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Feeling my way through the darkness, 

Guided by a beating heart. 

I can't tell where the journey will end 

But I know where to start. 

 

— Avicii, Wake Me Up 
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Atrial fibrillation (AF) is the most prevalence form of arrhythmia, affecting around 

3% of the general population. The mechanism and disease-causing factor of AF are 

remaining unclear. Thus, the establishment of a high-throughput phenotypical screening 

platform could advance the understanding of AF and identify novel cardiac rhythm 

regulators that could inform future anti-arrhythmic development.   
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AF is an atrial-specific arrhythmia. Thus, to specify the screening target space, 

human pluripotent stem cell-derived atrial like cardiomyocytes (ACM) is required. To 

effectively generate large scales of ACM, the regulatory network and differentiation 

protocol of cardiac mesoderm progenitor (CMP) has to be established. We performed 

genome-wide microarray and identified Id1 is required and sufficient to direct the 

differentiation of CMP from pluripotent cells both in mouse and human. Moreover, in vivo 

data have shown the essential role of Id gene family during mammalian early heart tube 

formation. Retinoic acid (RA) was applied as the atrial-specific cue for the differentiation 

of ACM from CMP. The resulting ACMs were molecularly validated. The qPCR, 

immunofluorescence, and RNA-seq results demonstrated atrial-specific genes were highly 

expressed in the ACM compared to non-RA-treated ventricular-like cardiomyocyte 

(VCM). Functional validation including action potential, calcium transient, and 

contractility also confirmed the atrial-like physiology behavior of ACM. 

To efficiently screen through the genome to identify potential arrhythmia-causing 

genes, a fully automated single-cell and high-throughput phenotypical platform was 

established. The platform record and analyze action potential traces from each cell within 

the field of view with image processing software and algorithm. Physiological metrics were 

then retrieved. Action potential duration at 75% of repolarization (APD75) and arrhythmia 

index (AI) were calculated as metrics to determine the degree of arrhythmia-like activity 

induced by the treatment. To further validate the platform, siRNA against 20 previously 

shown AF-associated genes identified through rare variants and genome-wide association 

study (GWAS) were transfected to ACM. The down-regulation of some of the genes in the 

list induced the prolongation or shortening of action potential duration (APD), but not 
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sufficient to trigger the arrhythmia-like activity. AF-associated perturbagens such as β-

adrenergic agonists/antagonist, and tissue fibrosis, mimicking by co-culturing fibroblasts 

with ACM also induced electrical remodeling but not arrhythmia-like activity. However, 

by applying perturbagens along with siRNA against AF-associated genes that had the most 

severe phenotype triggered dramatic arrhythmia-like behavior. Moreover, distinct 

combinations of siRNA against AF-associated gene with perturbagens induced different 

arrhythmia-like-phenotypes. 

The overall result indicated the complexity of the disease mechanisms as well as 

the unmet need to identify novel cardiac rhythm regulators and potential AF-causing genes. 

The ACM differentiation protocol and the high-throughput phenotypical screening 

platform could further advance the understanding of AF and catalyze the discovery of 

antiarrhythmics.  
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Chapter 1  

 

Introduction 

 

 

 

 

 Atrial fibrillation is the most common cardiac arrhythmia affecting more than 33 

million individuals world wild that can cause detrimental complications such as stroke, heart 

failure, and death. Current treatments of AF are surgical ablation and the prescription of 

antiarrhythmics. Surgical ablation is an invasive and sophisticated technique and might 

require several ablations to eliminate the ectopic firing loci. On the other hand, anti-atrial 

fibrillation drugs have relatively low efficacy and a considerable high off-target effect that 

could increase the risks, especially pro-arrhythmia, highlighting the needs to develop novel 

anti-arrhythmic treatments. The elucidation of underlying molecular determinants and the 

identification of novel AF-causing genes are the primary goals. 

 With the advance of sequencing technology and CRISPR-Cas gene-editing 

technique, genetic researches on familial AF and GWAS disclosed several AF-related 

genes. Despite the effort, the molecular basis of the majority of AF patients is still poorly 

understood. Two common techniques to model cardiomyocyte physiology are the whole-

cell patch-clamp electrophysiology and optical recording-based system. The patch-clamp 
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method is able to record major currents of cardiomyocyte during the excitation-contraction 

coupling through carefully monitored current amplitude. However, one of the constraints of 

the patch-clamp method is the limited throughput that is insufficient for large-scale screens. 

The optical recording-based system utilizes fluorescent dyes such as voltage-sensing dyes 

or calcium-sensing dyes to visualize cardiomyocyte physiology responses. Image analysis 

and physiological parameter calculation are then conducted using recorded whole-well 

images. Although the automated workflow provides tremendous throughput, the limitation 

of the system is the resolution of physiology metrics due to the whole-well averaged 

fluorescent signal analysis. Thus, establishing a platform that combines the automated high-

throughput physiology system with the single-cell level resolution to rapidly generate 

physiological measurements of   CM could substantially advance the understanding of 

molecular basis of AF and the discovery of new anti-AF drugs. 

 This thesis summarizes the effort that has been made for establishing a physiology 

screening platform to elucidate novel AF-causing candidates. The contributions comprise 

three main significances: (1) The generation of Id1-derived CMP and ACM. (2) The 

establishment of the single-cell and high-throughput CM functional analysis platform. (3) 

The modeling of arrhythmia-like activity in ACM with misregulation of known AF-causing 

genes and AF-related perturbagens. The main text of this thesis is organized along the 

following thematic lines. 

 Chapter 2 describes an original Id1-induced CMP differentiation protocol. Id1, 

identified through genome-wide microarray, is required and sufficient to promote 

mesoderm formation. The resulting Id1-induced CMP is highly cardiogenic. Moreover, the 

in vivo data demonstrated the Id family is essential for mammalian early heart tube 
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formation. 

 Chapter 3 addresses CM subtype-specific differentiation and the validation of the 

resulting ACM and VCM. VCM were derived from spontaneous differentiation, and ACM 

were generated by the administration of atrial-specific differentiation cue, retinoic acid. The 

identity of resulting CM subtypes was comprehensively validated in both molecular 

signature and functional assessment aspects. 

 Chapter 4 exhibits an automated single-cell and high-throughput functional 

screening platform. Based on optical recording system, the platform utilized custom built 

image processing software and trace analysis algorithm to generate the single-cell resolution 

of CM physiology.  

 Chapter 5 validates the platform with a list of previously known AF-associated 

genes. siRNAs against these genes were transfected into ACM and physiology parameters 

were retrieved through the platform. The result showed that the down-regulation of several 

of these genes induced electrical remodeling but not sufficient to induced arrhythmia-like 

activity. Only with the presence of common AF-associated perturbagens, knocking down 

the genes triggers arrhythmia-like activity. Moreover, different combinations of siRNA and 

perturbagens induced distinct arrhythmia phenotypes. 

 Chapter 6 summarizes the contributions of this dissertation and discusses three 

possible future research directions.
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Chapter 2  

 

Identification of Id Family as 

Multipotent Mesoderm Progenitor 

Regulator 

 

 

 

 

2.1 Background 

The ability to produce unlimited amounts of cardiomyocytes in the laboratory is the 

pre-requisite of being able to study and conduct large-scale screenings on cardiac diseases. 

In the late 2000s, when researchers begin to harness the power of human pluripotent stem 

cells (hPSCs), there was no efficient cardiomyocyte differentiation protocol. Serum-based 

protocols often provide unstable and poor cardiomyocyte yields. Therefore, there is an 

unmet need to establish a differentiation protocol that could robustly and efficiently 

generate massive amounts of cardiac progenitors and subsequent cardiomyocytes for 

cardiac disease studies.  

Heart formation begins during the early gastrulation when the specification of the 

three distinct germ layers, ectoderm, endoderm, and mesoderm, undergo migration and 
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forming cardiac primordium consist of CMPs. The progenitors then move ventrally and 

compose the linear heart tube that undergoes cardiac looping and further assembles into a 

fully functional heart. The spatiotemporal activation and inhibition of various signaling 

pathways orchestrate the allocation of the germ layers and the formation and patterning of 

the organs. Studies of developmental biology over the past two decades have established 

the mechanisms of how mesoderm was induced through the activation of extracellular 

signals, such as Activin/Nodal and bone morphogenic proteins (BMPs) signaling pathways. 

However, the understanding of the down-stream intracellular mediators controlling this 

process has never been adequately explained. Understanding the regulatory network of 

mesoderm formation could further advance the design of mesoderm and cardiac 

differentiation protocol, and gain insights into the development and regenerative aspects of 

the heart. 

 

2.2 Results 

2.2.1 Identification of Regulators of Cardiac Mesoderm Progenitor Formation 

Previous studies have illustrated the mechanism of cardiac specification is initiated 

through the activation of transcription factors Eomes, Mesp1, and Mesp2, which then 

further activate series of cardiac-specific transcription factors (Gata4, Nkx2-5, Hand2, and 

Myocd) and repress pluripotency genes (Oct4, Nanog, and Sox2) as well as endoderm 

effectors (Foxa2, Sox17) [1, 2]. Furthermore, attenuating Activin/Nodal signaling via the 

blockade of activin receptor Acvr1b directs the differentiation mesendoderm towards 

mesoderm progenitor [3]. Thus, we hypothesize that the down-stream regulators in 
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response to the inhibition of activin signaling play a critical role during the differentiation 

of CMP [Figure 2.1A]. 

Mouse embryonic stem cells (mESCs) reaches the mesendoderm stage (Gsc+, 

Fox2+, and T+) at day 3 after the initiation of differentiation with Activin/Nodal signaling. 

Mesendoderm progenitors then further differentiate into either endoderm progenitors 

(Foxa2+) or CMPs (Kdr+, Meps1+, Cdh11+, Snai1+). The attenuation of Acvr1b directs 

mesendoderm progenitors towards CMPs very efficiently [Figure 2.1B–C]. To elucidate 

the downstream effectors of cardiogenic mesoderm formation, we performed mRNA 

microarray to evaluate the differential expressions of the mRNA during the process [Figure 

Figure 2.1 Identification of mesoderm effectors. (A) Schematic diagram of CMP differentiation protocol. 

(B–C) IF of resulting day 6 cells. (D) Microarray to identify genes up-regulated in response to siAcvr1b. (E) 

14 qPCR validated mesoderm effector gene candidates. 
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2.1D]. We identified 33 genes were up-regulated in response to siRNA against Acvr1b 

relative to the scrambled sequence of siRNA, and of which 14 were further confirmed by 

quantitative PCR (qPCR) [Figure 2.1E]. In the list of 14 candidate genes, eight of them are 

involved in the regulation of gene transcription, including transcription factors (Evx1, 

Gbx2, Irx3, Irx5, and Sox9), helix-loop-helix (HLH) protein that forms heterodimers with 

basic HLH family of transcription factors (Id1 and Id3), and DNA repair mediator 

(Gadd45g). Three of the candidates involved regulation of signaling pathway (Fgfbp3, 

Crabp2, and Cxcl12), two are related with RNA binding and regulation (Elavl3 and Tnrc6a), 

and one with possible centrosome-associated function (Grrp1). 

 

2.2.2 Id1 is Required and Sufficient to Direct the Formation of Cardiac Mesoderm 

Progenitor in mESC and hESC 

To further assessed the role of the 14 candidate genes during mesoderm 

differentiation, we transfected mESCs on day 3 with siAcvr1b along with siRNA against 

all 14 candidate genes individually. Of all the candidate genes, only siRNAs against Grrp1, 

Evx1, and Id1 substantially decrease the number of Kdr+ mesoderm cells in the expense of 

the increasing population of Fox2+ endoderm cells along with the down-regulation of 

mesoderm markers including Mesp1, Snai1, and Cdh11[Figure 2.2A–E]. These results 

indicate that Grrp1, Evx1, and Id1 is required during the process of mesoderm formation. 

We then examined the sufficiency of these remaining three candidate genes during the 

differentiation by the overexpressing system with lentivirus. We first generated mESC 
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lines overexpressing all seven possible combinations of Grrp1, Evx1, and Id1 [Figure 2.2F]. 

These mESC lines were than differentiate into mesendoderm and further evaluate the 

mesoderm formation efficiency without the blockade of Acvr1b. Surprisingly, Id1 along 

without attenuating Acvr1b signaling was sufficient to significantly induce more than 22-

fold of Kdr+ mesoderm cell formation over parental control mESC [Figure 2.2G–I]. 

Figure 2.2 Id1 is required and sufficient to promote CMP formation. (A-D) 3 genes are required during 

mesoderm differentiation. (E) Down-regulation of the 3 genes reduce mesoderm marker expression. (F) All 

possible combination of overexpression of 3 genes were examined. (G–I) qPCR and IF result indicates the 

overexpression of Id1 is sufficient to promote mesoderm formation. 
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We then investigate whether the role of Id1 during mesoderm progenitor 

differentiation is evolutionarily conserved in human embryonic stem cells (hESCs). 

Consistent with the result in mESC, flow cytometry data indicates Id1 drastically increase 

the population of Kdr+ mesoderm cells during the mesoderm-endoderm specification in 

hESC system [Figure 2.3A–D]. Moreover, the temporal mRNA expression results of Id1-

induced Kdr+/KDR+ mesoderm progenitor (iMPs) showed Id1 overexpression not only 

promotes known mesoderm regulators Mesp1/MESP1 and Kdr/KDR, as well as the early 

upregulation of Exv1/EVX1 and Grrp1/GRRP1 [Figure 2.3E–L]. Collectively, these data 

Figure 2.3 Id1 overexpression induced mesoderm mechanism is conserved in human. (A–D) Overexpression 

of Id1 increase Kdr+ cell percentage. (E–H) Mouse mesoderm marker expression pattern. (I–L) Human 

mesoderm marker expression pattern.  
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show that Id1 act as an evolutionarily conserved initiator of mesoderm differentiation 

program and plays a central role within the regulatory network in both mESC and hESC. 

To examine the multipotency and the cardiogenic character of the iMPs, cells were 

first produced until day 6 of differentiation for mouse and day 5 for human. At this point, 

iMPs could be cryopreserved or used fresh. On day 15 of spontaneous differentiation under 

basal media without cytokines, we performed qPCR on markers of various mesoderm 

lineage ordinarily present in the heart, including cardiomyocyte (Myh6, Tnnt2, and Actc1), 

vascular endothelial cells (Pecam1 and Cadh5), smooth muscle cells (Myh11), and 

Figure 2.4 The multipotency of CMP. (A) qPCR result of mESC-derived CMP on markers of mesoderm 

lineages. (B) qPCR result of hESC-derived CMP on markers of mesoderm lineages. (C–D) IF and 

quantification result of day 15 hESC-derived CMP. (E) Schematic diagram of the multipotency of CMP. 
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fibroblasts (Postn and Tagln) as well as immunofluorescence staining [Figure 2.4A–B]. 

