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Combining Genome-Wide Association Mapping and
Transcriptional Networks to Identify Novel Genes
Controlling Glucosinolates in Arabidopsis thaliana
Eva K. F. Chan1,2, Heather C. Rowe1¤, Jason A. Corwin1, Bindu Joseph1, Daniel J. Kliebenstein1*

1 Department of Plant Sciences, University of California–Davis, Davis, California, United States of America, 2 Monsanto Company, Vegetable Seeds Division, Woodland,

California, United States of America

Abstract

Background: Genome-wide association (GWA) is gaining popularity as a means to study the architecture of complex
quantitative traits, partially due to the improvement of high-throughput low-cost genotyping and phenotyping
technologies. Glucosinolate (GSL) secondary metabolites within Arabidopsis spp. can serve as a model system to
understand the genomic architecture of adaptive quantitative traits. GSL are key anti-herbivory defenses that impart
adaptive advantages within field trials. While little is known about how variation in the external or internal environment of
an organism may influence the efficiency of GWA, GSL variation is known to be highly dependent upon the external stresses
and developmental processes of the plant lending it to be an excellent model for studying conditional GWA.

Methodology/Principal Findings: To understand how development and environment can influence GWA, we conducted a
study using 96 Arabidopsis thaliana accessions, .40 GSL phenotypes across three conditions (one developmental
comparison and one environmental comparison) and ,230,000 SNPs. Developmental stage had dramatic effects on the
outcome of GWA, with each stage identifying different loci associated with GSL traits. Further, while the molecular bases of
numerous quantitative trait loci (QTL) controlling GSL traits have been identified, there is currently no estimate of how many
additional genes may control natural variation in these traits. We developed a novel co-expression network approach to
prioritize the thousands of GWA candidates and successfully validated a large number of these genes as influencing GSL
accumulation within A. thaliana using single gene isogenic lines.

Conclusions/Significance: Together, these results suggest that complex traits imparting environmentally contingent
adaptive advantages are likely influenced by up to thousands of loci that are sensitive to fluctuations in the environment or
developmental state of the organism. Additionally, while GWA is highly conditional upon genetics, the use of additional
genomic information can rapidly identify causal loci en masse.
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Introduction

Biologists across fields possess a common need to identify the

genetic variation causing natural phenotypic variation. Genome-

wide association (GWA) studies are a promising route to associate

phenotypes with genotypes, at a genome-wide level, using

‘‘unrelated’’ individuals [1]. In contrast to the traditional use of

structured mapping populations derived from two parent ge-

nomes, GWA studies allow a wide sampling of the genotypes

present within a species, potentially identifying a greater

proportion of the variable loci contributing to polygenic traits.

However, the uneven distribution of this increased genotypic

diversity across populations (population structure), as well as the

sheer number of statistical tests performed in a genome-wide scan,

can cause detection of a high rate of ‘‘false-positive’’ genotype-

phenotype associations that may make it difficult to distinguish loci

that truly affect the tested phenotype [1–5]. Epistasis and natural

selection can also lead to a high false-negative rate, wherein loci

with experimentally validated effects on the focal trait are not

detected by GWA tests [4–5].

Repeated detection of a genotype-phenotype association across

populations or experiments has been proposed to increase support

for the biological reality of that association, and has even been

proposed as a requirement for validation of trait-phenotype

associations [2]. However, replication across populations or

experiments is not solely dependent upon genotypes, but also
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differences in environment and development that significantly

influence quantitative traits [5–8]. Thus, validation of a significant

association through replication, while at face value providing a

stringent criterion for significance, may bias studies against

detection of causal associations that show significant Genoty-

pe6Environment interactions [9]. In this study we employed

replicated genotypes to test the conditionality of GWA results

upon the environment or development stage within which the

phenotype was measured.

Integrating GWA mapping results with additional forms of

genome-scale data, such as transcript profiling or proteomics

datasets, has also been proposed to strengthen support for detected

gene-trait associations and reduce the incidence of false-positive

associations [10]. To date, network approaches have largely focused

upon comparing GWA results with natural variation in gene

expression across genotypes in transcriptomic datasets (i.e.,

expression quantitative trait loci (eQTLs)) [11–13]. This requires

that candidate genes show natural variation in transcript accumu-

lation, which is not always the functional level at which biologically

relevant variation occurs [14]. Another network approach maps

GWA results onto previously generated interaction networks within

a single genotype, such as a protein-protein interaction network,

enhancing support for associations that cluster within the network

[15]. This network filtering approach has yet to be tested with GWA

data where the environment or tissue is varied.

To evaluate the influence of environmental or developmentally

conditional genetics on GWA mapping and the utility of network

filtering in identifying candidate causal genes, we focused on

defense metabolism within the plant Arabidopsis thaliana. A. thaliana

has become a key model for advancing genetic technologies and

analytical approaches for studying complex quantitative genetics

in wild species [16]. These advances include experiments testing

the ability of genome resequencing and transcript profiling to

elucidate the genetics of complex expression traits [17–19] and

querying the complexity of genetic epistasis in laboratory and

natural populations [20–26]. Additionally, A. thaliana has long

provided a model system for applying concepts surrounding GWA

mapping [3–5,27–30].

As a model set of phenotypes, we used the products of two

related A. thaliana secondary metabolite pathways, responsible for

aliphatic and indolic glucosinolate (GSL) biosynthesis. These

pathways have become useful models for quantitative genetics and

ecology (Figure 1) [31]. Aliphatic, or methionine-derived, GSL are

critical determinants of fitness for A. thaliana and related

cruciferous species via their ability to defend against insect

herbivory and non-host pathogens [32–35]. Indolic GSL, derived

from tryptophan, play important roles in resistance to pathogens

and aphids [36–40]. A. thaliana accessions display significant

natural genetic variation controlling the production of type and

amount of both classes of GSL, with direct impacts on plant fitness

in the field [33,41–47]. Additionally, GSL display conditional

genetic variation dependent upon both the environment and

developmental stage of measurement [48–51]. GSL thus provide

an excellent model to explore the impact of conditional genetics

upon GWA analysis.

While the evolutionary and ecological importance of GSL is

firmly established, the nearly complete description of GSL

biosynthetic pathways provides an additional practical advantage

to studying these compounds [52–54]. A large number of QTL

and genes controlling GSL natural variation have been cloned

from A. thaliana using a variety of network biology approaches

similar to network filtering in GWA studies (Figure 1) [55–59].

These provide a set of positive control genes of known natural

variability and importance to GSL phenotypes, enabling empirical

assessment of the level of false-positive and false-negative

associations.

Within this study, we measure GSL phenotypes in two

developmental stages and stress conditions/treatments using a

collection of wild A. thaliana accessions to test the relative influence

of these components upon GWA. In agreement with previous

analyses from structured mapping populations, we found that

differences in development have more impact on conditioning

genetic variation in A. thaliana GSL accumulation. This is further

supported by our observation that GWA-identified candidate

genes show a non-random distribution across the three datasets

with the GWA candidates from the two developmental stages

analyzed overlapping less than expected. The large list of

candidate genes identified via GWA was refined with a network

co-expression approach, identifying a number of potential

networks. A subset of loci from these networks was validated for

effects on GSL phenotypes. Even for adaptive traits like GSL

accumulation, these analyses suggest the influence of numerous

small effect loci affecting the phenotype at levels that are

potentially exposed to natural selection.

Results

GSL Analysis
We measured GSL from leaves of 96 A. thaliana accessions at

35 d post-germination [27–28] using either untreated leaves or

leaves treated with AgNO3 (silver) to mimic pathogen attack. In

Author Summary

Understanding how genetic variation can control pheno-
typic variation is a fundamental goal of modern biology. A
major push has been made using genome-wide associa-
tion mapping in all organisms to attempt and rapidly
identify the genes contributing to phenotypes such as
disease and nutritional disorders. But a number of
fundamental questions have not been answered about
the use of genome-wide association: for example, how
does the internal or external environment influence the
genes found? Furthermore, the simple question of how
many genes may influence a trait is unknown. Finally, a
number of studies have identified significant false-positive
and -negative issues within genome-wide association
studies that are not solvable by direct statistical approach-
es. We have used genome-wide association mapping in
the plant Arabidopsis thaliana to begin exploring these
questions. We show that both external and internal
environments significantly alter the identified genes, such
that using different tissues can lead to the identification of
nearly completely different gene sets. Given the large
number of potential false-positives, we developed an
orthogonal approach to filtering the possible genes, by
identifying co-functioning networks using the nominal
candidate gene list derived from genome-wide association
studies. This allowed us to rapidly identify and validate a
large number of novel and unexpected genes that affect
Arabidopsis thaliana defense metabolism within pheno-
typic ranges that have been shown to be selectable within
the field. These genes and the associated networks
suggest that Arabidopsis thaliana defense metabolism is
more readily similar to the infinite gene hypothesis,
according to which there is a vast number of causative
genes controlling natural variation in this phenotype. It
remains to be seen how frequently this is true for other
organisms and other phenotypes.

