakes of both the player and their opponent. Here we
explore whether players increase risk-taking following a big
mistake in an effort to compensate for lost ground.

The Stockfish evaluation of a given game state assumes that
the opponent will make the best possible move on the next
turn. Consequently, if the Stockfish score is 50 for white (-50
for black) after white’s move, the best move black could make
would yield exactly the same evaluation (-50 for black) after
black’s move. Any other move for black would yield a worse
score. Based on this logic, we can objectively determine the
quality of any given move relative to Stockfish, and define a
blunder as a move that yields a value at least 100 centipawns
below the optimal evaluation.

Figure [6JA shows the histogram of moves binned by their
difference from the optimal Stockfish move, with the blun-
ders shown in red. Although our binning dedicates most
bins to blunders, as a whole they are not especially com-
mon (= 15.5%). Nonetheless, they represent a large swing
in the quality of one’s position. Figure [6B shows that fol-
lowing a move in which the player commits a blunder, the
subsequent move is on average riskier than moves played fol-
lowing non-blunders [F(9,929013) = 1627, p < 0.001], de-
spite risky moves being available across all bins (shown in
grey). To address the fact that weaker players are more likely
to commit blunders, and blunders are more likely to happen
later in the game, we conducted multiple regression to con-
trol for these factors. We found that even when controlling for
move number and player ELO, moves are significantly more
risky following blunders (f = 0.101, p < 0.001).

Discussion

The ability, or perceived ability, to control how adversaries re-
spond in games make the study of risk taking in these settings
fundamentally different than games with a purely mechani-
cal source of risk, such as lotteries. The current work uses a
large-scale dataset of chess games, and novel measure of risk
taking, to explore how past performance, expertise, and the
current world state influence risk taking in strategic, adversar-
ial games. Specifically, we show that players take more risk
when in clearly winning or losing positions, and prefer a more
risk-averse strategy when games are close. These findings are
consistent with “house-money” and “break-even” accounts of
risk-taking behavior (Smith et al., |2009). We also show that
expert players prefer a more risk-averse strategy compared to
novices; an expert—novice difference that may not be present
in games with mechanistic risk.

In addition to state-dependent effects, we also find
opponent-dependent effects on risk-taking behavior. Consis-
tent with (Chassy & Gobet, 2020), we find that players’ pref-
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erence for risk depends on who they are playing. In future
analyses we plan to explore the extent to which these risk
taking patterns represent meaningful strategies versus unin-
formed poor play. In particular we are interested in study-
ing in what circumstances risky play is optimal, reflecting
an strategic weighing of risk and reward, and the extent to
which it correlates with win percentage. While these results
are preliminary and will require further investigation into the
complexities of chess games and why these results arise, they
offer a promising future direction for cognitive scientists try-
ing to understand how people reason about risk in different
settings.

Chess provides a valuable lens through which we can study
risk taking in adversarial settings. The combination of ob-
jective world state evaluations, reliable player competency
measures, and massive amounts of available data make it a
tractable, yet complex research vehicle. We leveraged these
features to develop a novel measure of risk-taking that is in
line with definitions in economics and behavioral finance.
This new method for calculating risk in chess, combined with
the wide accessibility of chess data from a variety of sources
means this work could be extended to study a variety of other-
wise intractable questions in areas beyond chess, such as cul-
tural or gender differences in risk taking. Future work should
also explore the extent to which other key findings in stochas-
tic risk settings are mirrored in adversarial settings, and the
extent to which these results generalize to other adversarial
settings such as negotiations.
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