Both mouse and human iMPs were able to give rise to multiple lineages, and most 

importantly, the vast majority of the cells derived from iMPs were ACTC1+ 

cardiomyocytes [Figure 2.4C–E]. 

In addition to identifying the cardiogenic aspect of these iMPs, we further 

investigate the function of the iMP-derived cardiomyocytes which includes the rhythmical 

contraction behavior, electrical excitability, calcium-induce calcium release (CICR) 

mechanism, and response to hormonal stimuli. High-speed microscopic kinetic imaging 

revealed the rhythmical contraction activities of day 15 iMP-derived cardiomyocytes 

[Supplement 2.1]. By labeling cells with voltage-sensing probes or fluorescent calcium 

indicator, we observe periodic action potential activities and CICR cycles [Figure 2.5A–

D]. Additionally, these cardiomyocytes showed increase beat rate in response to β-

adrenergic agonist Isoproterenol [Figure 2.5E–F]. In summary, we have identified a novel 

pathway to generate multipotent CMPs that spontaneously differentiate into functional 

cardiomyocyte efficiently. 

Figure 2.5 Functional assessment of resulting CM. (A) Schematic diagram of functional assessment 

protocols. (B–C) Calcium-sensing probe recording and calcium transient trace. (D) Action potential trace in 

the baseline condition. (E) Action potential trace of CM abruptly treated with isoproterenol (100 nM) (F) 

Quantification result on the average beat rate of baseline and isoproterenol-treated CM.  
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2.2.3 Id1 Promotes Cardiac Mesoderm Differentiation by Binding and Inhibiting 

Tcf3 and Foxa2 

As a family member of HLH protein, Id1 regulate gene expressions through 

forming heterodimers with basic-helix-loop-helix (bHLH) transcription factors rather than 

directly binds with the DNA [4]. The canonical binding targets are class I bHLH 

transcription factors, also known as E proteins, Tcf3, Tcf4, and Tcf12 [4-6]. To elucidate 

the regulatory network during mesoderm differentiation, we examined whether the down-

regulation of E proteins with siRNA individually or in combinations were able to 

phenocopy the result of Id1 overexpression promoting Kdr+ mesoderm progenitor 

formation in mESCs during the mesoderm specification process. All combinations promote 

mesoderm formation and interestingly, the combinations that contain siTcf3 have a better 

yield of CMP compares to other combinations without siTcf3 [Figure 2.6A–C]. The 

inhibition of Tcf3 through heterodimerization with Id1 plays a crucial role in mesoderm 

specification. Although studies implicated Tcf3 as a direct binding target of Id1, the down-

regulation of Tcf3 could only partially phenocopy the result of inducing mesoderm 

formation through siAcvr1b or Id1 overexpression. 

To further identify additional roles of how Id1 mediates mesoderm induction, we 

hypothesized Id1 might promote mesoderm formation through down-regulating the 

repressors of cardiogenic mesoderm formation. Thus, genes identified in microarray that 

were down-regulated in response to siAcvr1b at day 4 mesoderm differentiation could be 

potential cardiogenic mesoderm repressors regulated by Id1. We identified 53 gene 

candidates, and 17 were validated through qPCR [Figure 2.6D]. We then verified whether 

down-regulating any of these 17 genes through siRNA would be sufficient to induce MCP 
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formation. Out of these 17 genes, only the knock-down of Foxa2 was sufficient to promote 

Kdr+ mesoderm progenitor formation without the attenuation of Acvr1b signal [Figure 

2.6E–F]. Although no reports have shown that Id1 has direct interaction with forkhead 

Figure 2.6 Id1 promote mesoderm formation mainly by inhibiting endoderm genes Tcf3 and Foxa2. (A) 

Down-regulation of canonical binding partner Tcf3 promotes mesoderm formation. (B–C) IF result of down-

regulation Tcf3 promotes mesoderm formation. (D–F) Identification of Foxa2 as an inhibitor of mesoderm 

differentiation. (G) qPCR result shows Id1 inhibits Foxa2 expression level. (H–I) Downregulation of Tcf3 

and Foxa2 increase mesoderm marker expression. (J) IF result shows the downregulation of Tcf3 and Foxa2 

partially recapitulate Id1 overexpression phenotype. 
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transcription factors, in the constitutively Id1-overexpressing mESC, the expression level 

of Foxa2 was strongly decreased on day 4 of differentiation, indicating that Id1 may 

indirectly inhibit the expression of Foxa2. [Figure 2.6G]. 

As predicted, Kdr+ mesoderm progenitor induced by Tcf3 and FoxA2 knock-down 

expressed a prominent level of mesoderm markers (Mesp1, Snai1, Cdh11), and co-

transfection of siRNA against Tcf3 and FoxA2 further enhances the differentiation of 

cardiogenic mesoderm [Figure 2.6H–J]. Taken together, these results clarify the regulatory 

network of Id1 promoting MCP formation partially through forming heterodimers with 

canonical binding target Tcf3 and repressing the antagonist of mesoderm formation Foxa2. 

 

2.2.4 Id genes are essential for early heart development in vivo in mammalian 

To further identify the role of Id gene family in vivo during heart development, first, 

we used Xenopus embryo as our validation platform. Since Xid2 is the closest ortholog to 

mouse Id1 (with amino acid sequence 79% identical and 93% positive), we performed 

equatorial and hemilateral injection of Xid2 mRNA directly to the embryo [Figure 2.7A–

B]. Xid2 injection caused a dramatic expansion of mesoderm tissue, stained with Xbra and 

Xmespb in gastrula stage embryos [Figure 2.7C–F]. Next, to examine the underlying 

mesoderm has cardiogenic differentiation ability, Xnkx2-5 expression was assessed at the 

tailbud stage (stage 25). Remarkably, the overexpression of Xid2 massively induced the 

expression area of Xnkx2-5, and conversely, the area marked by skeletal muscle marker 

Xmlc remained unchanged [Figure 2.7G–I]. Collectively, these data show that the 

mechanism of Xid2 in Xenopus embryos, ortholog to mouse Id1 in the mESC, has an 

evolutionarily conserved function of promoting the formation of cardiogenic mesoderm. 
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The gain-of-function experiment shows that Id proteins are sufficient to direct the 

formation of cardiogenic mesoderm in vitro (mESC and hESC) and in vivo (Xenopus 

embryo). We then further explore the requirement of Id protein during mesoderm 

differentiation. Total four members, Id1, 2, 4 and 4, are there in the family, and previous 

studies have performed triple-knockout (Id1, 2, and 3) in mouse and observed complex 

cardiac defects but did not completely ablate the heart [7]. We hypothesized that there are 

functional redundancy or compensatory activity between the Id family members. To further 

test the hypothesis, we performed whole Id family quadruple-knockout using CRISPR-

Cas9 genome editing strategy in mouse embryos. To enhance the knockout efficiency, we 

designed single-stranded RNA guide against both the start codon (ATG) and the beginning 

Figure 2.7 In vivo validation of Id genes gain of function. (A) Schematic diagram of injecting Xid2 into 

xenopus embryo. (B) Xid2 and Id1 sequence alignment. (C–F) Injection of Xid2 on only one side of the 

embryo enlarges mesoderm tissue. (G–I) Enlarged mesoderm tissue further differentiated into cardiac 

progenitors in later stage. 
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of HLH binding domain [Figure 2.8A]. Guide RNAs and Cas9 were injected into mouse 

zygotes and reimplanted back to a female surrogate mouse. Embryos were then harvested 

at various stages. In situ hybridization of the early cardiac precursors (Smarcd3 and Tbx5), 

and cardiac marker (Nkx2-5) were evaluated throughout the wild-type and Id1-4 mutants. 

Remarkably, the most anterior region of the cardiac crescent was missing in the Id1-4 

Figure 2.8 Id genes are essential during mammalian early heart formation. (A) Schematic diagram of 

generating Id genes mutant with CRISPR-Cas9 gene-editing tool. (B-U) In situ hybridization results from the 

most severe Id1–4 mutants—compared with wild type (individual mutants are marked by #) and plus one 

less-affected mutant (O); analysis of Smarcd3 at E7.75 (B-E), Tbx5 at E8.0 (F–I), Nkx2.5 at E8.25 (J–M; 

plus transverse sections through the heart tube-forming region [K′,M′]), Nkx2.5 at E8.5 (N–Q), and Tbx5 at 

E8.5 (R–U). (Yellow arrowheads) Missing heart tube (or missing heart tube-forming region at cardiac 

crescent stages) in Id1–4 mutants; (white arrowhead) malformed heart tube; (black arrows) the plane of 

transverse sectioning through the heart tube-forming region; (white dash lines) posterior–lateral cardiac 

regions. 
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mutant embryo stained with Smarcd3 and Tbx5 at E7.75 and E8.0 respectively. The two 

lateral domains in the posterior of the heart tube formation region remained in the mutant 

embryo suggested that mesoderm was only partially ablated and the remaining CMPs were 

able to migrate to the proper region [Figure 2.8B–M]. Histological sections demonstrated 

the absence of anatomical heart tube formation and failure of the foregut closure [Figure 

2.8K’–M’]. Moreover, at a slightly later time point, E8.25 and E8.5, due to the absence of 

the anterior region of the cardiac crescent, the embryo failed to form heart tube that 

normally looped at the time [Figure 2.8N–U].  In summary, the heart tubes were ablated in 

the whole-family Id1-4 knockout embryos indicate the requirement of Id family during in 

vivo cardiogenic mesoderm formation. 

 

2.3 Discussion 

2.3.1 Id Genes Orchestrated the Cardiogenic Mesoderm Differentiation in vitro, in 

vivo, and across Different Species 

Activin/Nodal signaling thresholds dictate the cell fate decision of whether 

mesendoderm differentiates toward mesoderm or endoderm. High levels of activin have 

been shown favoring endoderm formation across different biological systems including 

mESC, hESC, zebrafish, Xenopus, and mice [8-11]. Through the blockade of Acvr1b 

signaling, we identified Id proteins in the downstream acts as a potent mesoderm agonist 

by up-regulating Evx1 and Grrp1, which are shown required during the mesoderm 

differentiation process, as well as repressing the antagonists of mesoderm formation, Foxa2 

and Tcf3 [Figure 2.9]. The pro-mesoderm function of Id proteins can override the signaling 
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pathways of high concentration of Activin that leads to the endoderm program, indicating 

the molecular mechanism of Id proteins act in the down-stream of Activin signaling 

pathway. Consistent to our finding, studies have shown BMP signaling directly activates 

Figure 2.9 Id genes orchestrate cardiogenic mesoderm differentiation in vertebrates. Id genes control the 

activation of the cardiogenic mesoderm differentiation program in mesendoderm progenitors by inhibiting 

the activity of repressors (Tcf3 and Foxa2) while promoting the expression of activators of cardiogenic 

mesoderm differentiation (Evx1, Grrp1, and Mesp1). The Id-controlled network induces cardiogenic 

mesoderm (Mesp1 and Kdr) differentiation from pluripotent cells. Id1-induced CMPs generated from 

pluripotent stem cells are cryopreservable and spontaneously form contracting cardiomyocytes as well as 

vascular endothelial cells,,smooth muscle, and fibroblasts. 
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the transcription of Id protein [12-15] and BMP signaling pathways have been known for 

inducing mesoderm progenitor by negatively regulates endoderm induction in mouse and 

Xenopus [16, 17]. Additionally, the blockade of BMP singling completely abolished 

mesoderm formation [11]. In conclusion, Id proteins act as a dominant molecular cue of 

mesoderm induction and play a central role in the evolutionary conserved regulatory 

network of the formation of CMP [Figure 2.9]. 

 

2.3.2 Id genes are required for cardiac progenitor that forms heart tube during 

cardiac development 

Mesp1 is the earliest known marker of cardiac progenitor [18, 19], and the 

overexpression of Mesp1 promotes the specification of cardiac progenitors [20]. In our 

study, Mesp1 temporal expression data shows that the overexpressing Id1 in both mESCs 

and hESCs promotes the level of Mesp1/MESP1. Additionally, the direct injection of Xid2 

mRNA in Xenopus embryo confirms the enlargement of Xmespb+ tissue area, which both 

suggest Id proteins expressed precedes and up-regulates Mesp1 [Figure 2.7E–F]. However, 

the cardiac progenitor population (Nkx2-5+ and Tbx5+) is not entirely ablated in CRISPR-

Cas9 induced Id1-4 knockout mouse embryos. The small fraction of lateral domains on 

both sides of the mesoderm posterior to the heart tube-forming region suggesting that these 

cardiac progenitors may have different origins than Id proteins-induced cardia progenitors 

[Figure 2.8H–I, L–M, P–Q, T–U]. 

Mammalian heart arises from a series complex morphogenetic process via cardiac 

progenitor originated distinctly, the first and second heart fields (FHF and SHF). The FHF 

give rise to the left ventricle and part of the atria and the SHF to the right ventricle, outflow 
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tract and part of the atria [21]. Colonel and molecular lineage tracing analysis of Mesp1-

expressing cells within the cardiac tissue demonstrated that Mesp1 marks distinct classes 

of cardiac progenitors with limited lineage differentiation ability during gastrulation. Early 

(E6.5) and more anterior Mesp1+ mesoderm progenitors first give rise to the FHF, whereas 

late (E7.5) and more posterior Mesp1+ mesoderm progenitors to SHF [22]. Together, these 

observations suggest that cardiomyocytes arise from the early Mesp1 activation, due to the 

induction of Id proteins, contribute to the FHF derivatives. Additionally, RNA expression 

data show that Id1-induced cardiomyocytes express high levels of FHF markers (HCN4 

and TBX5) and down-regulated SHF markers (ISL1 and SIX2) during cardiac 

differentiation. Thus, these findings suggest that there are at least two different distinct 

populations of CMPs, Id-dependent and Id-independent, which very likely to give rise to 

FHF and SHF respectively. 

 

2.3.3 Id1-induced Cardiac Mesoderm Progenitors as a novel, robust, and efficient 

way of generating Cardiomyocytes 

In this study, we show the importance of the role of Id protein during cardiogenic 

mesoderm differentiation as well as the evolutionarily conserved mechanisms across 

different species and systems, including mESCs, hESCs, hPSCs (data not shown), 

Xenopus, and mouse. The cardiac-centric, single-factored Id proteins signaling 

transduction allowed us to have simple, robust, and tight controls over cardiac 

differentiation. Also, the ability to cryopreserve MCPs and uncouple cardiogenic 

progenitor generation from subsequent cardiomyocyte differentiation production allows us 

to bank, validate, and access to different batches easily. Furthermore, the resulting 



 

 21 

cardiomyocytes were functionally validated which displayed rhythmic action potential and 

calcium handling, as well as being able to respond to hormonal stimuli. The average 

cardiomyocyte differentiation efficiency (percentage of ACTC1+ cells over DAPI+ cells) is 

around 85%. Also, the simple protocol could easily be scaled up into the 15-cm petri dish 

format that generates a large number of cardiomyocytes (>108 per batch). Taken these 

features together, Id1-induced CMP is a promising new protocol for varies applications, 

including deciphering gene networks regulating heart development and studying 

fundamental mechanisms controlling cardiomyocyte physiology. The resulting 

cardiomyocytes have the potential for transplanting and abilities to regenerate in patients 

after heart injuries and myocardial infarction. Lastly, generating hESC or hPSC-derived 

cardiomyocytes efficiently provides the field materials for patient-specific cardiac disease 

modeling and high-throughput screenings to identify disease mechanisms and drug 

discovery. 