Development, Environment, and GWAS Networks
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Figure 1. GSL Biosynthesis and Cloned QTL. Arrows show the known and predicted steps for GSL biosynthesis with the gene name for each
biochemical reaction within the arrow. For compounds that are undetected intermediates, chemical names only are provided. For detected
compounds, both the structure and chemical name are provided. The position of known genetic loci controlling biosynthetic variation is shown in
italics. (A) The pathway and genes responsible for the production of the core GSL structure from tryptophan (indolic GSL) and methionine (aliphatic
GSL). (B) The chain elongation cycle for aliphatic GSL production. Each cycle of these reactions adds a single carbon to a 2-oxo-acid, which is then
trans-aminated to generate homo-methionine for aliphatic GSL biosynthesis. The GSL.Elong QTL alters this cycle through variation at the MAM1,
MAM2, and MAM3 genes that leads to differential GSL structure and content [71,142]. (C) The enzymes and genetic loci controlling aliphatic GSL side

Development, Environment, and GWAS Networks
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addition, we measured seedling glucosinolates from the same

accessions to provide a tissue comparison as well as a treatment

comparison. Seedlings were measured at 2 d post-germination at a

stage where the GSL are largely representative of the GSL present

within the mature seed [48,60]. GSL from both foliar and seedling

tissue grown under these conditions have been measured in

multiple independent QTL experiments that used recombinant

inbred line (RIL) populations generated from subsets of these 96

accessions, thus providing independent corroboration of observed

GSL phenotypes [41,51,61]. For the untreated leaves, this analysis

detected 18 aliphatic GSL compounds and four indolic GSL

compounds. These combined with an additional 21 synthetic

variables that describe discrete components of the biochemical

pathway to total 43 GSLtraits for analysis [4,61–62]. For the

AgNO3-treated samples, we detected only 16 aliphatic GSL and

four indolic GSL, but also were able to measure camalexin, which

is related to indolic GSL (Table S3), which in combination with

derived measures provided us with 42 AgNO3 treated GSL traits

[61]. For the seedling GSL samples, we detected 19 aliphatic

GSLs, two indolic, and three seedling specific phenylalanine GSLs

(Table S4), which in combination with derived descriptive

variables gave us a total of 46 total GSL traits [61].

Genetic, Environmental, and Developmental Effects on
GSL

Population stratification has previously been noted in this set of

A. thaliana accessions, where eight subpopulations were proposed to

describe the accessions’ genetic differences [27–28]. Less explored

is the joint effect of population structure and environmental

factors, both external (exogenous treatment) and internal (tissue

comparison) on GSL. We used our three glucosinolate datasets to

test for potential confounding effects of environmental variation,

population structure, and their various interaction terms upon the

GSL phenotypes (Figure 2). On average, 36% (silver versus

Figure 2. Analysis of variance of glucosinolates. The proportion of total variance (R2) is shown for the different model terms using a nested
ANOVA where Accession is nested within Structure. The control and each of the conditional datasets—AgNO3-treated (white) or seedling (black)—
were combined to test the effect of the specific condition upon the partitioning of variance across accession, population structure, and
environmental or developmental conditions. The interaction terms are also shown.
doi:10.1371/journal.pbio.1001125.g002

chain modification within the Bay-0 6 Sha RIL population. Side-chain modification is controlled by variation at the GSL.ALK QTL via cis-eQTL at the
AOP2 and AOP3 genes. The Cvi and Sha accessions express AOP2 to produce alkenyl GSL. In contrast, the Ler and Bay-0 accessions express AOP3 to
produce hydroxyl GSL. Col-0 is null for both AOP2 and AOP3, producing only the precursor methylsulfinyl GSL [61,143]. The GSL.OX QTL appear to be
controlled by cis-eQTL regulating flavin-monoxygenase enzymes (GS-OX1 to 5) that oxygenate a methylthio to methylsulfinyl GSL [55,58]. The GSL.OH
QTL is a cis-eQTL in the GS-OH gene which encodes the enzyme for the oxygenation reaction [56].
doi:10.1371/journal.pbio.1001125.g001

Development, Environment, and GWAS Networks
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control) and 23% (seedling versus control) of phenotypic variance

in GSL traits was solely attributable to accession. An additional

7% (silver versus control) and 14% (seedling versus control) of

phenotypic variance was attributable to an interaction between

accession and treatment or tissue. This suggests that, on average

and given the statistical power of the experiments, 30%–50% of

the detectable genetically controlled variance is stable across

conditions, while at least 20% of the variance is conditional on

treatment and/or tissue.

In contrast, population structure by itself accounted for 10%–

15% of total variance in GSL (Figure 2). Interestingly, significantly

less variance (,5%) could be attributed to interaction of treatment

or tissue with population structure. This suggests that for GSL,

large-effect polymorphisms that may be linked with population

structure are stable across treatment and tissue while the

polymorphisms with conditional effects are less related to the

species demographic structure (Figure 2). This is consistent with

QTL studies using RIL that find greater repeatability of large-

effect QTL across populations and conditions than of treatment-

dependent loci [41,51,61,63]. This is further supported by the fact

that we utilized replication of defined genotypes across all

conditions and tissues and as such have better power to detect

these effects than in systems where it is not possible to replicate

genotypes. As such, controlling for population structure will reduce

the number of false-positives detected but lead to an elevated false-

negative rate, given this significant association between the

measured phenotypes and population structure.

Interestingly, developmental effects (average of 15%) accounted

for 3 times more of the variation in GSL than environmental

effects (average 5%). In particular, only three GSL (two indolic

GSL, I3M and 4MOI3M, and total indolic GSL) were affected

more strongly by AgNO3-treatment than by accession (Table S1

and Figure S1), whereas 11 GSL traits were found to be influenced

more by tissue type than accession (Table S2). This agrees with

these indolic GSL being regulated by defense response [36,64].

Similarly, twice as much GSL variation could be attributed to the

interaction between accession and tissue type compared to the

interaction between accession and AgNO3 treatment. Thus, it

appears that intraspecific genetic variation has greater impact on

GSL in relation to development than in response to simulated

pathogen attack.

Genome-Wide Association Study
Using 229,940 SNP available for this collection of 96 accessions,

we conducted GWA-mapping for GLS traits in both the Seedling

and Silver datasets using a maximum likelihood approach that

accounts for genetic similarity (EMMA) [65]. This identified a

large number of significant SNPs and genes for both datasets

(Table 1). We tested the previously published criteria used to assess

significance of candidate genes to ensure that different treatments

or tissues did not bias the results produced under these criteria [4].

These criteria required $1 SNP, $2 SNPs, or $20% of SNPs

within a gene to show significant association with a specific GSL

trait. This test was independently repeated for all GSL traits in

both datasets (Tables S5 and S6). As previously found using the

control leaf GSL data, the more stringent $2 SNPs/gene criterion

greatly decreased the overall number of significant genes identified

while not overtly influencing the false-negative rate when using a

set of GSL genes known to be naturally variable and causal within

the 96 accessions (Tables 2 and 3). Interestingly, including multiple

treatments and tissues did not allow us to decrease the high

empirical false-negative rate (,75%) in identifying validated

causal candidate genes (Table 3) [4,31]. Using the $2 SNPs/

gene criterion identified 898 genes for GSL accumulation in silver-

treated leaves and 909 genes for the seedling GSL data. As

previously found, the majority of these candidate genes were

specific to a subset of GSL phenotypes and no gene was linked to

all GSL traits within any dataset (Figure S2) [4].