 

2.4 Conclusion 

This study presents Id genes are crucial regulators during mesoderm differentiation. 

Through the microarray screening, we have identified Id1 is required and sufficient to 

promote mesoderm cardiac mesoderm formation. Moreover, the result shown Id1 induces 

mesoderm by up-regulating downstream mesoderm genes, including Kdr and Mesp1, as 

well as inhibiting the functions of endoderm genes, such as FoxA2. The resulting Id1-

induced CMP could differentiate into CM efficiently. Furthermore, the in vivo gain of 

function result indicates the enlarged cardiac mesoderm progenitor region could later give 
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rise to cardiac tissue. The CRISPR-Cas mediated loss of function demonstrated the 

essential role of Id genes during mammalian early heart formation. 
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Chapter 3  

 

The Establishment of Id1-induced 

hPSC-derived Ventricular-like and 

Atrial-like Cardiomyocytes 

 

 

 

 

3.1 Background 

The generation of a significant amount of functional human pluripotent stem cell-

derived cardiomyocytes (hPSC-CM) of defined heart field origin is a prerequisite for 

studying cardiac diseases in large-scale screenings, disease modeling, and cell-based 

regenerative therapies. The mammalian heart is originated from the first and second heart 

field (FHF and SHF) that further developed into a four-chambered organ. Atriums served 

as reservoirs for receiving and delivering blood from the systemic and pulmonary veins, 

and ventricles expel blood back to the lungs and body. Given the fact of diverse 

physiological properties and distinct development origins, studies have shown major 

differences between atrial and ventricular cardiomyocyte in multiple aspects including cell 

morphology, gene and protein expression landscape, and electrophysiology [23, 24]. 
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Additionally, the intrinsic differences between the subtypes also contribute to distinct 

chamber-specific cardiomyopathies. For instance, hypoplastic left heart syndrome or 

arrhythmogenic right ventricular dysplasia occurs only in the ventricles, whereas atrial 

fibrillation takes place in the atriums [25-27]. Current chamber-specific disease studies and 

preclinical screening assays are mainly performed using non-cardiac recombinant cell lines 

expressing non-native cardiac genes, mixed population culture of cardiomyocyte subtypes, 

or non-primate animal models. However, these models may not accurately reflect as a 

physiologically relevant biological system. To overcome the limitations, a highly efficient 

subtype-specific hPSC-CM differentiation technique is required for the study and 

development of novel therapies and disease modeling in a subtype-specific manner. 

 

3.2 Results 

3.2.1 Retinoic Acid Promotes Atrial Specification During Cardiomyocyte 

Differentiation 

Several studies have described efficient cardiomyocyte differentiation protocols 

[28-34]. However, none have discussed the heart field origin of the resulting 

cardiomyocytes. Retrospective lineage analysis and genetic tracing have shown two 

distinct populations of cardiac progenitors contribute the FHF and SHF during heart 

development in varies vertebrate systems, where FHF progenitors would than give rise to 

the left ventricle and part of atriums [35-38]. Furthermore, several studies have reported 

RA signaling drives mesodermal progenitors toward an atrial fate in mouse, rat, hESC, and 

hPSC system, indicating the mechanism of RA inducing atrial cardiomyocyte is essential 
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and conserved across vertebrates [39-42]. Thus, we postulated Id1-induced hPSC-CM, 

originated from the first heart field, have the potential to differentiate into VCM in 

spontaneous differentiation condition, and ACM by activating RA signaling pathway. 

To test the hypothesis, first, we ask whether promoting RA signals to Id1-induced 

CMP would affect cardiogenic potential [Figure 3.1A]. We provided different 

concentrations of RA cues on day 5 Id1-induced CMP and performed ACTC1 

immunofluorescent staining on day 15 [Figure 3.1B]. The result shows that the RA 

Figure 3.1 CM subtype (ventricular and atrial-like CM) differentiation. (A) Schematic diagram of CM 

subtype differentiation protocol. (B) RA dose-dependent cardiac differentiation efficiency indicates optimal 

dose range of RA during ACM differentiation. (C–D) Cardiac differentiation efficiency is not effected by the 

addition of RA. (E–F) Atrial-specific transcription factor NR2F2 was highly expressed in the RA-induced 

ACM. (G) qPCR showed subtype-specific marker genes were highly expressed in CM subtypes. 
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concentration between 30 nM to 300 nM, the cardiac differentiation efficiency was not 

substantially affected. Also, the optimal RA concentration that has minimal impact on 

differentiation is cell-number dependent, for example, 384-well plate format with 2 x 104 

cells, media volume 100 µl per well and RA concentration 160 nM. Thus, RA molecules-

per-cell could be calculated as 8 x 1016 mole per cell, and the concentration varies according 

to different differentiation format. Collectively, we established optimal RA concentrations 

for various plating formats without reducing the efficiency of cardiomyocyte 

differentiation compared to the spontaneous basal media differentiation. 

Next, to validate the molecular differences between spontaneous differentiated 

CMs and RA-treated CMs, we selected NR2F2 as the marker for ACM. Based on previous 

reports, orphan nuclear receptor transcription factor NR2F2 (COUP-TFII) regulates atrial 

identity in mouse and leads to severe atrial abnormalities in loss-of-function mouse mutant 

[43, 44]. NR2F2 expression level was substantially up-regulated in the RA-treated 

condition comparing with the spontaneous differentiation on day 15 CMs [Figure 3.1C–F]. 

Additionally, we performed qPCR on ventricular (IRX4 and MYL2) and atrial marker 

genes (TBX5, KCNA5, and NR2F2). The ventricular markers were significantly expressed 

in CMs with spontaneous differentiation, and in contrast, atrial markers were markedly up-

regulated in RA-treated condition [Figure 3.1G]. In summary, based on the 

immunofluorescent and qPCR results, Id1-induced CMPs spontaneously differentiate into 

VCM, and with exogenous addition of RA during cardiomyocyte differentiation, CMPs are 

effectively directed toward ACM. 
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3.2.2 Unbiased Transcriptome-wide Analysis Identify Distinct Cell Populations 

Representing Ventricular-like and Atrial-like Cardiomyocyte 

To further elucidate the differentially active molecular programs between CM 

subtypes, we performed the whole transcriptome RNA sequencing (RNA-seq) on ACM 

and VCM at two different time points, day 13 and day 25 of differentiation [Figure 3.2A].  

Fibroblast growth factor (FGF) signaling pathway has been found to directly 

regulate transcription factors that mediate the formation of ventricles [45]. FGF family 

members FGF8 and 10 are highly up-regulated in the VCM. The receptor FGFR, as well 

as the downstream target of FGF signaling including ETS1, ETV5, HES1, and FOXC1, 

were differentially expressed in the VCM. Also, NOTCH signaling plays an essential role 

in balancing the proliferation and differentiation during heart development. More 

specifically, NOTCH signaling pathway regulates cell fate decision and is crucial for 

ventricular chamber development [46]. NOTCH2 and its downstream targets BMP10, 

NRG1 and HES1 were highly expressed in the VCM. HOPX, transcription factor that binds 

and regulates HDAC2, which has been known to strictly controlling left ventricle function, 

is also up-regulated. Additionally, SOX6 as an inhibitor of NPPA, a well-studied atrial 

marker, was also differentially and explicitly expressed in the VCM.  

In contrast, in the early time point (Day 13), targets of RA signaling, including 

RORA, HOXB3/4, and NFY-B were found increased in ACM. Master regulator of the 

atrial specification, NR2F2, also known as COUP-TF II, was differentially expressed in 

ACM [43]. Also, TBX5, TBX20, and GATA6, crucial atrial-specific transcription factors 

during development, were highly expressed in ACM. In the later time point (Day 25), 

NPPA and NPPB were also highly expressed in the ACM, which have been shown 



 

 28 

regulating multiple aspects of atrial function [47]. Several transcription factors related to 

the expression of NPPA were all differentially expressed in ACM, including the up-stream 

targets, GATA6 and ATF2, and the down-stream targets JUNB, EGR1, EGR2, and EGR3. 

Transcription factor PITX2, known for the co-regulation of multiple atrial-specific genes 

with TBX5, was up-regulated in ACM. Atrial-specific metabolic enzyme TECRL was 

highly expressed in ACM. Lastly, HIF3A and SMAD9, related to atrium development and 

function, were overexpressed in ACM. In summary, we identified several transcription 

factors related to FGF and NOTCH signaling, ventricular morphology and functions were 

up-regulated in VCM. Conversely, transcription factors in the RA signaling pathway, 

NPPA regulatory network, as well as atrial-specific metabolic enzyme TECRL, were 

differentially expressed in ACM. 

CM subtypes also display functional differences in action potential morphology and 

contractility. These differences could also reflect on differentially expressed ion channels 

and contractile proteins between the subtypes. KCNA5, responsible for atrial-specific 

ultrarapid delayed rectifier potassium inward current IKur, and KCNJ3, member of G 

protein-coupled inwardly-rectifying potassium channel IKACh, were both up-regulated in 

ACM. Myl2, a structural protein that is responsible for ventricular sarcomere formation, 

was up-regulated in the VCM. However, we did not observe remarkably expression 

differences in Myl7, which is an atrial-specific isoform of myosin light chain. GJA5, a 

protein component of gap junctions that expressed exclusively in atrial myocytes and is 

crucial for electrical impulse conductions, was significantly expressed in the ACM. Next, 

we performed principal component analysis (PCA) upon populations and asked whether 

the analysis could distinguish distinct CM subtypes arise from our differentiation protocol 



 

 29 

unbiasedly. Informative PCA components clustered cells into four groups [Figure 3.2B]. 

Clusters were clearly segregated by temporal differences (PC1) and CM subtypes (PC2). 

Moreover, gene ontology result also reveals several gene cluster differences between VCM 

and ACM. They could be categorized into three major groups: (1) Ion channels and action 

potential; (2) Cardiac conduction; and (3) Muscle development and contraction. With all 

the gene ontology terms (GO-terms) fold enrichment > 9, there are total 4 related to ion 

channels and action potential, “Membrane depolarization during SA node cell action 

Figure 3.2 Molecular validation of CM subtypes in two different timepoint (VCM at day 13, VCM at day 

25, ACM at day 13, ACM at day25). (A) RNA-sequencing result of all four conditions showed distinct gene 

expression culsters. (B) Four major clusters were observed in principle component analysis. (C) Five GO-

term related with cardiac functions with fold enrichment > 9 were listed, indicates differentially expressed 

genes in CM subtypes results in functional difference between CM subtypes. 
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potential” (GO:0086046), “Cardiac muscle cell action potential” (GO:0086001), 

“Potassium ion import across plasma membrane” (GO:1990573), and “Calcium ion import” 

(GO:0070509). Next, there are 3 GO-terms involved in cardiac conduction, “Cell-cell 

signaling involved in cardiac conduction” (GO:0086019), “Regulation of heart rate by 

cardiac conduction” (GO:0086091), and “Cell communication involved in cardiac 

conduction” (GO:0086065). Lastly, 4 GO-terms that could be categorized in muscle 

development and contraction, which include “Cell migration involved in heart 

development” (GO:0060973), Cardiac muscle cell action potential involved in contraction” 

(GO:0086002), and “Cardiac muscle cell contraction” (GO:0086003). These GO-terms 

coincide with the functional validation data of action potential, calcium transient, and 

contraction showed in the following section. 

 

3.2.3 Action Potential Assessment on Ventricular-like and Atrial-like 

Cardiomyocyte 

Heart, responsible for propelling blood throughout the body and lungs, has precise 

and sophisticated mechanisms to initiate and maintain the contraction in rhythm throughout 

our entire lifespan. The pumping action requires highly coordinated efforts from the 

generation of action potentials to the CICR process that further triggers the contraction and 

relaxation of the muscle fibers[Figure 3.3A] [48]. Miss-regulations of the process could 

quickly lead to varies heart diseases, such as arrhythmia and cardiac arrest [49-51]. 

Cardiomyocytes in the atria and ventricles are functionally distinct in their 

electrophysiological and contractile properties [24, 52, 53]. Thus, a thorough 
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characterization of the cardiac physiology of VCM and ACM is essential for further 

applications. 

The cardiac action potential can be categorized into five distinct phases; the 

membrane depolarization of rapid activation of inward Na+ current (phase 0), followed by 

transient repolarization (phase 1), and a plateau phase due to the counterbalance between 

inward Ca2+ current and outward K+ current (phase 2). Afterward, membrane potential 

quickly repolarized (phase 3) then restore back to the resting state (phase 4) and ready for 

another cycle [Figure 3.3B]. 

Whole-cell patch-clamp is a common technique used to measure the action 

potential and the activation/inactivation of the ion channels. Cardiomyocytes in the 

electrophysiological perfused chamber were patched by glass pipettes. The recording was 

Figure 3.3 CM functional assement through action potential, calcium transient, and contractility. (A) 

Simplified CM function cartoon. Action potential: membrane potential is initiated by the 

activation/inactivation of various ion channels (Na+, Ca2+, and K+). Calcium transient: elavated intracellular 

Ca2+ concentration then induces CICR cycle. Contractility: intracelluar Ca2+ bind and facilitate the 

contraction of myofilment. (B) Action potential traces is the synergistic result of a sequce of 

activation/inactivation of ion channels. The composition of ion channels are differentially expressed on the 

membrane of CM subtypes which leads to distinct action potential morphology. Various action potential 

durations (APDs), the depolariztion and replariztion time (TDepol and TRepol) are measured as parameters to 

discribe the shape of the action potential traces. 
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then performed in Tyrode’s solution, and the current response was acquired using an 

amplifier. The result displayed that VCM had a faster and steeper upstroke during the phase 

1 depolarization. The average APD75) ranges between 200 to 300 milliseconds (ms), and 

the resting membrane potential (VRest) was around -60 to -80 millivolts (mV) [Figure 3.4A]. 

The ACM had shorter APD75 values, around 60 to 120 ms, and similar VRest to VCM 

[Figure 3.4B]. The action potential of VCM exhibits prolonged plateau phase 2, which is a 

typical hallmark of ventricular cardiomyocyte action potential traces, and in contrasts, the 

action potential traces of ACM showed a triangular-like morphology, which is the most 

pronounced difference between atrial and ventricular action potential waveforms. 