We estimated the variance explained by the candidate GWA

genes identified in this study using a mixed polygenic model of

inheritance for each phenotype within each dataset using the

GenABEL package in R [66–67]. This showed that, on average,

the candidate genes explained 37% of the phenotypic variation

with a range of 1% to 99% (Table S10). Interestingly, if the

phenotypes are separated into their rough biosynthetic classes of

indolic, long-chain, or short-chain aliphatic [68], there is evidence

for different levels of explained phenotypic variation where indolic

has the highest percent variance at 45% while short-chain has the

lowest at 25% (p = 0.001). This is not explainable by differential

heritability as the short-chain aliphatic GSLs have the highest

heritability in numerous studies including this one (Tables S1 and

S2) [4,41,61]. This is instead likely due to the fact that short-chain

aliphatic GLS show higher levels of multi-locus epistasis that

complicates the ability to estimate the explained variance within

GWA studies [31,41,61].

Table 1. GWA mapping summary.

GWA Descriptor Silver Seedling

Total # SNP tested 229,940 229,940

Total # genes tested 31,505 31,505

Avg # sig SNP per trait 230 230

Total # unique genes over all traits 898 909

Avg # sig genes per trait 37 39

Range (# genes sig per trait) 26–50 24–54

Avg # sig SNP per gene per trait 3 3

Range (Avg # sig SNP per gene per trait) 2–4 2–4

Max # sig SNP per gene per trait 7 10

Range (max # sig SNP per gene per trait) 4–16 4–13

Summary of statistical results from GWA-mapping on two different GSL datasets
from 96 accessions (Silver and Seedling). # indicates the number of the items
indicated, sig means the events crossing the significance threshold, and Avg is
the average.
doi:10.1371/journal.pbio.1001125.t001

Table 2. Using known GSL genes to estimate thresholds in
GWA mapping.

GWA Descriptor Dataset
$1 SNP
per Gene

$2 SNP
per Gene

$20% SNP
per Gene

# of sig genes silver 4843 898 1,025

seedling 4767 909 1,029

GSL genes in
sig genes

silver 0.6% 1.1% 0.6%

seedling 0.4% 0.9% 0.6%

Sig GSL genes silver 18.7% 6.7% 4.0%

seedling 14.0% 5.3% 4.0%

Shown are the numbers of significant genes identified in the two datasets
(silver and seedling) using three different call thresholds. The percentage of the
significant genes that are known GSL genes is provided as well as the fraction of
all known GSL genes identified at each threshold. Sig, significant.
doi:10.1371/journal.pbio.1001125.t002

Development, Environment, and GWAS Networks

PLoS Biology | www.plosbiology.org 5 August 2011 | Volume 9 | Issue 8 | e1001125



Treatment and Tissue Contrasts
Previous work with untreated GSL leaf samples showed that

candidate genes clustered in hotspots, with the two predominant

hotspots surrounding the previously cloned AOP and MAM loci

[4], where multiple polymorphisms surrounding the region of

these two causal genes significantly associate with multiple GLS

phenotypes. We plotted GWA-identified candidate genes for GSL

accumulation from the silver and seedling datasets to see if

treatment or tissue altered this pattern (Figure 3). Both datasets

showed statistically significant (p,0.05; Figure 3) hotspots of

candidate genes that clustered predominantly around the AOP and

MAM loci with some minor treatment- or tissue-specific hotspots

containing fewer genes. This phenomenon is observed across

multiple GLS traits (Figure 3). The AOP and MAM hotspots are

known to be generated by local blocks of linkage disequilibrium

(LD) wherein a large set of non-causal genes are physically linked

with the causal AOP2/3 and MAM1/3 genes [4]. Interestingly,

while the silver and control leaf GWA datasets showed similar

levels of clustering around the AOP and MAM loci, the hotspot at

the MAM locus was much more pronounced than the AOP locus in

the seedling GWA dataset (Figure 3), suggesting more seedling

GLS traits are associated with the MAM locus. This agrees with

QTL-mapping results in structured RIL populations of A. thaliana

that have shown that the MAM/Elong locus has stronger effects

upon seedling GSL phenotypes in comparison to leaves, whereas

the effect of the AOP locus is stronger in leaves than seedlings

[41,62–63]. In addition, the relationship of GSL phenotypes

across accessions is highly similar in the two leaf datasets, while the

phenotypic relationships across accessions are shifted when

comparing the seedling to the leaf (Figure 4). Together, this

suggests greater similarity in the genetic variation affecting GSL

phenotypic variation between the two leaf datasets than between

leaf and seedling datasets, suggesting that GSL variation is

impacted more by development than simulated pathogen attack.

This is further supported by the analysis of variance (Figure 2).

To further test if measuring the same phenotypes in different

tissues or treatments will identify similar GWA mapping

candidates, we investigated the overlap of GWA candidate genes

identified across the three datasets. For this analysis we excluded

genes within the known AOP and MAM LD blocks as previous

research has shown that all of these genes except the AOP and

MAM genes are likely false-positives and would bias our overlap

analysis [4,69–71]. The remaining GWA mapping candidate

genes showed more overlap between the two leaf datasets than

between leaf and seedling datasets (Figure 5). Interestingly, the

overlap between GWA-identified candidate gene sets from

seedling and leaf data was smaller than would be expected by

chance (x2 p,0.001 for all three sectors) (Figure 5). This suggests

that outside of the AOP and MAM loci, distinct sets of genetic

variants may contribute to the observed phenotypic diversity in

GSL across these tissues, which agrees with QTL-mapping studies

identifying distinct GSL QTL for seedling and leaf [41,62–63]. As

such, focusing simply on GWA mapping candidates independently

identified in multiple treatments or tissues to call true significant

associations will overlook genes whose genotype-to-phenotype

association is conditional upon differences in the experiments.

Similarly, the amount of phenotypic variance explained by the

candidates differed between the datasets, with control and treated

having the highest average explained variance, 39% and 41%,

respectively. In contrast, the seedling dataset had the lowest

explained variance at 32%, similarly suggesting that altering the

conditions of the experiments will change commonly reported

summary variables such as explained variance.

Candidate Gene Network Filtering
GWA studies generally produce large lists of candidate genes,

presumed to contain a significant fraction of false-positive

associations. One proposed strategy refines these results by

searching for enrichment of candidate genes within pre-defined

proteomic or transcriptomic networks [15]. To test the applica-

bility of this approach to our GWA study, we overlaid our list of

2,436 candidate genes (excluding genes showing proximal LD to

the causal AOP2/3 and MAM1/2/3 genes [4]) that associated with

at least one GSL phenotype in at least one of the three datasets

(Figure 5) onto a previously published co-expression network [72].

If the network filtering approach is valid and there are true

causal genes within the candidate gene lists, then the candidate

genes should show tighter network linkages to previously validated

causal genes than the average gene. Measuring the distances

between all candidate genes to all known GSL causal genes within

the co-expression network showed that, for all datasets, the GWA

candidate genes were on average closer to known causal genes

than non-candidates (Figure S4). Interestingly, the GWA mapping

candidate genes actually showed closer linkages to the cysteine,

homocysteine, and glutathione biosynthetic pathways than to the

core GSL biosynthetic pathways, suggesting that natural variation

in these pathways may impact A. thaliana secondary metabolism

(Figure S4 and Dataset S1). The network proximity of GWA

mapping candidates to known causal genes supports the utility of

the network filtering approach in identifying true causal genes

among the long list of GWA mapping candidate genes.

Candidate Gene Network Filtering (Core Pathway
Linkages)

To determine if this network filtering approach finds whole co-

expression networks or isolated genes, we extended the co-

Table 3. Recovery of known causal GSL genes in GWA
mapping.

AGI Name Control Silver Seedling

AT1G12140 GSOX5 — — —

AT1G24100 UGT74B1 — — —

AT1G62540 GSOX2 — — —

AT1G62560 GSOX3 — — —

AT1G62570 GSOX4 Yes — Yes

AT1G65860 GSOX1 — — —

AT2G25450 GS-OH — — —

AT2G31790 UGT74C1 — — —

AT4G03050 AOP3 Yes Yes Yes

AT4G03060 AOP2 Yes Yes Yes

AT5G07690 MYB29 — — —

AT5G07700 MYB76 — — —

AT5G23010 MAM1 Yes Yes Yes

AT5G57220 CYP81F2 — — —

AT5G60890 ATR1/MYB34 — — —

AT5G61420 MYB28 — — —

Shown are genes that have been previously shown to be both genetically
polymorphic and linked to GSL accumulation within the 96 accessions for the
Silver and Seedling GSL datasets as well as the previously published control leaf
GWA dataset [4,31]. Yes, if the gene has $2 SNPs showing significant
associations to one or more GSL traits in the corresponding GWA; Dash (—), no
significant associations.
doi:10.1371/journal.pbio.1001125.t003
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expression network to include known and predicted GSL causal

genes (Table S7). The largest network obtained from this analysis

centered on the core-biosynthetic genes for the aliphatic and

tryptophan derived GSL as well as sulfur metabolism genes

(Figures 6 and S3). Interestingly, this large network linked to a

defense signaling network represented by CAD1, PEN2, and EDS1

(Figure 6) [73].