To gain insight into the cardiomyocyte sub-type electrophysiology in a more 

unbiased and efficient way, we performed the action potential analysis on the automated 

high-throughput fluorescent-based kinetic image acquisition platform with McKeithan et 

Figure 3.4 Action potential analysis indicates functional differences between VCM and ACM. (A–B) Patch-

clamp electrophysiology demostrate action potential morphylogy difference between CM subtypes, where 

VCM has longer and plateu-like shape in phase 2, and ACM has a more triangular-like shape morphology. 

(C–D) Flourascent-based voltage-sensing probe analysis showed similar action potential morphoogy with 

patch-clamp elctrophyiology. (E–H) Quantification result of APD50, APD75, depolarization time (recorded 

under 225 Hz), and traiangulation. 
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al [54]. Briefly, this co-developed platform acquires time-series images with high-

speed/high-resolution automated microscopy. Incubating cardiomyocytes with a fast 

response membrane potential sensitive probe (FlowVolt) which intercalates into the plasma 

membrane and senses changes in transmembrane potential by photo-induced electron 

transfer (PeT) mechanism enabled us to record membrane potential fluctuation through 

florescent signals [55]. Remarkably, action potential waveforms had matching features 

compared with traces retrieved from the whole-cell patch-clamp and published in vivo data, 

with prolonged phase 2 in VCM and triangular-shape in ACM [Figure 3.4C–F] [56]. We 

next examined the depolarize time (TDepol) differences between the two sub-types. Utilizing 

the high frame-rate microscopy that is capable of recording up to 225 Hz, we could 

distinguish the temporal difference during the rapid depolarization of phase 1. Consistent 

with the result in whole-cell patch-clamp experiment and published data, VCM had faster 

Tdepol for less than 20 ms, and the time ACM took to reach full depolarize state is doubled 

[Figure 3.4G] [57]. Triangulation parameter (APD30 - APD90) provide an additional aspect 

to quantify the plateau and repolarization phases of the action potential. As expected, due 

to the prolonging of phase 2 in VCM, it had greater triangulation, whereas, in ACM, the 

faster repolarization leads to lower triangulation [Figure 3.4H]. Collectively, consistent 

results in whole-cell patch-clamp and fluorescent-based kinetic image acquisition platform 

elucidate the action potential morphology differences between VCM and ACM, which in 

turn are the manifestations of the underlying different ionic currents in distinct 

cardiomyocyte subtypes. 
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3.2.4 Calcium Transient and Contractility Assessment on Ventricular-like and 

Atrial-like Cardiomyocyte 

Calcium handling is the critical intermediary of the excitation-contraction coupling, 

the process of electrical stimulus triggering the contraction and relaxation of the muscle 

fiber. During the course of an action potential, the membrane was depolarized thereby 

inducing the activation of L-type calcium channels that activate the inward L-type Ca2+ 

current (ICaL), which contributes to the plateau part of the phase 2 action potential. 

Cytoplasmic calcium ion concentration then accumulates and subsequently triggers the 

opening of the Ryanodine receptor type 2 (Ryr2) and induced massive Ca2+ release from 

the sarcoplasmic reticulum (SR) [48, 58]. The influx signal of inward Ca2+ is known as the 

“calcium sparks,” and the process of Ryr2 activation induced by prominent levels of 

cytoplasmic Ca2+ concentration is named CICR. Significantly raised cytoplasmic Ca2+ 

level facilitates the binding of Ca2+ to the cardiac troponin, exposing myosin binding sites 

and switching on the contractile machinery. During the muscle relaxation phase, Ca2+ is 

mainly recycled through Sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) back to the SR, 

partially got extruded out of the cell by Sarcolemmal Na+/Ca2+ exchanger (NCX) [Figure 

3.3A]. 

To better characterize and assess the calcium handling differences between VCM 

and ACM, we incubated cardiomyocytes with the fluorescent Ca2+ indicator (Flow4-NW) 

which emits strong fluorescence upon binding with cytoplasmic Ca2+. We imaged cells 

under the kinetic image acquisition platform and calculated physiological parameters from 

the fluorescent-change-over-time calcium transient traces. As expected, the calcium 

transient duration from the induction to relaxation lasted much longer compared to the 
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action potential duration [Figure 3.5A–B]. Quantitatively, calcium transient duration at 

50% and 75% of relaxation (CTD50 and CTD75) of VCM is greater than ACM [Figure 3.5C-

D]. Altogether, calcium transient morphology and CTDs showed distinct features of VCM 

and ACM, which also coincide with previously reported data [59]. 

In addition to calcium handling, contractile force production is the central 

participant of the excitation-contraction coupling machinery. To characterize the 

contractility differences between cardiomyocyte subtypes, we labeled the cellular 

membrane with wheat germ agglutinin (WGA), and record the contracting cardiomyocyte 

with the high-speed microscopy. By measuring the membrane movement with pixel-to-

pixel comparison algorithm, we are able to retrieve the contraction speed and rate of the 

cell. The rate of active tension generation (TRise) and relaxation (TDecay) were faster in ACM 

than VCM, which are consistent with previous findings [Figure 3.5E–H] [53]. In summary, 

Figure 3.5 Distinct functional differences between CM subtypes on calcium transient and contractility. (A-

B) Calcium transient analysis through calcium-sensing probe showed VCM has longer calcium transient 

duration compares to ACM. (C–D) Quantitative measeurment of CTD50 and CTD75. (E–F) Pixel tracking 

algorithm reveals difference in contractility (contracting speed) between VCM and ACM. (G–H) 

Quntification result of contractility on curve rising and decay time (TRise and TDecay). 
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we have functionally validated the subtypes on calcium handling and contractility. We 

concluded that VCM has elongated calcium transient morphology and slower contraction 

speed both in TRise and TDecay comparing to ACM. 

 

3.3 Discussion 

3.3.1 Retinoic Acid Signaling is Crucial for Atrial-specification 

During vertebrate development, body plan is determined by signaling gradients in 

complex spatiotemporal manner. RA has a central role during early embryogenesis and 

later stages of heart morphogenesis [60-62]. RA is synthesized through the oxidization of 

retinol (dietary vitamin A) to Retinaldehyde by Retinol dehydrogenase 10 (RDH10), then 

oxidizes to RA by Retinaldehyde dehydrogenase (RALDH2), and further inactivated into 

polar metabolites by cytochromes. As a lipophilic signaling molecule, RA binds to nuclear 

RA receptors (RARs) and forms RAR-retinoid X receptor (RXR) heterodimer complex 

that binds to DNA located by RA response elements (RAREs) and regulates the 

transcription of target genes. Forming complexes with co-activators and co-repressors 

allows RA to mediate the activation or repression of target genes [61, 63]. During embryo 

development, RA gradient is carefully governed by the generation and degradation 

machinery. The combination of opposite gradients such as fibroblast growth factor-8 

(FGF8) and enzymatic inactivation of RA, enables the patterning and organogenesis of 

heart, liver, eye, forebrain, limb, and body axis [64-67]. 

The mammalian heart is formed by the migration, pattering, diversification, and 

acquisition of functions of cardiac progenitor cells. RA signaling has long been known to 
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play a critical part in heart morphogenesis, both excess retinoids and RAR or RXR 

knockout mouse models caused myocardial defects [68]. More specifically, vitamin A-

deficient quail embryos had close caudal and failed to form sinoatrial tissue. Mouse 

embryos treated with RA synthesis inhibitor or RALDH2 knockout mutations also showed 

sinoatrial morphological defects [39, 69, 70]. Furthermore, the overexpression or down-

regulation of TBX5, one of the downstream targets of RA signaling pathway, produced 

myocardial defects, indicating the essential role of RA regulating heart patterning and 

cardiomyocyte subtype-specification [71]. 

Consistent with our result, recent studies reported RA as an atrial-selective cue in 

the in vitro hPSC system [42, 72]. During differentiation, the addition of RA in early 

cardiac progenitor stage (Day 4-8), direct the differentiation towards ACM, conversely, 

spontaneous differentiation or applying RA inhibitor, BMS493, instruct the progenitor to 

become VCM. In summary, we successfully demonstrated cardiomyocyte subtype-specific 

differentiation from Id1-induced CMPs using RA as an atrial-selective cue. 

 

3.3.2 Id1-induced Cardiomyocytes have Distinct Gene Expression Landscape 

between Subtypes 

The opposing gradients of RA and FGF8 have been shown widely applied through 

the embryo body axis establishment and patterning of the heart [73, 74]. During heart 

chamber specification, the identity of cardiomyocyte progenitors remains relatively plastic.  

The role of FGF signaling in early-differentiation is to initiate ventricle development, and 

in later differentiation, to stabilize ventricular identify [45]. NOTCH, another crucial 

signaling pathway that involved in the specification of the ventricular CM subtype, is 
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shown active in the ventricular RNA-seq data [75]. NOTCH signaling is required in 

chamber patterning, ventricular myocardial differentiation. The activation of downstream 

NOTCH target also requires the NOTCH-dependent activity of BMP10 and NRG1 to 

promote the differentiation of ventricular myocardium, which could be seen up-regulated 

in the RNA-seq VCM data [46]. Lastly, the mutations in several NOTCH signaling 

elements underlie congenital heart diseases in the mouse model, indicating the importance 

of the signaling pathway during chamber specification [76, 77]. Collectively, the activation 

of FGF and NOTCH signaling suggest the ventricular-like identity in Id1-induced VCM. 

 

FGF signaling in the atrium is mediated and repressed via the upstream RA 

response complex RAREs. The RA-FGF antagonism, activation of RA and repression of 

FGF signaling pathway, further enhance TBX5 and TBX20 expression during atrial 

specification in vivo [71]. Haploinsufficiency mouse model of Tbx5 showed structural 

defects in the atrium and abnormally prolonged P-waves during atrial depolarization [78]. 

Additionally, NPPA, an atrial-selective marker that has been extensively used for the 

studying of the subtype-specific differentiation and transcriptional regulatory pathways in 

cardiac gene regulation, is involved in multiple atrial-specific transcriptional pathways. 

NPPA, as a downstream responsive element of the NKX family, GATA family, and TBOX 

family, revealed its essential and selective role of the molecular mechanisms regulating 

regionalized cardiac expression and atrial subtype-specification [47, 79]. Atrial-abundant 

ultra-rapid delayed rectifier K+ current (IKur) and acetylcholine-sensitive K+ current (IKAch), 

encoded by KCNA5 and KCNJ3, are the primary determinates of electrophysiological 

difference between CM subtypes. Ventricular CMs have a prolonged plateau-like phase 2 
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morphology, and atrial CM has shorter and triangular-like traces due to the selectively 

expressed K+ channels IKur and IKAch in humans [57]. The selective expression of KCNA5 

and KCNJ3 in ACM from the RNA-seq result reflects the electrophysiological differences 

between Id1-induced VCM and ACM. In summary, various genes involved in atrial-

specification during the heart development and chamber patterning, as well as in atrial 

physiology are up-regulated in the Id1-induced ACM, confirm the atrial-like molecular 

identity of the resulting ACMs.  

 

3.3.3 Subtype-Specific Cardiomyocyte Differentiation Provides a Physiologically 

Relevant System for Cardiac Disease Modeling and Drug Discovery 

Cardiomyocytes in the atria and ventricles are not only molecularly, but also 

functionally distinct. Functionally, they differ significantly in electrophysiology, calcium 

handling, and contractile properties. To generate stronger contraction force due to the 

increased calcium influx via L-type calcium channels in phase 2, VCM has faster 

depolarization speed and stronger inward sodium current (INa), as well as lesser transient 

outward current (Ito). The most noticeable difference in morphology of action potential 

between the subtypes is the duration of the depolarized plateau (phase 2). The membrane 

potential was carefully balanced by inward ICaL through L-type calcium channels and 

outward potassium flux (IK) through various potassium channels. To produce higher 

contraction force, stronger calcium influx and more extended calcium channel activation 

are required in VCM. Conversely, outward potassium currents, including slow (IKs), rapid 

(IKr), and inward delayed rectifier (IK1) are stronger in ACM, along with atrial-abundant 

IKur, resulting in faster repolarization and shorter action potential duration [Figure 3.3B] 
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[24, 80]. Coherent with the result, Id1-induced VCM has more extended depolarized 

plateau and ACM has shorter and more triangular action potential waveform. 

 

Due to strong activation of ICaL and higher Ca2+ content in SR in VCM, the CICR 

cycle lasts longer, in contrast to ACM [81]. Moreover, SERCA2a, which involved in 

recycling cytoplasmic Ca2+ back into SR, is abundantly expressed in the atrial 

cardiomyocyte, which lowers systolic Ca2+ transient and therefore leads to rapid relaxation 

of the atrial myocytes [82]. Myofilaments require the binding of Ca2+ to reveal the myosin 

binding sites and initiate the contraction. Thus, elevated Ca2+ level in VCM produced 

stronger and long-lasting contraction forces. On the contrary, mechanistically, served as 

blood reservoirs for the passive and active filling of the ventricle, atria have both faster 

tension generation and relaxation than ventricle [53]. These findings correlate with our 

subtype-specific functional data of calcium transient and contractility rate in VCM and 

ACM. The results confirm the physiological relevance of Id1-induced cardiomyocyte 

subtypes and the potential of modeling cardiac disease in a subtype-specific manner. 

 

3.4 Conclusion 

To target the atrial-specific target space of AF, RA was administered to generate 

ACM from CMP. The resulting ACMs were than validated molecularly through qPCR, IF, 

and RNA-seq. The data suggest atrial-specific genes were highly expressed in the ACM, 

whereas the ventricular-specific genes were up-regulated in the VCM. Furthermore, the 

differentiated CM subtypes were also functionally validated in action potential, calcium 
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transient, and contractility. All 3 functional aspects resemble the physiology features 

observed in adult human cardiomyocyte subtypes. In summary, the resulting ACM present 

atrial-specific features both molecularly and functionally. 
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Chapter 4  

 

Single-cell High-throughput Functional 

Screening Platform for Arrhythmia 

Modeling 

 

 

 

 

 

4.1 Background 

Being able to generate unlimited amounts of Id1-induced hPSC-derived ACM and 

VCM made connecting gene variants to disease phenotypes, modeling cardiac disease in-

a-dish, and conducting large-scale screens for discovering novel therapeutic targets 

possible. However, a major hurdle of implementing the cells for further application is the 

lack of throughput due to conventional methods, that are costly, time-consuming, and 

technically challenging. To better advance the efficiency and increase the robustness for 

monitoring action potential and conduct in vitro phenotypical screenings, we established a 

subtype-specific cardiomyocytes high-throughput platform with single-cell resolution 

functional readouts. This platform integrates automated liquid handler, high-speed 
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microscopy with the optical recording of fluorescent dyes, which enable the monitoring of 

membrane potential, calcium transient, or contractility [Figure 4.1A–C]. Furthermore, the 

analysis algorithm enables the segregation of single-cell level cellular autonomous activity 

from the whole-well, providing an in-depth physiological matrix for individual 

cardiomyocytes [Figure 4.1D–F]. The technique can be readily adapted to common high 

content automated imager to study cardiomyocyte physiology in vitro for arrhythmia 

modeling and phenotypical screening applications. 

 

Figure 4.1 Schematic diagram of high-throughput single-cell functional screening platform workflow. (A) 

ACMs were replated into 384-well plate and recoverd for 72 hours. (B–C) Voltage-sensing probe were added 

and incubated for 45 minutes, and cells were than imaged by high-speed microscopy with 20x, 100 Hz, 5 

second recording. (D) Movies were analyzed by software and generate reagion of interests (ROI) via nucleus 

masks. (E) Flourescent intensity of each ROI was measured and action potential traces for each cell were 

generated. (F) Single-cell physiology metrics were then retrieve by trace analysis algorithm. 
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4.2 Results 

4.2.1 High-throughput Single-cell Functional Assessment Platform 

Current cardiomyocyte-related physiology studies were commonly performed on 

the whole-cell patch-clamp technique that provides information on ion channel activities 

and the transmembrane potential status.  However, the primary constraint of patch-clamp 

electrophysiology lies in the limited throughput (around 12 cells per day). The technique 

is more suited in the later phases of candidate validation, whereas the primary candidate 

identification should be conducted in systems with unbiased screening strategies and higher 

throughput. 

To establish the high-throughput single-cell functional assessment platform, liquid 

handler (Microlab Star, Hamilton) with environmental control is integrated for CM 

culturing and dye incubation in 384-well micro-pipette plate format [Figure 4.1A]. 

Fluorescent-based automated microscopy acquires high resolution (up to 40x) and frame 

rate (up to 225 Hz) videos [Figure 4.1B]. To evaluate CM physiology and model 

arrhythmia in-a-dish, we focused on cell-autonomous activities and local cell cluster 

behavior. Plating density was carefully modified to deliberately avoided the mono-layer 

culturing condition. Sparsely plated 4,000 cardiomyocytes per well of 384-well plate, 

provide the state that the electrical syncytium appears locally between proximate clusters, 

but not in a whole-well level, as it was in the mono-layer culturing condition [Figure 4.1C]. 

Next, to achieve single-cell action potential resolution, analysis software generates the 

region of interests (ROIs) via DAPI nucleus staining before acquiring movies. The image 

analysis software processed the fluorescent-change-overtime in individual ROIs that 
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represents each cell within the field of view to obtain specific action potential traces for 

each cell recorded [Figure 4.1D]. Action potential traces were then analyzed by the 

algorithm described in the following section to retrieve single-cell physiology data. In 

summary, consolidating CM subtypes with automated microscopy and analysis algorithms, 

the single-cell resolution functional assessment platform is a novel technology for high-

throughput phenotypical screenings and arrhythmia modeling in-a-dish. 

 

4.2.2 Algorithm of Retrieving Physiological Relevant Metrics for Arrhythmia 

Modeling 

To retrieve physiological metrics from extensive data of single-cell action potential 

kinetic imaging, stream-lined data analysis, and batch processing are required. The data 

handling could be divided into two main parts: the retrieval and conversion of fluorescence-

intensity-changes-overtime to action potential traces; and the interpretation and 

categorization of physiological metrics from the traces [Figure 4.1E–F]. 

First, the kinetic images were processed through built-in image processing software, 

MetaAnalysis. By overlaying the acquired image stacks with nucleus staining, the software 

transformed the local fluorescence-intensity-changes-overtime into action potential traces 

for individual cells. Each cell was also given a specific tag containing information 

including plate/well/cell IDs and relative position in the well. The data were then 

transferred to the cloud-based trace analyzer. The algorithm of trace analyzer was written 

in R and uses the Prama package for initial peak and pit detection.  The algorithm uses a 

combination of statistical heuristics, an input threshold value, and control well activity 

statistics to remove random noise, categorize well activity, and retrieve physiology metrics 
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and statistics in both bulk (well-based) and single-cell (cell-based) format.  Well activity is 

categorized into one of four types, Inactive; the cells did not produce enough of a response 

to be considered for further analysis, Type 1; regular activity, Type 2; extended action 

potential duration, or Type 3; abnormally escalated peak counts.  The algorithm produces 

a PDF of all cell activity with highlighted peaks as well as useful summary statistics such 

as action potential duration at 90%, 75%, 50%, 25%, 10% of repolarization (APD90, APD75, 

APD50, APD25, APD10), peak-to-peak interval, number of ectopic peaks, peak rise/decay 

time, frequency, and more [Figure 4.2].  In conclusion, automated batch trace analysis 

software and algorithm enabled efficient data processing of the single-cell functional 

assessment of cardiomyocytes.   

 

4.2.3 Single-cell Action Potential Assessment 

To validate the single-cell functional assessment platform, we asked how does the 

action potential readouts between CM subtypes correlate to the results from patch-clamp 

physiology or mono-layer culture whole-well analysis. We firsts sparsely plated VCM and 

ACM respectively. After 2 days, cells were incubated with voltage sensing probe, imaged, 

and action potential traces were analyzed with single-cell analysis algorithm. The median 

Figure 4.2 Physiology metrics of single-cell action potential trace analysis. 
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APD75 of the cells were calculated and binned into groups of 10 ms. Data was then 

presented through population distribution diagram with APD75 as x-axis and percentage 

frequency from the entire sampled population as the y-axis. The most noticeable feature of 

action potential morphology of a VCM is the elongated plateau of phase 2 that leads to 

longer APD. On the contrary, ACM presents shorter phase 2, with a more triangular-like 

shape of the action potential that has much shorter APD. The result showed that APD75 of 

ACM population clustered between 100 – 130 ms, with a median value of 115.6 ms, where 

the APD75 of VCM population clustered between 150 – 200 ms, with a median value of 

181.5 ms [Figure 4.3A–C]. In this data, 147 ACMs and 73 VCMs were recorded and 

analyzed. Collectively, the action potential durations and morphologies match the data 

recorded via patch-clamp physiology and mono-layer culture whole-well analysis, 

suggested that the single-cell action potential assessment platform provide relatively 

accurate physiology results and an additional layer of in-depth cell-autonomous activity 

information, without sacrificing the throughput. To emphasize the advantages of the 

Figure 4.3 Single-cell action potential analysis on ACM and VCM. (A) ACM population distribution 

diagram of APD75 indicated general population of ACMs had APD75 between 100 – 130 ms, with  triangular-

shape like representitive traces. (B) VCM population distribution diagram showed the general APD75 ranged 

between 150 – 200 ms, with plateau-like shape during phase 2 of action potential. (C) Avearage APD75 of 

ACM and VCM. Compares to average result, poulation distribution diagram of single-cell APD75 analysis 

provides higher resolution of data. 
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platform, we co-cultured VCM and ACM in two distinct formats, mono-layer electrically 

coupled format, and sparsely plated single-cell-like format [Figure 4.4A–B]. The action 

potential was them analyzed through whole-well fluorescent readout and single-cell 

segregation readout respectively [Figure 4.4C–D]. As predicted, the whole-well analysis 

of action potential morphology of mix-cultured CM has action potential durations in 

between pure VCM population and ACM population. The result suggested that the 

subtype-specific action potential phenotype might be masked by an opposing effect on 

another in an electrical syncytium of multiple cell types. In the single-cell analysis, the 

system was able to detect two separate populations representing ACM and VCM in the 

mix-culture format. In summary, the result indicates the high sensitivity of the platform 

and highlight the ability to retrieve more accurate data from mix-population culture. 

 

Figure 4.4 CM subtype co-culture experiments demonstrated the higher sensitivity of single-cell analysis. 

(A–B) ACM and VCM were co-cultured under desired density for single-cell and whole-well analysis. (C) 

Single-cell analysis was able to identify two distinctive populations with different action potential duration 

representing the subtpyes. (D) The whole-well action potential analysis of the mix population was situated 

in between the pure population of ACM and VCM with an intermediate action potential duration. 
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4.2.4 Atrial-like and Ventricular-like Cardiomyocyte Presented Differential 

Responses to Small Compounds 

The potassium channel Kv1.5 is more abundant in human atrial than in ventricular 

cardiomyocytes, which contributes to the functional difference between the two chambers 

[83, 84]. Kv1.5 is encoded by the gene KCNA5, and responsible for the IKur, which is the 

basis for balancing the membrane potential at phase 2 and initiating the repolarization at 

phase 3 in the human atria.  

To evaluate the subtype-specificity responses and exam the sensitivity of the 

platform, we acutely treated VCM and ACM with compounds that exclusively effect 

specific CM subtype. 4-aminopyridine (4-AP), a small organic compound, is a K+ channel 

blocker that has high selectivity on the KCNA family. To assess the effect of 4-AP on CM 

subtypes, the cells were acutely treated with the compound before image acquisition. 

Population distribution diagram of APD75 and representative action potential traces were 

then generated. In accordance with expectation, APD75 of ACMs were generally prolonged 

due to the blockade of Kv1.5 by 4-AP, and no increase of APD75 observed on VCM [Figure 

4.5A–B]. The data implicate the inhibition of Kv1.5, via 4-AP, induced prolongation of the 

action potential duration only in the ACM-specific manner. 

Cytoplasmic Ca2+ concentration is critical throughout the CICR process. VCM, 

which generate stronger contraction force, relies on abundantly expressed L-type voltage-

gated calcium channels [81]. The strong inward calcium current ICaL produced the 

elongated plateau phase in VCM action potential traces, whereas in ACM, L-type voltage-

gated calcium channels are mildly expressed. To assess subtype-specific response on 

differentially expressed L-type voltage-gated calcium channels, we acutely treated both 
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CM subtypes with nifedipine, an inhibitor of the influx of Ca2+ current by stabilizing the 

L-type voltage-gated calcium channels in their inactive conformation. As expected, VCM 

action potential is markedly shortened with the treatment of nifedipine, and the shortening 

effect of action potential duration is not significant in ACM [Figure 4.5C–D]. Based on 

these results, the single-cell action potential assessment platform provides a high-

throughput physiological readout useful for action potential-related disease modeling and 

pharmacological target discoveries in a subtype-specific CM manner. 

 

Figure 4.5 ACM and VCM responded differentially with the treatment of compounds, 4-AP and nifedipine 

that have subtype-specific effects. (A) Population distribution of APD75 of ACM treated with/without 4-AP. 

APD75 of ACM were prolonged after 4-AP treatment. (B) Population distribution of APD75 of VCM treated 

with/without 4-AP. No significant change of APD75 after 4-AP treatment. (C) Population distribution of 

APD75 of ACM treated with/without Nifedipine. APD75 of ACM were slightly shortened after nifedipine 

treatment. (D) Population distribution of APD75 of VCM treated with/without nifedipine. APD75 were 

dramatically shortened after nifedipine treatment. 
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4.3 Discussion 

4.3.1 Advantages of the Platform 

The modeling of arrhythmia in-a-dish and the identification of atrial-specific 

antiarrhythmic are the significant hurdles for the advancement of current pharmacological 

treatment of AF [85]. This fully automated system integrated with a liquid handler, high-

throughput microscopy, and trace analysis software, formulates a simple yet powerful 

workflow for phenotypical screens and cardiac disease modeling. Compatible screening 

libraries including small compounds, microRNAs, siRNAs, lentiviruses, and CRISPRa 

(CRISPR activation) enables complex cross-library screens, counter screens, or sensitize 

screens. Several compelling advantages of the platform that would substantially advance 

the field including subtype-specific CM as a more physiologically relevant biological 

system; greater throughput comparing to currently available systems; stronger statistical 

power generated via single-cell analysis; less cellular materials required; analysis based on 

population provides insight in modeling local arrhythmia-like behaviors. 

To further investigate the atrial-specificity of AF and the disease-causing 

mechanism, as well as developing antiarrhythmic treatments that unambiguously targets 

only the atria, the modeling and screening system require the specific atrial target space. 

Thus, applying ACM in the assay provides a more physiological relevant biological system. 

From kinetic imaging to data retrieval, the streamlined workflow can process a fully 

loaded 384-well plate within less than 6 hours, with more than 27 million data points 

analyzed. The technique significantly increased the throughput as well as the statistic 

power of data analysis. Compare to the typical whole-well analysis, which generates one 
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“n” per well, and patch-clamp electrophysiology, with much lower throughput and time-

consuming, single-cell analysis generates more than 70 “n” per field of view, and could 

easily expand the “n” via increasing additional imaging sites during the recording. 

Furthermore, the massive sample size unbiasedly represents the spectrum of the observed 

phenotypes across the entire population. Rather than only taking the mean value of the 

entire well, which frequently skewed the conclusion or overlooked substantial phenotype 

due to the heterogeneity within the culture. 

Sparsely cellular culture condition substantially reduces the usage of 

cardiomyocytes per experiment up to 5 times compared to the mono-layer culture condition. 

Reducing the number of cells required per experiment also markedly reduce the time and 

expenses for cell production, which on the other hand increase the throughput of screening.  

Lastly, single-cell analysis produces an additional layer of information specifically 

on cellular autonomous activities, which are crucial in modeling arrhythmia. The initiation 

of arrhythmia often appeared from local clusters such as the re-entry circuit which then 

propagates the ectopic electric stimulants to the neighboring cells and leads to arrhythmia 

[27]. On the contrary, the mono-layer culture condition is more appropriate for the studying 

of conduction functions due to the electrical syncytium of the cells. In summary, the high-

throughput single-cell functional assessment platform provides subtype-specific target 

space, display stronger statistical power without sacrificing the throughput, reduce 

cardiomyocyte usage, and generate a higher resolution of data particularly applicable to 

arrhythmia modeling. 
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4.3.2 Limitations of the Platform 

Limitations and critical areas for further improvement include the usage of fetus-

like cardiomyocytes which may not fully recapitulate the phenotype of a human adult 

cardiomyocyte. According to the RNA-seq result and recently published report, hPSC-

derived cardiomyocytes carry gene expression signatures similar to prenatal 

cardiomyocytes [86]. Further advanced CM maturation process may be required, and cross-

referencing the result with the in vivo model is also necessary. Although the optical 

recording is an efficient approach that visualized the alternation of membrane potential and 

calcium handling, it is an indirect readout that cannot provide information of the activation 

or inactivation of the ion channels. Thus, requires whole-cell patch-clamp method as a 

mean of validation. 

Also, due to the limitation of current microscopy system, we are unable to perform 

electrical stimulation on cardiomyocytes mimicking the aberrant electrical signal that 

triggers the fibrillation of the atria or increasing beat rate through pacing which sensitized 

the excitation-contraction coupling mechanism. However, other than the ectopic electrical 

signal, there are alternative triggers that may cause AF, including hormonal stimulations, 

ion channel agonists/antagonists, disrupting cellular calcium handling mechanisms, and 

abnormal electrical conduction. Finally, sparsely plated cardiomyocytes have poorly 

organized the sarcomeric structure and generate contraction tension from different angles, 

whereas the in vivo cardiomyocytes are tightly aligned with uniform contraction direction. 