The defense signaling pathway associated with PEN2 and, more

recently, CAD2 and EDS1 had previously been linked to altered

GSL accumulation via both signaling and biosynthetic roles

[36,39,74–75]. However, the current network analysis has

identified new candidate participants in this network altering

GSL accumulation. To test these predicted linkages, we obtained a

mutant line possessing a T-DNA insertional disruption of the

previously undescribed locus At4g38550, which is linked to both

CAD1 and PEN2 (Figure 6, Table S9). This mutant had elevated

levels of all aliphatic GSL within the rosette leaves as well as 4-

methoxyindol-3-ylmethyl GSL, shown to mediate non-host

resistance (Table S9) [36,39]. These results suggest a role for

At4g38550 in either defense responses or GSL accumulation.

Network analysis also identified several previously described

(RML1) and novel candidate (ATSFGH, At1g06640, and

At1g04770) genes that were associated with the core-biosynthetic

part of the network. RML1 (synonymous with PAD2, CAD2), a

biosynthetic enzyme for glutathione, has previously been shown to

control GSL accumulation either via a signaling role or actual

biosynthesis of glutathione [74–75]. To test if ATSFGH (S-

formylglutathione hydrolase, At2g41530), At1g06640 (unknown 2-

oxoacid dependent dioxygenase – 2-ODD), or At1g04770 (tetra-

tricopeptide containing protein) may play a role in GSL

accumulation, we obtained insertional mutants. This showed that

the disruption of At1g06640 led to significantly increased

accumulation of the short-chain methylsulfinyl GSL but not the

corresponding methylthio or long-chain GSL (Table S9). In

contrast, the AtSFGH mutant had elevated levels of all short-chain

GSL along with a decreased accumulation of the long-chain 8-

MTO GSL (Table S9). The At1g04770 mutant showed no altered

GSL levels other than a significantly decreased accumulation of 8-

MTO GSL (Table S9). This suggests that these genes alter GSL

accumulation, although the specific molecular mechanism remains

to be identified.

Interestingly, network membership is not sufficient to predict a

GSL impact, as T-DNA disruption of homoserine kinase

(At2g17265), a gene co-expressed with the GSL core but not a

candidate from the GWA analysis, had no detectable impact upon

GSL accumulation (Table S9).

Thus, the network filtering approach identified genes closely

linked to the GSL biosynthetic network that can control GSL

accumulation and are GWA-identified candidate genes.

Candidate Gene Network Filtering (Novel Networks)
The above analysis shows that GWA candidate genes which co-

express with known GSL genes are likely to influence GSL

accumulation. However, networks might influence GSL accumu-

lation independent of co-expression with known GSL genes. To

test this, we investigated several co-expression networks that

involved solely GWA-identified candidate genes and genes not

previously implicated in influencing GSL accumulation (Figure 7).

Three of these networks included genes that affect natural

variation in non-GSL phenotypes within A. thaliana, namely

PHOTOTROPIN 2 (PHOT2), Erecta (ER) [76], and ELF3/GI

(Figure 7) [77,78]. The fourth network did not involve any genes

previously linked to natural variation (Figure 7). We obtained A.

thaliana seed stocks with mutations in a subset of genes for each of

these three networks to test whether loss of function at these loci

affects GSL accumulation.

The largest network containing no previously known GSL-

related genes that we examined is a blue light/giberellin signaling

pathway represented by PHOT2 (Figure 7A). This pathway had

not been previously ascribed any role in GSL accumulation in A.

thaliana. We tested this GWA-identified association by measuring

GSL in the single and double PHOT1/PHOT2 mutants [79].

PHOT1 was included as it has been shown to function either

redundantly or epistatically with PHOT2 [79]. The single phot1 or

phot2 mutation had no significant effect upon GSL accumulation

(Table S9). The double phot1/phot2 knockout plants showed a

significant increase in the production of detected methylthio GSL

as well as a decrease in the accumulation of 3-carbon GSL

compared to control plants. Thus, it appears that GSL are

influenced by the PHOT1/PHOT2 signaling pathway, possibly in

response to blue light signaling (Table S9). This agrees with

previous reports from Raphanus sativa that blue light controls GSL

[80,81].

The second non-GSL network we examined contains the ER

gene (Figure 7B). The ER (Erecta) network and specifically the ER

locus had previously been queried for the ability to alter GSL

accumulation using two Arabidopsis RIL populations (Ler6Col-0

and Ler6Cvi) that segregate for a loss-of-function allele at the ER

locus [41,51,63,82–86]. In these analyses, the ER locus was linked

to seed/seedling GSL accumulation in only one of the two

populations and not linked to mature leaf GSL accumulation

[41,86]. Analysis of the ER mutant within the Col-0 genotype

showed that the Erecta gene does influence GSL content within

leaves as suggested by the GWA results (Table S9, Figure 7A).

Plants with loss of function at Erecta showed increased levels of

methylthio GSL, long-chain GSL, and 4-substituted indole GSL

(Table S9). Interestingly, the ER network contains a number of

chromatin remodeling genes. We obtained A. thaliana lines with

loss-of-function mutations in three of these genes (Table S9) to test

if the extended network also alters GSL accumulation. Mutation of

two of the three genes (At5g18620 – CHR17 and At4g02060 – PRL)

was associated with increased levels of short-chain aliphatic GSL

and a corresponding decrease in long-chain aliphatic GSL (Table

S9). This shows that the Erecta network has the capacity to

influence GSL accumulation.

Two smaller networks containing the ELF3 and GI genes were

of interest as these two genes are associated with natural variation

in the A. thaliana circadian clock (Figure 7C) [77,87,88]. GSL

analysis showed that both the elf3 and gi mutants had lower levels

of aliphatic GSL than controls (Table S9). Comparing multiple gi

mutants from both the Col-0 and Ler genetic backgrounds showed

that only gi mutants in the Col-0 background altered GSL

Figure 3. Genomic hotspots of GWA positive candidate genes. A 25-gene sliding window analysis was done to survey the genomic
distribution of genes with significant associations to the different GSL traits in the three datasets. The sliding window took the average number of
traits affected across every 25 genes such that a value above 1 within a 25-gene window implies each gene in the window affects one GSL trait. The
horizontal line represents the 95% percentile value for a 25 gene window from 1,000 random bootstrap analyses that randomly shuffled the gene’s
position within the genome for each dataset. All five chromosomes are shown in contiguous order on the x-axis with the position labeled using the
AGI gene code.
doi:10.1371/journal.pbio.1001125.g003
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accumulation (Table S9). This suggests that gi’s link to glucosino-

lates is epistatic to other naturally variable loci within the genome,

as previously noted for natural GI alleles in relation to other

phenotypes (Table S9) [78]. An analysis of the elf4 mutant which

has morphological similarities to elf3-1 but was not a GWA-

identified candidate showed that this mutation did not alter GSL

accumulation. Thus, elf3/gi affects GSL via a more direct

mechanism than altering plant morphology. Given two genes in

the circadian clock network directly affects GSL accumulation and

given the expression of these two genes are correlated with other

genes in the network, it is fair to hypothesize that circadian clock

plays a role in GSL accumulation.

While the GSL phenotypes of the above laboratory-

generated mutants suggest that variation in circadian clock

plays a role in GSL accumulation, they do not prove that the

natural alleles at these genes affect GSL accumulation. To

validate this, we leveraged germplasm developed in the course

of previous research showing that natural variation at the ELF3

locus controls numerous phenotypes, including circadian clock

periodicity and flowering time [77]. We utilized quantitative

complementation lines to test if natural variation at ELF3 also

generates differences in GSL content [77]. This showed that

the ELF3 allele from the Bay-0 accession was associated with a

higher level of short chain aliphatic GSL accumulation in

comparison to plants containing the Sha allele (Table S9). In

contrast, both Bay-0 and Sha allele-bearing plants had

elevated levels of 8-MTO GSL in comparison to Col-0 (Tables

S8 and S9). Thus, ELF3 is a polymorphic locus that contains

multiple distinct alleles that influence GSL content within the

plant and the ELF3/GI network causes natural variation in

GSL content.