A possible solution is plating cells on directional microgrooves plate, which restrict the 

orientation of sarcomeres[87, 88]. 
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4.3.3 Application of High-throughput Single-cell Resolution Functional 

Assessment Platform 

The tightly consolidated three factors made atrial arrhythmia in-a-dish modeling 

possible: (1) atrial-specific differentiation protocol that generates functional ACMs 

efficiently, (2) sparsely plated cell culture format that enables the occurrence of local 

arrhythmia-like behavior, and (3) single-cell action potential trace analysis provides in-

depth phenotypical readouts for each recorded cell. The system provides unique features 

for evaluating arrhythmogenic gene candidates and discovering potential antiarrhythmic 

targets that complement conventional arrhythmia research approaches, such as patch-

clamp electrophysiology, whole animals, or ex vivo heart preparations.  

In addition, induced pluripotent stem cell technology and CRISPR gene-editing tool 

allow unbiased functional screens to be performed on normal and patient-specific 

mutations, accelerating our ability to identify novel cardiac rhythm-associated genes and 

elucidating the mechanisms of action on the electrical remodeling of the cardiac action 

potential. Moreover, functional genomic screening of proteins or genes using siRNAs or 

miRNAs that could partially or entirely phenocopy the arrhythmia enables sensitized 

screen for novel therapeutic target identification and drug discovery. 

Most antiarrhythmics currently prescribed are nonspecific, regarding ion channels 

and heart chambers. The non-specificity of the targets may lead to serious off-target effect 

that could exacerbate the arrhythmia condition. Also, the non-specificity on both CM 

subtypes could create additional ventricular electrophysiology abnormalities that induce 

ventricular fibrillation (VF) or cardiac arrest while attempting to revert the atrial symptoms 

[89]. Thus, by conducting the subtype-specific screens provide physiologically relevant 
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target space for novel antiarrhythmic discovery. In summary, the platform provides an 

efficient way for both arrhythmia in-a-dish modeling as well as high-throughput 

phenotypical screenings for the identification of novel disease-associated gene candidates 

and antiarrhythmic drug discovery.  

 

4.4 Conclusion 

To achieve high-throughput screening efficiency, the platform was established in 

384-well plate format, and ACMs were replated with an automated liquid handler. Cells 

were incubated with the voltage-sensing probe and recorded via high-speed microscopy. 

Movies were then analyzed by single-cell image processing software, and physiology 

metrics were retrieved by trance analysis algorithm. Compare to conventional 

electrophysiology or whole-well action potential analysis, the system provides: (1) Fully 

automated and high-throughput efficiency. (2) Single-cell resolution of physiology 

assessment. (3) Large sampling ability. 

These features could greatly benefit the modeling of arrhythmia-like activity, due 

to sparse and electrically-uncoupled plating density with the aid of single-cell resolution to 

target specifically against irregular beating cells. Automated high-throughput and 

functional assessment aspect could advance the discovery of novel arrhythmia-causing 

gene candidates and antiarrhythmics. 
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Chapter 5  

 

Modeling Arrhythmia-like Activity with 

AF-associated Genes and Perturbagens 

 

 

 

 

 

5.1 Background 

AF contributes significantly to population morbidity and mortality and due to the 

poorly understood of its pathogenesis, presently available antiarrhythmic-based therapeutic 

approaches have major limitations including low efficacy and high off-target effect. Thus, 

there are unmet medical needs to deconvolute the pathogenesis pathways that lead to 

arrhythmia and further provide insights for novel antiarrhythmic development. 

Normal atrial cardiomyocytes display regular action potential changes over time, 

beginning from negative intracellular membrane potential (phase 0) and rapidly 

depolarized to the positive state (phase 1). During repolarization state, counteracts between 

Ca2+ influx and K+ efflux generates a short plateau shape of the action potential (phase 2), 

and then quickly repolarized back to the resting potential, at which it remains until the next 
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initiation of action potential cycle. Structural and electrical remodeling of the atria acts as 

substrates of AF which make atrial cells susceptible to aberrant electrical pulses from the 

pulmonary artery or atrial septum or other triggers such as parasympathetic activation, 

adrenergic stimulation, and aging [90-92]. Utilizing hPSC-derived ACM and high-

throughput phenotypical platform described in Chapter II and III, respectively, we are able 

to functionally evaluate genes previously associated with AF, as well as identify novel 

genes of cardiac rhythm in an atrial-specific manner. 

 

5.2 Result 

5.2.1 Quantitatively defined arrhythmia in-a-dish 

AF substrates can be categorized into two major groups, structural and electrical 

remodeling. Structural remodeling refers to the fibrosis of the cardiac tissue due to 

myocardial injuries such as myocardial infarction or surgical wounds [93]. The remodeling 

is composed of complex tissue morphology and lengthy duration that could be difficult to 

reproduce in cellular-based assays. Electrical remodeling, on the other hand, is the 

improper function of the ion channels that control cardiac cellular activity, which results in 

the prolongation and shortening of action potential duration. Under the effects of ectopic 

electric signals or other triggers, abnormal depolarizations may occur during or after the 

action potential plateau. Delayed afterdepolarizations (DADs) occur due to elevated 

cytosolic Ca2+ concentrations from the membrane Ca2+ channels or SR, NCX then 

propagates excess inward movement of 3 positively charged Na+ ions by extruding 2 Ca2+, 

and depolarize the resting membrane potential. With less negative resting membrane 
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potential, voltage-gated Na+ channel becomes more susceptible to aberrant electric signals 

and induce ectopic beats [Figure 5.1A]. Early afterdepolarizations (EADs) occur with 

abnormal depolarization during phase 2 or phase 3. When the duration of action potential 

and effective refractory period (ERF) are significantly prolonged due to the impair of 

repolarization mechanisms, either excess inward currents (for example ICaL or INa) and/or 

diminished outward currents (various potassium efflux currents), voltage-gated Ca2+ 

channel or voltage-gated Na+ channel is reactivated in phase 2 or phase 3 causing abortive 

action potentials, respectively [Figure 5.1B]. The shortening of action potential duration 

would lead to the occurrence of re-entry loop. When there are two alternate conducting 

pathways, a premature beat might engage one pathway with shorter ERF, while 

successfully traveling through the other pathway. The propagating impulse could travel 

around the loop indefinitely, causing rapid and sustained beating behavior that may spread 

to the rest of the heart [Figure 5.1C]. In summary, the prolongation of action potential 

duration could lead to abnormal afterdepolarizations DADs and EADs, and the shortening 

of action potential duration could trigger the re-entry circuit. 

Figure 5.1 Electrical remodeling (the prolongation or shortening of action potential duration) could increase 

the susceptibility of AF. (A) Normal ACM action potential trace morphology. (B) Prolonged action potential 

trace could trigger pre-mature ectopic beats such as early after depolarization (EAD) if occurred during phase 

2, or delayed after depolarization (DAD) in phase 4. (C) The shortening of action potential could induce rapid 

action potential cycle which than develop into a local re-entry loop. 
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Therefore, to quantitatively measure the arrhythmia-like behavior, we rely on two 

physiological parameters: action potential durations APD75 and the variation of peak-to-

peak intervals within the peak train [Figure 5.2A]. To efficiently identify the conditions 

with abnormal APD75 from massive data sets generated from the single-cell high-

throughput phenotypical platform, the medium APD75 from the peak train of each cell was 

calculated. Also, the ensemble phenotype from the formulation of the population regarding 

action potential duration was visualized via the APD75 population distribution diagram. 

The irregular peak-to-peak intervals could be quantified by the arrhythmia index (AI) 

derived from the following formula: 

𝐴𝐼 =
𝑆𝑡𝐷𝑒𝑣 (𝑝𝑒𝑎𝑘 − 𝑡𝑜 − 𝑝𝑒𝑎𝑘 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙)

𝑀𝑒𝑑𝑖𝑢𝑚 (𝑝𝑒𝑎𝑘 − 𝑡𝑜 − 𝑝𝑒𝑎𝑘 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙)
× 100 

AI describes the degree of irregular beating. Typical ACMs in control condition 

have AI less than 10, the higher the AI is, the more arrhythmia-like behavior the cell 

exhibits [Figure 5.2A–B]. According to different conditions, cells with varies AI values 

were plotted [Figure 5.2C]. Cells with AI under 20 presented relatively regular contracting 

activity, whereas cells with AI above 20 showed irregular peak-to-peak intervals with 

EADs/DADs in higher AI range [Figure 5.2D]. Thus, we consider cells with AI < 20 are 

in the “regular” category where no arrhythmia-like activities were observed; and cells with 

AI > 20 are in the “irregular” category where the arrhythmia-like activity occurred. 

Together, we could quantitatively and efficiently measure the degree of arrhythmia-like 
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behavior in single-cell resolution based on the prolongation or shortening of APD75 along 

with the AI value. 

 

5.2.2 Functional evaluation of known atrial fibrillation-associated genes 

To further validate the system and examine data analysis pipeline, we functionally 

evaluated 20 genes previously associated with AF that were identified through rare variant 

studies and genome-wide association studies (GWAS) [94]. Rare variants are genetic 

Figure 5.2 Quntify the degree of arrhythmia-like activity with arrhythmia index (AI). (A) Action potential 

trace of regular beating ACM. Peak-to-peak interval remains fairly constant. (B) Example of action potential 

trace of ACM with arrythmia-like behaviour. (C) Example of poulation distribution diagram of AI indicates 

there were subpopulations with distinct AI value. (D) Representitive acion potential traces of several AI 

values. Cells with AI < 20 were consider as regular beating CMs. Cells with AI > 20 were consider as irreguar 

(arrhythmic-like) beating cells.   
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mutation identified within the cohorts of individuals with early onset (< 66 years) lone AF 

or familial AF which segregates as a Mendelian trait. Although several candidate genes 

have been validated in noncardiac-cellular models or animal models, it is still unclear 

whether variants in all of these genes are causative of AF in the patients. Furthermore, the 

studied cohort population and genes of interest were considerably small compares to the 

general AF population. On the other hand, GWAS studies on AF have identified 23 AF-

associated single-nucleotide polymorphisms (SNPs) [95, 96]. The candidate genes are 

genetic variants that reached genome-wide significance in the meta-analysis. However, out 

of these 23 gene candidates, only one is identified as an exonic SNP (gene CAND2), and 

the rest of 22 SNPs are located in the intron or intergenic regions. Although genetic 

knockout animal models of some of the candidate genes have shown cardiac defects or 

arrhythmias, there is no direct evidence that the identified SNPs directly lead to AF [97].  

We hypothesized that AF might be induced, not necessarily through genetic 

mutations, but through the dysregulation of the regulators of cardiac rhythm. Since rare 

variants and GWAS studies suggest an active link between candidate genes and AF, the 

overlap of the gene lists could act as positive controls for arrhythmia-like behavior induced 

by dysregulation of the candidate genes in our platform. The 20 overlapped gene candidates 

between rare variants and GWAS studies are listed below: 
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Table 5.1 List of previous known AF-associated genes identified through rare variant and GWAS. 

Rare variant GWAS locus Gene abbreviation Function category 

X X HCN4 

Ion channels 

X  KCNA5 

X X KCND3 

X X KCNJ5 

X X KCNN3 

X X GATA4 

Transcription 

factors 

X X GATA5 

X X GATA6 

X X HAND2 

X X NKX2-5 

X X NKX2-6 

X X PITX2 

X X TBX5 

X X ZFHX3 

X X GJA1 
Myocardial 

structural 

components 

X X GJA5 

X X SYNE2 

X X PLN 

X  NPPA 
Signaling 

X X SH3PXD2A 

 

To test the hypothesis, we performed siRNA-mediated knock-down on all 20 AF-

associated genes on day 25 ACMs. After 3 days, cells were incubated with the voltage-

sensitive probe, imaged, and analyzed with single-cell trace analyzer [Figure 5.3A]. The 

compiled results from different batches of cells and experiments showed that out of all the 

gene candidates, 4 showed consistently prolonged APD75, including GATA5, PITX2, 

KCNA5, and GATA6 [Figure 5.3B]. One showed shortening of the action potential 

duration, which is PLN. Among these gene candidates, GATA5 and 6 are the family 

members of the GATA-type zinc fingers, which involved in the regulation of cardiac 

development and adult heart [98]; PITX2 has an early role determining the asymmetry 
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during heart formation, and is one of the most significant AF-associated gene candidate 

reported from the GWAS study [99]; KCNA5 is an atrial-specific K+ channel, and both 

gain and loss-of-function mutations in patients have been directly linked to AF [100]; PLN 

regulate the CICR cycle through the inhibition of Ca2+ uptake ability of SERCA2a on SR.  

To elucidate the prolongation of action potential duration via siRNA-mediated 

knockdown against GATA5, KCNA5, PITX2, and PLN in the single-cell level, we 

analyzed and presented the data in APD75 population distribution plot and APD75-peak 

count plot. Based on the result of APD75 population distribution plots of siGATA5, 

siKCNA5, and siPITX2, the knockdown of these genes prolonged the cellular population 

globally, where the entire population right-shifted towards greater APD75 [Figure 5.4A–

C]. siGATA6 had minimal effect in prolonging action potential in ACM in the repeating 

experiments, thus was eliminated from the candidate list. In ACM transfected with siPLN, 

Figure 5.3 More than half of the previously known AF-associated genes induced electrical remodeling in the 

sytsem. (A) Schematic diagram showed the transfection of siRNA against 20 previously known AF-

associated genes to ACM. (B) Out of 20 previously known AF-associated genes, 8 siRNA leads to the 

prolongation of action potential duration and 4 shortens the action potential duration. 
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the entire population was left-shifted, indicating the knockdown of PLN shortens the action 

potential duration of the population [Figure 5.4D]. The number of peak counts and action 

potential duration are often correlated. Thus, to justify the phenotype of abnormal action 

potential duration is not the secondary result due to the increase or decrease of beat rate, 

we analyzed the alteration of action potential duration under fixed peak count. In all 3 

siRNA-mediated knockdown conditions, APD75 are greater in the primary population 

under fixed peak counts (highlighted in the squares) [Figure 5.5A–C]. Whereas in siPLN 

Figure 5.4 Transfecting siRNA against GATA5, PITX2, KCNA5, and PLN leads to electrical remodeling. 

(A–C) siGATA5, PITX2, KCNA5 prolongs the APD75 of ACM. (D) siPLN shortens the APD75 of ACM. 
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condition, the population shifts down-warded, suggests the main population has shorter 

action potential duration [Figure 5.5D]. 

In summary, siRNA-mediated knockdown of GATA5, KCNA5, PITX2 prolonged 

action potential duration under fixed peak counts, and siRNA against PLN shortened action 

potential duration. However, no arrhythmia-like activities were observed in all of the 

siRNA-mediated knockdown conditions [Figure 5.5E–H]. 