The final network examined here, represented by CLPX (CLP

protease), is likely involved in chlorophyll catabolism and possibly

also chloroplast senescence [89]. This network is uncharacterized

and has not previously been associated with GSL accumulation or

natural variation in any phenotype, but participation in chloro-

plast degradation is suggested by transcriptional correlation of

CLPX with several catabolism genes. Analysis of mutants deficient

in function for two of these genes showed that they all possessed

increased aliphatic GSL in comparison to wild-type controls.

These results suggest that natural variation in this putative network

could influence GSL content in A. thaliana. The majority (12 of 13)

of genes in this network show significant variation in transcript

abundance across A. thaliana accessions, a significantly greater

proportion than expected by chance (X2 p,0.001) [90–92],

further suggesting that this network may contribute to GSL

variation across the accessions.

Finally, we tested a single two gene network found in the co-

expression data wherein both genes had been annotated but not

previously linked to GSL content. This network involved AtPTR3

(a putative peptide transporter, At5g46050) and DPL1 (a dihydro-

sphingosine lyase, At1g27980). T-DNA mutants in both genes

appeared to be lethal as we could not identify homozygous

progeny. However, comparison of the heterozygous progeny to

wildtype homozygotes showed that mutants in both genes led to

elevated levels of aliphatic GSL (Table S9). Thus, there are likely

more networks that are causal for GSL variation within this

dataset that remain to be tested.

Negative Network T-DNA Test
While GSL are considered ‘‘secondary’’ metabolites, these

compounds are affected by many aspects of plant metabolism,

thus GSL phenotyping is sensitive to any genetic perturbation

that affects plant physiology. As such, we identified six genes that

were expressed in mature leaves but did not show any significant

association of DNA sequence polymorphism with GSL pheno-

types and were additionally not identified within any of the above

co-expression networks. Insertional mutants disrupted at these

loci were designated as random mutant controls (Table S9).

Analyzing GSL within these six lines showed that on average

13%64% of the GSL were affected in the random control

mutant set even after correction for multiple testing. While this

suggests that GSL may be generally sensitive to mutations

affecting genes expressed within the leaf, this incidence of

significant GSL effects is much lower than observed for the T-

DNA mutants selected to test GWA mapping-identified pathways

(CLPX - 78%611%, PTR3 – 61%66%, Erecta – 45%610%,

GSL – 46%611%, ELF3/GI – 53%617%). In all cases the

Figure 4. Clustering of traits from control, AgNO3-treated leaf, and seedling samples. Shown are neighbor-joining cluster trees of GSL
traits where trait-trait distances were estimated based on trait values across the 96 accessions using Spearman’s Rank Correlation Coefficient. The GSL
were separated into four trait groups and the labels colored based on previous biochemical analysis; INDOLE, indolic GSL (Pink); OHBUT, 2-hydroxy-
but-3-enyl GSL traits (Yellow); LC, 7 and 8 C long methionine derived GSL (Green); and SC, 3 and 4 C long methionine derived GSL (Blue). Two
Seedling specific trait groups were also included for seedling specific GSL; BZO, benzoyloxy GSL (Red) and Benzyl (Cyan) are phenylalanine derived
GSL. Abbreviations are as per Tables S1 and S2. For comparison, only traits available in all three datasets were included in the analysis for (A–C). (A)
Relation of GSL traits in the control leaf dataset from the 96 accessions. (B) Relation of GSL traits in the silver leaf dataset from the 96 accessions. (C)
Relation of GSL traits from the seedling samples from the 96 accessions. (D) Relation of all GSL traits from the seedling samples from the 96
accessions, including GSL traits not present in mature leaves.
doi:10.1371/journal.pbio.1001125.g004

Figure 5. Overlap of significant GWA genes between datasets.
A VENN diagram showing the number of GWA significant genes for
each dataset: Silver, Control Leaf and Seedling. For this analysis, the
genes surrounding the AOP and Elong loci were excluded based upon
their previously observed high false-positive rate. The pairs of values in
parentheses correspond to the observed and expected percent of total
significant genes. In all regions, observed values significantly deviated
from expectation (x2 p,0.001). Those regions where the observed
fraction is less than expected are shown in blue, while regions with
more observed significant genes than expected are shown in red.
doi:10.1371/journal.pbio.1001125.g005
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mutants deficient in GWA pathway-identified gene function

showed significantly greater numbers of altered GSL phenotypes

than the negative control T-DNA mutant set (X2, p,0.001),

suggesting that combining GWA-identified candidate genes with

co-expression networks successfully identifies genes with the

capacity to cause natural variation in GSL content. Identifying

the specific mechanisms involved will require significant future

research.
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Figure 6. Largest co-expression network of GWA candidates and known GSL core genes. The largest co-expression network involving all
genes showing a significant association with a glucosinolate phenotype and the core network of known or predicted glucosinolate genes (Table S7)
is shown. Labels for genes with more than five neighbors are not shown due to the density of network. The GSL core is represented elsewhere in a
magnified view to provide legibility (Figure S3). Triangles show genes known or predicted to be involved in glucosinolate biology, while circles
represent significant GWA candidates not previously linked with glucosinolate production. White symbols show genes with no significant GWA hit in
these studies. Other colors show a GWA candidate in the listed dataset: apricot for control; teal for silver; yellow for seedling; olivegreen for control
and silver; blue for control and seed; cyan for control and seed; red is for all three datasets. Highlighted are genes mentioned in the text: a green
rhombus indicates previously known/predicted GSL-related genes, while blue circles indicate GWA candidate genes that were selected for validation
in the current study (Table S9).
doi:10.1371/journal.pbio.1001125.g006
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Figure 7. Self-affiliated expression networks of GWA mapping significant candidates. Shown are the co-expression networks that did not
involve any GSL-affiliated genes. These networks contain the ER locus (A), the CLPX locus (B), the ELF3 and GI loci (C), and the PHOT2 locus (D).
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olivegreen for control and silver; blue for control and seed; cyan for control and seed; red is for all three datasets. Circled in blue are genes that were
selected for validation in the current study (Table S9).
doi:10.1371/journal.pbio.1001125.g007
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Discussion

The influence of conditional genetics, i.e. interaction of

genotypes with environment or development, has been intensively

studied within structured mapping populations and shown to exert

considerable influence on the accumulation of small metabolites

[20,49–51,93–94]. However, conditional effects have not been

routinely included in GWA studies. In this report, we show

extensive variation in the identification of GWA candidate genes

that depends upon both Genotype6Environment and Genoty-

pe6Tissue interactions. The analysis of GSL accumulation in two

different tissues showed a significant bias toward indentifying

different causal genes for the GSL phenotypes in the two different

tissues (Figure 5). As such, conditional genetics are likely to be as

critical in GWA analyses as for QTL analyses using structured

populations. This suggests that requiring replication of genotype-

phenotype associations across environments or conditions as a

condition for validation, as has been suggested for human GWA

studies, may lead to a significant bias against loci that interact with

the environment or development. Instead, methods should be

developed to specifically target these loci.

Interestingly, developmental differences played a larger role

than the AgNO3 treatment in influencing genetic variation across

this collection of accessions, as displayed by the distribution of

phenotypes and their variance across the datasets (Figures 2 and

3). The different developmental stages, seedling and mature leaf,

showed a non-random distribution of GWA candidate genes with

repulsion, such that a seedling candidate was less likely to be a leaf

candidate gene than would be expected by random chance. This

result has two implications. The first is that GSL are influenced by

different genetic variation in the different developmental stages.

This is not unexpected given the changing herbivore pressures that

the plant will encounter over the course of its development.

Production of different optimal GLS profiles for defense at each

developmental stage likely is mediated by different genetic

networks. The second implication is that a large number of genes

may have the potential to influence GSL accumulation.

Network Proximity as a Method to Filter GWA Candidates
A limiting factor for the utility of GWA studies has been the

preponderance of false-positive and false-negative associations

which makes the accurate prediction of biologically valid geno-

type-phenotype associations very difficult. In this report, we describe

the implementation and validation of a candidate gene co-

expression filter that has given us a high success rate in candidate

gene validation (.75%). The co-expression dataset is derived from

transcript accumulation within a single A. thaliana accession (Col-0)

across a wide range of developmental and environmental states

[72]. This dataset has previously been used to show that genes

showing co-expression often modulate the same phenotype, and

may thus also function within the same pathway [57–59,95–99].

This co-expression dataset provides a functional grouping of A.

thaliana genes based upon non-genetic variation. This provides an

orthogonal grouping to that provided by the GWA mapping which

associates genes to phenotypes via natural genetic variation. This

approach is similar to other filtering approaches that utilize

complementary datasets to rank candidate genes [11,100–102].

However, most of these other approaches utilize two databases, e.g.

GWA and eQTL (expression quantitative trait loci), that are both

based upon natural genetic variation and thus do not provide

independent filters [11,100–101]. In contrast to these other network

approaches, our methodology does not rely upon a statistical rank or

enrichment procedure which can be dominated by individual genes

with high significance possibly due to GWA mapping artifacts

[102]. Instead, our approach focuses upon relative network size to

direct the researcher to the most interesting candidate networks.

This approach is less susceptible to statistical artifacts and allows the

user to input bait genes suggested by a priori knowledge [95,103–

104]. This approach should be useful in any system possessing

genomic networks that are orthogonal to the GWA-identified

candidate gene lists.

Number of Genes Determining a Phenotype’s Level and
Proximity of Effect

The use of multiple tissues and treatment conditions, as well as a

large set of different but related GSL phenotypes, led to the

identification of several thousand candidate genes. Even after

decreasing this number by using the network expression filter

approach, several hundred candidate genes of interest remained.

Analysis of a set of these genes via plants bearing single gene

mutations showed that disruption of many of these genes can alter

the amount or pattern of GSL accumulation (Table S9 and Figures 6

and 7). Given the observation that the background genotype can

influence the capacity to identify a mutational effect (see gi mutants

in Ler v Col-0, Table S9), our estimate of tested genes influencing

GSL accumulation is conservative. Given this, it is likely that a very

large number of small to moderate effect loci influence GSL

accumulation within A. thaliana, echoing recent findings regarding

the genetics of human height, and maize flowering time [105–106].

This suggests that the whole genome may have a pattern similar to

that found in an analysis of a single Arabidopsis locus that identified

several QTL for growth within a small section of the genome [70].

As such, it might be common for quantitative traits to be influenced

by thousands of causal loci [107].

The potential existence of thousands of polymorphic genes

influencing a phenotype raises a common concern that these

effects actually represent indirect pleiotropy, where moderate to

small effects of a locus upon a phenotype are not biologically

significant and do not reflect direct molecular control of the trait.

However, numerous studies on GSL variation within wild

populations have shown that changes in GSL accumulation

similar to those identified here have selective consequences in field

studies [33–35,43–45,108]. As such, even if polymorphisms in

these identified genes have indirect pleiotropic effects upon GSL

accumulation, these changes have a strong potential to influence A.

thaliana in natural settings. Thus, it may be more useful to consider,

instead of indirect versus direct effects of a locus, a continuous

distribution that describes the number of molecular steps required

to link a particular gene to the most proximal controller of the

phenotype—in this case, an enzyme in the biosynthetic pathway.

This raises the distinct problem of adaptive constraint wherein

natural variation at a locus is limited by its indirect consequences

upon other phenotypes. For instance, a phototropin allele with a

beneficial effect on seedling phototropic behavior may be limited

in its selective advantage due to a deleterious effect on GSL

accumulation [109–110]. While this possibility remains to be

tested in natural populations, it invites the question of why these

phenotypic linkages occur. Is there a benefit to the influence of

these loci on GSL accumulation, or has insufficient time passed

since the de novo evolution of GSL biosynthesis to generate the

genetic modularity to bypass historical linkages between develop-

ment and metabolism [111]?

Number of Genes Influencing a Phenotype and
Validation Barriers

A more mundane but significant experimental challenge of

generating a list of thousands of candidate genes potentially
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causing natural variation in a phenotype is validation. Even after

our expression network filtering, we were left with hundreds of

likely candidates that would take decades to rigorously validate.

Given that it is likely that at least several hundred genes lead to

natural variation in GSL accumulation [105–106], how do we

validate the effects of natural alleles at these loci, and is it worth

the effort? If it is not worth the effort for GSL accumulation, what

deciding factors should determine when a single phenotype should

be completely dissected (to the level of knowing all genes

containing a causal link to natural variation within a phenotype)?

Given the importance of quantitative variation in numerous

agronomic and medically important phenotypes, this discussion

needs to begin, because untested presumptions about the number

of causal genes for a phenotype greatly influences current GWA

research and associated strategies for avoiding false-positive and

false-negative results [2,65,112].

GWA and Development
We identified significant differences in GSL accumulation

between two different developmental stages and this led to the

identification of GWA candidate genes. While previous work on

structured mapping populations, such as RILs, has shown that

each tissue may be viewed as a distinct genetic module for both

development and biochemistry [41,49–50,113–114], this is one of

the first reports about tissue differences in an unstructured

population. This tissue specificity indicates that it is not possible

to simply require a candidate gene to replicate across tissues to

validate its GWA signature. Instead, each tissue has to be looked at

as a potentially independent modular system [115]. Such

modularity could be mediated by members of a gene family each

acting in a limited set of tissues, either as a result of sub- or neo-

functionalization [116–119]. Both sub- and neo-functionalization

have played an important role in the evolution of GSL and other

plant secondary metabolites [55,69,92,96]. The impact of

development on GWA remains to be tested across a broader

range of tissues and developmental stages.

Conclusion
In this report, we show that GWA-mapping, like QTL-mapping

using structured populations, is sensitive to interaction of genetic

variation with the environment and the developmental stage of

phenotype measurement. This has not often been considered as a

critical factor influencing GWA studies, given the difficulty of

obtaining replicated analyses within organisms such as humans.

Future work incorporating systematic analysis of how GWA

studies are influenced by developmental or environmental

gradients will be critical to understanding how the genomic

architecture of a species controls its phenotypes. We have

developed and validated a new approach to identifying GWA

candidate genes and shown that the use of orthogonal genomic

network datasets can lead to a very high success rate in the

biological validation of candidate genes. This new approach, in

combination with the observation of conditional GWA results,

suggests that large numbers of genes can have a causal connection

to variation within GSL and other phenotypes.

Materials and Methods

Population, Treatment, and Growth Conditions
A previously described collection of 96 natural A. thaliana

accessions was used to measure GSL accumulation for GWA

mapping with existing SNP data from these same lines [3,27–

28,120]. Seeds were imbibed and cold stratified at 4uC for 3 d to

break dormancy. Seeds were planted in a randomized block

design, with multiple seeds of each accession occupying an

individual cell within 36-cell flats (approximately 100 cm3 soil

volume per cell). Four plantings of the 96 accessions provided four

independent replicates for each accession. At 1 wk of age,

seedlings were thinned to leave one plant per cell and

glucosinolates were extracted from 10 of the removed seedlings.

For all experiments, plants were maintained under short day

conditions in controlled environment growth chambers. At 35 d

post-germination, two fully expanded mature leaves were

harvested, digitally photographed, and one was directly analyzed

for GSL content as described below [18,121]. The other leaf was

treated with 5 mM AgNO3 for 48 h prior to harvest for GSL

analysis. AgNO3 induces plant responses to pathogens by

interfering with ethylene hormone-signaling and inducing reactive

oxygen species. We utilized AgNO3 as a treatment to estimate the

effect of variation in plant defense response upon GWA mapping

[122–124]. In total, these datasets contain four measurements per

accession per tissue and treatment for a total of 301 assays of

seedling GSL (Seedling Dataset), 374 assays of control leaf GSL

(Ctl Dataset), and 375 assays of GSL following AgNO3 treatment

of leaves (Silver Dataset). The data for the control dataset is

reported elsewhere as the ‘‘2008 dataset’’ [4].

Analysis of GSL Content
GSL content of excised leaves and seedlings was measured using

a previously described high-throughput analytical system [62,69].