 

5.2.3 Induce arrhythmia in-a-dish with AF substrates and perturbagens 

The onset and sustain of AF require a susceptible substrate and perturbagens, 

usually provided by stimulations such as adrenergic or cholinergic, or an ectopic beat. Here 

we examined 3 known AF-associated perturbagens alone and in combination with siRNA-

mediated knockdowns as AF substrate to model and evaluate the occurrence of arrhythmia-

like activities. Myocardial tissue fibrosis has close interactions between the onset and 

Figure 5.5 siRNA transfection does not induce arrhythmia-like activity. (A–D) Comapring siRNA 

transfected condition with control condition on APD75 under fixed peak count (fixed beat rate). General 

population (>60%) of siGATA5, siPITX2, siKCNA5 transfected ACMs had prolonged APD75. siPLN 

tranfected group had shorter APD75. (E–H) The poulation distribution diagram of AI of the siRNA against 

GATA5, PITX2, KCNA5, PLN did not induce high AI populations. 
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persistence of AF [101]. To mimic certain aspects of tissue fibrosis, which could lead to 

the impair of conduction, human neonatal foreskin fibroblasts (1,000 cells/well of a 384-

well-plate) were added, 24 hours after the replate of ACMs (4,000 cells/well of a 384-well-

plate) [Figure 5.6A–C]. Physiological metrics were analyzed with single-cell action 

potential analysis. From the APD75 population distribution diagram and fixed peak count 

diagram, co-culturing ACM with fibroblasts prolongs the action potential duration [Figure 

5.7A, D]. However, it is not sufficient to induce arrhythmia-like activity [Figure 5.7G]. 

Next, to investigate the effect of adrenergic stimulation, isoproterenol and 

propranolol were acutely infused to the ACMs before the acquisition of the images. APD75 

population distribution and fixed peak count analysis confirmed the shortening of action 

potential duration when treated with 1 µM of isoproterenol along with significantly 

increased beat rate [Figure 5.7B–E]. Action potential duration was dramatically prolonged 

and correlating with the decrease of the beat rate in the 81 µM propranolol condition 

[Figure 5.7C–F]. In conclusion, first, co-culturing fibroblast with ACM prolongs the action 

potential duration. Also, the beat rate increased, and action potential duration was 

shortened under the effect of isoproterenol, while ACM treated with propranolol exhibit 

decrease of beat rate and prolonged action potential duration. Lastly, although the pro-

Figure 5.6 Co-culture fibroblasts with ACMs to mimic certain aspects of tissue fibrosis. (A) Schematic 

diagram of co-culturing fibroblasts with ACMs. (B) IF of pure ACMs (green) culture. (C) IF of ACMs (green) 

co-cultured with fibroblasts (red). 
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arrhythmia effect of perturbagens is confirmed, no arrhythmia-like activity was detected in 

fibroblast co-culturing, nor the addition of isoproterenol and propranolol [Figure 5.7 H–I]. 

The key factors required for the inducing and maintaining of AF are substrates and 

abnormal stresses. Thus, we hypothesized that with the present of siRNA-mediated 

knockdown as the substrate, along with the conduction heterogeneity caused by co-

culturing ACM with fibroblasts, and under adrenergic stresses, could further induce 

Figure 5.7 Perturbagens including fibroblasts co-culture, β-adrenergic agonist–isoproterenol, and 

antagonist–propranolol, caused electrical remodeling but not sufficient to trigger arrhythmia-like activity. 

(A–F) Population distribution diagram of APD75 and fixed beat rate diagram showed the prolongation of 

action potential duration caused by co-culturing fibroblasts with ACM. APD75 were significantly shortened 

with the treatment of isproterenol, and were prolonged with the treatment of propranolol. (G–I) The poulation 

distribution diagram of AI of the 3 perturbagens treatment did not trigger arrhythmia-like activity. Fib: 

fibroblasts co-culture; Isop: isoproterenol 1 µM; Prop: propranolol 81 µM. 
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arrhythmia-like activity in ACMs. To test the hypothesis, siRNA was transfected while the 

ACMs were replated into the 384-well-plate, and 24 hours later, fibroblasts were mixed in 

the culture. After 2 days, cells were incubated with voltage-sensitive probes, 1 uM of 

isoproterenol or 81 uM of propranolol were added acutely before the image acquisition 

[Figure 5.8A]. 

Single-cell action potential data were analyzed in AI population distribution 

diagram. In the combinations of siRNA with one of the perturbagens, no arrhythmia-like 

activity was detected (data not shown). Moreover, AI was substantially escalated in the 

addition of fibroblasts along with propranolol in the siGATA5 transfected ACMs [Figure 

5.9A]. Interestingly, AI value remained low in the siGATA5-fibroblast-isoproterenol 

condition, indicating arrhythmogenic activity is triggered only through specific 

combinations of substrate and perturbagens. Compare to the action potential traces of the 

control condition, siGATA5 along with fibroblasts co-culture and propranolol treatment 

induces irregular contracting behavior and ectopic peaks during the beginning of 

repolarization [Figure 5.9B–C]. Similarly, a subpopulation of cells with large AI was 

observed in the siPITX2-fibroblast-propranolol combination, while lower AI value in the 

siPITX2-fibroblast-isoproterenol condition [Figure 5.9D]. The resulting arrhythmia-like  

Figure 5.8 Schematic diagram of transfecting siRNA, co-culturing fibroblasts, and the treatment of small 

compound perturbagens. 
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Figure 5.9 Specific combinations of AF-associated genes with perturbagens induced distinct arrhythmia-like 

activity. (A) Combination of siGATA5 with fibroblasts co-culture and propranolol induced high AI 

subpopulation. (B) Action potential trace of control ACM presented regular beating activity. (C) Action 

potential trace of siGATA5 with fibroblasts co-culture and propranolol showed premature ectopic peaks 

during the beginning of repolarization. (D) Combination of siPITX2 with fibroblasts co-culture and 

propranolol induced high AI subpopulation. (E) Action potential trace of siPITX2 with fibroblasts co-culture 

and propranolol showed extremely prolonged duration and EADs. (F) Combination of siKCNA5 with 

fibroblasts co-culture and isoproterenol induced high AI subpopulation. (G) Action potential trace of 

siKCNA5 with fibroblasts co-culture and isoproterenol had chaotic beating behavior with multiple double-

peak events. (H) Cells with high AI from different combinations plotted on APD75 vs peak count diagram 

showed clusters of distinct AF-associated genes and perturbagens combinations. Fib: fibroblasts co-culture; 

Isop: isoproterenol 1 µM; Prop: propranolol 81 µM. 
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activity occurs due to series of dramatically extended action potential duration and 

profound EADs [Figure 5.9E]. siKCNA5-fibroblast-isoproterenol also generates a 

subpopulation with extreme high AI value, whereas siKCNA-fibroblasts-propranolol 

condition exhibit less AI value [Figure 5.9F]. Multiple double-peaks were observed in the 

action potential trace, where it also showed severe chaotic beating activity [Figure 5.9G]. 

Distinct types of arrhythmic behaviors were induced by different combinations of substrate 

and perturbagens [Figure 5.9H], which correlated with clinical findings indicating 

distinctive mechanisms that lead to various subtypes of AF. In summary, the arrhythmic 

behavior could be induced by specific combinations of substrate and perturbagens. 

Different sets of substrate-perturbagen combination also produced distinct forms of 

arrhythmia-like activities. 

 

5.3 Discussion 

5.3.1 Single-cell analysis is a novel method to identify cardiac rhythm regulators 

and potential antiarrhythmic therapeutic targets. 

In the previous discussion, several advantages have been mentioned in functional 

assessment of cardiomyocytes.  To fully utilize the platform for identifying cardiac rhythm 

regulators and potential antiarrhythmic therapeutic targets, the single-cell analysis provides 

in-depth information both in macroscopic, the deviation of entire cellular population 

behavior after the treatment, and microscopic views, where subpopulations segregated 

through conditions ex. fixed beat rate or local contracting clusters. 
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The single-cell analysis enables a general view of population distributions on all 

three major parameters that determine the arrhythmia-like activities of the examined ACM: 

beat rate, APD75, and arrhythmia index (AI). Calculation of the mean values of these 

parameters directly across the cellular population with arrhythmia-like activity would 

generate unstable results with large standard deviation. These deviations were mainly 

contributed by subpopulations within the entire group. Heterogeneity within the culture is 

often observed, where subpopulations that have more severe phenotypes and others less, 

which reflects the heterogeneity of gene expressions mentioned in chapter 3 [85, 86]. By 

analyzing cellular arrhythmia-like behavior in single-cell level, the system could 

distinguish deviation and subpopulations from the bulk, which would be overlooked 

entirely via averaging the result of every cell, or applying classic whole-well analysis. 

Furthermore, the segregation of the subpopulation generates with single-cell analysis, 

produce meaningful results with statistical significance.  Conversely, the averaging 

strategy generates inconclusive results with low statistical power and large standard 

deviation.  

The beat rate of the cardiomyocyte and action potential duration are highly 

correlated, the higher beat rate is often paired with shorter action potential duration. Thus, 

distinguishing the prolongation or shortening of action potential duration should also 

consider the beat rate. Classic patch-clamp electrophysiology measures action potential 

duration difference through regulating and fixing the beat rate of the cell via 

electrostimulations. Similarly, the single-cell analysis could also cross-reference the 

parameters such as APD75 and AI by in silico fixing the beat rate. Simply categorize cells 
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with defined beat rate, the effect of the treatment which leads to the action potential 

duration difference could then be recognized. 

Lastly, being able to segregate the analysis in single-cell level, made selectively 

filtering cellular responses in a mixed-culture condition possible. The mixed-culture 

condition, either unintentionally, such as heterogeneity during differentiation, or 

intentionally, for example, the co-culture of CM sub-types or CM with fibroblasts, causes 

difficulties in the whole-well analysis due to the asynchronous contracting event. 

Moreover, the arrhythmia-like activity also induces asynchronous contracting event in sub-

clusters of cells. Segregation of cellular event into single-cell overcomes the problem 

which made detecting arrhythmia-like activity possible. In summary, the single-cell 

analysis provides macroscopic and microscopic aspects of evaluating functional results of 

cardiomyocytes that enable subpopulation analysis, in silico beat rate fixing for APD cross-

reference, and segregating mix-population results.  

 

5.3.2 siRNA-mediated knockdown of AF-associated genes induce abnormal action 

potential duration in ACM 

Ectopic beats that induce arrhythmia and atrial fibrillation are caused by susceptible 

substrate and perturbagens. Single-cell action potential analysis results showed that the 

siRNA-mediated down-regulation of the 4 previously known AF-associated genes – 

GATA5, KCNA5, and PITX2 – as well as fibroblast co-culture significantly prolong the 

action potential duration of ACM. Conversely, the down-regulation of PLN abbreviates the 

action potential duration. The dysregulation or mutation of GATA5, KCNA5, PITX2, and 
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PLN, as well as the fibrosis of the cardiac tissue, have been shown to act as substrates of 

AF. 

The family of GATA transcription factors regulates differentiation, growth, and 

survival of various cell types [102]. Within all 6 family members (GATA1-6), GATA4, 5, 

and 6 genes are explicitly expressed in mesoderm and endoderm-derived tissues [98, 103]. 

Functional overlapped with GATA4 and 6, GATA5 is a crucial transcription factor for 

proper cardiogenesis, particularly in the regulation of downstream GATA target gene 

expressions synergistically with NKX2-5 [104]. Evidence underscores several critical 

cardiac-specific genes with GATA binding elements such as sarcomeric genes, including 

myosin light chain-3 (MYL3), cardiac troponin C and I (TNNC1 and TNNI3). In addition, 

GATA family also regulates the expression of NCX, natriuretic peptide A and B (NPPA 

and NPPB), gap junction protein α 5 (GJA5), and Hand2 [105-110]. Lastly, multiple loss 

of function mutations of GATA5 have been identified in familial AF patients which points 

to the likely association of functionally impaired GATA5 with arrhythmia and AF [111, 

112]. The role during and after cardiac development suggesting the potential association of 

miss-regulation or functionally compromised GATA5 with AF. 

Previous studies have reported loss-of-function mutations in KCAN5 leads to 

decrease in IKur in lone AF patient [100, 113-115]. IKur is the major repolarizing current in 

human atrium and consistent with the result we have shown, the loss of IKur prolongs action 

potential duration as well as the effective refractory period (ERP) of the ACM, which 

increase the propensity for EADs [83, 116, 117]. Notably, the mutations of KCNA5 in lone 

AF patients is one of the few identified both in rare variant studies and GWAS analysis, 

indicating its vital link between AF. 
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PITX2, the paired-like homeodomain transcription factor, has a critical role during 

heart development (left-right asymmetry) and rhythm control [118, 119]. The adult-

specific Pitx2 deletion in mice causes significant electrical remodeling of the heart and 

develop AF [120]. Also, the promoter region of PITX2 contains TBX5-dependent cis-

regulatory elements (CREs), indicating TBX5, a transcription factor intensively involved 

in heart development, modulates PITX2 expression level. Moreover, studies have shown 

that PITX2 and TBX5 forms a TBX5-PITX2 incoherent feed-forward loop that regulates 

several atrial conduction genes and PITX2 along modulates the expression levels of several 

cardiac-specific genes such as HCN4, NPPA, and KCNQ1[120-122]. The dysregulation of 

PITX2 causes the onset of AF under triggers in mouse [122]. Markedly, PITX2 is the most 

significant and frequently reported AF-susceptibility locus in multiple GWAS studies 

[123-126]. Finally, 3 lost of function mutations have been identified in idiopathic AF 

patients, and all 3 mutations are located in homeodomain where amino acids are highly and 

even completely conserved among various species [127, 128]. Although the mechanisms 

of dysregulation or mutations of PITX2 lead to AF remains controversial, it is consistent 

that abnormality of PITX2 increases the susceptibility to AF [129].  

PLN act as a regulator protein of Ca2+ cycling and mediator of the adrenergic effect 

through the inhibition or activation of SERCA2a. Under dephosphorylated normal state, 

PLN interacts and decreases the Ca2+ affinity of SERCA2a, which leads to the decrease of 

Ca2+ cycling and reduced cardiac output. Upon phosphorylation, the inhibition of 

SERCA2a is terminated, Ca2+ affinity is raised, and cardiac output is then increased. 