Briefly, for excised leaves, one leaf was removed from each plant,

photographed, and placed in a 96-well microtiter plate with

500 mL of 90% methanol and one 3.8 mm stainless steel ball-

bearing. Seedlings were removed from pots with forceps, gently

cleaned with distilled water to remove soil, and similarly placed

into 90% methanol in microtiter plates. Tissues were homogenized

for 2 min in a paint shaker, centrifuged, and the supernatants

transferred to a 96-well filter plate with 50 mL of DEAE sephadex.

The sephadex-bound GSL were eluted by overnight, room

temperature incubation with sulfatase. Individual desulfo-GSL

within each sample was separated and detected by HPLC-DAD,

identified, and quantified by comparison to purified standards

[125]. Tissue area for each leaf was digitally measured using

Image J with scale objects included in each digital image [126].

The GSL traits are reported per cm2 of leaf area for the mature

leave data or per seedling for the seedling data. There was no

significant variation detected for leaf density within these

accessions (unpublished data). In addition to the content of

individual GSL, we developed a series of summation and ratio

traits based on prior knowledge of the GSL pathways [127]. These

ratios and summation traits allow us to isolate the effects of

variation at individual steps of GSL biosynthesis from variation

affecting the rest of the biosynthetic pathway [127].

Parititioning H2 Between Structure and Accession
To estimate broad-sense heritability due to accession and

population structure for the different metabolites, we evaluated the

data using a model where the metabolite traits are ysar =

m+Ss+A(S)sa+Tt+R(T)tr+Tt:Ss+Tt:A(S)sa+esart where s = 1,…,8;

r = 1,…4; t = 1,2; and a = 1,…,95. The main effects are denoted

as S, A, T, and R and represent structure, accession, treatment (or

tissue), and replicate block, respectively. Here, the variable T may

refer to (1) treatment corresponding to the two factors with or

without AgNO3 treatment or (2) tissue corresponding to the two

factors’ mature leaves or seedlings. Population structure is

represented as s = 1,…,8, corresponding to eight distinct groups

into which these 96 accessions have previously been assigned

[27–28]. The error, esart, is assumed to be normally distributed
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with mean 0 and variance se
2. Broad-sense heritability was

estimated as the percent of total variance attributable to accession

nested within structure and that for structure was estimated as the

percent of total variance attributable to structure. The data were

analyzed independently for the two treatments or conditions:

control versus AgNO3 and control versus seedling (Figure 2;

Tables S1 and S2).

Association Mapping
To conduct single-locus GWA mapping accounting for

population structure, we adopted a previously published method,

the efficient mixed-model association (EMMA) algorithm [65].

EMMA is a statistical mixed model [65] where each SNP is

modeled as a fixed effect and population structure, represented as

a genetic similarity matrix, is modeled as a random effect.

Variance components for this mixed model were estimated

directly using maximum likelihood as implemented in the R/

EMMA package [65]. Within this model, the independent

measures of each metabolite within each accession, obtained from

the analysis of variance model ysar = m+Aa+Rr+esar, were directly

incorporated as genetic averages for the accessions (Tables S3 and

S4). Because GWA was performed independently for each of the

three datasets and because EMMA accounts for population

structure, the variables Ss, Tt, and Rr were excluded in this model.

The average GSL accumulation per accession for the control

dataset is reported elsewhere as the ‘‘2008 experiment’’ [4]. The

full results are available at http://www.plantsciences.ucdavis.edu/

kliebenstein/supplementaldataset1.zip.

Calling Positive Genes for GWA Mapping
We utilized a previously reported criterion for calling significant

gene-trait associations in these three datasets [4]. p value

distributions of the GWA analysis were not uniform. Accepting

an inherently elevated false-positive rate, we identified SNP within

the bottom 0.1 percentile of each p value distribution, corre-

sponding to each trait, as significant for EMMA. Given previous

observations that multiple SNPs per gene are typically associated

with a trait for true-positives [30], we developed a criterion for

calling a significant association between a trait and a gene [4,30]:

requiring at least two significant SNPs within 61 kb of a gene’s

coding region to call a gene significant. This approach optimized

the ratio of empirical false-positive to false-negative associations.

This criterion was independently applied to the GWA results from

all tissues and conditions (Tables S5 and S6).

Estimating Phenotypic Variance Controlled by GWA
Candidates

We estimated the variance explained by the candidate GWA

mapping genes identified in this study using the GenABEL

package in R [66–67]. This was done using a mixed polygenic

model of inheritance for each phenotype within each dataset. Only

SNPs within 1 kb of significant genes were utilized.

Co-Expression Network Analyses
Co-expression data were obtained from ATTED II [72,128].

We extracted correlation values for transcript levels of genes

showing significant association in at least one of the three datasets

(Tables S5 and S6) [4] as well as a list of genes with predicted or

known roles in GSL metabolism or regulation (Table S7). This

latter set of genes was included to act as ‘‘bait genes’’ that might

catalyze network formation around a known causal gene

[59,95,98]. GWA candidates located within previously identified

regions surrounding the AOP and MAM loci were then excluded to

reduce detection of false associations due to linkage with the causal

AOP2/3 and MAM1/2/3 genes [4]. Co-expression networks were

constructed between these genes using a Mutual Rank threshold of

up to 15 [129]. Co-expression networks were visualized using

Pajek [130].

To test if GWA-identified candidate genes showed tighter

linkage to known GSL networks than expected by chance, the

shortest paths between each candidate or randomly selected

control gene and all verified GSL genes within the full co-

expression network were compared using the R/igraph package

[67,131–133]. This analysis was performed independently for

candidate genes found in the control, silver, or seedling datasets as

well as for all GSL genes and a subset of randomly selected genes

that were not significantly associated with GSL phenotypes within

the GWA mapping (Figure S4). This analysis generated a

distribution of path distances linking the set of GWA mapping

candidate genes to the known GSL genes. We also repeated the

analysis by dividing the GSL genes into each of the specific

biosynthetic pathways to test if any specific pathways showed

reduced path distances to GWA mapping candidates (Tables S7

and S8) [50,92,99,134–135].

We conducted two statistical tests to compare the null

distribution (distances from non-significant genes to known GSL

genes) with the GWA mapping candidate distribution (distances

from GWA candidate genes to known GSL genes). The Wilcoxon

Rank Sum Test tests the probability of a location shift between the

distribution of the shortest paths of all GWA mapping candidate

genes (from one of the three datasets) to all known GSL genes and

the distribution of the shortest paths of all non-significantly

associated genes to the all known GSL genes. The Ansari-Bradley

Test examines the probability that the two aforementioned

distributions are differently dispersed. Both statistic tests were

conducted using the full GSL network list as well as each

individual biosynthetic pathway (Tables S7 and S8).

GWAS Candidate Gene Selection and Validation
We focused our validation efforts on a set of GWA-identified

candidate gene co-expression networks that exhibited different

numbers of genes that are a member of the network (levels of

membership). Criteria for selection of candidate genes from these

networks for testing were connectedness (the gene had to show

correlated expression levels (MR rank of ,16) with multiple

candidate genes within the network) and availability of viable

mutants. These mutants were either a pre-existing characterized

mutant line or a homozygous T-DNA mutation within an early

exon of the candidate gene available from the Arabidopsis

Biological Resource Center (ABRC) [136]. For each network

tested, we attempted to test at least four separate genes within

the network for altered GSL accumulation. We obtained

putative homozygous T-DNA mutants for 18 candidate genes

and validated their homozygosity using a PCR assay. Primers for

the assay were designed using the SALK SIGnAL iSect primer

design tool (http://signal.salk.edu/tdnaprimers.2.html). Of the

18 T-DNA mutants surveyed, homozygous mutants could not be

obtained for 11 mutants, likely from lethality. In these cases,

heterozygote lines were allowed to self-pollinate, and homozy-

gous seed stocks were obtained by single seed decent following

PCR-based genotyping of the progeny. In the absence of a

homozygous line, we tested GSL content within the adult rosette

leaves within PCR-confirmed heterozygous individuals. We also

obtained mutants deficient in function at the following loci:

phototropin1/phototropin2 (phot1/phot2) (4 lines), Gigantea (gi) (8

alleles), Erecta (er) in Col-0, and early flowering 3-1 (elf3-1)

[79,137–140]. Plants were grown under 10 h of light for 5 wk
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using a randomized complete block design over two experiments

with at least four biological replicates per experiment. Leaf area

and GSL content of the first true leaf was obtained as described

above. A Dunnett’s t-test was conducted to test the statistical

significance of differences in GSL content between the mutant

and wild-type while correcting for multiple comparisons using

the R/multcomp package (Table S9) [141]. GSL were measured

in at least two biological replicates per genotype, averaging 17

total individual measurements per genotype across the two

replicates (min = 8, max = 48) (Table S9). Only wild-type

controls grown concurrently with the mutants were used for

the statistical comparison.

Measuring Glucosinolate Accumulation between the
Bay-0 and Sha ELF3 Alleles

We utilized previously generated quantitative complementation

lines to validate that natural variation in the ELF3 locus did alter

GSL accumulation [77]. elf3:Bay-0 and elf3:Sha transgenic T1 seeds

were planted on soil including elf3.1 mutants and wild-type Col-0

as a control [77]. The extreme hypocotyl length and cotyledon

color phenotypes of the elf3.1 mutants were assessed to distinguish

transformed from untransformed plants [137]. Transformed plants

were grown for 25 d in a 10 h photoperiod. At 25 d, leaf tissue

was harvested from each plant and individually extracted and

assayed via HPLC for glucosinolate composition and concentra-

tion as previously described [41,69]. The experiment was

replicated 5 times for a total of 41 elf3:Bay-0 and 44 elf3:Sha

independent T1 plants. GSL differences between the two ELF3

alleles were tested as described above.

Supporting Information

Dataset S1 GWA network candidate results. This dataset

contains the GWA network candidate output results in a .net file

ready for import into Pajek.

(TXT)

Figure S1 Trait distributions from leaf-control, leaf-AgNO3, and

seedling datasets. Distributions of total aliphatic (left) and total

indolic (right) glucosinolates are shown as examples to illustrate the

differences between the three datasets. Seedling glucosinolates are

presented in amount per seedling to control for differences in

cellular expansion.

(TIF)

Figure S2 VENN Diagram of positive calls and trait groups.

VENN diagrams showing the numbers of GWAS significantly

associated genes for each dataset, Silver, Control, and Seedling,

are shown. The GSL were separated into four trait groups based

on previous biochemical analysis; INDOLE, indolic GSL;

OHBUT, 2-hydroxy-but-3-enyl GSL traits; LC, 7 and 8 C long

methionine derived GSL; SC, 3 and 4 C long methionine derived

GSL. Two Seedling specific trait groups were also included for

seedling specific GSL; BZO, benzoyloxy GSL and Benzyl are

phenylalanine derived GSL. The bottom right VENN diagram

displays overlap between the four common trait groups and the

seedling specific groups.

(TIF)

Figure S3 Core GSL co-expression network. The known or

predicted GSL genes generate a core GSL co-expression network

that is expanded in this presentation for legibility. The general

biochemical functions of the four major clusters within this super

network are labeled. Three of the major clusters are further

magnified to provide gene identification.

(PDF)

Figure S4 Distributions of shortest distances between known

GSL genes and GWA candidates. Shown are plots comparing the

distributions of the shortest distances between known GSL genes

and GWA candidates for the control (red), silver (green), and

seedling (blue) datasets. For comparison similar distributions

derived from non-GWA-candidates (all genes) are also shown

(black lines). Pw is the Wilcoxon Rank Sum test p value comparing

the probability of a location shift between the distribution of the

shortest paths of all GWA candidate genes (from one of the three

datasets) to the corresponding glucosinolate gene and the

distribution of the shortest paths of all non-significantly associated

genes to the corresponding glucosinolate gene. Pa is the Ansari-

Bradley Test probability assessing the difference in dispersion

between the two aforementioned distributions. This was done for

all GSL genes as well as for each of the specific biosynthetic

networks as defined.

(PDF)

Table S1 Estimates of variance components for GSL in AgNO3

study. For each glucosinolate trait the following model was

examined: ysar,m+Ss+A(S)sa+Tt+R(T)tr+Tt:Ss+Tt:A(S)sa, where m
is the intercept, s is the K M {1,…,8) value for the corresponding

accession [27–28], A(S)sa is the effect of accession nested in structure,

Tt is the effect of AgNO3-treatment, and R(T)tr is the biological/

technical replicate of the measure. The model was evaluated by

combining the control (untreated mature leaves) and AgNO3-treated

datasets. F, F-statistic of the model; P(F), nominal p value of the F-

statistic; DF(num), numerator degrees of freedom; DF(denom),

denominator d.f.; R2, fraction of total variance explained by the

model; g2(x), partial R2 of the corresponding predictor variable; and

P(x), p value of the corresponding predictor variable.

(XLS)

Table S2 Estimates of variance components for GSL in seedling

study. For each glucosinolate trait the following model was

examined: ysar,m+Ss+A(S)sa+Tt+R(T)tr+Tt:Ss+Tt:A(S)sa, where m
is the intercept, s is the K M {1,…,8) value for the corresponding

accession [27–28], A(S)sa is the effect of accession nested in

structure, Tt is the effect of tissue type (mature leaves versus

seedlings), and R(T)tr is the biological/technical replicate of the

measure. The model was evaluated by combining the control

(mature leaves) and seedling datasets. F, F-statistic of the model;

P(F), nominal p value of the F-statistic; DF(num), numerator

degrees of freedom; DF(denom), denominator d.f.; R2, fraction of

total variance explained by the model; g2(x), partial R2 of the

corresponding predictor variable; and P(x), p value of the

corresponding predictor variable.

(XLS)

Table S3 Genetic means of glucosinolate abundance per

accession for silver treated accessions. All metabolite values are

in nmol per mg fresh weight tissue. Shown are the predicted

means from four independent plants treated with silver nitrate per

accession as per the statistical model: ysar = m+Aa+Rr+esar. Treated

and untreated camalexin values are presented and are considered

related to the indole GSL metabolites.

(XLS)

Table S4 Genetic means of glucosinolate abundance per

accession for seedlings. All metabolite values are in nmol per

seedling. Shown are the predicted means from four independent

samples per accession as per the statistical model: ysar = m+Aa+
Rr+esar.

(XLS)

Table S5 Gene-to-trait associations as identified using silver

treated samples. Logical table indicating whether each of 31,505
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genes is significantly associated to each of the 46 traits within the

seedling samples. AGI is the gene code, Chr is the chromosome,

and Start and End are the position of the gene in basepairs. For

each trait, a gene is significantly associated if at least two SNP

within 61 kb flanking the coding region has a p value in the

bottom 0.1 percentile of the p value distribution. T, is significant;

F, not significant and genes with no significances are not listed.

(XLS)

Table S6 Gene-to-trait associations as identified using seedling

material. Logical table indicating whether each of 31,505 genes is

significantly associated to each of the 46 traits within the seedling

samples. AGI is the gene code, Chr is the chromosome, and Start

and End are the position of the gene in basepairs. For each trait, a

gene is significantly associated if at least two SNP within 61 kb

flanking the coding region has a p value in the bottom 0.1

percentile of the p value distribution. T, is significant; F, not

significant and genes with no significances are not listed.

(XLS)

Table S7 Known and putative genes involved in the GSL

pathway. List of genes either known or predicted to play a role in

GSL metabolism and regulation. AGI, the AGI (Arabidopsis

Genome Initiative) code for each gene; Pathway, specific part of

the GSL metabolic system the gene is thought function;

Pseudogene, whether or not the gene is predicted to be a

pseudogene; Evidence, experimental evidence (Genetic or Bio-

chemical) or sequence evidence base on homology to validated

GSL gene (Homology).

(XLS)

Table S8 GSL abbreviations.

(XLS)

Table S9 Mutant analysis for altered GSL accumulation.

Chemical and statistical analysis for the various single gene

mutants and genotypes queried within the manuscript. The

wildtype to mutant comparison being conducted is shown in bold

at the start of each subtable. The average value for mutant and

control are shown in the top table for each mutant while the

standard error is shown in the second table. The p value

comparing the two genotypes is on the line labeled p value and

n shows the number of independent plants measured per line.

(XLS)

Table S10 Estimated phenotypic variance determined by

significant GWAS candidates. Abbreviations per glucosinolate

are as described in Table S8. Percent phenotypic variations are as

described in Materials and Methods. Analysis was conducted

independently for each dataset.

(XLS)
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