Concurred with our findings, siRNA-mediated downregulation of PLN greatly shortens the 

action potential duration of ACM. Although no PLN mutation identified in lone AF 
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patients, numerous mutations in PLN have been reported associated with cardiac rhythm 

abnormalities and tachycardia. Most of the patients with PLN mutation have long clinical 

histories of comorbid conditions including AF, ventricular tachycardia (VT), hypertrophic 

cardiomyopathy (HCM), dilated cardiomyopathy (DCM), heart failure (HF), and sudden 

cardiac death (SCD) [130, 131]. PLN heterozygote super-inhibition mutation in mouse 

exhibited high mortality at early stages (12 weeks postnatal), and Ca2+ uptake was 

dramatically inhibited [131, 132]. Whereas the hyperphosphorylation of PLN, which 

prevent the inhibition of SERCA2a, by excessive CaMKII activation induced AF in 

isolated human atrial myocytes [133, 134]. These data reveal the crucial role of PLN in 

Ca2+ cycling and rhythm control and correlates with our finds that the APD abbreviation 

of ACM is due to the siRNA-mediated down-regulation of PLN. 

In summary, our functional genomics approach using siRNA-mediated knock-

down results coincide with previous studies on the dysregulation of GATA5, KCAN5, 

PITX2, and PLN that leads to the predisposition of atrial arrhythmia. The conduction 

heterogeneity and abnormal action potential due to the co-culture of fibroblasts with ACM 

resonate with previously reported on structural remodeling induced AF. 

 

5.3.3 AF-associated perturbagens induce abnormal action potential duration in 

ACM 

Cardiac tissue fibrosis is a hallmark of pro-arrhythmogenic structural remodeling. 

As one of the most common features of AF, increased collagen deposition in lone-AF 

patients, as well as the positive correlation between extracellular matrix (ECM) volume 

with the persistence of AF [101, 135]. Atrial fibrosis results from a variety of cardiac insults 
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including but not limited to myocardial injuries due to infarction or surgeries, chronic heart 

failure, atrial dilation, or electrical abnormalities [136, 137]. Extensive research and 

experimental models have helped to elucidate the relationship between atrial fibrosis and 

AF [138, 139]. The conduction heterogeneity due to the structural remodeling leads to 

numerous local re-entry circuits that generate irregular rhythms or flutter activity [93, 140]. 

Thus, conduction abnormalities provide a basis for re-entry loop that shortens action 

potential duration or conduction delay that leads to the prolonging of action potential 

duration. Moreover, positive feedback model between electrical remodeling, structural 

remodeling, and AF is well established. Coincide with the ACM-fibroblasts co-culture 

result, a widely diffused population distribution was observed both in peak count and 

APD75. The increase of AI, as well as greater numbers of local circuits in the culture, 

indicates the conduction abnormalities and pro-arrhythmic effect of co-culturing 

fibroblasts with ACM. 

The isoproterenol challenge in AF patients and animal model with AF-associated 

substrates are arrhythmogenic [100, 141, 142]. Adrenergic stimulation has been shown to 

induce cytoplasmic Ca2+ load through various targets. The major targets of beta-adrenergic 

stimulation in the cardiomyocytes are the activation of L-type Ca2+ channels on the 

membrane; the activation of SR-located ryanodine receptors; phosphorylation of PLN 

which accelerates Ca2+ reuptake by the SR. These alternations induce faster CICR cycle 

thus increase stronger contraction and relaxation of the myofilament [143]. The 

cytoplasmic Ca2+ stress and the increase of beat rate act as perturbagens that induce 

arrhythmia-like behavior on ACM along with substances such as siGATA5 and siPITX2.  
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Propranolol is a non-selective beta-blocker with the affinity for both β 1 and 2 

adrenergic receptors. It has been widely used as rhythm control treatment for AF since its 

discovered in the 1960s. With opposite mechanism of Isoproterenol, Propranolol reduces 

Ca2+ cycling, thus, decrease the beat rate and prolongs action potential duration. The 

antiarrhythmic property of Propranolol is by reducing the event of re-entry circuit and the 

decrease of heart rate that leads to AF or atrial flutter. However, under the state of 

prolonged action potential duration, applying Propranolol further exacerbate the delay of 

the Ca2+ cycle, which could act as a trigger of EADs and induce arrhythmia. Interestingly, 

in long QT syndrome 3 clinical studies, prescribing high concentration of Propranolol also 

resulted in a proarrhythmic effect [144]. 

In summary, the functional assessment result indicating these known AF-associated 

perturbagens cause abnormal action potential duration, which in the present of AF-

substrate may further induce AF in patients or arrhythmia-like behavior in vitro. 

 

5.3.4 Induce Arrhythmia-like activity with AF-substrate and perturbagens 

The specific combination of arrhythmia substrate and the trigger could induce and 

sustain the arrhythmia behavior [142, 145, 146]. GATA5 down-regulation reduces the 

expression of contractile proteins, gap junction proteins, and several cardiac-specific 

proteins [109]. The addition of fibroblast in the culture further exacerbates the cell-cell 

coupling that leads to the heterogeneity of conduction. Under the Ca2+ handling stress 

induced by propranolol, action potential duration was abnormally extended, keeping the 

cell depolarized for more extended periods, thus, allowing the occurrence of EADs at phase 

2 [Fig]. PITX2 have been known for regulating Ca2+ homeostasis [120]. The reduced 



 

 78 

expression of PITX2 via siRNA knockdown impairs Ca2+ handling ability of the 

cardiomyocyte. With the co-culture of fibroblasts, the propagation of electrical signals was 

then fragmented. Under the effect of propranolol, cytoplasmic Ca2+ stress surged by the 

reduction of CICR cycling rate. Action potential duration as well as ERP was markedly 

prolonged, which leads to incomplete repolarizations and promotes premature beats [Fig]. 

Lastly, KCNA5 down-regulation decreases IKur and prolongs action potential. Disrupting 

normal excitation rhythm by the activation of adrenergic-stimulation increases the 

susceptibility to arrhythmia-like activity in ACMs. Irregular peak-to-peak interval and 

reoccurring ectopic peaks were detected in the action potential of the siKCNA5-fibroblast-

isoproterenol condition. Consistent with our observations, the vulnerability to adrenergic 

stress observed due to compromised IKur have been described both in the murine model and 

AF patients with haploid KCNA5 loss-of-function mutation [100]. In conclusion, 

arrhythmic activities were observed in distinct combinations of electrical remodeling 

substrate and AF-associated perturbagens. Furthermore, differential molecular causes lead 

to diverse subtypes of arrhythmia-like phenotypes, reflecting the broad spectrum of AF 

mechanisms documented in the clinical data, and emphasizing the importance of targeting 

specific AF subtypes with particular anti-arrhythmic treatments. 

 

5.4 Conclusion 

To validate the platform, a list of siRNA against 20 previously known AF-

associated genes identified both through rare variant and GWAS were transfected to ACM. 

11 out of 20 siRNAs showed either prolong or shortening of the action potential duration, 
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however, none observed arrhythmia-like activity. Perturbagens that were commonly 

associated with AF, including the fibroblasts co-culture mimicking tissue fibrosis, 

isoproterenol and propranolol as β-adrenergic stimulation/inhibition, were then tested. 

Perturbagens also found inducing electrical remodeling, yet not arrhythmia-like activity. 

Since AF is often triggered in the presence of both substrate (miss-regulation of 

AF-associated genes) and perturbagens, we than transfected the siRNA and applied 

perturbagens at the same time. Severe arrhythmia-like activities were detected in 3 different 

combinations: 1. siGATA5 with fibroblasts co-culture and propranolol; 2. siPITX2 with 

fibroblasts co-culture and propranolol; 3. siKCNA5 with fibroblasts co-culture and 

isoproterenol. Moreover, different combinations of substrate and perturbagens presented 

distinct arrhythmia phenotypes, indicating the complexity of the disease and the needs to 

identify and then target the specific regulatory pathway that leads to arrhythmia. 
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Chapter 6  

 

Future work and Conclusion 

 

 

 

 

 

6.1 Future Work 

6.1.1 Recapitulate Arrhythmia-like Phenotype in Patient-specific Mutation ACMs 

Phenotypical assessments mentioned above were done by utilizing siRNA-

mediated knockdown of the expression of the genes. However, this loss-of-function 

experimental design does not fully recapitulate the disease mechanism of action. siRNA-

mediated knockdown could mimic certain aspects of the misregulation of the genes that 

occurs in the general AF population, whereas in familial AF, arrhythmias are caused by the 

mutation of the genes. Thus, being able to generate patient-specific mutation ACMs are 

essential for validating the gene candidate and the system itself. 

CRISPR-Cas9 gene editing technique is frequently used to generate specific point 

mutation lines. Single-strand guide RNA (sgRNA) was designed to induce a double strand 

break in the proximity of the desired point mutation base pair, and single-strand 

oligodeoxynucleotide (ssODN) acted as a repair template to facilitate homology-directed 
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repair (HDR) mechanism instead of activating non-homologous end joining (NHEJ) 

mechanism. sgRNA, ssODN, along with Cas9 protein were then transfected into hPSCs 

via electroporation, colonies were isolated and sequenced. Lines with heterozygous 

mutation, homozygous mutation, and isogenic controls were then expanded and 

differentiated into day 25 ACMs. We are currently functionally evaluating the loss-of-

function mutation of KCAN5 p.E375X heterozygote (KCNA5E375X/+) and homozygote 

(KCNA5E375X/E375X) and the gain-of-function mutation of KCNA4 p.D322H heterozygote 

(KCNA5D322H/+) and homozygote (KCNA5D322H/D322H) [Figure 6.1A–B]. Meanwhile also 

generating various lines including lost-of function mutation GATA5 p.W200G, and loss-

of-function mutation of PITX2c p.R122C. 

siRNA-mediated knockdown functional screening platform provides tremendous 

throughput for primary and secondary (validation) assays. CRISPR-Cas patient-specific 

mutation technique could then further validate the resulting candidates and elucidate 

detailed disease mechanism of action. 

 

Figure 6.1 Generation of KCNA5 AF patient-specific lost-of-function mutation with CRISPR-Cas gene 

editing technique. (A) Sequence chromatogram of normal (wild type) KCNA5 vs. KCNA5 patient-specific 

lost-of-function mutation p.E375X heterozygote. (B) Schematic diagram of KCNA5 protein structure. 

E375X mutation truncates half of the structure including the voltage sensing domain and the pore domain. 
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6.1.2 Large-scale phenotypical screens across the genome 

Maintaining the throughput and without sacrificing the readout resolution is the 

most considerabel advantages of the system. We currently are conducting a large-scale 

screen focusing on the “druggable” library and candidates that play essential roles in 

regulating CM physiology. The list of siRNA candidates (4239) includes G-protein 

receptors, kinases, phosphatases, transcription factors, epigenetic regulators, ubiquitins, 

and atrial differentially-expressed transcripts. All of the candidates were screened in both 

baseline condition and under β-adrenergic stress. Readouts were based on APD75 to 

evaluate the effect of electrical remodeling on prolonging or shortening the action potential 

duration, as well as through AI to assess the degree of arrhythmia-like activities [Figure 

6.2A–B]. 

Throughout the large-scale phenotypical screens, we will identify novel cardiac 

rhythm regulators and potential arrhythmia-causing genes. Once the candidates are 

validated and confirmed, we are planning to conduct sensitized screen on small compounds 

Figure 6.2 Large-scale phenotypical screens with the high-throughput single-cell functional screening 

platform. (A) Total 4239 candidates screened. The result plotted in the order of the length of APD75. (B) The 

screening result plotted in APD75 vs.. normalized AI. 
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by transfecting siRNA against these candidate genes to explore potential anti-arrhythmic 

treatments. 

6.1.3 Functional genomics as novel anti-arrhythmic treatments 

According to the experimental result in 5.3.2, several siRNA against previously 

known AF-associated genes prolongs the action potential duration, including siGATA5. 

On the contrary, siPLN and other candidates shorten the action potential duration [Figure 

6.3A–B]. Thus, by co-transfecting siGATA5 and siPLN, the resulting action potential 

duration was situated between the duration of the single transfection of siGATA5 and 

siPLN. The result indicates abnormal action potential duration can potentially be reverted 

to normal by inducing a “functionally antagonist” [Figure 6.3C]. Moreover, siRNAs and 

small compounds that inhibit target gene function may also be potential antiarrhythmics. 

 

6.2 Conclusion 

This thesis summarized an original system that utilizes hPSC-derived ACM on a 

high-throughput single-cell phenotypical screening platform to identify novel AF-

associated genes. 

Figure 6.3 Applying functional genomics to identify novel anti-arrhythmics. (A) Transfection of siGATA5 

prolongs the action potential duration of ACM. (B) Transfection of siPLN shortens the action potential 

duration. (C) Co-transfect both siGATA5 and siPLN revert the phenotype and normalized the action potential 

duration. 
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Genome-wide microarray screen identified Id1 is required and sufficient to 

differentiate MCPs from hPSCs. Gene regulatory network of MCP reveals Id1’s role in the 

early mesoderm specification stage. Id1 activates the expression of mesoderm genes KDR 

and MESP1, as well as suppressing endoderm genes such as FOXA2. Furthermore, in vivo 

studies revealed the overexpression of Id1 enlarges mesoderm formation and followed by 

larger cardiac tissue in Xenopus. Also, from the Id-quadruple knockout mouse embryo 

mutant, we confirmed Id gene family is required during mammalian early heart formation. 

Thus, we have established a highly efficient cardiogenic mesoderm differentiation protocol 

to generate large-scales of CM for the study of cardiac physiology, regeneration medicine, 

cell-based therapy, disease modeling, and drug discovery. 

Atrial fibrillation is an arrhythmia occurs only in the atrium, to further study and 

model AF, ACM is required. Applying retinoic acid as a pro-atrial differentiation cue on 

day 5 CMP generates highly homogenous ACMs. ACM s were than molecularly validated 

through RNA-seq, and functionally validated with: 1. action potential; 2. calcium handling; 

3. contractility; 4. atrial-specific compound 4-aminopyridine. 

To efficiently screen through large-scale libraries to identify novel AF-associated 

genes, we established a fully automated high-throughput and single-cell functional 

screening platform. ACMs were replated into 384-well-plate and incubated with voltage-

sensitive probe via a liquid handler.  Cells were then recorded under high-speed microscopy 

and analyzed by image processing software. The analysis algorithm generated single cell 

action potential traces and retrieved physiological metrics. To evaluate the degree of 

arrhythmia-like activity, APD75 and AI value were plotted against cell population.  
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Lastly, siRNA of 20 previous know AF-associated genes were transfected 

individually to validate the system. According to the result, a few leads to the electrical 

remodeling (prolongation or shortening of APD) of ACM, yet not sufficient to induce 

arrhythmia-like activity. Furthermore, along with distinct combinations of perturbagens 

(fibroblasts co-culture, isoproterenol, propranolol), these siRNA induced distinct 

arrhythmia-like-activity. The result indicates the different mechanism of actions could lead 

to distinct arrhythmia phenotypes, and require specific anti-arrhythmic treatments. Thus, 

the prerequisite of developing phenotype-specific antiarrhythmics is to identify novel 

cardiac rhythm regulators and AF-causing genes. This original high-throughput functional 

screening platform enables single-cell resolution large-scale arrhythmia-like phenotypical 

screens to identify novel AF-causing candidates. 
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